Design
Susan Holmes
Wolfgang Huber
Overview

Variance-stabilizing transformations

Hypothesis screening
Variance and mean are computed for each row (gene), across the columns (samples)

\[v = c \cdot m^k \]

\[\log(v) = k \cdot \log(m) + \log(c) \]

Figure 8.4: Variance versus mean for the (size factor adjusted) \texttt{counts} data. The axes are logarithmic. Also shown are lines through the origin with slopes 1 (green) and 2 (red).
Variance-stabilizing transformation

The estimated variance-mean dependence allows deriving a logarithm-like transformation that removes it.
Variance-stabilizing transformation

The estimated variance-mean dependence allows deriving a logarithm-like transformation that removes it.
Variance Stabilizing Transformation

\[f(x) = \int_x \frac{du}{\sqrt{v(u)}} \]

For Gamma-Poisson distributed data:

\[f_{a,b}(x) = \frac{1}{\log(2)} \log \left(\frac{1 + 2ax + b + 2\sqrt{ax(1 + ax + b)}}{4a} \right) \]

Demo
Deriving a variance-stabilizing transformation from empirical variances

```r
nba = 2^seq(0, 10, by = 1)
simnb = lapply(nba, function(a) {
  u = rnbinom(1e4, a, 0.2)
  tibble(mu = mean(u), sd = sd(u),
         lower = quantile(u, 0.025),
         upper = quantile(u, 0.975),
         a = a)
}) %>% bind_rows

head(as.data.frame(simnb), 2)
##    mu     sd lower upper a
## 1  3.9129 4.402028    0   16 1
## 2  8.0493 6.297113    0   24 2

ggplot(simnb, aes(x = a, y = mu, ymin = lower, ymax = upper)) +
  geom_point() + geom_errorbar()

slopes = 1/simnb$sd
datacurve = data.frame(mns=simnb$mu, values = cumsum(slopes * simnb$mu))
ggplot(datacurve, aes(x=mns, y=values)) +
  geom_point() + geom_line() + xlab("")
```
Regularized log-transformation: Visualization, Clustering, PCA

“rlog”: Shrunken log fold changes for every sample: reduces effect of shot noise on inter-sample distances

RNA from the dorsal root ganglion of rats that underwent spinal nerve ligation and controls, 2 weeks & 2 months after the ligation. Hammer, …, Beutler AS, Genome Research 2010.
GSEA with shrunken log fold changes

RNA from the dorsal root ganglion of rats that underwent spinal nerve ligation and controls, 2 weeks & 2 months after the ligation. Hammer, ..., Beutler AS, Genome Research 2010.

Reactome gene set
one-sample t-statistic
Neuronal System
144 genes
avg LFC: -0.55
adjusted p-value: 10^{-8}
Considerations on hypothesis screening
(a.k.a. ‘multiple testing)

FDR is a set quantity. Subsequent subsetting invalidates it. An FDR of 10% for a result list DOES NOT mean local fdr for each component gene is <= 10%

Tests against point-like null hypotheses can be too powerful. Consider banded nulls.

If you get astronomically small p-values, something is wrong.
Banded hypothesis testing: integrate testing with fold-change cutoff

Figure 4 Hypothesis testing involving non-zero thresholds. Shown are MA-plots for a 10 vs 11 comparison using the Bottomly et al. [15] dataset, with highlighted points indicating low adjusted p-values. The alternate hypotheses are that logarithmic (base 2) fold changes are (A) greater than 1 in absolute value or (B) less than 1 in absolute value.