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Comparison of transformations for 
single-cell RNA-seq data

Constantin Ahlmann-Eltze    1,2  & Wolfgang Huber    1

The count table, a numeric matrix of genes × cells, is the basic input data 
structure in the analysis of single-cell RNA-sequencing data. A common 
preprocessing step is to adjust the counts for variable sampling efficiency 
and to transform them so that the variance is similar across the dynamic 
range. These steps are intended to make subsequent application of generic 
statistical methods more palatable. Here, we describe four transformation 
approaches based on the delta method, model residuals, inferred latent 
expression state and factor analysis. We compare their strengths and 
weaknesses and find that the latter three have appealing theoretical 
properties; however, in benchmarks using simulated and real-world data, 
it turns out that a rather simple approach, namely, the logarithm with a 
pseudo-count followed by principal-component analysis, performs as well 
or better than the more sophisticated alternatives. This result highlights 
limitations of current theoretical analysis as assessed by bottom-line 
performance benchmarks.

Single-cell RNA-sequencing (RNA-seq) count tables are heteroskedas-
tic. In particular, counts for highly expressed genes vary more than for 
lowly expressed genes. Accordingly, a change in a gene’s counts from 
0 to 100 between different cells is more relevant than, say, a change 
from 1,000 to 1,100. Analyzing heteroskedastic data is challenging 
because standard statistical methods typically perform best for data 
with uniform variance.

One approach to handle such heteroskedasticity is to explicitly 
model the sampling distributions. For data derived from unique molec-
ular identifiers (UMIs), a theoretically and empirically well-supported 
model is the gamma-Poisson distribution (also referred to as the 
negative binomial distribution)1–3, but parameter inference can be 
fiddly and computationally expensive4,5. An alternative choice is to 
use variance-stabilizing transformations as a preprocessing step and 
subsequently use the many existing statistical methods that implicitly 
or explicitly assume uniform variance for best performance3,6.

Variance-stabilizing transformations based on the delta method7 
promise an easy fix for heteroskedasticity if the variance predominantly 
depends on the mean. Instead of working with the raw counts Y, we 
apply a non-linear function g(Y) designed to make the variances (and 
possibly, higher moments) more similar across the dynamic range of 

the data8. The gamma-Poisson distribution with mean μ and overdisper-
sion α implies a quadratic mean–variance relationship 𝕍𝕍ar[Y] = μ + αμ2. 
Here, the Poisson distribution is the special case where α = 0 and α can 
be considered a measure of additional variation on top of the Poisson. 
Given such a mean–variance relationship, applying the delta method 
produces the variance-stabilizing transformation

g(y) = 1
√α

acosh (2αy + 1) . (1)

Supplementary Information A1 shows the derivation. Practitioners 
often use a more familiar functional form, the shifted logarithm

g(y) = log (y + y0) . (2)

This approximates equation (1), in particular if the pseudo-count is 
y0 = 1 / (4α) (Supplementary Information A2).

An additional requirement is posed by experimental variations in 
sampling efficiency and different cell sizes9, which manifest themselves 
in varying total numbers of UMIs per cell. Commonly, a so-called size 
factor s is determined for each cell and the counts are divided by it 

Received: 25 August 2021

Accepted: 11 February 2023

Published online: xx xx xxxx

 Check for updates

1Genome Biology Unit, EMBL, Heidelberg, Germany. 2Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.  
 e-mail: constantin.ahlmann@embl.de

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-023-01814-1
http://orcid.org/0000-0002-3762-068X
http://orcid.org/0000-0002-0474-2218
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-023-01814-1&domain=pdf
mailto:constantin.ahlmann@embl.de


Nature Methods

Analysis https://doi.org/10.1038/s41592-023-01814-1

In this work, we analyze transformations for preprocessing 
UMI-based single-cell RNA-seq data based on each of these approaches. 
We will first contrast the conceptual differences between them. In a sec-
ond part, we benchmark the empirical performance of all approaches 
and provide guidelines for practitioners to choose among the  
methods. In the benchmarks, we also include a fourth preprocessing 
approach that is not transformation-based and directly produces 
a low-dimensional latent space representation of the cells: factor 
analysis for count data based on the (gamma-)Poisson sampling dis-
tribution. An early instance of this approach, called GLM PCA, was  
presented by Townes4 and applied to biological data by Townes et al.17. 
Recently, Agostinis et al.18 presented an optimized implementation 
called NewWave.

Results
There are multiple formats for each of the four approaches:

•	 Among the delta method-based variance-stabilizing transforma-
tions, we considered the acosh transformation equation (1), the 
shifted logarithm equation (2) with pseudo-count y0 = 1 or 
y0 = 1 / (4α) and the shifted logarithm with CPM. In addition, we 
tested the shifted log transformation with highly variable gene 
selection (HVG), z scoring (Z) and rescaling the output as sug-
gested by Booeshaghi et al.19.

•	 Among the residuals-based variance-stabilizing transforma-
tions, we considered the clipped and unclipped Pearson residu-
als (implemented by sctransform and transformGamPoi) and 
randomized quantile residuals. In addition, we tested the clipped 
Pearson residuals with HVG selection, z scoring and an analytical  
approximation to the Pearson residuals suggested by Lause et al.20.

•	 Among the latent gene expression-based transformations  
(Lat Expr), we considered Sanity Distance and Sanity MAP,  
Dino and Normalisr.

•	 Among the count-based factor analysis models (Count), we con-
sidered GLM PCA and NewWave.

Last, we include two methods as negative (Neg) controls in our 
benchmarks, for which we expect poor performance: the raw untrans-
formed counts (y) and the raw counts scaled by the size factor (y / s).

Conceptual differences
A known problem for variance-stabilizing transformations based on the 
delta method derives from the size factors. Figure 1a shows the first two 
principal components of a homogeneous solution of droplets encapsu-
lating aliquots from the same RNA21 for representative instances of the 
delta method-, residuals- and latent expression-based transformation 
approaches. Extended Data Fig. 1 shows the results for all transforma-
tions. Despite the size factor scaling, after the delta method-based 
transformation, the size factor remained a strong variance component 
in the data (Extended Data Fig. 1b). In contrast, the other transforma-
tions better mixed droplets with different size factors. Intuitively, the 
trouble for the delta method-based transformation stems from the fact 
that the division of the raw counts by the size factors scales large counts 
from droplets with large size factors and small counts from droplets 
with small size factors to the same value. This violates the assumption 
of a common mean–variance relationship. In Supplementary Informa-
tion A3, we dissect this phenomenon more formally.

One of the motivations stated by Hafemeister and Satija13 for the 
Pearson residuals-based variance-stabilizing transformation is that the 
delta method-based transformations fail to stabilize the variance of 
lowly expressed genes. Warton22 provided a theoretical explanation for 
this fact. Indeed, Fig. 1b shows that the variance after transformation 
with a delta method-based variance-stabilizing transformation was 
practically zero for genes with a mean expression of <0.1. In contrast, 
after residuals-based transformation, the variance showed a weaker 

before applying the variance-stabilizing transformation: for example, 
log(y/s + y0)6,10,11. There is a variety of approaches to estimate size fac-
tors from the data. Conventionally, they are scaled to be close to 1 (for 
example, by dividing them by their mean), such that the range of the 
adjusted counts is about the same as that of the raw counts. The sim-
plest estimate of the size factor for cell c is

sc =
∑gygc

L , (3)

where the numerator is the total number of UMIs for cell c, g indexes 
the genes and L = (no. cells)−1∑gcygc  is the average across all cells of 
these numerators.

Sometimes, a fixed value is used instead for L. For instance, Seurat 
uses L = 10,000, others12 have used L = 106 calling the resulting values 
ygc/sc counts per million (CPM). Even though the choice of L may seem 
arbitrary, it matters greatly. For example, for typical droplet-based 
single-cell data with sequencing depth of ∑gygc ≈ 5,000, using L = 106 
and then transforming to log(ygc/sc + 1) is equivalent to setting the 
pseudo-count to y0 = 0.005 in equation (2). This amounts to assuming 
an overdispersion of α = 50, based on the relation between 
pseudo-count and overdispersion explained in Supplementary Infor-
mation A2. That is two orders of magnitude larger than the overdisper-
sions seen in typical single-cell datasets. In contrast, using the same 
calculation, Seurat’s L = 10,000 implies a pseudo-count of y0 = 0.5 and 
an overdispersion of α = 0.5, which is closer to overdispersions 
observed in real data. Yet, choosing L or y0 is unintuitive. Instead, we 
recommend parameterizing the shifted logarithm transformation in 
terms of the typical overdispersion, using the relation y0 = 1 / (4α) 
motivated above.

Hafemeister and Satija13 suggested a different approach to  
variance stabilization based on Pearson residuals

rgc =
ygc − μ̂gc

√μ̂gc + α̂g μ̂2
gc

, (4)

where μ̂gc and α̂g come from fitting a gamma-Poisson generalized linear 
model (GLM),

Ygc ∼ gamma-Poisson (μgc,αg)

log(μgc) = βg,intercept + βg,slope log(sc).
(5)

Here, sc is again the size factor for cell c, and βg,intercept and βg,slope are 
intercept and slope parameters for gene g. Note that the denominator 
in equation (4) is the s.d. of a gamma-Poisson random variable with 
parameters μ̂gc and α̂g.

A third set of transformations infers the parameters of a postulated 
generative model, aiming to estimate so-called latent gene expression 
values based on the observed counts. A prominent instance of this 
approach is Sanity, a fully Bayesian model for gene expression14. It infers 
latent gene expression using a method that resembles a variational 
mean-field approximation for a log-normal Poisson mixture model. 
Sanity comes in two flavors: Sanity Distance calculates the mean and 
s.d. of the posterior distribution of the logarithmic gene expression; 
based on these, it calculates all cell-by-cell distances, from which it can 
find the k-nearest neighbors (k-NN) of each cell. Sanity MAP (maximum 
a posteriori) ignores the inferred uncertainty and returns the maximum 
of the posterior as the transformed value. A related tool is Dino, which 
fits mixtures of gamma-Poisson distributions and returns random 
samples from the posterior15. Normalisr is a tool primarily designed 
for frequentist hypothesis testing16, but as it infers logarithmic latent 
gene expression, it might also serve as a generic preprocessing method. 
Normalisr returns the minimum mean square error estimate for each 
count assuming a binomial generative model.
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dependence on mean expression, except for very lowly expressed 
genes whose variance is limited by the clipping step (compare Pearson 
and Pearson (no clip) in Extended Data Fig. 2). The results of the latent 
expression-based transformations were diverse, reflecting that these 
methods are not directly concerned with stabilizing the variance. 
Individual patterns ranged from higher variance for lowly expressed 
genes (Sanity Distance and Normalisr) to the opposite trend for Dino 
(Extended Data Fig. 2).

A peculiarity of the Pearson residuals is their behavior if a gene’s 
expression strongly differs between cell subpopulations. Figure 1c 
shows a bimodal expression pattern of Sftpc, a marker for type II pneu-
mocytes. Unlike the transformations based on the delta method or 
latent expression models, the Pearson residuals are an affine-linear 
transformation per gene (equation (4)) and thus cannot shrink the 
variance of the high-expression subpopulation more than that of the 
low-expression subpopulation (compare the Pearson residuals with 
y / s in Extended Data Fig. 3). This can affect visualizations of such genes 
and, in principle, other analysis tasks such as detection of marker genes 
or clustering and classification of cells.

An alternative is to combine the idea of delta method-based 
variance-stabilizing transformations with the generalized linear model 
residuals approach by using non-linear residuals. We considered rand-
omized quantile residuals23 (Extended Data Fig. 4 shows how they are 
constructed). Like Pearson residuals, randomized quantile residuals 
stabilized the variance for small counts (Extended Data Fig. 2), but 

in addition, they also stabilized the within-group variance if a gene’s 
expression strongly differed across cells (Extended Data Fig. 3).

Such conceptual differences of the transformation approaches 
are important to understand when applying them to new data types 
or when developing new transformations; but for most practitioners, 
empirical performance will be of primary interest. We look at this in 
the next section.

Benchmarks
There is no context-free measure of success for a preprocessing 
method, as it is contingent on the objectives of the subsequent analy-
sis. For instance, if interest lies in identification of cell type-specific 
marker genes, one could assess the shape of distributions, such as in 
Fig. 1c, or the performance of a supervised classification method. Here, 
we considered the objective that arguably has been the main driver of 
single-cell RNA-seq development and applications so far: understand-
ing the variety of cell types and states in terms of a lower-dimensional 
mathematical structure, such as a planar embedding, a clustering, 
trajectories, branches or combinations thereof. For all of these, one 
can consider the k-nearest neighbor (k-NN) graph as a fundamental 
data structure that encodes essential information. The next challenge 
is then the definition of ‘ground truth’. We designed our benchmarks 
upon reviewing previous benchmarking approaches. For instance, 
Breda et al.14 and Lause et al.20 employed synthetic or semi-synthetic 
data. This is operationally attractive, but it is difficult to be certain 
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Fig. 1 | Conceptual differences between variance-stabilizing transformations. 
The four columns of this figure correspond to raw counts and transformation 
by shifted logarithm, clipped Pearson residuals and Sanity MAP. a, Scatter-plots 
of the first two principal components of data from droplets encapsulating a 
homogeneous RNA solution. Each point corresponds to a droplet and is colored 
by its size factor. b, Scatter-plots of the mean–variance relationship, where each 

point is a gene from a human hematopoietic cell dataset. Note that the y axis 
range differs between transformations and outliers are plotted on the edge of 
the plot. c, Histogram of the transformed values for Sftpc, a marker for type II 
pneumocytes that has a bimodal gene expression in mouse lung epithelium. 
Source data are provided.
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about biological relevance. Hafemeister and Satija13 and Lause et al.20 
used qualitative inspection of non-linear dimension reduction plots. 
This can be informative, but is difficult to scale up and make objective. 
Germain et al.24 compared how well the transformations recovered 
a priori assigned populations, defined either through FACS or by mix-
ing different cell lines. This is conceptually clean, but restricts analysis 
to a limited range of datasets that also may only offer a caricature view 
of cell diversity.

For all our benchmarks, we applied the transformations to the raw 
counts of each dataset listed below, computed a lower-dimensional 
representation of the cells using principal-component analysis (PCA), 
identified the k-NNs of each cell as measured by Euclidean distance 
and, finally, computed the overlap of the thus obtained k-NN graph 
with a reference k-NN graph (Methods). We performed these three 
benchmarks:

•	 Consistency. We downloaded ten 10x datasets from the Gene 
Expression Omnibus (GEO) database. As there was no formal ground 
truth, we measured the consistency of the results (a necessary,  

although not sufficient, condition for their goodness) by splitting 
the genes of each dataset into two disjoint subsets.

•	 Simulation. We used four different previously published simu-
lation frameworks and one adapted by us to generate a diverse 
collection of datasets for which we had full access to the true 
k-NN graph.

•	 Downsampling. We used five deeply sequenced datasets based 
on mcSCRB and Smart-seq3, which we downsampled to sequenc-
ing depths typical for the 10x technology. We postulated that 
a proxy for ground truth could be constructed from the k-NN 
graph inferred from the deeply sequenced data intersected across 
all transformations which we call reliable nearest neighbors. To 
our knowledge, this work presents the first instance of such an 
approach.

Extended Data Fig. 5 and the Supplementary Information give an  
overview of the datasets.

We tested 22 transformations—where applicable with an over-
dispersion fixed to 0, 0.05 and a gene-specific estimate from the 
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Fig. 2 | Benchmark results. a, Overlap between the k-NN inferred separately on 
two halves of the data. The colored points show the averages across ten  
datasets, each with five replicate random data splits (small, gray points).  
b, Overlap between k-NN inferred from simulated data and ground truth, using 
five simulation frameworks and five replicates per framework. c, Overlap 
between a reference k-NN graph (inferred using all transformations on deeply 
sequenced data and taking the intersection) and the k-NN inferred on data 
downsampled to match typical 10x data (5,000 counts per cell) for five datasets 

with five replicates each. To compare and aggregate results across the different 
datasets, Relative overlap (a–c), which was computed by dividing, for each 
dataset, the overlap by its average across all transformations, fixing k = 50 and 
using a dataset-specific number of PCA dimensions (Extended Data Fig. 7 shows 
the underlying, unaggregated data). d, Overlap (y axis) as a function of PCA 
dimensions (x axis); the different transformation types are indicated by the 
colors, using the same palette as in a–c. The performance of Sanity Distance is 
shown as a dashed line. Source data are provided.
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data—across four to eight settings for the number of dimensions of 
the PCA and measured the overlap with k = 10, 50 and 100 nearest neigh-
bors. In total, we collected more than 61,000 data points. In addition 
to the results highlighted in the following, we provide an interactive 
website with all results for all tested parameter combinations.

Figure 2 shows the aggregated results for the three benchmarks 
for k = 50. Similar results were obtained for k = 10 and k = 100, shown 
in Extended Data Fig. 6.

In the consistency benchmark, the delta method-based transfor-
mations performed better than the other transformations (Fig. 2a).

On the simulated data, the differences between the transfor-
mations looked less pronounced in Fig. 2b than for the other two 
benchmarks; however, this is a result of the aggregated view. For 
each particular simulation framework, large differences between the 
transformations appeared, but the results varied from simulation to 
simulation framework (Extended Data Fig. 7b) and averaged out in the 
aggregated view.

The results of the downsampling benchmark (Fig. 2c) agreed well 
with the trends observed in the simulation and the consistency bench-
mark. This benchmark is particularly informative because the data had 
realistic latent structures that were reliably detectable through the high 
sequencing depth. The downsampling produced data that resembles 
the more common 10x data in many characteristics: for example, UMIs 
per cell, proportion of zeros in the data and mean–variance relationship 
(Supplementary Table 1 and Supplementary Fig. 1). The main difference 
was that the suitable (high sequencing depth per cell) datasets we 
could access mostly consisted of only a few hundred cells, except for 
the 4,298-cell short-interfering RNA KD dataset (Extended Data Fig. 5).

The results in Fig. 2 are on a relative scale, which hides the magni-
tude of the differences. In Extended Data Fig. 7, we show the underly-
ing results for each dataset on an absolute scale. The range of k-NN 
overlaps was dataset dependent, ranging from 34 of 50 for the best 
performing transformation versus 9 of 50 for the negative control for 
the SUM149PT cell line consistency benchmark, to 2.9 of 50 versus 1.5 
of 50 for the HEK downsampling benchmark. For the latter, the overall 
small overlaps were due to small sets of reliable nearest neighbors 
(Extended Data Fig. 8a,b). We also ran a version of the downsampling 
benchmark that only used the top two transformations per approach 
(Extended Data Fig. 8c,d), which increased the number of reliable 
nearest neighbors and confirmed the trends we saw in the full version.

In addition to the k-NN overlap with the ground truth, we also 
calculated the adjusted Rand index (ARI) and the adjusted mutual 
information (AMI) for the five simulation frameworks. Extended Data 
Fig. 9a,b shows the aggregated results, which were similar to the results 
for the k-NN overlap (Fig. 2b). Extended Data Fig. 9c,d show that the ARI 
and AMI had a larger dynamic range than the k-NN overlap for datasets 
with a small number of distinct clusters; however, for datasets with 
a complex latent structure, the k-NN overlap was more informative, 
which may reflect limitations of ARI and AMI to assess the recovery of 
gradual changes typical for many biological tissues.

The Random Walk simulation reproduced the benchmark based 
on which Breda et al.14 argued that Sanity was the best method for 
identifying the k-NN of a cell (Fig. 5a of their paper). We found that 
the delta method-based and residuals-based variance-stabilizing 
transformations performed as well in this benchmark if we projected 
the cells to a lower-dimensional representation before constructing  
the k-NN graph. In fact, Fig. 2d shows for four example datasets that 
the number of dimensions for the PCA was an important determinant 
of performance. This is because the dimension reduction acts as a 
smoothener, whose smoothing effect needs to be strong enough to 
average out uncorrelated noise (small enough target space dimension), 
but flexible enough to maintain interesting variation (large enough 
target space dimension).

The latent expression-based transformations (except Normalisr) 
and the count-based factor analysis models were computationally more 

expensive than the delta method- and residuals-based transformations. 
Figure 3a shows the CPU times for calculating the transformation and 
finding the k-NN on the 10x human helper T-cell dataset with 10,064 
cells. Sanity Distance took particularly long because its distance cal-
culation, which takes into account the uncertainty for the nearest 
neighbor search, scaled quadratically with the number of cells (Fig. 3b). 
Across all benchmarks, the computations took 24 years of CPU time, 
of which the latent expression-based transformations accounted for 
over 90%. The delta method-based transformations were the fastest, 
especially if the overdispersion was not estimated from the data. The 
residuals-based transformations took somewhat more time, except for 
the analytic approximation of the Pearson residuals, which could be 
calculated almost as fast as the shifted logarithm. In terms of memory 
consumption, the delta method-based transformations were most 
attractive because they retained the sparsity of the data.

In terms of uncovering the latent structure of the datasets, none 
of the other transformations consistently outperformed the shifted 
logarithm (Fig. 4a), one of the simplest and oldest approaches. In 
fact, when followed by PCA dimension reduction to a suitable target 
dimension, the shifted logarithm performed better than the more 
complex latent expression-based transformations across all three  
benchmarks.

We found no evidence that additional post-processing steps  
(rescaling the output of the shifted logarithm, selecting HVGs or  
equalizing the variance of all genes using z scoring) improved the 
results for identifying nearest neighbors (Fig. 4b). Lause et al.20  
and Choudhary and Satija25 debated on how to best choose the 
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overdispersion parameter. We found empirically that, for Pearson 
residuals and the acosh transformation, it is beneficial to have α > 0, 
but saw no clear benefits from estimating this parameter from the input 
data versus using a generic, fixed value such as 0.05 (Fig. 4c).

Last, we found that with increasing sequencing depth per cell, all 
methods generally had a better k-NN overlap with the ground truth 
(Fig. 4d). This makes intuitive sense; with higher sequencing depth, 
the relative size of the sampling noise is reduced. Based on Fig. 1a, 
we might assume that delta method-based transformations would 
perform particularly poorly at identifying the neighbors of cells with 
extreme sequencing depths; yet on three datasets, the shifted loga-
rithm did not perform worse than other transformations for cells with 
particularly large or small size factors (Fig. 4d). We also considered 
the performance of the transformations as a function of cluster size 
(Extended Data Figs. 10); while we saw some interesting variation, we 
did not find that a single transformation performed consistently better 
or worse for small clusters.

Discussion
We compared 22 transformations, conceptually grouped into four 
basic approaches, for their ability to recover latent structure among 
the cells. We found that one of the simplest approaches, the shifted 
logarithm transformation log(y/s + y0)  with y0 = 1 followed by PCA, 
performed surprisingly well. We presented theoretical arguments for 
using the related acosh transformation or an adaptive pseudo-count 
y0 = 1 / (4α), but our benchmarks showed limited performance benefits 
for these.

We recommend against using CPM as input for the shifted loga-
rithm. We pointed out that for typical datasets, this amounts to assum-
ing an unrealistically large overdispersion and in our benchmarks 
this approach performed poorly compared to applying the shifted 
logarithm to size factor-scaled counts. We also advise against scaling 
the results of the shifted logarithm by the sum of the transformed 
values per cell as, for example, suggested by Booeshaghi et al.19. In our 
hands (Extended Data Fig. 1), this additional operation failed to remove 
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the confounding effect of the sequencing depth (the authors’ stated 
motivation for it) and did not improve the k-NN recall performance.

The Pearson residuals-based transformation has attractive theo-
retical properties and, in our benchmarks, performed similarly well as 
the shifted logarithm transformation. It stabilizes the variance across 
all genes and is less sensitive to variations of the size factor (Extended 
Data Fig. 1b). The analytic approximation suggested by Lause et al.20 is 
appealing because it worked as well as the exact Pearson residuals but 
could be calculated faster. However, as seen in equation (4), the Pear-
son residuals-based transformation is affine linear when considered 
as a function per gene and this may be unsatisfactory for genes with a 
large dynamic range across cells. As an alternative, we considered ran-
domized quantile residuals as a non-linear transformation, but found 
no performance improvement. This result exemplifies that choosing a 
transformation for conceptual reasons does not necessarily translate 
into better downstream analysis results.

The use of the inferred latent expression state as a transformation 
and count-based latent factor models are appealing because of their 
biological interpretability and mathematical common sense. In particu-
lar, Sanity Distance is appealing because it does not have any tunable 
parameters; however, all these transformations performed worse than 
the shifted logarithm with a reasonable range of PCA dimensions in 
our benchmarks and some of the transformations were exceptionally 
computationally expensive (for example, the median CPU time of San-
ity Distance was 4,500-times longer than for the shifted logarithm).

Our results partially agree and disagree with previous studies.  
Germain et al.24 benchmarked many steps of a typical single-cell 
RNA-seq analysis pipeline, including a comparison of clustering results 
obtained after different transformations against a priori assigned 
populations. In line with our findings, they reported that dimension 
reduction was of great importance. They went on to recommended 
sctransform (Pearson residuals) based on its good performance on the 
Zhengmix4eq dataset, which is a mixture of peripheral blood mononu-
clear cells sorted by surface markers using flow cytometry; however, it 
is not clear how generalizable this result is and our benchmarks do not 
support such a singling out of that method. Lause et al.20 considered the 
related Zhengmix8eq dataset, into which they implanted a synthetic 
rare cell type by copying 50 B cells and appending ten genes exclusively 
expressed in the synthetic cell type. They used k-NN classification accu-
racy of the cell type averaged per cell type (macro F1 score; Fig. 5c of 
their paper) and averaged over all cells (online version of Fig. 5c). They 
found a performance benefit for the Pearson residuals over the shifted 
logarithm with the macro F1 score, but similar performance with regard 
to overall accuracy. The macro F1 score emphasizes the performance 
difference for the synthetic cell type, which seems somewhat construed 
and might not be a good model for most biologically relevant cell type 
and state differences. Instead of comparing clustering results to dis-
crete cell type assignments, we have focused on the inference of the 
k-NN of each cell, with the expectation that this enables consideration 
of more subtle latent structures than well-separated, discrete cell types.

Pearson residuals- and delta method-based transformations 
weight genes differently; for example, Pearson residuals put more 
weight on lowly expressed genes than the delta method (Fig. 1b). This 
can lead to different downstream results, but our benchmarks did not 
indicate that any particular weighting is generally better; only that the 
delta method-based transformation produced more consistent results 
on the 10x datasets.

We did not evaluate the impact of alternative size factor estima-
tors. We also did not consider how suitable a transformation is for 
marker gene selection, because we are not aware of a suitable metric 
to determine success, as the utility of a marker gene hinges on its bio-
logical interpretability. For a recent effort to compare different marker 
gene selection methods, see Pullin and McCarthy26.

Considerable research effort has been invested in the area of pre-
processing methods for single-cell RNA-seq data. To our surprise, 

the shifted logarithm still performs among the best. Our bottom-line 
performance benchmark highlights current limitations of theo-
retical analysis of preprocessing methods, but also the utility of 
lower-dimensional embeddings of the transformed count matrix to 
reduce noise and increase fidelity. Interesting open questions include 
choosing among the many possible embedding methods and number 
of latent dimensions.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41592-023-01814-1.
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Methods
The delta method
The delta method is a way to find the s.d. of a transformed random 
variable.

If we apply a differentiable function g to a random variable X 
with mean μ, the s.d. of the transformed random variable g(X) can be 
approximated by

𝕊𝕊d[g(X )] ≈ a𝕊𝕊d[X ],

where a = |g′(μ)| is the slope of g at μ.
Now consider a set of random variables X1, X2, … whose variances 

and means are related through some function v, that is, 𝕍𝕍ar[Xi] = v(μi), 
or equivalently 𝕊𝕊d[Xi] = √v(μi). Then we can find a variance-stabilizing 
transformation g by requiring constant s.d., 𝕊𝕊d[g(Xi)] = const., which 
using the above approximation becomes

g′(μ) = const.
√v(μ)

,

and can be solved by integration.

Transformations
We compared 22 transformations that can be grouped into four 
approaches.

The delta method-based transformations were: the shifted loga-
rithm (log(y/s + 1)); the acosh transformation (acosh (2αy/s + 1)); the 
shifted logarithm with pseudo-count dependent on the overdispersion 
(log( y/s + 1/(4α))); the shifted logarithm with CPM (log(CPM + 1)); the 
shifted logarithm with subsequent size normalization as suggested by 
Booeshaghi et al.19 (xgc/uc, where xgc = log(ygc/sc + 1) and uc = ∑gxgc); the 
shifted logarithm with subsequent HVG selection (log(y/s + 1) → HVG); 
the shifted logarithm with subsequent z scoring per gene 
(log(y/s + 1) → Z); and the shifted logarithm with subsequent highly 
variable gene selection and z scoring per gene (log(y/s + 1) → HVG → Z). 
For all composite transformations, we first calculated the 
variance-stabilizing transformation, then chose the HVGs and used the 
re su l t s  w i t h o u t  re c a l c u l a t i n g  t h e  va r i a n ce - st a b i l i z i n g 
transformation.

To retain the sparsity of the output also if the pseudo-count y0 ≠ 1, 
transformGamPoi uses the relation

log ( ys + y0) = log ( y
y0 s

+ 1) + log y0. (6)

Subtracting the constant log y0 from this expression does not affect its 
variance-stabilizing properties, but has the desirable effect that data 
points with y = 0 are mapped to 0.

The residuals-based transformations were: Pearson residuals 
implemented with the transformGamPoi package where each residual 
is clipped to be within ±√no. cells, as suggested by Hafemeister and 
Satija13 (Pearson); Pearson residuals with clipping and additional heu-
ristics implemented by sctransform v.2, an analytic approximation to 
the Pearson residuals with clipping suggested by Lause et al.20 (Analytic 
Pearson); randomized quantile residuals implemented by trans-
formGamPoi (Random Quantile); Pearson residuals without clipping 
implemented by transformGamPoi (Pearson (no clip)); Pearson residu-
als with clipping and subsequent HVG selection (Pearson → HVG); 
Pearson residuals with clipping and subsequent z scoring per gene 
(Pearson → Z); and Pearson residuals with clipping and subsequent 
HVG selection and z scoring per gene (Pearson → HVG → Z). For each 
composite Pearson residual transformation (with HVG and/or  
z scoring), we used the transformGamPoi implementation.

The latent expression-based transformations were: Sanity with 
point estimates for the latent expression (Sanity MAP) and with 

calculation of all cell-by-cell distances taking into account uncer-
tainty provided by the posteriors (Sanity Distance); Dino as provided 
in the corresponding R package; and Normalisr with variance nor-
malization, implemented in Python, which we called from R using the  
reticulate package.

The count-based factor analysis models were: GLM PCA using 
the Poisson model and the gamma-Poisson model with α = 0.05. In 
the figures, we show the results for the Poisson model unless other-
wise indicated. We used the avagrad optimizer. We ran NewWave with  
100 genes for the mini-batch overdispersion estimation.

For the delta method-based transformations and the 
residuals-based transformations calculated with the transformGamPoi 
package, we calculated the size factor s using equation (3).

We defined HVGs as the 1,000 most variable genes based on the 
variance of the transformed data.

For z scoring, we took the transformed values xgc = g(ygc) and com-

puted zgc =
xgc−mean (xxxg)

√var (xxxg)
, where mean and variance are the empirical mean 

and variance taken across cells.
In the overview figures (Figs. 2–4), we use a gene-specific over-

dispersion estimate for all residuals-based transformations and for 
the delta method-based transformations, which can handle a custom 
overdispersion; for GLM PCA, we use α = 0, because these settings 
worked best for the respective transformations. The latent expression- 
based transformations and NewWave do not support custom overd-
ispersion settings.

Conceptual differences
For the visualization of the residual structure after adjusting for the 
varying size factors, we chose a control dataset of a homogeneous RNA 
solution encapsulated in droplets21. We filtered out RNAs that were all 
zero and plotted the first two principal components. Where applicable, 
we used gene-specific overdispersion estimates. For visualizing the 
results of Sanity Distance, instead of the PCA, we used multidimen-
sional scaling of the cell-by-cell distance matrix using R’s cmdscale 
function. We calculated the canonical correlation using R’s cancor 
function on the size factors and the first ten dimensions from PCA and 
multidimensional scaling.

The plots of the mean–variance relationship are based on the 10x 
human hematopoietic cell dataset27. Where applicable, we used the 
gene-specific overdispersion estimates. The panel of Sanity Distance 
shows the variance of samples drawn from a normal distribution using 
the inferred mean and s.d.

For the mouse lung dataset28, we filtered out cells with extreme size 
factors (0.1smedian < sc < 10smedian, where smedian is the median size factor). 
We also removed cells that did not pass the scran quality control crite-
rion regarding the fraction of reads assigned to mitochondrial genes. 
To account for the fact that some transformations share information 
across genes, we applied all transformations to the 100 most highly 
expressed genes and three genes (Sftpc, Scgb1a1 and Ear2) known to be 
differentially expressed in some cell types according to the assignment 
from the original publication.

Benchmarks
The benchmarks were executed using a custom work scheduler for 
slurm written in R on CentOS7 and R 4.1.2 with Bioconductor v.3.14. 
The set of R packages used in the benchmark with exact version infor-
mation was stored using the renv package and is available from the 
GitHub repository.

k-NN identification and dimensionality reduction. To calculate 
the PCA, we used the irlba package. To infer the k-NN, we used annoy, 
which implements an approximate nearest neighbor search algorithm. 
To calculate t-distributed stochastic neighbor embeddings (tSNEs), 
which we only used for visualization, we used the Rtsne package on 
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data normalized with the shifted logarithm with a pseudo-count  
of 1.

Consistency benchmark. We downloaded ten single-cell datasets 
listed in GEO browser after searching for the term mtx on 14 October 
2021. All datasets are listed in the Data Availability section. To measure 
the consistency of the transformations, we randomly assigned each 
gene to one of two groups and processed the two resulting data subsets 
separately. We calculated the consistency as the mean overlap of the 
k-NN for all cells.

Simulation benchmark. We used five frameworks to simulate 
single-cell counts in R: we ran dyngen29 using a consecutive bifurcat-
ing mode and the default parameters otherwise. We ran muscat30 with 
four clusters, a default of 30% differentially expressed genes with an 
average log fold change of 2 and a decreasing relative fraction of log 
fold changes per cluster. We ran scDesign2 (ref. 31) with the 10x human 
hematopoietic cell dataset as the reference input with a copula model 
and a gamma-Poisson marginal distribution. We simulated the Random 
Walk by translating the MATLAB code of Breda et al.14 to R and using 
the data by Baron et al.32 as a reference. For the Linear Walk, we adapted 
the Random Walk simulation and, instead of following a Random Walk 
for each branch, we interpolated the cells linearly between a random 
start and end point. For both benchmarks, we used a small non-zero 
overdispersion of α = 0.01 to mimic real data.

With each simulation framework, we knew which cells were the 
k-NNs to each other. We calculated the overlap as the mean over-
lap of this ground truth with the inferred nearest neighbors on the 
simulated counts for all cells. Furthermore, we calculated the ARI 
and AMI by clustering the ground truth and the transformed values 
with the graph-based walktrap clustering algorithm from the igraph  
package.

Downsampling benchmark. We searched the literature for 
single-cell datasets with high sequencing depth and found five (one 
from mcSCRB, four from Smart-seq3) that had a sequencing depth 
of more than 50,000 UMIs per cell on average. We defined reliable 
nearest neighbors as the set of k-NNs of a cell that were identified 
with all 22 transformations on the deeply sequenced data (excluding 
the two negative controls). We used the downsampleMatrix func-
tion from the scuttle package to reduce the number of counts per cell 
to approximately 5,000, a typical value for 10x data. We considered 
only one setting for the overdispersion per transformation (instead 
of allowing multiple overdispersion settings for some transforma-
tions as in the other benchmarks). We ran all transformations that 
supported the setting, with a gene-specific overdispersion estimate 
(except GLM PCA, which performed better with an overdispersion 
fixed to 0). Finally, we computed the mean overlap between the 
k-NNs identified on the downsampled data with the set of reliable 
nearest neighbors for all cells with more than one reliable nearest  
neighbor.

k-NN overlap. For all three benchmarks, we calculated overlaps 
between pairs of k-NN graphs. Denoting their no. cell × no. cell adja-
cency matrices (a matrix of zeros and ones, where an entry is is one 
if a cell d is among the k-NNs of cell c) by N1 and N2, we defined their 
overlap as

1
No. cells

No. cells
∑
c,d=1

N1
cdN

2
cd. (7)

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
All datasets are freely available. Source data have been provided for 
Figs. 1–4 and Extended Data Figs. 1–3 and 5–10 (refs. 21,27,28,32–44). 
Source data are provided with this paper.

Code availability
An R package that implements the delta method- and residuals-based 
variance-stabilizing transformations is available at bioconductor. 
org/packages/transformGamPoi/. The code to reproduce the 
analysis and generate the figures is available at github.com/
const-ae/transformGamPoi-Paper and stored permanently 
with Zenodo45. We provide an interactive website to explore 
the benchmark results at shiny-portal.embl.de/shinyapps/
app/08_single-cell_transformation_benchmark.
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Extended Data Fig. 1 | Confounding effect of size factors on PCA embedding 
of a homogeneous dataset. (A) Scatter-plots of the first two principal 
components of the transformed data colored by the sequencing depth 
(expressed as a normalized size factor on a logarithmic scale) per cell. The data 
are from droplets that encapsulate a homogeneous RNA solution and thus the 
only variation is due to technical factors like sequencing depth21. The annotation 
at the bottom of the plot shows the canonical correlation coefficient ρ46 between 

the size factor and the first ten principal components. A lower canonical 
correlation that the variance-stabilizing transformation more successfully 
adjusts for the varying size factors; a canonical correlation of ρ = 1 means that 
the ordering of the cells along some direction in the first 10 PCs is entirely 
determined by the size factor. (B) Collection of the canonical correlations 
from the annotations of each panel in A displayed as a bar chart for easy visual 
comparison.
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Extended Data Fig. 2 | Mean-variance relations per gene for a 10x 
hematopoietic cell dataset. Scatter-plots of the variance per gene after 
applying the variance-stabilizing transformation against the means of the  
10x human hematopoietic cell dataset subset to 400 cells and 5000 genes.  

Note that the scale of the y axis differs for the raw counts, log(CPM+ 1), 
log(y/s+ 1)/u, Pearson (no clip), Sanity MAP, Dino and Normalisr for esthetic 
purposes. Points that exceed the y axis scale are drawn on the top of each facet.

http://www.nature.com/naturemethods
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Extended Data Fig. 3 | Histograms of the transformed values for a gene with a bimodal expression pattern. Counts from cells identified as type II pneumocytes are 
shown in purple and a matching number of counts from all other cell types are shown in gray.

http://www.nature.com/naturemethods
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Extended Data Fig. 4 | Schematic representation of how randomized quantile 
residuals are constructed. In the first step, a Gamma-Poisson distribution (black 
line) is fitted to the observed counts. Then, the quantiles of the Gamma-Poisson 
distribution are matched with the quantiles of a standard normal distribution by 
comparing their respective cumulative density functions (CDFs). This obtains a 
mapping from the raw count scale to a new, continuous scale. The two colored 

bars (orange for y = 2, yellow for y = 21) exemplify this mapping. The non-linear 
nature of the CDFs ensures that small counts are mapped to a broader range 
than large counts. This helps to stabilize the variance on the residual scale. 
Furthermore, the randomization within the mapping sidesteps the discrete 
nature of the counts.

http://www.nature.com/naturemethods
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Extended Data Fig. 5 | tSNE plots of each dataset used for the benchmarks. 
The cells are colored by clustering using the walktrap clustering algorithm. 
For the consistency data we clustered the counts after transformation with 

the shifted logarithm. For the simulation data, we clustered the ground truth. 
For the downsampling data, we clustered the deeply sequenced data after 
transformation with the shifted logarithm.

http://www.nature.com/naturemethods
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Extended Data Fig. 6 | Benchmark results for 10 and 100 nearest neighbors. 
Plot of the aggregate results of the consistency (A, B), simulation (C, D) and 
downsampling benchmarks (E, F) for k = 10 and k = 100, respectively. The results 

for each dataset are broad to a common scale by normalizing to the mean k 
nearest neighbor overlap per dataset. The colored points show the averages 
across the datasets, each with 5 replicate random data splits (small, gray points).

http://www.nature.com/naturemethods
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Extended Data Fig. 7 | The unaggregated benchmark results. The 
unaggregated results from the consistency (A), simulation (B) and downsampling 
benchmarks (C) for k = 50. The gray points show the raw results from the five 
replicates per dataset; the colored points show their mean. The dashed vertical 

line indicates the mean k-NN overlap per dataset and is the reference used to 
aggregated the results as shown in Fig. 2A-C. The title of each facet indicates the 
number of dimensions used for the PCA per dataset, which we chose based on the 
complexity of the dataset.

http://www.nature.com/naturemethods
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Inference of the reliable nearest neighbors for the 
deeply sequenced datasets. (A) Heatmaps of the average k-NN overlap for 
all transformation pairs. (B) Histograms of the number of reliable neighbors 
per cell (that is, the neighbors among the 50 k-NN that were identified by all 22 
transformations). The dark shaded bars show the cells that were used to calculate 
the overlap with the downsampled version of the data in Extended Data Fig. 7C. 

(C) Histograms of the number of reliable neighbors per cell only considering the 
two two transformations per approach (that is, the neighbors among the 50 k-NN 
that were identified by 8 transformations listed in (D)). (D) The unaggregated 
results for the downsampling benchmarks using the same settings as in  
Extended Data Fig. 7C.

http://www.nature.com/naturemethods
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Extended Data Fig. 9 | Results of the simulation benchmark in terms of 
cluster similarity. Plots of the results using the adjusted Rand index (A) and the 
adjusted mutual information (B) instead of the k-NN overlap. (C-D) Scatter-plots 
facetted by simulation framework that compares the results for the k-NN overlap 
with the adjusted Rand index and adjusted mutual information, respectively. 
Each point is one replicate for the transformation results of that dataset colored 

by the transformation approach. The black dashed line shows the linear fit 
and the number at the bottom of each plot is the correlation coefficient. The 
horizontal dashed line is the mean ARI / AMI that is used for forming the relative 
performance in (A) and (B). The vertical dashed line is the mean k-NN overlap and 
corresponds to the vertical dashed line in Extended Data Fig. 7B.
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Extended Data Fig. 10 | k-NN overlap as a function of cluster size. The datasets 
were clustered using walktrap clustering. Extended Data Fig. 5 shows the cells 
colored by cluster assignment for all datasets. (A) k-NN overlap of the two halves 
of the human neural progenitor dataset stratified by cluster. (B) k-NN overlap with 

the ground truth for the scDesign2 simulation stratified by cluster.  
(C) k-NN overlap with the deeply sequenced data for the siRNA knockdown 
dataset stratified by cluster.

http://www.nature.com/naturemethods
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