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Abstract

Identifying gene expression differences in heterogeneous tissues across experimental or ob-
servational conditions is a fundamental biological task, enabled by single-cell assays such as
multi-condition sc-RNA-seq. Current data analysis approaches divide the constituent cells
into clusters meant to represent cell types, and identify differentially expressed genes for each
cluster. However, such discrete categorization tends to be an unsatisfactory model of the
underlying biology. Use of more gradual representations of cell type or cell state promises
higher statistical power, better usability and better interpretability. Here, we introduce Latent
Embedding Multivariate Regression (LEMUR), a generative model that enables differential
expression analysis using a continuous low-dimensional latent space parameterization of cell
type and state diversity. It operates without, or before, commitment to discrete categorization.
LEMUR (1) integrates data from the different conditions, (2) predicts how each cell’s gene
expression would change as a function of the conditions and its position in latent space,
and (3) for each gene, identifies compact neighborhoods of cells with consistent differential
expression. Unlike statically defined clusters, these neighborhoods adapt to the underlying
gene expression changes. We assess LEMUR’s performance on a compendium of single-cell
datasets and show applications to the identification of tumor subpopulations with distinct
drug responses, the interplay between cell state and developmental time in zebrafish embryos,
and the discovery of cell state × environment interactions in a spatial single-cell study of
plaques in Alzheimer’s disease. LEMUR is broadly applicable as a first-line analysis approach
to multi-condition sc-RNA-seq data.
Software availability: https://bioconductor.org/packages/lemur
Contact: constantin.ahlmann@embl.de

Premature discretization of continuous vari-
ables leads to artifacts in data analysis and a loss
of power; yet, it is the dominant approach to deal
with the cell state diversity in multi-condition
single-cell data. Lähnemann et al. (2020) de-
scribed overcoming the reliance on clustering or
cell type assignment before downstream analysis
as one of the grand challenges in single-cell data
analysis. Single-cell RNA-seq can be used to
study the effect of experimental interventions or
observational conditions on a heterogeneous set
of cells, e.g., from tissue biopsies or organoids.
Typically, cells from the same sample share the
same condition but come from multiple cell types

and states (e.g., position in a differentiation or
cellular aging path, cell cycle, metabolism). Com-
pared to bulk-sequencing, the novelty of multi-
condition single-cell RNA-seq is the ability to
disentangle expression changes between corre-
sponding cells (i.e., same cell type and state)
under different conditions, from those between
cell types or states.

Here, we present a generative model and infer-
ence procedure to address three tasks in multi-
condition single-cell data analysis: (1) integrate
the data into a common latent space, (2) for each
cell, predict the expression it would have in any
of the conditions, and (3) find interesting and
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Figure 1 | Conceptual overview of latent embedding multivariate regression (LEMUR).
(A) Four-step workflow. (B) The matrix factorization at the core of LEMUR. (C) Details on each
step from A: Step 1: a linear subspace is fitted separately for each condition. The subspaces for the
different conditions are related to each other via affine transformations that are parameterized by
the covariates. For this visualization, different 2d subspaces of a 3d gene space are drawn; actual
dimensions are higher. Step 2: the differential expression statistic ∆ is computed as the difference
between the predicted values in the control and treated condition. The visualization shows a top view
of the visualization from Step 1. Step 3: for each gene, cells close to each other with consistent ∆
values are grouped into neighborhoods. Step 4: a pseudobulk differential expression test is applied to
the cells within each neighborhood.

statistically significant patterns of differential ex-
pression. We call our method Latent Embedding
MUltivariate Regression (LEMUR).

Many approaches exist for Task 1, with the
more or less explicit aim that the variation re-
maining in the common latent space represents
cell type or cell state, and no longer the external

conditions. The feasibility of Task 2 depends on
whether the function that maps the data to the
common embedding space is invertible. This is
the case, for instance, for scVI, scGEN, CPA,
and CellOT, which are based on parametric au-
toencoder models (Lopez et al., 2018; Lotfollahi
et al., 2019, 2023; Bunne et al., 2023). Other
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integration methods, including Harmony, Seurat,
and MNN (Korsunsky et al., 2019; Haghverdi
et al., 2018; Butler et al., 2018), operate non-
parametrically, by enumerating the mapped co-
ordinates for all observed cells, and thus have no
canonical way to ask the counterfactual.

For differential expression analysis across con-
ditions, the state of the art is to take an inte-
grated embedding, assign the cells to clusters,
and find differentially expressed genes separately
for each given cluster using methods known from
bulk RNA-seq analysis (“pseudobulking”) (Crow-
ell et al., 2020; Missarova et al., 2024). Here, we
turn this process around. We address Task 3
by employing the LEMUR counterfactual predic-
tions to compute differential expression statistics
for each cell and each gene, and then select con-
nected sets of cells with consistent differential
expression.

To this end, the LEMUR model decomposes
the variation in the data into four sources:

1. the conditions, which are explicitly known,
2. cell types or states that are not explicitly

known, but assumed to be representable by
a low-dimensional manifold,

3. interactions between the two, and
4. unexplained residual variability.

LEMUR is implemented in an R package on
Bioconductor called lemur and a Python package
called pyLemur.

Results

Figure 1A outlines the LEMUR workflow. The
method takes as input a data matrix of size
genes×cells. It assumes that appropriate prepro-
cessing, including size factor normalization and
variance stabilization was performed (Ahlmann-
Eltze and Huber, 2023). In addition, it expects
two tables of metadata for the cells: a vector
which for each cell specifies the sample (inde-
pendent experimental unit, e.g., tissue biopsy or
organoid) it originates from, and a design matrix
(Law et al., 2020).

The design matrix encodes one or more covari-
ates that represent experimental treatments or
observational conditions. It is analogous to the
design matrix in differential expression tools like
limma and DESeq2 (Smyth, 2004; Love et al.,
2014) and can account for fully general experi-
mental or study designs. The design matrix can

include sources of unwanted variation (e.g., ex-
perimental batch) and sources of variation whose
influence we are interested in (e.g., treatment
status). We term a unique combination of co-
variate values a condition. In the simple case of
a two-condition comparison, the design matrix
is a two-column matrix, whose elements are all
1 in the first column (intercept) and 0 or 1 in
the second column, indicating for each cell which
condition it is from.

Matrix factorization in the presence of
known covariate information

The central idea of LEMUR is a multi-condition
extension of principal component analysis (PCA)
(Fig. 1B). Given a data matrix Y, PCA can be
used to approximate Y ≈ RZ with two smaller
matrices: the first, R, is a basis that spans a
suitable low-dimensional linear subspace of the
original data space, the second, Z, contains the
coordinates of each cell with respect to that ba-
sis. In this elementary form, there is no place to
explicitly encode known experimental or study
covariates. LEMUR adds this capability by in-
cluding a regression analysis component.

Instead of using a single subspace, we let
the subspace spanning matrix R(X) depend on
the covariates provided in the design matrix X
(Fig. 1C, step 1). With this ansatz we address
the decomposition task posed in the introduction:
known sources of variation are encoded in X, cell
type and state variations are represented by the
cell coordinates Z. While X is explicitly known,
Z is latent, i.e., is estimated from the data. The
construction allows modeling interactions, that
is, gene expression changes across conditions that
are different for different cell types and states.
This is the main feature of LEMUR.

A second feature of this construction is
between-condition integration: data from cells
observed in different conditions are mapped into
a common latent space. By default, the integra-
tion is based on the alignment of the respective
subspaces, but it can optionally be improved by
information that indicates that certain cells ob-
served in different conditions correspond to each
other and thus should be close to each other in
the latent space Z. Such information can come
in the form of explicit landmarks, i.e., from cells
that express distinctive marker genes, or via sta-
tistical properties of the cells exploited by meth-
ods such as Harmony (Korsunsky et al., 2019).
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Figure 2 | Stylized example with two genes,
observed in two groups of cells, in two
conditions. (A) Scatter plot of the gene-
space with condition-specific one-dimensional
subspaces. See the Methods for the mathemati-
cal details. (B) Predicted expression of the two
genes in each cell. Gene 1 is lower expressed in
treatment, compared to control, only in the “left”
cell type, Gene 2 is up in the treatment, only in
the “right” cell type.

We account for such correspondence by adding
an affine transformation S(X) to the model.

A third feature of our model is its ability to
predict, for each cell, how its gene expression
profile would look like in any of the conditions—
even though it was only observed in one of them.
In fact, predictions are available not only for
those positions in latent space where cells were
observed, but for all positions, i.e., also for hypo-
thetical interpolating or extrapolating cell types
and states. We use these predictions to find
changes of gene expression that are coordinated
across regions of latent space, i.e., across the
same or similar cell types and states.

Fig. 2 shows a stylized illustration of the
LEMUR approach. LEMUR fits one 1D sub-
space (line) per condition, each parameterized
by a rotation applied to a common base space.
The parametric model yields a predicted expres-
sion value for each cell in each condition, and we
look for regions in latent space—here, we have
two major regions, left and right—in which pre-
dictions are consistently positive or negative. In
the Methods section, we provide a more formal
mathematical specification.

Cluster-free differential expression analy-
sis

We can predict the expression of a cell in any con-
dition using this parametric model. The differen-
tial expression between two conditions (Fig. 1C,
step 2) is just the difference between their predic-
tions and can be computed for each cell—even
though for any cell, data was only observed in
exactly one replicate of one condition (Fig. 2B).

The resulting matrix of differential expression
estimates ∆ has two uses: first, we can visualize
the differential expression values for each gene
as a function of latent space. Typical choices for
the dimension of the latent space are ten to a
hundred and for its visualization we use a further
non-linear dimension reduction into 2D scatter-
plots, such as UMAP (McInnes et al., 2018).
Examples are shown in Figs. 4 and 6. Second,
we use ∆ to guide the identification of differ-
ential expression neighborhoods, i.e., groups of
cells that consistently show differential expres-
sion for a particular gene (Fig. 1C, Step 3). The
intention for these neighborhoods is to be con-
nected, convex, and maximal, i.e., the differential
expression pattern would become disproportion-
ately less consistent and less significant if the
neighborhood were extended.

To rank and assess our level of confidence in
the found neighborhoods, we do not attempt to
measure the statistical uncertainty of the predic-
tions ∆. Instead, we use pseudobulk aggregation
(Crowell et al., 2020) of the original data: raw
counts, if available, otherwise the log-normalized
values. For each sample, we sum up the original
counts or take the mean of the log-normalized
values of the cells in the neighborhood to ob-
tain a neighborhood-specific genes × samples
table (Fig. 1C, Step 4), followed by a differen-
tial expression test with glmGamPoi, edgeR, or
limma (Ahlmann-Eltze and Huber, 2020; Robin-
son et al., 2010; Smyth, 2004).

Outputs

LEMUR produces the following outputs:

• a common low-dimensional latent space rep-
resentation of all cells (Z),

• parametric transformations R and S that
map the condition-specific latent spaces into
each other,
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• the predicted expression Ŷ for each gene
and cell in any condition,

• the predicted differential expression ∆ for
each gene and cell, for any contrast that can
be constructed from the design matrix,

• for each gene and contrast, a neighborhood
of cells and a statistical measure of signifi-
cance (p value).

The last of these will usually be the one end
users care about most; the others are useful for di-
agnostics, quality assessment, visualization, and
further modeling uses of the data.

The explicit parameterization of the transfor-
mations R and S means that they can easily be
inter- or extrapolated beyond the observed set
of data, and inverted from the low-dimensional
embedding back to the data space. In this sense,
LEMUR is a generative model.

Performance assessment

We assessed performance of LEMUR using
13 publicly available multi-condition single-cell
datasets (listed in Availability). We preprocessed
each dataset consistently following Ahlmann-
Eltze and Huber (2023).

First, we considered integration performance:
how well does the joint low-dimensional repre-
sentation of the cells preserve biological signal
encoded in the latent space, but remove traces
of the known covariates such as batch and treat-
ment effects. Figure 3A illustrates this on the
dataset by Kang et al. (2018) of Lupus patient
samples treated with either interferon-β or ve-
hicle control. We measured the covariate re-
moval by counting for each cell how many of
its k = 20 neighbors come from the same condi-
tion (k-nearest neighbor (k-NN) mixing). For a
balanced dataset with two conditions, an ideal
method scores a k-NN mixing value of k/2 = 10.
We measured the biological signal retention by
comparing—for each condition separately—a
clustering of the embedding with a clustering
of the original data, as measured by the mean of
the two adjusted Rand indexes (ARI). An ideal
method scores close to ARI = 1.

Across the 13 datasets, the performance of
LEMUR on these measures was similar to that
of Harmony (Fig. 3B). Other methods make dif-
ferent trade-offs between the two measures, and
no method clearly dominates. Suppl. Fig. S1

shows that the results are consistent across 7
additional metrics.

The computational cost of running LEMUR is
at the low end of what may be expected for such
data, and comparable to that of other approxi-
mative PCA methods. For instance, computing
the first 50 latent dimensions on the Goldfarb-
muren data, with 24 178 cells and 20 953 genes
(which occupies 4 GB of RAM), took us 35 sec-
onds and 24 GB RAM with the approximative
IRLBA algorithm (Baglama et al., 2022). For
comparison, fitting LEMUR without integration
took 103 seconds and needed 33GB RAM. Align-
ing the cells with landmarks or Harmony added
2 and 95 seconds, respectively (Suppl. Fig. S2).

Next, we assessed the ability of LEMUR to
predict gene expression across conditions. We
used it to predict gene expression under treat-
ment for cells that were observed in the control
condition, and compared these predictions to
the data from cells that, in fact, were treated.
To avoid overfitting, we assessed predictions on
“hold-out” cells whose data were not used for
training. As there is no direct correspondence
between individual cells observed under the two
conditions, we considered averages across anno-
tated cell types. Fig. 3C shows scatter plots of
the predicted–observed comparison for the Kang
et al. (2018) dataset for the 500 most variable
genes in eight cell types for four methods: CPA,
scVI, LEMUR, and the trivial prediction of no
change (Identity). Across the thirteen datasets,
LEMUR showed the smallest prediction error
measured by the L2 distance between observed
and predicted values (Fig. 3D). Suppl. S3 shows
that the results are consistent across six addi-
tional metrics.

In a third set of comparisons, we tested the
ability of LEMUR to identify sets of cells with
consistent differential expression. We took all
cells from the control condition of the Kang et al.
(2018) data, assigned them randomly to a condi-
tion A or B, and implanted genes with differential
expression in a subset of cells. Fig. 3E shows
an example. LEMUR accurately identified the
expression change and inferred a neighborhood
of cells that overlapped well with the simulated
ground truth (Fig. 3F).

We expanded this analysis to ten more semi-
synthetic datasets, each with 200 implanted dif-
ferentially expressed genes, to asses the type I
error control of the LEMUR differential expres-
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Figure 3 | Performance assessment. (A) UMAPs of the latent spaces for the data by Kang et al.
(2018). The k-NN mixing coefficient and the ARI are defined in the main text. (B) Density plots of
the bootstrapped mean performance for ARI and k-NN mixing across thirteen datasets. To adjust for
the dataset-dependent variation, we divided the k-NN and ARI score by the average per dataset. (C)
Scatter plots of predicted expression under treatment (y-axis) against observed expression (x-axis), for
500 genes in each of 8 cell types (same data as in A). (D) Prediction error as in C, across the same
thirteen datasets as in B (grey points). Red points show the mean. (E) Simulation setup. For one
of the implanted genes, the left panel shows a UMAP of the LEMUR latent space, where the color
indicates whether an expression change in this gene was simulated for that cell. The center and right
panels show the simulated expression values. (F) Left panel: predicted log fold change for the gene
from panel E (∆ = ŶB − ŶA). Center and right panels: the set of cells inside or outside the inferred
neighborhood. (G) Comparison of observed false discovery proportion and true positive rate (TPR) for
11 datasets, with 10 replicates and the overall mean shown as a large point. The nominal FDR was
fixed to 10.
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sion test. LEMUR on average controlled the false
discovery rate (FDR) (Fig. 3G upper panel). In
addition, it was more powerful than a pseudob-
ulked test across all cells (global), or separate
tests for subsets of cells, either by cell type or
cluster as in Crowell et al. (2020), or by neigh-
borhood as in miloDE (Missarova et al., 2024)
(Fig. 3G, lower panel). Suppl. Fig. S4 assesses
FDR control and power for additional variants of
the LEMUR method. It shows that accounting
for the post-selection bias from the neighborhood
inference is important, and that it is successfully
addressed by the data splitting.

Overall, these benchmarks demonstrate that
LEMUR (1) successfully integrates single-cell
data from different conditions, (2) detects cell
type/state specific differential expression pat-
terns without access to prior clusterings or cat-
egorizations of cells, and (3) provides accurate
statistical type I error control and good power.
In the following, we apply LEMUR to the analy-
sis of different biological datasets.

Analysis of a treatment/control experi-
ment: panobinostat in glioblastoma

Zhao et al. (2021) reported single-cell RNA-seq
data of glioblastoma biopsies. Aliquots from five
patients were assayed in two conditions: control
and panobinostat, a histone deacetylase (HDAC)
inhibitor (Fig. 4A). After quality control, the
data contained 65 955 cells (Suppl. Tab. S1).

The left column of Fig. 4B shows a two-
dimensional UMAP of the input data Y. Most
visible variation is associated with the known co-
variates: donor and treatment condition. Some
further variation is related to the different cell
types in the biopsies. We used LEMUR to absorb
donor and treatment effects into R, setting the
latent space dimension to P = 60. The middle
column of Fig. 4B shows, upon fixing S(x) = I,
a UMAP of the resulting matrix Z of latent coor-
dinates for each cell. Cells from different samples
are more intermixed, and within-sample cellular
heterogeneity is more evident. This picture be-
comes even clearer after using S to match cell
subpopulations across samples using Harmony’s
maximum diversity clustering (Fig. 4B, right col-
umn). Here, a large population of tumor cells
and three non-tumor subpopulations become ap-
parent.

The successive improvement of the latent space
representation from left to right is further demon-

strated in the lower row of Fig. 4B, where the
points are colored according to a cell type assign-
ment that we obtained from the expression of
selected marker genes and known chromosomal
aneuploidies (Suppl. Fig. S5A,B).

The linear latent space of LEMUR is readily
interpretable. This is exemplified in Suppl. Fig-
ure S5C, which extends the biplot concept from
PCA (Gabriel, 1971) to the multi-condition set-
ting. We can explore how higher or lower ex-
pression of any gene affects a cell’s position in
the latent space Z by plotting the gene’s loading
vector relative to the coordinate system of Z.

Using LEMUR’s differential expression test-
ing, we found that panobinostat caused cell
subset-specific expression changes in 25% of
all genes (2 498 of 10 000) at an FDR of 10%.
Suppl. Fig. S6 shows the differential expression
and inferred neighborhoods for seven genes.

Focusing on the tumor cells, we identified
subpopulations that differentially responded to
panobinostat treatment (Fig. 4C). In a subpopu-
lation of 9 430 tumor cells, which stemmed in sig-
nificant proportions from all five patients, treat-
ment with panobinostat caused downregulation
of LMO2, while in the majority of tumor cells
(n = 36 535) expression of LMO2 was unchanged
(Fig. 4C, right panel). LMO2 forms protein
complexes with the transcription factors TAL1,
TCF3, and GATA; it is important for angiogen-
esis and was originally discovered as an onco-
gene in T cell acute lymphoblastic leukemia (T-
ALL) (Chambers and Rabbitts, 2015). Kim et al.
(2015) studied the role of LMO2 in glioblastoma
and found that higher expression is associated
with worse patient survival. They concluded that
LMO2 could be a clinically relevant drug target.
To further characterize the subset of tumor cells
that respond to panobinostat by downregulating
LMO2, we compared their overall gene expres-
sion profiles in the control condition to that of
the other tumor cells. We found lower abun-
dances of ribosomal genes, consistent with lower
translational activity (Fig. 4D).

Analysis of a time course: zebrafish
embryo development

Saunders et al. (2023) reported an atlas of ze-
brafish embryo development, which includes data
from 967 embryos and 838 036 cells collected at
16 time points in 2h intervals from 18h to 48h
post fertilization (Fig. 5A). They used their sc-
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(A) Glioblastoma experimental design
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Figure 4 | Analysis of five glioblastoma tumor biopsies. (A) Experimental design. (B) UMAP
of the log-transformed data (first column) and the latent embeddings produced by LEMUR (second and
third column), colored by treatment and cell type (first and second row, respectively). (C) Differential
expression analysis of LMO2 within the tumor cells. Faceted UMAP of the cells inside and outside the
neighborhood. The scatter plots in the middle show the pseudobulked expression values from cells
inside and outside the neighborhood by donor and condition. The panel on the right compares the
differences inside and outside the neighborhood (red arrows). (D) Volcano plot for the comparison
between cells in- and outside the subpopulation from panel F, all in the control condition. Gene set
enrichment analysis points to reduced translation activity in the subpopulation.

RNA-seq data to assign each cell to a common
cell type classification scheme and studied the
temporal dynamics of appearance and disappear-
ance of cell types along developmental time. We
asked whether gene expression changes could
reveal additional biological phenomena. Thus,
we looked for temporal profiles of gene expres-
sion that systematically differed across cells that
shared the same cell type annotation. For this,

we used the ability of LEMUR to predict any
gene’s expression at any point in latent space at
any time. To represent the time dependence of
each gene with a smaller number of parameters,
we used natural cubic splines with three degrees
of freedom, following Smyth et al. (2023). To
model latent space variation, we interpolated lin-
early in latent space Z between two cells (red and
green) from the central nervous system and anal-

8

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 1, 2024. ; https://doi.org/10.1101/2023.03.06.531268doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.06.531268
http://creativecommons.org/licenses/by-nc/4.0/


(A) Zebrafish embryo development time course (hours post fertilization)
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Figure 5 | Analysis of a time course single-cell experiment (A) UMAPs of embryonic development
based on the integrated latent space of LEMUR. Black: cells from the respective time window post
fertilization; grey: all other cells, for comparison. Since some cell types only exist at particular
stages of development, temporal changes in the distribution of black points are to be expected. (B)
Synthetic cells projected onto the UMAP. They interpolate between pairs of observed cells, one pair in
the periderm (purple/turquoise) and one in the central nervous system (red/green). (C) Expression
predictions (smooth lines) and averaged observed data (points) for four genes as a function of time
(x-axis) and latent space coordinates (color).

ogously, between two cells (purple and turquoise)
from the periderm, a transient, outermost ep-
ithelial layer that covers the developing embryo
during the early stages of development (Fig. 5B,
Suppl. Fig. S7A).

We used the LEMUR fits to screen for genes for
which the spline coefficients were different across
this interpolated latent space gradient, according
to a statistical test for interaction (FDR=0.001).
Fig. 5C shows the data for four examples in which
the temporal divergence of gene expression was
corroborated by pseudobulking the observed ex-
pression data of the nearest neighbors in each 6-
hour interval. For instance, krt8, which encodes a
keratin essential for the structural integrity, pro-
tective barrier function and proper development
of the periderm, showed decreasing expression

over time for cells close to the turquoise cell, and
increasing expression for cells close to the purple
cell. Several possible explanations for the intri-
cate and divergent temporal regulation of krt8
within the periderm cells (Suppl. Fig. S7B,C)
exist, including spatial structures.

Analysis of spatially-resolved expres-
sion: plaque density in Alzheimer’s dis-
ease

Cable et al. (2022) performed Slide-seq V2 on
the hippocampus of four mice genetically en-
gineered to model amyloidosis in Alzheimer’s
disease. Using microscopy, they quantified the
spatial density of Amyloid β plaques (Fig. 6A).
Thus, plaque density is an observational covari-
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Figure 6 | Analysis of a spatial single-cell experiment (A-D) UMAPs of the cells from the
hippocampi of four mice, and spatial maps for two of them, colored by (A) Amyloid-β plaque density,
(B) whether the cell is a neuron, (C) the differential expression for Jun, and (D) whether the cell is
inside the differential expression neighborhood for Jun. (E) Scatter plot of Jun expression as a function
of plaque density for cells inside the neighborhood, neurons not in the neighborhood, and all other
cells. The line is a LOESS fit through the pseudobulked values.

ate that varies from cell to cell; this is in con-
trast to covariates considered above, which vary
from sample to sample. Cable et al. (2022) re-
ported a differential expression analysis per dis-
crete cell type category; however, the categories
were fairly broad and could not account for the
gradual changes suggested by the data (Fig. 6B,
Suppl. Fig. S7A). LEMUR enabled us to de-
fer cell type categorization and directly identify
genes whose expression varied between low and
high plaque density in adaptively found subsets
of cells. Fig. 6C shows the differential expression
prediction for Jun, a transcription factor that
was identified as a member of the pathway regu-
lating β amyloid-induced apoptosis (Morishima
et al., 2001; Akhter et al., 2015) and one of the
top hits after the LEMUR analysis. The corre-
lation between higher Amyloid-β plaque density
and increased Jun expression was limited to a
subset of about 20% of the neurons, which clus-
tered both in spatial coordinates and in the latent
space (Fig. 6D). The correlation did not hold for

other neurons (Fig. 6E, Suppl. Fig. S8B). We
projected the data from Cable et al. onto the
hippocampus reference atlas by Yao et al. (2021)
and found that this subset belonged to the glu-
tamatergic neurons from the dentate gyrus and
CA1 (prosubiculum) (Suppl. Fig. S8A).

Discussion

Latent embedding multivariate regression
(LEMUR) enables differential expression anal-
ysis of single-cell resolution expression data
between composite samples, such as tissue
biopsies, organs, organoids or whole organisms.
The method allows for arbitrary experimental
or study designs, specified by a design matrix,
just as in ordinary linear regression, or in
’omics-oriented regression methods like limma
(Smyth, 2004), edgeR (Robinson et al., 2010),
DESeq2 (Love et al., 2014). Applications range
from comparisons between two conditions with
replicates, over paired studies, such as a series of
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tissue biopsies before and after treatment, over
studies with multiple covariates (e.g., genetic
and drug perturbations), interactions between
covariates, and continuous covariates. The
method represents cell-to-cell variation within
a condition using a continuous latent space.
Thus, it avoids—or postpones—the need for
categorical assignment of cells to discrete cell
types or cell states, and offers a solution to one
of the challenges identified by Lähnemann et al.
(2020).

We demonstrated the utility of the approach
on three prototypical applications, and we bench-
marked important aspects of its performance on
a compendium of 13 datasets. The application
cases are a matched control-treatment study of
patient samples in glioblastoma, an atlas of Ze-
brafish embryo development where time is a con-
tinuous covariate, and a spatial transcriptomics
study of Alzheimer’s plaques where plaque den-
sity is a continuous covariate. We showed how
LEMUR identified biologically relevant cell sub-
populations and gene expression patterns.

To achieve this, we combine latent space repre-
sentation by dimension reduction with regression
analysis in a novel matrix factorization approach.
The model is predictive: for each observed cell,
it predicts its gene expression in any of the con-
ditions, even though it was only measured ex-
actly once. Moreover, as each cell is parameter-
ized by a position in P -dimensional real vector
space, the model can also predict the expression
of “synthetic cells” at unobserved positions, say
in-between observed cells or extrapolating out,
in any condition. We use these capabilities for
differential expression analysis.

We detect neighborhoods of cells with consis-
tent differential expression patterns with respect
to comparisons (“contrasts”) of interest. The
neighborhoods are found in a data-driven man-
ner. No a priori categorization of cells into “cell
types” is needed, but once neighborhoods have
been identified, one can annotate or compare
them with whatever annotation that is relevant.

Our current implementation of neighborhood
finding leaves room for future improvements. It
is stochastic, by relying on a random sample of
one-dimensional projections of point clouds in
P -dimensional space. Thus, repeated running
of the algorithm can result in (slightly) different
outputs. Also, it addresses the post-selection
inference problem using a rather heavy-handed

data splitting approach.
Unlike some other single-cell data integra-

tion and expression prediction tools, LEMUR
is built around linear methods. It is parame-
terized with a modest number of parameters
and uses a small number of layers. This is
in contrast to the often-repeated claim that
the complicatedness of single-cell data neces-
sitates non-linear methods and ’deep’ models.
We showed that our approach based on simple,
linear matrix decomposition using a sufficiently
high-dimensional latent space is capable of rep-
resenting the data in a useful manner. Com-
pared to deep-learning approaches, LEMUR’s
interpretable and easy-to-inspect model should
facilitate dissection and follow-up investigation of
its discoveries. In a Supplementary Note, we dis-
cuss how the LEMUR model differs from other
approaches that combine dimension reduction
and regression.
Overall, we believe that LEMUR is a valu-

able tool for first-line analysis of multi-condition
single-cell data. Compared to approaches that
require discretization into clusters or groups be-
fore differential expression analysis, representing
cell types and states in a continuous latent space
may better fit the underlying biology, and may fa-
cilitate the precise identification of affected cells.
This in turn should ease analysts’ work, and en-
able biological discoveries that could otherwise
be missed.
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Availability

All datasets used in this manuscript are publicly
available:

Dataset Availability

Angelidis et al. (2019) GSE124872

Aztekin et al. (2019) bioc::scRNAseq

Bunis et al. (2021) bioc::scRNAseq

Goldfarbmuren et al. (2020) GSE134174

Hrvatin et al. (2018) GSE102827

Jäkel et al. (2019) GSE118257

Sathyamurthy et al. (2018) GSE103892

Kang et al. (2018) Zenodo 4473025

Bhattacherjee et al. (2019) Zenodo 4473025

Skinnider et al. (2021) Zenodo 4473025

Cano-Gamez et al. (2020) Zenodo 5048449

Reyfman et al. (2019) Zenodo 5048449

Pijuan-Sala et al. (2019) bioc::Mouse
GastrulationData

Zhao et al. (2021) GSE148842

Saunders et al. (2023) GSE202639

Cable et al. (2022) SCP1663

The lemur R package is available at bio-
conductor.org/packages/lemur and the code
to reproduce the analysis is available at
github.com/const-ae/lemur-Paper which we
also permanently archived using Zenodo
doi.org/10.5281/zenodo.12726369. A Python im-
plementation of the LEMUR model (without the
differential testing capabilities) is available at
github.com/const-ae/pylemur.
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Lähnemann, D., Köster, J., Szczurek, E., Mc-
Carthy, D. J., Hicks, S. C., Robinson, M. D.,
Vallejos, C. A., Campbell, K. R., Beerenwinkel,
N., Mahfouz, A. et al. (2020). Eleven grand
challenges in single-cell data science. Genome
Biology 21: 1–35, doi: 10.1186/s13059-020-
1926-6.

Law, C. W., Zeglinski, K., Dong, X., Alham-
doosh, M., Smyth, G. K. and Ritchie, M. E.
(2020). A guide to creating design matrices for
gene expression experiments. F1000Research
9: 1444, doi: 10.12688/f1000research.27893.1.

Li, G., Yang, D., Nobel, A. B. and Shen, H.
(2016). Supervised singular value decompo-
sition and its asymptotic properties. Jour-
nal of Multivariate Analysis 146: 7–17, doi:
10.1016/j.jmva.2015.02.016.

Lopez, R., Regier, J., Cole, M. B., Jordan, M. I.
and Yosef, N. (2018). Deep generative mod-
eling for single-cell transcriptomics. Nature
Methods 15: 1053–1058, doi: 10.1038/s41592-
018-0229-2.

Lotfollahi, M., Klimovskaia Susmelj, A.,
De Donno, C., Hetzel, L., Ji, Y., Ibarra, I. L.,
Srivatsan, S. R., Naghipourfar, M., Daza,
R. M., Martin, B. et al. (2023). Predicting
cellular responses to complex perturbations in
high-throughput screens. Molecular Systems
Biology : e11517doi: 10.15252/msb.202211517.

Lotfollahi, M., Wolf, F. A. and Theis, F. J.
(2019). scGen predicts single-cell perturbation
responses. Nature Methods 16: 715–721, doi:
10.1038/s41592-019-0494-8.

Love, M. I., Huber, W. and Anders, S.
(2014). Moderated estimation of fold change
and dispersion for RNA-seq data with
DESeq2. Genome Biology 15: 1–21, doi:
10.1186/s13059-014-0550-8.

Madrigal, A., Lu, T., Soto, L. M. and Na-
jafabadi, H. S. (2023). A unified model for in-
terpretable latent embedding of multi-sample,
multi-condition single-cell data. bioRxiv doi:
10.1101/2023.08.15.553327.

McInnes, L., Healy, J. and Melville, J. (2018).
UMAP: Uniform manifold approximation and
projection for dimension reduction. arXiv doi:
10.48550/arXiv.1802.03426.

Missarova, A., Dann, E., Rosen, L., Satija,
R. and Marioni, J. (2024). Leveraging neigh-
borhood representations of single-cell data
to achieve sensitive de testing with milode.
Genome Biology doi: 10.1186/s13059-024-
03334-3.

Morishima, Y., Gotoh, Y., Zieg, J., Barrett, T.,
Takano, H., Flavell, R., Davis, R. J., Shi-
rasaki, Y. and Greenberg, M. E. (2001). β-
amyloid induces neuronal apoptosis via a mech-
anism that involves the c-Jun N-terminal ki-
nase pathway and the induction of Fas ligand.
Journal of Neuroscience 21: 7551–7560, doi:
10.1523/JNEUROSCI.21-19-07551.2001.

Nathan, A., Asgari, S., Ishigaki, K., Valencia,
C., Amariuta, T., Luo, Y., Beynor, J. I.,
Baglaenko, Y., Suliman, S., Price, A. L. et al.
(2022). Single-cell eQTL models reveal dy-
namic T cell state dependence of disease loci.
Nature 606: 120–128, doi: 10.1038/s41586-022-
04713-1.

Neufeld, A., Gao, L. L., Popp, J., Battle, A. and
Witten, D. (2022). Inference after latent vari-
able estimation for single-cell RNA sequencing
data. Biostatistics doi: 10.1093/biostatistic-
s/kxac047.

Pijuan-Sala, B., Griffiths, J. A., Guibentif, C.,

14

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 1, 2024. ; https://doi.org/10.1101/2023.03.06.531268doi: bioRxiv preprint 

https://doi.org/10.1038/nbt.4042
https://doi.org/10.1038/nbt.4042
https://doi.org/10.1109/CVPR.2014.352
https://doi.org/10.1038/cdd.2015.7
https://doi.org/10.1038/cdd.2015.7
https://doi.org/10.1038/s41592-019-0619-0
https://doi.org/10.1038/s41592-019-0619-0
https://doi.org/10.1186/s13059-020-1926-6
https://doi.org/10.1186/s13059-020-1926-6
https://doi.org/10.12688/f1000research.27893.1
https://doi.org/10.1016/j.jmva.2015.02.016
https://doi.org/10.1016/j.jmva.2015.02.016
https://doi.org/10.1038/s41592-018-0229-2
https://doi.org/10.1038/s41592-018-0229-2
https://doi.org/10.15252/msb.202211517
https://doi.org/10.1038/s41592-019-0494-8
https://doi.org/10.1038/s41592-019-0494-8
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1101/2023.08.15.553327
https://doi.org/10.1101/2023.08.15.553327
https://doi.org/10.48550/arXiv.1802.03426
https://doi.org/10.48550/arXiv.1802.03426
https://doi.org/10.1186/s13059-024-03334-3
https://doi.org/10.1186/s13059-024-03334-3
https://doi.org/10.1523/JNEUROSCI.21-19-07551.2001
https://doi.org/10.1523/JNEUROSCI.21-19-07551.2001
https://doi.org/10.1038/s41586-022-04713-1
https://doi.org/10.1038/s41586-022-04713-1
https://doi.org/10.1093/biostatistics/kxac047
https://doi.org/10.1093/biostatistics/kxac047
https://doi.org/10.1101/2023.03.06.531268
http://creativecommons.org/licenses/by-nc/4.0/


Hiscock, T. W., Jawaid, W., Calero-Nieto,
F. J., Mulas, C., Ibarra-Soria, X., Tyser,
R. C., Ho, D. L. L. et al. (2019). A single-
cell molecular map of mouse gastrulation and
early organogenesis. Nature 566: 490–495, doi:
10.1038/s41586-019-0933-9.

Reyfman, P. A., Walter, J. M., Joshi, N.,
Anekalla, K. R., McQuattie-Pimentel, A. C.,
Chiu, S., Fernandez, R., Akbarpour, M., Chen,
C.-I., Ren, Z. et al. (2019). Single-cell tran-
scriptomic analysis of human lung provides
insights into the pathobiology of pulmonary
fibrosis. American Journal of Respiratory and
Critical Care Medicine 199: 1517–1536, doi:
10.1164/rccm.201712-2410OC.

Robinson, M. D., McCarthy, D. J. and Smyth,
G. K. (2010). edgeR: a Bioconductor package
for differential expression analysis of digital
gene expression data. Bioinformatics 26: 139–
140, doi: 10.1093/bioinformatics/btp616.

Sathyamurthy, A., Johnson, K. R., Matson,
K. J., Dobrott, C. I., Li, L., Ryba, A. R.,
Bergman, T. B., Kelly, M. C., Kelley, M. W.
and Levine, A. J. (2018). Massively parallel
single nucleus transcriptional profiling defines
spinal cord neurons and their activity during
behavior. Cell Reports 22: 2216–2225, doi:
10.1016/j.celrep.2018.02.003.

Saunders, L. M., Srivatsan, S. R., Duran, M.,
Dorrity, M. W., Ewing, B., Linbo, T. H., Shen-
dure, J., Raible, D. W., Moens, C. B., Kimel-
man, D. and Trapnell, C. (2023). Embryo-scale
reverse genetics at single-cell resolution. Na-
ture 623: 782–791, doi: 10.1038/s41586-023-
06720-2.

Skinnider, M. A., Squair, J. W., Kathe, C., An-
derson, M. A., Gautier, M., Matson, K. J., Mi-
lano, M., Hutson, T. H., Barraud, Q., Phillips,
A. A. et al. (2021). Cell type prioritization
in single-cell data. Nature Biotechnology 39:
30–34, doi: 10.1038/s41587-020-0605-1.

Smyth, G., Hu, Y., Ritchie, M., Silver, J.,
Wettenhall, J., McCarthy, D., Wu, D., Shi,
W., Phipson, B., Lun, A., Thorne, N., Osh-
lack, A., Graaf, C. de, Chen, Y., Langaas,
M., Ferkingstad, E., Davy, M., Pepin, F.
and Choi, D. (2023). limma: linear mod-
els for microarray and RNA-seq data. doi:
10.18129/B9.bioc.limma, User guide (v3.58.1)
chapter 9.6.2.

Smyth, G. K. (2004). Linear models and empir-
ical bayes methods for assessing differential

expression in microarray experiments. Statis-
tical Applications in Genetics and Molecular
Biology 3, doi: 10.2202/1544-6115.1027.
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Methods

Given the data matrix Y of size G× C, where
G is the number of genes and C is the number
of cells, consider the decomposition

Y = RZ+ γoffset + ε (1)

with the G × P -dimensional matrix R, the
P × C matrix Z, the G × C matrix ε, the G-
dimensional vector γoffset (all real-valued)

1, and
P < min(G,C). To simplify interpretation, we
require the columns of R to be orthonormal (i.e.,
they are an orthonormal basis of a P -dimensional
linear subspace of RG). The embedding Z can
then be considered the P -dimensional coordi-
nates of C points in that linear subspace, each
representing a cell. Setting γoffset to the row-
wise means of Y, the matrices Z and R are fit
by minimizing the sum of squared residuals

G∑
g=1

C∑
c=1

ε2gc. (2)

Principal component analysis (PCA) is a spe-
cial case where, in addition, the columns of R
are obtained from an eigendecomposition and
ordered by eigenvalue. Alternatively, PCA can
be understood as the decomposition where R is
orthonormal and Z is orthogonal, which empha-
sizes the relation to singular value decomposi-
tion. In the applications considered in this work,
P ≪ min(G,C), and R and Z can be considered
a lower-dimensional approximation of the full
data matrix Y − γoffset.

We extend model (1) to incorporate known
covariates for each cell. Thus, we consider not
just a single matrix R and a single vector γoffset,
but treat them as functions of the covariates,

R : RK → {A ∈ RG×P |ATA = IP }
γ : RK → RG,

(3)

where the arguments of these functions are rows
of the C × K design matrix X, i.e., elements
of RK . The output R(x) is an orthonormal
G×P matrix and the output γ(x) is a RG vector.
Model (1) then becomes, for each cell c,

Y:c = R(Xc:)Z:c + γ(Xc:) + ε:c. (4)

1We use a recycling convention like the one used in the R
language for the sum operator (+) for a matrix A and a
conformable column vector b: (A+ b)ij = Aij + bi

Setting γ(Xc:) to the least sum of squares so-
lution of regressing Y on X, the matrix Z and
R ∈ R are fit by minimizing the sum of squared
residuals (2), where R is a suitable set of matrix-
valued functions that we define in the following.
Model (4) with these additional features can be
considered a multi-condition extension of PCA.
Intuitively, this multi-condition PCA finds a

function R that generates for each condition
(for each distinct row of the design matrix X) a
P -dimensional subspace that minimizes the dis-
tance to the observed data in that condition by
rotating a common base space into the optimal
orientation (Fig. 1C Step 1). Z is the orthogo-
nal projection of the data on the corresponding
subspace. Stability is ensured by constraining R
to come from a set R of “well-behaved”, smooth
functions of the covariates.
To construct R, we need to recall some con-

cepts from differential geometry. Given the whole
numbers G and P , the set of all orthonormal real
matrices of dimension G× P is a differentiable
manifold, the Stiefel manifold VP (RG). For our
application, it is appropriate to consider two
matrices equivalent iff they span the same lin-
ear subspace of RG. The set of all such equiva-
lence classes is again a differentiable manifold,
called the Grassmann manifold Gr(G,P ) (Edel-
man et al., 1998; Bendokat et al., 2023). Accord-
ingly, elements of Gr(G,P ) are P -dimensional
linear subspaces of the ambient space RG. Com-
putationally, we represent an element of Gr(G,P )
by an orthonormal matrix, i.e., by one of the
members of the equivalence class.

We then construct R as the set of all functions
R that have domain and codomain as in Eqn. (3)
and can be written as

RB(x) = Exp
(Gr)
o

(
K∑
k=1

xkB::k

)
, (5)

where B is a 3-dimensional real-valued tensor of
size G× P ×K. The expression Exp(Gr) is the
exponential map on the Grassmann manifold. It
takes a point o ∈ Gr(G,P ) and a tangent vector
at that point, and returns a new point on the
Grassmann manifold. Thus, given a choice of the
point o, which we call the base point, and of the
design matrix X, the set of all possible B induces
R, and fitting Model (4) is achieved by fitting
B. We use the terms tangent vector and tangent
space in their standard meaning in differential
geometry and represent tangent vectors with
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G × P matrices. The name exponential map
derives from the fact that for some Riemannian
manifolds the exponential map coincides with the
matrix exponential; however, this is not the case
for Grassmann manifolds. Here the exponential
map for a base point o and a tangent vector
represented by A ∈ RG×P is

Exp
(Gr)
o (A) = oV diag(cos d)VT

+U diag(sin d)VT ,
(6)

where A = U diag(d)VT is the singular value
decomposition of A (Edelman et al., 1998)
The argument of the exponential map in

Eqn. (5) is a linear combination of the slices
of B. Each slice of B::k represents a tangent vec-
tor (B::k ∈ ToGr(G,P )) and so are their linear
combinations (a tangent space is a vector space).
We analogously parameterize the offset func-

tion γ(x) =
∑

k Γ: kxk, where Γ ∈ RG×K . Ac-
cordingly, fitting γ is just ordinary linear regres-
sion.

Non-distance preserving extension

Multi-condition PCA (Eqn. (4)) fits subspaces
that approximate the data for each condition,
but does not depend on shape, scale, or more
generally, the statistical distribution of the cells’
embeddings in that subspace. Therefore it can
also not adjust for (“absorb”) such differences.
This rigidity increases stability and can be a de-
sirable model feature for some applications, by
preventing overfitting, but for other applications
it can also be a limitation. We extend Model (4)
with an optional term S, a non-distance pre-
serving, affine isomorphism of RP , to (i) obtain
additional flexibility and (ii) enable input of prior
knowledge and user preferences in cell matching:

Y:c = R(Xc:)S(Xc:)Z
′
:c + γ′(Xc:) + ε:c. (7)

Here, Z′
:c := S−1(Xc:)(Z:c − s0(X:c)). The extra

term S(x) distinguishes Eqn. (7), the LEMUR
model, from its special case for S ≡ I, multi-
condition PCA, Eqn. (4). To allow translations,
we also change γ′(x) = γ(x)+R(Xc:)s0(x), with
s0 defined below.

Next, we describe the selection of S and s0. It
is designed to enable the analyst to state pref-
erences which sets of cells from different condi-
tions should be considered matching each other,
i.e., are intended to be the same. We expect
such a specification in the form of E ∈ N0 sets

E1, . . . ,EE , where each Ei ⊂ {1, . . . , C} and
Ei ∩ Ej = ∅ for i ̸= j. These can be derived,
for example, from a set of matching cell type an-
notations (landmarks) or Harmony’s maximum
diversity clustering. This provision of preferences
is optional; if it is lacking, E = 0, the first term
in expression (8) vanishes, the optimization sim-
ply results in S = I, the identity, and LEMUR
reverts to multi-condition PCA. S is obtained as
a solution to the optimization problem

argmin
S,s0∈S,

E∑
e=1

∑
c∈Ee

(
Me − S−1(Xc:)

(Z:c − s0(Xc:)
)2

+ λ(∥W(0)∥22 + ∥W∥22)
(8)

where the optimization domain S is de-
scribed in the next paragraph, and Me =
|#Ee|−1∑

c∈Ee
Z:c is the mean latent space co-

ordinate of the cells in similarity set Ee.
The optimization domain S, that is, the set of

possible S(x) and s0, is the set of affine transfor-
mations

S(x) = I +

K∑
k=1

xkW::k

s0(x) =
K∑
k=1

xkW
(0)
:k ,

(9)

which is parameterized by the 3-tensor W with
dimensions P × P ×K and the P ×K matrix
W(0).

The parameter λ regularizes the optimiza-
tion and pulls the result towards S(x) = I and
s0(x) = 0.
We provide additional details on how the

LEMUR model is implemented in the Supple-
mentary Notes.

Software details

The analysis was conduced using R version 4.2.2
and Bioconductor version 3.16. We used scVI
version 1.1.2, CPA version 0.8.3, Harmony ver-
sion 1.1.0 and, miloDE version 0.0.0.9000 (git
commit id: 8803302).
In the performance assessment, we ran

LEMUR with 30 latent dimensions and a test
fraction of 0% for Fig. 3A-D and 50% for Fig. 3E-
G. For the biological vignettes, we used latent
space dimensions P = 60, 80, and 30 for the
glioblastoma, zebrafish, and Alzheimer plaque
analyses, respectively.
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We provide additional details on software ar-
guments, simulation settings, and benchmark
metrics in the Supplementary Notes.
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Supplementary Figures
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Suppl. Figure S1: Comparison of integration performance across 13 datasets. (A) Beeswarm plots for
each metric comparing how well each method adjusted the latent embedding for the known covariates.
The arrows next to the metric indicate if higher or lower values indicate better performance. (B)
Beeswarm plots for each metric comparing how well each method retained the biological signal. (C) A
beeswarm plot of an integrated performance measure comparing the ratio of variance explained by the
known covariates vs cell types (as a proxy for the biological signal). Each black point is the result one
dataset and the red points show mean performance.
k-NN: k nearest neighbors, MMD: maximum mean discrepancy, var. expl.: variance explained, ARI:
adjusted Rand index, NMI: normalized mutual information.
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Suppl. Figure S2: (A) Line plot of number of latent dimensions against the variance explained for PCA
and LEMUR. (B) Line plot of number of latent dimensions against the computation time for PCA,
LEMUR, and LEMUR with landmark or Harmony-based integration.
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Suppl. Figure S3: Comparison of the ability of each method to predict the expression of genes across
conditions for 13 datasets. The panels show different distance and correlation measures comparing the
predicted expression in condition B for cells from condition A against the observed expression of cells
in condition B and vice versa. The L2 distance and the correleation where calculated using the mean
of the predictions and observations over all cells or per cell type. As the distances varied by two orders
of magnitude between datasets, we divided each distance by the mean per dataset. The red points
show the mean per method.
S.D.: standard deviation, MMD: maximum mean discrepancy.
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(A) FDR control for all methods
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Suppl. Figure S4: FDR control and power for all methods across eleven datasets where we average
across the ten replicates per dataset. (A) Line plot of the nominal FDR against the observed false
discovery proportion. The FDR is the expectation of the false discovery proportion over many samples.
The blue line shows the average. (B) Scatter plot of the relative TPR at an FDR = 10% for each
method across eleven datasets standardized by the mean per dataset. The point range shows the mean
and standard error. If the average observed FDR is larger than 10% the point is greyed out.
FDR: false discovery rate, TPR: true discovery rate
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(A) Glioblastoma cell type assignment
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Suppl. Figure S5: Glioblastoma cell type assignment and multi-condition biplots. (A) Marker gene
and (B) chromosome-aggregated expression levels for each cell type. The the tumor cells are known to
bear an amplification of chromosome 7 and a deletion of chromosome 10 (Zhao et al., 2021), so we
identified the tumor cluster using the ratio of average gene expression on chromosome 7, resp. 10, over
the average expression on chromosomes 1-5 (C) Multi-condition biplots showing (left) the first two
dimensions of the LEMUR latent space (Z) for all cells overlayed with arrows representing (middle)
three cell type marker genes from Panel A and (right) a gene with large expression change specifically
in myeloid cells (HIST3H2A, more details in Suppl. Fig. S6).
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(A) Expression pattern of selected genes under panobinostat treatment
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(B) Predicted differential expression pattern (∆ = Ŷpan − Ŷctrl)
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(C) Pseudobulked differential expression
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Suppl. Figure S6: Differential expression patterns for seven genes with the neighborhoods inferred by
LEMUR. (A) UMAPs colored by gene expression (log-normalized counts). The black line encircles
80% of the cells inside the gene-specific differential expression neighborhood. (B) UMAPs colored by
predicted expression change per cell. The cells are separated depending if they are inside or outside
the neighborhood. (C) Scatter plot of the pseudobulked expression values per condition, neighborhood
status and sample.
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(B) Gene expression of krt8 in the periderm over time
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(C) Gene expression of nrxn2a in the central nervous system over time

Suppl. Figure S7: Cell type annotation for zebrafish. (A) Left panel: UMAP of the full timecourse data
with cells colored by tissue type as annotated in Saunders et al. (2023). Middle and right panel: Cell
type annotations for central nervous system and periderm also from Saunders et al. (2023). (B) Gene
expression of krt8 in the periderm over time. (C) Gene expression of nrxn2a in the central nervous
system over time. The overlayed points are the synthetic cells from Fig. 5B.

25

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 1, 2024. ; https://doi.org/10.1101/2023.03.06.531268doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.06.531268
http://creativecommons.org/licenses/by-nc/4.0/


(A) Alzheimer’s disease mouse model cell type details
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(B) Relation of Amyloid-β density and Jun expression per cell type
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Suppl. Figure S8: Cell type annotation for mouse brain datasets. (A) UMAP of the Alzheimer’s disease
mouse model dataset colored and split by cell type annotation provided by Yao et al. (2021). The
dashed shape is the 97% density contour of the cells inside the neighborhood. (B) Scatter plot with
smoothing fit of the pseudobulked gene expression of Jun against the binned amyloid-β plaque density.
Each dot is the pseudobulked expression per mouse, cell type, plaque density bin, and neighborhood
status. The text at the top of the graph lists the number of cells from that cell type which were inside
and outside of the Jun neighborhood.
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Suppl. Table S1: Overview of the patients from whom the glioblastoma biopsies originated.

Patient ID Age Gender Tumor location Conditon # Cells

PW030 65 M right parietal vehicle (DMSO) 17384

0.2 uM panobinostat 5686

PW032 61 M left frontal vehicle (DMSO) 5003

0.2 uM panobinostat 738

PW034 68 F left parieto-occipital vehicle (DMSO) 12375

0.2 uM panobinostat 1761

PW036 56 M right temporal vehicle (DMSO) 10292

0.2 uM panobinostat 2558

PW040 69 M right temporal vehicle (DMSO) 8901

0.2 uM panobinostat 1257
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Supplementary Notes

Implementation

We fit multi-condition PCA, Eqn. (4) by:

1. Solving the linear regression for Γ, treating
R(x) and Z as 0.

2. Optimizing on the Grassmann manifold for
the parameters B of the function R, keeping
Γ fixed.

3. Inferring Z:c by projecting Y:c on the or-
thonormal basis R(X:c).

In Step 1, we solve a linear regression for Γ

Γ̂ = argmin
Γ

∥Y − ΓXT ∥22. (10)

In Step 2, we need to solve the manifold re-
gression problem

argmin
B::k∈ToGr(G,P )

∣∣∣∣∣Ỹ:c − Expo

(∑
k

B::kXck

)
Z

∣∣∣∣∣
2

,

(11)
where Ỹ = Y− Γ̂XT . We choose the base point
o as the first P principal vectors of fitting PCA
to full, centered data matrix Ỹ.
To optimize B, we build on the work of Kim

et al. (2014). They developed an algorithm to
approximate the geodesic regression problem

argmin
B::k∈ToM

d

(
Ωi,Expo

(∑
k

B::kXik

))
, (12)

where M is a Riemannian manifold, Ωi ∈ M are
data points on the manifolds, and

d(p, q) =
√

⟨Log(p, q), Log(p, q)⟩ (13)

is the geodesic distance between two points on
M. Here, Log is the inverse of the exponential
map.
If the observations Ωi are close to each other,

the solution to Eqn. (12) is well approximated
by the solution to a standard linear regression in
the tangent space

argmin
B::k∈ToM

(Log(o,Ωi)− (
∑

kB::kXik))
2 (14)

for a base point o ∈ M that is close to the center
of all Ωi.
Another step is required before we can ap-

ply Kim et al. (2014)’s algorithm, since in our

case, the observations Ỹ:c are not elements of
the manifold (in our case, M is the Grassmann
manifold Gr(G,P )). We partition {1, . . . , C},
the set of all cells, into sets of cells that share the
same condition: D1 ∪ . . . ∪DD = {1, . . . , C} and
∀d ∈ 1, . . . , D : ∀c1, c2 ∈ Dd : Xc1: = Xc2:. Then,
for each d (i.e., for each group of cells under the
same conditions) we find an orthonormal basis
Ud ∈ Gr(G,P ) using PCA on Ỹ:Dd

, the data for
these cells only. We then approximate a solution
of Eqn. (11) by linear regression weighted by the
number of observations per condition (#Dd) on
the Ud projected into the tangent space of o. For
this, we plug Ωi = Ud into Eqn. (14) with

Log(Gr)(A,B) = U diag(tan−1(d))VT , (15)

where U, V, and d come from an SVD of (B−
AATB)(ATB)−1 = U diag(d)VT (Absil et al.,
2004).

Non-distance preserving extension

After fitting the model described in the previ-
ous section, the user can choose to also fit a
non-distance preserving extensions. The non-
distance preserving term S is defined by the the
parameters of W and W(0), which we fit us-
ing ridge regression with a user-specified penalty
that defaults to λ = 0.01.

Post-processing

After fitting the LEMUR model, we adjust the
base space so that the rows of Z are sorted in de-
scending order of their variance, i.e., we take our
specific set of basis vectors and adjust them so
that they may be interpreted analogously to prin-
cipal components, as pointing in the direction of
highest, second-highest, . . . variance. Specifically,
we calculate a singular value decomposition of Z

Z = U diag(d)VT . (16)

We then set the base point to

õ = oU, (17)

adjust the coefficients of R to

B̃::k = B::k U (18)

and set the low-dimensional embedding Z to

Z̃ = diag(d)VT . (19)
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Table 1 | Notation used in the manuscript.

Symbol Meaning

Y′ Raw count data (Y′ ∈ ZG×C
≥0 )

Y Data after size factor normalization and variance-stabilizing transformation (Y ∈ RG×C)

Ỹ Data after regressing out the linear effects (Y − γ(X))

X Design matrix (X ∈ RC×K)

Z Position of each cell in the low-dimensional embedding (Z ∈ RP×C)

∆ Predicted differential expression values between two conditions (∆ ∈ RG×C)

P Number of embedding dimensions. The associated index variable is p.

K Number of covariates. The index variable is k.

G Number of genes. The index variable is g.

C Number of cells. The index variable is c.

γ(x) Function that takes a vector of covariates (a row of X) and returns a vector with the
offset for each gene (γ(x) ∈ RG)

Γ Linear coefficients of γ(x) (Γ ∈ RG×K)

R(x) Function that takes a vector of covariates (a row of X) and returns a matrix with
orthonormal columns (R(x) ∈ Gr(G,P )). Its role is analogous to the principal vectors in
PCA.

B 3-tensor of parameters that determines R(x). Each slice B::k represents an element of
the tangent space ToGr(G,P ).

o The base-point (“zero”) for the Grassmann exponential map (o ∈ Gr(G,P ))

S(x) Function that takes a vector of covariates and returns an invertible matrix (S(x) ∈ RP×P )

W 3-tensor of parameters for S(x). Each slice W::k ∈ RP×P

Cluster-free differential expression

The parametric model of the multi-condition
single-cell data learned by LEMUR can be used
for intra- and extrapolation, that is, for predic-
tion. First, for any observed cell, it predicts its
gene expression in any of the conditions, even
though each cell was only observed exactly once.
Second, as each cell is parameterized by a posi-
tion in latent space, the model can also predict ex-
pression of “synthetic cells” at any (unobserved)
position z in the latent space for any condition
x. We use these capabilities for differential ex-
pression analysis. Using the inferred parameters
for γ(x), R(x), and S(x), we write

f(x, z) = R(x)S(x)z + γ(x), (20)

where f is a function that predicts the gene
expression of a cell at latent space position z in
the embedding space for any condition x.

Thus, the predicted differential expression for
all genes in cell c between conditions 1 and 2
(d1, d2 ∈ RK) is

∆:c = f(d2,Z:c)− f(d1,Z:c). (21)

Differential expression neighborhoods

We use a stochastic sampling algorithm that
works on the differential expression matrix ∆
to identify neighborhoods of cells that show con-
sistent differential expression. Intuitively, these
are intended to be sets of cells that cluster to-
gether in latent space, i.e., are similar or related
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cell types and cell states, that also show consis-
tent differential expression with respect to the
contrast of interest.
In a first step, we sample many one-

dimensional projections of the embedding Z.
Specifically, we repeat the following N times:
randomly sample two cells from {1, . . . , C}, com-
pute the vector between them, v = Z:c1 − Z:c2 ,
and project the data from all cells onto v. This
results in the matrix (wcn), where n = 1, . . . , N
indexes the random samples and c indexes the
cells. We choose N large enough that there is a
good chance that interesting differential expres-
sion patterns are apparent in one or more of the
w:n’s.
Next, for each gene g, we identify the best of

these one-dimensional data projections by choos-
ing an ng for which w:ng has the maximal abso-
lute correlation to ∆g:. Intuitively, this selects
a direction in latent space along which there is
differential expression for that gene. We com-
pute the order statistic (i1, . . . , iC) of w:ng , for
each c = 1, . . . , C compute the t-statistic for the
sample∆g,i1 , . . . ,∆g,ic , choose the cg which max-
imizes that statistic, and set Qg =

{
i1, . . . , icg

}
.

Pseudobulk differential expression analysis

The pseudobulk approach accounts for the fact
that the most relevant unit of replication in multi-
condition single-cell data is the sample (and not
the cells) (Crowell et al., 2020). It works by sum-
ming the counts across cells within a sample from
the same cell subpopulation (e.g., “cell type”).
If the data were obtained from F samples, the
information which cell belongs to which sample
implies a partition of {1, . . . , C} into F sets of
cells, which we call F1, . . . ,FF .
Let Y′ ∈ ZG×C

≥0 be the count matrix from
which Y was constructed. Then we form the
pseudobulk count matrix V ∈ ZG×F as

Vgf =
∑

c∈Ff∩Qg

Y′
gc, (22)

for f = 1, . . . , F , and calculate a gene-specific
size factor

sfgf =
∑

c∈Ff∩Qg

G∑
h=1

Y′
hc. (23)

This construction differs from the usual pseudob-
ulk approach as it uses a different set of cells Qg

for each gene.

To address the post-selection inference prob-
lem (we want to make inference on the statistical
significance of an observed trend based on a test
statistic that was itself constructed after consult-
ing the data), we compute (22) on a set of held
out cells, which are matched via the (wcn) matrix.
The fraction of cells that we assign to the training
set (which is used to compute the neighborhoods
Q1, . . . ,QG), and to the test set (which is used to
compute the pseudobulk data (22)) balances the
power for accurately identifying neighborhoods
with interesting gene expression changes, versus
the power to provide statistical significance state-
ments for those identifications. Future work may
find more elegant solutions.
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Execution details

Integration and prediction benchmark

The integration benchmark measured the ability
of methods to adjust for known covariates while
retaining the biological structure of the data.
The prediction benchmark measured for the tools
which support it how well they are able to predict
the expression of a cell in arbitrary conditions.

For both benchmarks, we used 13 single-cell
datasets (Angelidis et al., 2019; Aztekin et al.,
2019; Bhattacherjee et al., 2019; Bunis et al.,
2021; Cano-Gamez et al., 2020; Goldfarbmuren
et al., 2020; Hrvatin et al., 2018; Jäkel et al.,
2019; Kang et al., 2018; Pijuan-Sala et al., 2019;
Reyfman et al., 2019; Sathyamurthy et al., 2018;
Skinnider et al., 2021) which we downloaded from
publicly available sources (see Data Availability
for details).

We preprocessed each dataset using
transformGamPoi package’s shifted log transform

function with the default parameters. We
identified the 500 most variable genes and held
out 20% randomly chosen cells.

For the integration benchmark, we compared
scVI version 1.1.2 (Lopez et al., 2018), CPA
version 0.8.3 (Lotfollahi et al., 2023), Harmony
version 1.1.0 (Korsunsky et al., 2019), LEMUR
with S ≡ I (multi-condition PCA), LEMUR with
R fixed to the principal vectors of Ỹ (parametric
Harmony), and the full LEMUR model. For
PCA, we used the fast implementation from the
irlba package (version 2.3.5.1).

For the prediction benchmark, we did not con-
sider Harmony, as it does not support going back
from the integrated embedding to the gene ex-
pression space. Instead, we included two other
comparisons, which can be considered baseline
controls: a linear model-based method that pre-
dicts the mean of each condition, and identity
prediction, which returns the original expression
observed for a cell independent of the requested
condition.

We tried to run the methods as much as possi-
ble with the default parameters. On the advice of
the authors, we ran CPA directly on the counts
(that is, not on the variance stabilized data) with
the parameters from the tutorial on integrating
the Kang dataset (most importantly, 64 latent
dimensions, a negative binomial loss, and a learn-
ing rate of 0.0003). For the predictions from CPA,
we, again based on the recommendations of the

authors, log-transformed the predicted counts
before comparing them to the variance stabilized
data. For LEMUR, we used 30 latent dimensions
and a test fraction of 0%. We ran PCA with 30
latent dimensions.

For the evaluation of the integration results
displayed in Fig. 3B, we used the integration
performance of the held out data compared to the
training data, except for Harmony, which only
integrates its training data and has no concept
of integrating further, previously unseen data.
To make the output of the different methods
comparable, we brought each embedding to a
common scale by subtracting the mean for each
latent dimension and dividing by the average
cell vector length. On this rescaled input, we
calculated nine different metrics. Four metrics
were used to assess the adjustment for the known
covariates:

k nearest neighbor (k-NN) mixing. We identi-
fied the k = 20 nearest neighbors from the
training data for each cell from the held
out data. We then calculated how many
of those 20 neighbors were from the same
condition as the original cell. We averaged
these values across all held out cells to
derive a single metric for each dataset and
method pair.

Maximum mean discrepancy (MMD). We calcu-
lated the MMD discrepancy with a radial
basis function kernel between the held out
and training data after subsampling both to
a common number of cells (Gretton et al.,
2012). We calculated the discrepancy us-
ing scaling factors between 10 and 10−3 (50
values, log spaced) and 100, 200, and 500
cells and finally averaged the results to get
a single metric.

Wasserstein distance. We calculated the Wasser-
stein distance between held out and train-
ing cells using the wasserstein function from
the transport package after subsampling to a
common number of cells. We averaged the
results for 100, 200, and 500 cells.

Variance explained by condition. We calculated
the ratio of residual variance after account-
ing for known covariates over the total vari-
ance of the embedding.

We used these four metrics to assess how well
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each embedding retained the biological informa-
tion:

k-NN overlap. We calculated a reference embed-
ding with PCA, scVI, and CPA that did not
try to integrate the conditions. Then we
compared for each condition the similarity
of the nearest neighbors on the integrated
and non-integrated embeddings. We used
the PCA as a reference for Harmony and
LEMUR. CPA did not support fitting an em-
bedding without a condition variable, thus
we randomly assigned each cell to a con-
dition and thus created a perfectly mixed
dataset where no additional integration was
needed.

Adjusted Rand index (ARI). We calculated a
reference embedding with PCA, scVI, and
CPA that did not try to integrate the condi-
tions. Then we compared the similarity of
a walktrap clustering on the integrated and
non-integrated embeddings. We calculated
the adjusted Rand index to measure the
cluster consistency using the ARI function
from the aricode package.

Normalized mutual information (NMI). We fol-
lowed the same procedure as for the ARI,
but calculated the normalized mutual infor-
mation using the NMI function.

Variance explained by cell type. We calculated
the ratio of residual variance after account-
ing for the cell types as annotated in the
original data over the total variance of the
embedding.

Lastly, we also considered one merged met-
ric that directly contrasts the adjustment for
the known covariates and the retention of the
biological information

Variance explained by condition vs. cell type.
We calculated the ratio of residual variance
after accounting for the known conditions
plus the cell types over the residual variance
accounting only for the cell types.

For the prediction benchmark, we considered
a total of ten metrics. We considered two con-
ditions for each dataset and always calculated
the predicted expression for condition B for cells
from condition A against the observed expression
in condition B and vice versa.

L2 mean. The L2 distance between the mean
prediction against the mean observed ex-
pression across the whole data.

L2 mean per cell type. The L2 distance between
the mean prediction against the mean ob-
served expression for each cell type.

L2 of the standard deviation (S.D.). The L2

distance between the standard deviation
of the prediction against the standard
deviation of the observed expression across
the whole data.

L2 of the S.D. per cell type. The L2 distance be-
tween the standard deviation of the predic-
tion against the standard deviation of the
observed expression for each cell type.

R2 mean. The correlation between the mean pre-
diction against the mean observed expres-
sion across the whole data.

R2 mean per cell type. The correlation between
the mean prediction against the mean ob-
served expression for each cell type.

R2 of the S.D. The correlation between the stan-
dard deviation of the prediction against the
standard deviation of the observed expres-
sion across the whole data.

R2 of the S.D. per cell type. The correlation be-
tween the standard deviation of the predic-
tion against the standard deviation of the
observed expression for each cell type.

Maximum mean discrepancy (MMD). We calcu-
lated the MMD discrepancy between the
predicted and observed data after subsam-
pling to a common number of cells with a
radial basis function kernel (Gretton et al.,
2012). We calculated the discrepancy us-
ing scaling factors between 10 and 10−3 (50
values, log spaced) and 100, 200, and 500
cells and finally averaged the results to get
a single metric.

Wasserstein distance. We calculated the Wasser-
stein distance between predicted and ob-
served data using the wasserstein function
from the transport package after subsam-
pling to a common number of cells. We
averaged the results for 100, 200, and 500
cells.
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Variance explained comparison

For all 13 datasets used in the integration and
prediction benchmark, we compared the frac-
tion of variance explained by LEMUR and by
PCA. To make the results comparable, we man-
ually regressed out the effects of the known
covariates. We compared irlba’s approximate
PCA implementation and the LEMUR model
accounting for the known covariates. We fixed
the linear coefficient estimator =”zero” as we had
already manually removed the linear effects. We
measured the elapsed time using R’s system.time

function and the memory using the GNU time

command.

Differential expression and neighborhood
inference benchmark

For the differential expression benchmark, we
took the gene expression values of the top 8000
highly variable genes from individual conditions
and appended 200 simulated genes. We assigned
each cell to a synthetic control or treatment con-
dition. This ensured that for all original genes
there was no real differential expression, whereas
for the 200 simulated genes we were able to con-
trol the number of cells with a differential ex-
pression pattern and the log fold change.

We only considered the dataset-condition com-
binations which had the most independent repli-
cates. We chose two conditions from the Ange-
lidis et al. (2019); Goldfarbmuren et al. (2020);
Kang et al. (2018) data, three conditions from
Hrvatin et al. (2018) and one from Sathyamurthy
et al. (2018). Thus, we had eleven datasets in
total.

We then simulated 200 genes for each dataset
with varying number of affected cells, which we
repeated ten times per dataset. We first per-
formed k means clustering on the 50-dimensional
embedding of the data with either 2, 3, 10, or
20 clusters. Then, for each gene, we chose one
of the clusters and fixed the log fold change to
0.5, 1, 2, or 4, respectively (i.e., for the smaller
clusters, we used a larger effect size). The counts
were simulated according to

Ygc = GammaPoisson(µ = 2ηgcsfc, α = 0.2)

ηgc = β(0)
g + β(DE)

g x(is DE)
c + β(samp 1)

g x(samp 1)
c + · · ·

(24)

where β
(DE)
g is the log fold change, x

(is DE)
c indi-

cates if cell c is inside the selected cluster, sfc

is the size factor for cell c calculated on the ob-
served genes, and β

(samp 1)
g x

(samp 1)
c simulates a

sample-specific effect where β
(samp i)
g is drawn

from a normal distribution with a standard devi-
ation of 0.1.

Using the known set of simulated genes (true
positive) and original genes (true negatives), we
calculate the true positive rate (TPR, fraction
of identified true positives) and false discovery
proportion (fraction of false positives among all
positives).

Our default settings for LEMUR in the differ-
ential expression benchmark were

• 30 latent dimensions,

• a test fraction of 50%,

• directions =”randomized”,

• selection procedure =”zscore”,

• size factor method =”normed sum”,

• and test method=”edgeR”.

In addition, we tested several variations:

• LEMUR with test method set to glmGamPoi
(Ahlmann-Eltze and Huber, 2020) or limma
(Smyth, 2004),

• LEMUR with 8 or 80 latent dimensions,

• LEMUR with a test fraction of 20% and
80%,

• LEMUR with size factor method =”ratio”,

• LEMUR with directions =”contrast” or
selection procedure =”contrast”,

• LEMUR with S ≡ I (multi-condition PCA)
or R fixed to the principal vectors of Ỹ
(parametric Harmony),

• LEMUR where we reused the training data
for testing,

• LEMUR where the test and training data
were generated through count splitting
(Neufeld et al., 2022).

We compared the FDR and TPR from
LEMUR against seven alternative methods:

Global test A single test with edgeR or glmGam-
Poi across the full dataset.
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Cell type test One test per cell type (using the
annotation from the original data) with
edgeR or glmGamPoi.

Cluster test One test per walktrap cluster on
the Harmony integrated data with edgeR or
glmGamPoi.

MiloDE One test per Milo neighborhood using
edgeR (Missarova et al., 2024).

For the cell type test, cluster test, and MiloDE,
which perform more than one test per gene, we
considered a group of cells as positive if they
contained more than 60% changed cells (at least
10). If none of the cell groups for a gene fulfilled
this criterion, the group with the largest fraction
of changed cells was considered as positive. A
group of cells was considered negative if less than
10% of the cells were changed. If the fraction
of changed cells was between 10% and 60% the
status for that group of cells was considered
indeterminate and the group was ignored for the
TPR and FDR calculation.

Glioblastoma analysis

We downloaded the count data and patient an-
notations from GSE148842. We transformed the
counts using the function shifted log transform

from the transformGamPoi package and filtered
out all genes with a total of less than 6 counts.
We filtered out all cells which did not pass
the quality filters from the scuttle package’s
perCellQCFilters function, and also those cells
that had less than 800 or more than 12 000
counts.

We assigned the cell types and tumor status
following the methods from the original publica-
tion (Zhao et al., 2021). We clustered the Har-
mony integrated data with walktrap clustering
into four clusters. Zhao et al. (2021) identified
a chromosome 7 duplication and 10 deletion in
all samples. Accordingly, we assigned the clus-
ter which showed upregulation of genes from
chromosome 7 and downregulation of genes from
chromosome 10 as the tumor cells. The other
three clusters were assigned based on marker
genes as shown in Suppl. Fig. S5A.

We ran LEMUR with 60 latent dimensions
and a test fraction of 50%; otherwise, we used
the same defaults as in the differential expression
benchmark. The full dataset consisted of three
conditions: control, panobinostat, and etoposide.

For the analysis, we decided to focus on the
contrast between panobinostat and control and
do not show any data from etoposide-treated
cells.

The color scale of ∆ in Fig. 4C was capped at
the 95% quantile of the absolute values, squishing
more extreme values to the range. The differ-
ence of difference test in the rightmost panel
of Fig. 4C was significant at FDR < 0.1 con-
sidering all genes with a significant difference
(FDR < 0.1) between control and panobinostat
inside the neighborhood.

We identified gene ontology terms related
with up and down-regulated genes using the
clusterProfiler package’s enrichGO function on
the 200 genes with the smallest p-value com-
paring them against the universe of genes that
passed quality control.

Zebrafish embryonic development analysis

The data downloaded from GSE202639 was
already quality-controlled. We subsetted the
full dataset to the control cells (ctrl-inj and
ctrl-uninj ) for the 16 time points between 18
hours and 48 hours and the 2 000 most vari-
able genes. We transformed the counts using
transformGamPoi package’s shifted log transform

function and fit a natural spline model with three
degrees of freedom and 80 latent dimensions. We
tested the difference between the 48 hour and
the 18 hour time point using the settings from
the differential expression benchmark.

For the interpolation in Fig. 5B, we selected
two pairs of cells and linearly interpolated their
latent position. The selected cells were not from
the same timepoint, but as they only served as
anchors in the latent space Z this did not influ-
ence the results. We projected ten synthetic cells
onto the 2-dimensional UMAP. We calculated
the mean of the observed expression values from
the 50 nearest neighbors to five synthetic cells
at interpolation points 0, 0.25, 0.5, 0.75 and 1.
We predicted the gene expression according to
a spline fit for all ten synthetic cells at 50 time
points equally spaced between 18 and 48 hours.

To prioritize the genes that we manually in-
spected, we tested whether a spline model with 5
degrees of freedom could significantly better ex-
plain the observed expression pattern over time
than a linear model within a selected cell type.
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Alzheimer plaque spatial analysis

We downloaded the expression data for the four
mouse hippocampi with the Alzheimer plaque
densities from the BROAD’s single-cell repos-
itory. We subsetted the genes to a common
set and filtered out lowly expressed genes (to-
tal counts per gene less than 50). We further
filtered out cells with more than 20% mitochon-
drial reads and less than 200 or more than 5 000
total counts.

We fit LEMUR with 30 latent dimensions and
a test fraction of 60% on an ordered factor of the
plaque density cut into ten equally sized bins.
We contrasted the largest bin against the smallest
bin using the same settings as in the differential
expression benchmark.
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Relation to other methods

Relation to PCA regression and partial
least squares regression

For linear regression problems

Y = BXT , (25)

where the design matrix contains many (and
potentially some colinear) columns, PCA regres-
sion replaces the original design matrix with a
lower dimensional approximation V produced
with PCA:

Y = B′VT . (26)

Partial least squares is used in similar circum-
stances but chooses the lower dimensional ap-
proximation V such that it is optimal for pre-
dicting Y (Wold et al., 2001).

The difference to the LEMUR model is that
partial least squares and principal component
regression find approximations of the design ma-
trix, whereas LEMUR finds low-dimensional sub-
spaces that approximate Y and expresses the
relation of the subspaces as regression problem.

Relation to GSFA

Zhou et al. (2023) described a model for the
analysis of perturbation single-cell data called
guided sparse factor analysis (GSFA) which is
related to the SupSVD model (Li et al., 2016).
It is built around matrix factorization of the
observed data

Y ≈ RZ

Z ≈ βXT .
(27)

The model uses sparse priors on R and β to
identify which gene modules are related to which
latent factors. Unlike LEMUR, model (27) makes
the latent embedding Z dependent on the design
matrix X.

The sparsity priors favor situations where a
perturbation only affects a small number of la-
tent factors in Z and thus columns of R. In
that case, the contrast between the subspaces
spanned by the active factors of R and the in-
active factors for a perturbation has a similar
interpretation as the corresponding comparison
in LEMUR. However, LEMUR directly identifies
the subspaces per condition and does not need to
rely on the indirect effect of the sparsity priors.

Relation to GEDI

A recent preprint by Madrigal et al. (2023), pub-
lished after the first preprint of this work (doi:
10.1101/2023.03.06.531268), presents a model for
cluster-free differential expression analysis, sim-
ilar to what we delineate by Step 1 in Fig. 1A.
Their model can be summarized as

Y:Ff
= R(Xf :)Z:Ff

+ ΓXT
f :, (28)

where Ff are the indices of all cells from sample
f and X is a design matrix on the sample level
(F × K). They define the function R as the
linear combination of a reference state (θr) and
deviations from that reference state (δ)

R(x) = θr +
∑
k

xkδk. (29)

This model is fairly similar to LEMUR as it also
works by treating the subspace as a function of
the covariates. The biggest difference with our
model is that their R does not enforce the or-
thonormality constraints on R(x). The resulting
degeneracy between R and Z is partially resolved
by scaling each row of Z to a length of 1 and reg-
ularization on R, which can optionally be guided
by gene-regulatory networks.

Relation to interaction models

Model (4) can express interactions between
known covariates and the latent position of each
cell. For example, a drug perturbation might
affect the gene expression of cells early in a de-
velopmental trajectory more than in mature cells.
Our model simultaneously identifies the latent
position and the interacting drug effect. Yet,
the way the interactions are modeled here differs
from that in ordinary linear models.
Interactions in ordinary linear models are

formed using a direct (Hadamard) product be-
tween two or more known covariates. For exam-
ple, the effectiveness of trastuzumab on breast
cancer cells depends on their HER2 status, i.e.,
the drug is more effective if the HER2 protein
level is high. Accordingly, we could model cell
viability as a function of

ŷ = β0+β1 xconc.+β2 xHER2+β3 xconc.⊙xHER2

(30)
and call β3 the interaction coefficient.
The LEMUR multi-condition PCA model (4)

and the interaction model (30) are closely related.
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To demonstrate, we define R not as eq. (5) but
as

R(x) =
∑
k

B::kxk, (31)

and assume that X contains the known drug
concentration from our example above, while Z
contains the latent HER2 status:

X =


| |
1 xconc.

| |

 , Z =


| |
1 xHER2

| |


T

.

(32)

When we plug eqn. (31) into Ŷ:c = R(Xc:)Zc:,
we can rewrite it as

Ŷ =
∑
p,k

B:kp (X:k ⊙ Zp:) , (33)

which is just a different way to write eq. (30).
This demonstrates that the only difference be-
tween the interaction model with latent factors
and LEMUR is the choice of R.

Interaction model (33) has been used to model
the effects of regulatory variants in single-cells
across cell states (Cuomo et al., 2022; Nathan
et al., 2022). There, the cell states were repre-
sented using continuous factors Z; however, the
estimation proceeded step-wise: first, estimating
Z using PCA or Harmony and only then fitting
the interaction coefficients B.

Independent of the parametrization (Eqn. (5)
or Eqn. (31)), R(x) can be interpreted as span-
ning the space that best approximates the ob-
servations from condition x. The advantage of
Eqn. (5) is that the constraints of the Grassmann
manifold naturally map to this intuition. In con-
trast, the parametrization of Eqn. (31) does not
enforce orthonormality between the columns of
R(x), it does not even enforce a common scale.
This makes the model degenerate when inferring
Z and B simultaneously.
Geometrically, the columns of B in Eqn. (31)

that correspond to the intercept in X span a
base space. All other columns in B are vectors
that point out of that base space. In contrast,
the B::k ∈ ToGr(G,P ) in Eqn. (5) correspond
to rotations of the base space. For small an-
gles between the spaces of two conditions, there
is little difference between a rotation and the
straight vector. Thus, one can interpret our
multi-condition PCA model as approximating a

conventional interaction model between observed
and latent covariates.
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