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Abstract

The count table, a numeric matrix of genes x cells, is a basic input data structure in
the analysis of single-cell RNA-seq data. A common preprocessing step is to adjust the
counts for variable sampling efficiency and to transform them so that the variance is similar
across the dynamic range. These steps are intended to make subsequent application of
generic statistical methods more palatable. Here, we describe three transformations (based
on the delta method, model residuals, or inferred latent expression state) and compare their
strengths and weaknesses. We conclude with an outlook on future needs for the development

of transformations for single-cell count data.

Software: An R package implementing the delta method and residual-based variance-
stabilizing transformations is available on github.com/const-ae/transformGamPoi.

Contact: constantin.ahlmann@embl.de

Single-cell RNA sequencing count tables are
heteroskedastic, which means that counts for
highly expressed genes vary more than for lowly
expressed genes; accordingly, a change in a gene’s
counts from 0 to 100 between different cells is
more relevant than, say, a change from 1,000 to
1,100. Analyzing heteroskedastic data is challeng-
ing because standard statistical methods typi-
cally perform best for data with uniform variance.
Conversely, on heteroskedastic data, in general:

e generic statistical tests become unreliable,

e least sum of squares regression estimates are
unbiased but imprecise, and their standard
errors are wrong (Wooldridge, 2013),

e classification and clustering become less ac-
curate.

In Fig. 1, we provide a schematic example. We
show the probability mass functions of three Pois-
son distributions with different means. We see
that the standard deviation for the blue distri-
bution (p = 64) is four times larger than that of
the red distribution (u = 4).

It is important to keep in mind that although
a higher mean implies more variance, fold change

estimates between two conditions are more pre-
cise the higher the involved mean parameters.
Fig. 1B shows kernel-smoothed densities of the
log, fold changes between the counts from the
red vs. green, and green vs. blue distributions.
The latter is more precise because the coefficient
of variation (that is, the standard deviation di-
vided by the mean) of the Poisson distribution
decreases with the mean (Appendix B.1).

Statistical approaches that explicitly model
the sampling distribution of the data—a the-
oretically and empirically well-supported and
widely used choice is the Gamma-Poisson dis-
tribution(Griin et al., 2014; Svensson, 2020;
Kharchenko, 2021)—overcome the problem of
heteroskedasticity, but the parameter inference
of such models can be fiddly and computation-
ally expensive (Townes, 2019; Ahlmann-Eltze
and Huber, 2020). Instead, a popular choice
is to use variance-stabilizing transformations as
a preprocessing step, and subsequently to use
the many existing statistical methods that, im-
plicitly or explicitly, assume uniform variance
for best performance (Amezquita et al., 2020;
Kharchenko, 2021).
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Figure 1: Example of heteroskedastic data. (A) shows the probability mass functions of three Poisson
distributions with different means, such that the log, fold change between the green and red means, as
well as between the blue and green means, is 2. (B) shows the smoothed log, fold changes between the
red vs. the green, and the green vs. the blue distributions. The shaded areas show the range between

the 5% and 95% quantiles.

0 T T
0 10 20

Figure 2: Graph of the three delta method-
based variance-stabilizing transformations that
are most relevant for count data. The curves are
shown for overdispersion parameter « = 0.1. We
chose the offset a = log(4«) in the shifted loga-
rithm and the scaling s = 24/« in the square-root
transformation to match the acosh transforma-
tion. The points highlight integer values on the
abscissa.

Delta method

Variance-stabilizing transformations based on
the delta method promise an easy fix for het-
eroskedasticity where the variance only depends
on the mean. Instead of working with the raw
counts Y, we apply a non-linear function g(Y)
designed to make the variances (and possibly,
higher moments) more similar across the dy-
namic range (Bartlett, 1947).

The Gamma-Poisson distribution implies a
quadratic mean-variance relation of Var[Y] =
p+ap?, where p is the mean and « is the overdis-
persion (i.e., the additional variation compared
to a Poisson distribution). Given this mean-
variance relation, we can use the delta method
(Dorfman, 1938) to find the variance-stabilizing
transformation

g(y) = \/1& acosh (2ay + 1) . (1)

The shifted log transformation

g(y) = log (y +c) (2)

is a good approximation for Eq. (1) if the pseudo-
1

count is ¢ = 7= (see Fig. 2 and Appendix B.2).
The shifted log transformation is the most pop-
ular pre-processing method for single-cell data.
However, it is conventionally used with pseudo-
count ¢ = 1 (Butler et al., 2018; Amezquita et al.,
2020). Instead, we recommend either using a
larger pseudo-count, as « is typically in the range
of 0.01 to 0.16 (Suppl. Fig. S1), which implies a
choice of ¢ in the range of 25 to 1.6; or directly
using the acosh-based transformation, since the
approximation deteriorates for a < 0.01.

One problem with variance-stabilizing trans-
formations based on the delta method are the
so-called size factors. These parameters, of which
there is one per cell, adjust simultaneously for
variable cell sizes and for variable efficiency with
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which molecules are sampled from the pool of all
mRNAs of a cell during the measurement pro-
cess (Lun et al., 2016). To correct the data for
varying size factors, conventionally, the counts
are divided by suitably estimated size factors
before the variance-stabilizing transformation
is applied (Love et al., 2014; Amezquita et al.,
2020). However, this operation does not com-
pletely remove the confounding effect of the size
factors: e.g., in a low-dimensional embedding
of the cells, the cells may still separate by size
factor instead of possibly more interesting bio-
logical differences (Suppl. Fig. S2). Intuitively,
the trouble stems from the fact that the division
scales large counts from cells with large size fac-
tors and small counts from cells with small size
factors to the same value, although small counts
after scaling are more variable. In Appendix B.3,
we explore the problem more formally.

A second problem with variance-stabilizing
transformations based on the delta method is,
as Warton (2018) points out, that transforma-
tions cannot reasonably be expected to stabi-
lize the variance of small counts (compare with
Suppl. Fig. S3).

Pearson residuals

Hafemeister and Satija (2019) suggested a dif-
ferent approach to variance stabilization, which
promises to address the confounding effect of the
size factors and effectively stabilize the variance
also for small counts. They use Pearson residuals

= Yy—H ’ (3)
Vit ap?
where p and a come from a Gamma-Poisson
generalized linear model fit for each gene ¢

Yij ~ GammaPoisson (p;j, o;)

4
log(pij) = Bio + Bis log(s;), )

where j is the cell index, B;o is the intercept,
s; is the cell-specific size factor, and ;s is the
corresponding size factor coefficient. Note that
the denominator in Eq. (3) is the standard devi-
ation of a Gamma-Poisson random variable with
parameters p and «.

The generalized linear model incorporates the
size factors and removes their confounding ef-
fect (Suppl. Fig. S2). Furthermore, the trans-
formation, using the gene-wise mean and stan-
dard deviation estimate, ensures that also the

variances of lowly expressed genes are stabilized
(Suppl. Fig. S3).

Although sctransform (the implementation of
the Pearson residual method provided by Hafe-
meister and Satija (2019)) performed well in a
recent benchmark (Germain et al., 2020), there
has been a debate around its statistical model.
Lause et al. (2021) argued that neither the esti-
mation of ;s nor the estimation of one overdis-
persion per gene are necessary. Instead, Lause
et al. (2021) suggested treating the log-size fac-
tors as offsets (i.e., fixing B;s = 1) and fixing
the overdispersion to o = 0.01, because that
is roughly the overdispersion they observed in
experiments where an RNA solution is homoge-
neously encapsulated in droplets. Hafemeister
and Satija (2020) responded that estimating a
gene-wise coefficient for the size factor “allows
sctransform to adapt to artifacts and biases” and
that fixing the overdispersion to a small value
over-emphasizes the variation of highly abundant
housekeeping genes.

Estimating a size factor coefficient per gene
or treating it as fixed has little impact on the
resulting residuals. Both Lause et al. (2021)
and Hafemeister and Satija (2020) state that
the resulting residuals are similar. We confirm
that the question of how the overdispersion is
chosen is more important. In Suppl. Fig. S4, we
compare the effect of using the offset model or
a fixed overdispersion against the sctransform
model across six single-cell datasets. We find that
the impact of using the offset model is negligible
compared to the choice of the overdispersion.

So how should the overdispersion be estimated
or fixed? It turns out that there is no unique cor-
rect, or universally optimal answer: it depends
on the biological question that the analyst wants
to ask. Lause et al. (2021) based their sugges-
tion on the analysis of droplets all loaded from
the same RNA solution. This can be considered
a technical control experiment, and we confirm
that a = 0.01 describes the overdispersion for
such data well (Suppl. Fig. S1A). However, a
technical control experiment is not the only pos-
sible reference frame.

To complement the analysis of Lause et al.
(2021), we analyzed the overdispersion found in
cells from immortalized cell lines, which one can
consider biological replicates (Suppl. Fig. S1B).
The data from these cells show more overdisper-
sion than that of the droplets with RNA solution,


https://doi.org/10.1101/2021.06.24.449781
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.24.449781; this version posted June 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

Marker Gene Distribution after Transformation

Raw Counts log(x+1) log(x+1/(4a)) acosh(2ax +1) Pearson Resid.  Rand. Quant. Resid. Sanity
Q
o
=
&
0 400 800 120000 25 50 75 2 3 4 5 6 0 2 4 0 10 -10 0 10 -75 -50 -25 00
—
©
-
Qo
(=]
(5]
(/J T T T T T T T T T T T T T T T T T T T T T T
0 1000 2000 3000 O 3 6 3 5 00 25 50 0 20 40 -10 O 10 20 -6 -4 -2 0
I
©
i
0 5 10 15 00 25 20 25 3000 05 10 15 0 10 20 0 5 15 -10 -5 0

I celis of the cell type associated with the marker gene

other cells

Figure 3: Histograms of the raw gene counts and the transformed values, for six different transformation
approaches, for three cell-type marker genes in a mouse lung dataset (Angelidis et al., 2019). The color
of the bars indicates whether a cell is of the cell type associated with the marker gene (Sftpc for type
IT pneumocytes, Scgblal for club and goblet cells, Ear2 for alveolar macrophages). For visual clarity,
we down-sampled the other cells (grey) to match the number of those from the marked cell type.

and the overdispersion differs from gene to gene.
This is not surprising, as even in an ostensibly
homogeneous cell population, there are real bio-
logical differences between cells, e.g., cell cycle
stage.

For the analyst, the question remains how to
set the overdispersion.

e If any variation larger than the one expected
due to Poisson sampling is considered inter-
esting, it is natural to fix the overdispersion
to a = 0 or, allowing for some slack, to a
small value like @« = 0.01 as Lause et al.
(2021) suggested.

If the interest lies in genes whose varia-
tion is higher than that in the majority
of genes of similar expression level, a ro-
bust approach is that of Hafemeister and
Satija (2019), who fit a trend line through
the mean-overdispersion relation.

If one wants to level any gene-wise overdis-
persion differences, e.g., if the interest lies
in expression patterns of genes across cells,
irrespective of each gene’s absolute variabil-
ity, one could use the gene-wise maximum
likelihood overdispersion estimates.

An important drawback of the Pearson resid-
uals is that they fail to stabilize the variance
if a gene’s true expression strongly differs be-
tween cell subpopulations, as shown in Fig. 3.
The figure shows the expression pattern of three
cell type marker genes after applying differ-

ent variance-stabilizing transformations. Un-
like the delta method-based, non-linear variance-
stabilizing transformations, the Pearson residu-
als fail to reduce the variance within the high-
expression subpopulations, because the Pearson
residuals are a linear transformation per gene
(Eq. (3)). This means that while Pearson resid-
uals successfully rescale the data from different
genes relative to each other, heteroskedasticity in
the data of a gene across cells remains and may
obstruct tasks like clustering, mixture modelling
or differential expression analysis.

An alternative is to combine the idea of
delta method-based variance-stabilizing trans-
formations with the generalized linear model-
residual approach by using non-linear residu-
als. We suggest using, for example, random-
ized quantile residuals (Dunn and Smyth, 1996).
(Suppl. Fig. S5 shows how they are constructed.)
Same as Pearson residuals, randomized quantile
residuals stabilize the variance for small counts
(Suppl. Fig. S3), but also stabilize the variance
for one gene across cells (Fig. 3).

Latent expression state

An alternative approach, which is not directly
concerned with finding a variance stabilizing
transformation, aims to infer the latent expres-
sion state for each cell and gene. This is the idea
used in differential expression tools like edgeR
and DESeq2 (Robinson et al., 2009; Love et al.,
2014). It was recently developed further by Breda
et al. (2021), who suggest using it as a data trans-
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Figure 4: Bee swarm plot of the method performance for the eleven transformation methods discussed
in this paper. We measure the performance as the percentage of correctly identified 100 nearest
neighbors for each cell. We simulated two branching datasets: (1) each branch is a linear interpolation
between two points, (2) each branch is a random walk (i.e., using the same kind of dataset as Breda
et al. (2021)). On the linear manifold dataset, we used the first 20 principal components; on the random
walk dataset, we used 150. The simulated overdispersion for the linear manifold dataset was o = 0.01
and for the random walk o« = 0. For the transformations, we chose a mismatched overdispersion of

o = 0.05 for both datasets.

formation.

Breda et al. (2021) posit that each cell is
characterized by a latent expression state, for
which we observe a corrupted picture through the
mRNA counts. To account for the uncertainty
of the inferred expression state, they choose a
Bayesian inference approach. Given a count ma-
trix, their method Sanity infers a matrix of pos-
terior distributions, which they represent using
two matrices of real numbers: the distributions’
means and standard deviations. The inferred
posterior for a specific gene and cell is a function
of the observed count, the cell’s size factor, and
the gene’s overall expression across all cells. A
larger size factor implies more precision in the
inference of the latent state of that cell. The
gene’s expression pattern is used to regularize
the inference. Breda et al. (2021) show that the
regularization suppresses Poisson noise and that
their method does a better job estimating the
variance per gene on simulated data and data
without biological signal.

Furthermore, Breda et al. (2021) include a
benchmark that shows that Sanity is the best
method for identifying the k nearest neighbors of
a cell. However, we find that the delta method-

based and residual-based variance-stabilizing
transformations perform similarly well if we re-
duce the dimensions of the input data using prin-
cipal component analysis (PCA) before searching
for the k nearest neighbors (Fig. 4). The dimen-
sion reduction has the effect of averaging out
uncorrelated noise, and serves a similar purpose
as the regularization step of Sanity. However, un-
like Sanity, the PCA-based approach requires the
choice of the number of dimensions, which can
greatly affect the performance (Suppl. Fig. S6).

A limitation of Sanity is that it is
slow compared to the other transformations
(Suppl. Fig. S7). In our analysis, Sanity needed
1,000 — 10,000x more CPU time. The exact
performance difference, of course, depends on
the size of the dataset, the number of nearest
neighbors, and the number of dimensions used
in PCA, but in general, Sanity’s k nearest neigh-
bor search scales quadratically with the number
of cells, because Sanity estimates all cell-by-cell
distances. In contrast, the other transforma-
tions can be combined with approximate nearest
neighbor search algorithms like random projec-
tion trees (Dasgupta and Freund, 2008), which
scale linearly with the number of cells.
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Discussion

We have described and compared three conceptu-
ally different preprocessing approaches for single-
cell data. We find that the popular shifted log
transformation in combination with principal
component analysis performs well. We present
theoretical evidence for using the related acosh
transformation or using a larger pseudo-count
¢ = 1/(4«) for the shifted logarithm. However, in
the benchmark, we find only a slight performance
benefit for the two alternatives.

The residual-based variance-stabilizing trans-
formation approach first suggested by Hafemeis-
ter and Satija (2019) has nice theoretical prop-
erties. It stabilizes the variance across all genes
and is not affected by variations of the size fac-
tor. However, the linear nature of the Pear-
son residuals-based transformation reduces its
suitability for comparisons of the data of a
gene across cells (such as differential expres-
sion analysis between cell subpopulations, or
visualization)—there is no variance stabilization
across cells, only across genes. As an alterna-
tive, we considered using non-linear residuals like
randomized quantile residuals. However, in our
benchmark, neither method excelled at identify-
ing the k nearest neighbors.

The recent proposal by Breda et al. (2021) to
use the inferred latent expression state as a trans-
formation is appealing because it is biologically
interpretable and does not need any tunable pa-
rameters. Sanity performs well at identifying the
k nearest neighbors. It has two potential down-
sides: first, the fact that Sanity outputs not just
one, but two values per gene and cell (mean and
standard deviation) requires corresponding down-
stream processing, or conversely complicates feed-
ing its output into generic methods that expect
one number per gene and cell. Second, Sanity’s
inference approach is computationally expensive:
in our applications, 1,000 — 10, 000x slower than
the alternative transformation approaches.

The results of our analysis differ from previ-
ously reported results. Lause et al. (2021) bench-
marked different gene selection and transforma-
tion approaches and claimed that the Pearson
residuals-based transformation outperforms al-
ternative approaches. They used a dataset with
known cell types (Zheng et al., 2017) and added
a synthetic rare cell type population by copy-
ing the expression data for 50 B cells and in-
jecting 10 genes exclusively expressed in this

population. The Pearson residuals-based gene
selection and transformation successfully distin-
guished this synthetic B cell population from the
real B cells. In contrast, the square root-based
gene selection and transformation combination
(i.e., the closest equivalent to our delta method-
based transformations) failed to distinguish the
synthetic from the real B cells because none of
the 10 synthetic marker genes were among the
2,000 selected highly variable genes. Lause et al.
(2021) compared the methods using the aver-
age Fl-score across cell types, which is sensitive
to poor performance in one cell type and thus
shows a strong benefit to using Pearson resid-
uals. However, in terms of accuracy (mean of
correctly classified cells) or Fl-score weighted by
cell type size, the square root-based gene selec-
tion and transformation outperform the Pearson
residuals.

The results from Lause et al. (2021) do
not show that the Pearson residual variance-
stabilizing transformation necessarily outper-
forms alternative transformations, but they
stress the danger of prematurely removing im-
portant genes. In our benchmark, we avoided
this problem by using all genes instead of select-
ing only highly variable ones. Of course, this
increases the runtime of the PCA step, but that
is rarely the computational bottleneck.

There has been considerable development in
the space of preprocessing methods for single-cell
RNA-seq data. Somewhat to our surprise, the
shifted logarithm still performs among the best
for preprocessing, but crucially only if combined
with a dimensionality reduction method like PCA
and an appropriate number of latent dimensions.
Thus, in the future, we expect that new methods
will shift away from simple variance stabilization
to transformations that work well specifically in
combination with PCA.

9

Ultimately, the approach of “preprocessing’
(i.e., size-factor normalization and transforma-
tion) and subsequent application of generic statis-
tical models has fundamental limitations, and we
expect greater innovation from statistical models
that integrate the biases and sampling phenom-
ena in the measurement process with the bio-
logical effects (clusters, gradients, trajectories,
differential expression, ...) of interest.
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Availability

An R package that provides convenient meth-
ods for the delta method and residual-based
variance-stabilizing transformations is avail-
able on github.com/const-ae/transformGamPoi.
The code to generate the figures is avail-
able on github.com/const-ae/transformGamPoi-
Paper. Our forked version of sctransform is
available on branch offset_with_flexible_theta of
github.com/const-ae/sctransform/. All datasets
used in this manuscript are listed in Appendix

C.
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A Supplementary Figures
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Suppl. Figure S1: Scatter plot on the log-log scale of the mean and variance per gene for technical
and biological control experiments. (A) shows three datasets where endogenous RNA plus a known
concentration of the External RNA Control Consortium (ERCC) spike-in standard has been captured in
droplets so that the variations of gene’s counts per droplet are purely statistical. The best overdispersion
fit for genes with a mean of more than 1 were a = 0.006, 0.011, and 0.015, respectively. (B) shows
four immortalized cell line populations that are ostensibly homogeneous (cells from one mouse cell line
and three human cell lines). The best overdispersion fit for genes with a mean of more than 1 were
a = 0.12, 0.07, 0.16, and 0.17, respectively. Cell cycle genes (gene ontology term GO:0007049) are
highlighted in red; for these, we expect elevated variance even in a homogeneous cell population.
The diagonal line with slope 1 (purple) corresponds to the mean-variance relation of a Poisson
distribution. The yellow lines indicate quadratic mean-variance relations with different coefficients for
the quadratic term (corresponding to Gamma-Poisson distributions). To limit contributions of the
sequencing coverage on the variance, only cells between the median and 1.3x the median of the size
factor are shown.
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Effect of Varying Size Factors on Transformation of Homogeneous Data
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Suppl. Figure S2: Plots of the first two principal components of homogeneous data with size factors
that vary across cells. We simulated 500 cells and 4000 genes according to the following model
Yi; ~ GammaPoisson(j;s;, o)
log (p;) ~ Normal(4,2.6)
100 ~ x2(5) (5)
log(s}) ~ Normal(4, 0.3)

sj = sj/mean(s;).

This figure was inspired by Lun (2020).
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Suppl. Figure S3: Scatter plots of the variance per gene of the raw counts and after applying the six
different transformations. The x-axis shows the logarithmized mean of the raw counts per gene; the
y-axis shows the variance per gene after applying the transformations. We sampled 1,000 cells and
1,852 genes from the NIH/3T3 mouse cell line dataset. We chose the genes so that they uniformly
cover the log mean expression space. We set a = 0.12 using the estimate from Suppl. Fig. S1. The
horizontal line highlights the target variance of 1.
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A Effect of fixing fs = 1
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Suppl. Figure S4: Scatter plots to assess the importance of estimating 5 and/or « in Eq. (4). The
x-axis shows the Pearson residuals calculated with sctransform’s default model (where both S and «
are estimated); the larger the residual, the more the data point is an outlier. The y-axis shows the
difference between the residuals from sctransform’s default model and the residuals from a fit with
fixed fs = 1 and/or a = 0.01; the extremer the difference, the more impact fixing that parameter has
on the result. In (A), A; is the difference between sctransform’s default model and the offset model
(Bs =1). In (B), Ay is the difference between sctransform’s default model and the fixed dispersion
model (a = 0.01). In (C), Az is the difference between sctransform’s default model and the model
suggested by Lause et al. (2021) (85 = 1 and o = 0.01).

The facets show 6 different single-cell datasets. From each, we sampled 3,000 genes and 1,000 cells.
Each point is colored by the observed count. To fit the offset mode without fixing «, we forked
sctransform and extended the provided offset routine from Hafemeister and Satija (2020) to allow
estimation of « from the data. The diagonal line visible in the Mesmer, Zeisel, and Zheng data is an
artifact from sctransform limiting the maximum value for the residual to /n.

12


https://doi.org/10.1101/2021.06.24.449781
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.24.449781; this version posted June 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

Construction of Randomized Quantile Residuals

Histogram of Counts CDF of fitted Gamma-Poisson CDF of Standard Normal Randomized Quantile Residuals
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Suppl. Figure S5: Schematic representation of how randomized quantile residuals are constructed. In
the first step, a Gamma-Poisson distribution (black line) is fitted to the observed counts. Then, the
quantiles of the Gamma-Poisson distribution are matched with the quantiles of a standard normal
distribution by comparing their respective cumulative density functions (CDFs). This obtains a
mapping from the raw count scale to a new, continuous scale. The two colored bars (orange for y = 2,
yellow for y = 21) exemplify this mapping. The non-linear nature of the CDF's ensures that small
counts are mapped to a broader range than large counts. This helps to stabilize the variance on the
residual scale. Furthermore, the randomization within the mapping sidesteps the discrete nature of the
counts.
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The best number of dimensions for PCA is dataset dependent

Branched linear manifold Branched random tree

1.001 1
@ 0.754 E
3 Sanity
o log(x+1/(4a))
< 0.50 . acosh(20x +1)
X log(x +1)
§ Rand Quantile Resid
s 0.254 1 Pearson Residuals

0.00 —+ I t ] 1 P B P S| 1

2 5 10 20 50 100 200 400 2 5 10 20 50 100 200 400
#PCA Dimensions #PCA Dimensions

Suppl. Figure S6: Line plot of the performance (mean recall of the 100 nearest neighbors) depending
on the number of dimensions used for the principal component analysis (PCA). The performance of

Sanity was included as a reference; it does not depend on the number of PCA dimensions because it is
always fitted on the full data.
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Duration (Transformation + KNN-search)
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Suppl. Figure S7: Bee swarm plot of the CPU time of the transformation and k nearest neighbor
(KNN) search for the benchmarks in Fig. 4. The secondary y-axis shows the performance relative
to the median time observed when we transform the data with the shifted logarithm and reduce the
dimensions using PCA (i.e., 20 and 143 seconds on the two datasets, respectively).

15


https://doi.org/10.1101/2021.06.24.449781
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.24.449781; this version posted June 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

B Appendix

B.1 Variation of log fold changes and
the coefficient of variation

The coefficient of variation for a random variable
X, is defined as

\/ Var [Xl] (6)
E[X;]

The variance of a log fold change for two inde-
pendent random variables is

Cy =

X
Var [log Xl} = Var [log X1]+Var [log Xs]. (7)
2

We can use the delta method to approximate

Var [g(Xy)] ~ (¢ (E[X]))*Var [X].  (8)

~
~

The derivative of log(z) is

d 1

Ir log(z) = e (9)

(8) and (9) into Eq. (7)

We can now plug Eq.
and find that

X, 1 1
log —| ~ ——— X —_ X
Var [og XJ E[Xl]QVar[ 1]+ E[XQ]QVM[ 2]
=y + G
(10)

This expression shows that the log fold changes
decrease with the mean, as long as the coefficient
of variation ¢, decreases with the mean.

B.2 Approximating the acosh trans-
formation with the shifted loga-
rithm

The inverse hyperbolic cosine transformation
from Eq. (1) is defined as

Ja

acosh (2ay + 1)

::\}alog<2ay—F\/Ckm/+502——1—%12i)

We want to approximate this transformation us-
ing the shifted logarithm and thus find a, b, and
cin

9(y)

h(y) = a + blog(y + c),

so that h(y) = g(y).

To find a, b, and ¢, so that for large y, h(y)
converges as quickly as possible to g(y), we notice
that

(12)

2 1)2 -1
TOACL ek S
Y—00 2ay

(13)

16

and thus for large y

9(y) ~

P—‘E‘l—‘

log (4ay + 1)
_ b log (4cv) (14)

1
Va =)t

The linear scaling b and the offset a do not in-
fluence the variance stabilization; the important
insight is that the pseudo-count ¢ = ﬁ ensures
that the shifted logarithm is most similar to the
variance-stabilizing transformation derived using
the delta method.

log (y +

B.3 Delta method based variance-
stabilizing transformation and

size factors

Suppl. Fig. S2 shows that delta method-based
variance-stabilizing transformations struggle to
incorporate varying size factors.

To incorporate cell-specific size factors in the
delta method-based variance stabilizing transfor-
mation approach, the counts K;; are divided by
the size factor s; before applying the transforma-
tion: ¢(K;j/s;) (Love et al., 2014). To see the
implications of this, it is helpful to look at a de-
composition of the variance of a Gamma-Poisson
random variable K:

K|Q ~ Poisson(Q)
Q ~ Gamma(p, o) (15)

K ~ GammaPoisson(u, «v).

In the context of RNA-seq count data, the Pois-
son level of this hierarchical model represents
the technical sampling noise and @ models ad-
ditional variation. According to the law of total
variation

Var[K| = E[Var(K|Q)] + Var[E(K|Q)]

16
=+ oy, 1o

where Var[K|Q] = p and Var[Q] = au?.
If we apply the same approach to a model with
size factors

K'|Q, s ~ Poisson(sQ), (17)
we find that
Var[K'] = E[Var(K'|Q)] + Var[E(K'|Q)]
= sp' + as®u' (18)
=u+ a,u2
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where pu = sp’.

If, however, we want to apply the delta method-
based variance-stabilizing transformation to a
size factor standardized count

Y = K'/s, (19)
we find that
Var[Y] = S—I'QVar[K ]
= S0 o) (0)
=L apn
s

The difference between the final line of Eq. (18)
and Eq. (20) explains the problem observed
when applying the delta method-based variance-
stabilizing transformation to correct data where
the size factors vary a lot between cells.
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C Data Availability

In this manuscript, we used several different single-cell datasets, all of which have been previously
published.

Effect of transformation on Mouse lung Angelidis et al. GEO GSE124872

three marker genes (2019)
Basis for simulating the Human Baron et al. (2016) scRNAseq Bioconductor
branched linear and random pancreas package

walk datasets

Effect of fixing f;s and/or e in  HEK 293T 10X Genomics (2018) https://data.caltech.

sctransform edu/records/1264
Mesmer Messmer et al. (2019) scRNAseq Bioconductor
package

NIH/3T3 10X Genomics (2018) https://data.caltech.
edu/records/1264

PBMC4k 10X Genomics (2017) TENxPBMCData Biocon-
ductor package

Zeisel Zeisel et al. (2015) scRNAseq Bioconductor
package
Zheng Zheng et al. (2017) DuoClustering2018 Biocon-
ductor package
Mean-variance relation Klein Klein et al. (2015) https://data.caltech.
edu/records/1264

Svenson 1,2 Svensson et al. (2017) https://data.caltech.
edu/records/1264

NCI-H1975 Tian et al. (2019) https://github. com/
LuyiTian/sc_mixology/
blob/master/data/csv/
sc_10x.count.csv.gz

GM18502  Osorio et al. (2019) GEO GSE126321
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