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Recent technological advancements have enabled the profiling of a large number of genome-wide features in individual cells.
However, single-cell data present unique challenges that require the development of specialized methods and software infra-
structure to successfully derive biological insights. The Bioconductor project has rapidly grown to meet these demands, host-
ing community-developed open-source software distributed as R packages. Featuring state-of-the-art computational methods,
standardized data infrastructure and interactive data visualization tools, we present an overview and online book (https://osca.
bioconductor.org) of single-cell methods for prospective users.

munity of developers and users from diverse scientific fields,

driving the development of open-source software packages
using the R language for the analysis of high-throughput biological
data’°. While bulk profiling technologies have yielded important
scientific insights and methods’~’, recent advancements in sequenc-
ing technologies to profile samples at single-cell resolution have
emerged that can answer previously inaccessible scientific ques-
tions'**. Bioconductor has been home to a wide range of software
packages used in analyzing bulk profiling data, and more recently it
has expanded significantly into the realm of single-cell data analy-
sis with a rapidly growing list of community-contributed software
packages (Fig. 1).

Current single-cell assays can be both high-throughput, measur-
ing thousands to millions of cells, and high dimensional, measur-
ing thousands of features within each individual cell. Compared to
bulk assays, there are two defining characteristics of single-cell data
that must be specially handled to achieve biological insight: (1) the
increased scale of the number of observations (that is, cells) that are
assayed in large compendiums such as those from the Human Cell
Atlas®>”” and the Mouse Cell Atlas®; and (2) the increased sparsity
of the data due to biological fluctuations in the measured traits or
limited sensitivity for quantifying small numbers of molecules'***-*°.
These unique characteristics have motivated the development
of statistical methods tailored for single-cell data analysis”’~*.
Furthermore, as single-cell technologies mature, the increasing
complexity and volume of data require fundamental changes in data
access, management and infrastructure alongside specialized meth-
ods to facilitate scalable analyses.

To address these challenges, software packages developed for
the analysis of single-cell data have become an integral part of the
Bioconductor project. Herein, we primarily focus on the analysis of

f ince 2001, the Bioconductor project' has attracted a rich com-

single-cell RNA-seq (scRNA-seq) data, much of the concepts men-
tioned are also generalizable to other types of single-cell assays. We
cover data import, common data containers for storing single-cell
assay data, fast and robust methods for transforming raw single-cell
data into processed data suitable for downstream analyses, inter-
active data visualization, and downstream analyses. To help users
leverage this robust and scalable framework, we describe selected
packages and present an online book (https://osca.bioconductor.
org) covering installation, sources of help, specialized topics per-
taining to specific aspects of scRNA-seq analysis and complete
workflows analyzing various scRNA-seq datasets. The references
for all packages are available at http://bioconductor.org/packages/.

Data infrastructure

One of Bioconductor’s strongest advantages is the availability of
common representations and infrastructure for complex, highly
interdependent data sets'. Bioconductor uses standardized data con-
tainers to enable modularity and interoperability of diverse pack-
ages while maintaining robust end-user accessibility. To this end,
Bioconductor employs a flexible object-oriented paradigm called S4
(ref. *') that enables encapsulation of multiple object components
into a single instance with a rich and user-friendly interface. Such
an approach is especially important for biological analysis, as there
are often many links between primary data and metadata that need
to be preserved throughout an analysis.

The SingleCellExperiment container. Bioconductor uses the
SingleCellExperiment class for storing single-cell assay data and
metadata (Fig. 2). Primary data, such as count matrices, are stored
in the assays component as one or more matrices, where rows rep-
resent features (for example, genes and transcripts) and columns
represent cells. In addition, low-dimensional representations of
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Fig. 1| Number of Bioconductor packages for the analysis of high-
throughput sequencing data over ten years. Bioconductor software
packages associated with the analysis of sequencing data were tracked by
date of submission over the course of ten years. Software packages were
uniquely defined by their primary sequencing technology association, with
examples of specific terms used for annotation in parentheses.

the primary data, and metadata describing cell or feature charac-
teristics, can also be stored in the SingleCellExperiment object.
Through the SingleCellExperiment class, all pertinent data and
results relevant to a sScCRNA-seq experiment can be stored in a single
instance. By standardizing the storage of single cell data and results,
Bioconductor fosters interoperability between single-cell analy-
sis packages and facilitates the development and usage of complex
analysis workflows.

Data processing

The aim of this section is to describe the precursor steps that are
common to most scRNA-seq analyses. These preliminary steps
follow a general workflow (Fig. 3): (1) preprocessing raw sequenc-
ing data to produce a per-gene (or transcript) per-cell expression
count matrix, followed by creating a SingleCellExperiment object;
(2) applying quality control metrics and subsequent removal of
low quality cells that would otherwise interfere with downstream
analyses; (3) converting counts into normalized expression values
to eliminate cell- and gene-specific biases; (4) performing feature
selection to pick a subset of biologically relevant genes for down-
stream analyses; (5) applying dimensionality reduction methods to
compact the data and reduce noise; and (6), if applicable, integrat-
ing multiples batches of scRNA-seq data.

Preprocessing. For scRNA-seq data, preprocessing involves the align-
ment of sequencing reads to a reference transcriptome and quantifica-
tion into a per-cell and per-gene count matrix of expression values.
While various preprocessing methods are available as command line
software, Bioconductor packages such as scPipe™ and scruff’” provide
a preprocessing workflow that is entirely written in R. For preprocess-
ing workflows utilizing command line software, the DropletUtils* and
tximeta Bioconductor packages can import the results from various
tools, including Cell Ranger” (10X Genomics), Kallisto-Bustools™
and Alevin”. Notably, pseudo-alignment methods such as Alevin and
Kallisto significantly reduce compute time and memory usage.
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Fig. 2 | Overview of the SingleCellExperiment class. The
SingleCellExperiment class instantiates an object (SingleCellExperiment,
abbreviated as sce) capable of storing various datatypes generated
from single-cell assays. An sce object is organized into components
(for example, rowData, assays, colData, reducedDims). In the assays
component, the rows represent features such as genes (horizontal
pink bands), and the columns represent cells (vertical yellow band).
The rowData and colData components can hold information (such

as metadata) about those features and cells, respectively. Note that

in the colData and reducedDims components, cells are represented

as rows (horizontal yellow bands) and the number of columns in the
assays component must match the number of rows in the colData and
reducedDims components.

In all the above workflows, the end result is the import of a
count matrix into R and creation of a SingleCellExperiment object.
For specific file formats, we can use dedicated methods from the
DropletUtils (for 10X data) or tximeta (for pseudo-alignment
methods) packages.

Quality control. Low-quality libraries in scRNA-seq data can
arise from a variety of sources such as cell damage during disso-
ciation or failure in library preparation (for example, inefficient
reverse transcription or PCR amplification). These usually mani-
fest as ‘cells’ with low total counts, few expressed genes and high
mitochondrial read proportions. These low-quality libraries are
problematic as they can contribute to misleading results in down-
stream analyses.

For droplet-based protocols, it is common to exclude data from
droplets that did not contain exactly one cell. The DropletUtils*
package distinguishes between empty—ambient RNA-containing—
and cell-containing droplets, based on the frequency of each droplet
barcode observed and a comparison of their respective expression
profile with that of the ambient solution. It can also remove artifi-
cial cells generated by barcode swapping in droplet-based experi-
ments®. Similarly, droplets that likely contain more than one cell
(doublets) can be identified using the scran® or scds® packages,
which compare the droplets in question against the expression
profile of simulated doublets.

After excluding empty droplets and identifying potential dou-
blets, droplets containing potentially damaged cells or exhibiting
poor read coverage are filtered out. The library size—defined as
the total sum of counts across all relevant features for each cell—
is an oft-used metric for filtering. Cells with small library sizes
are more likely to be of low quality, as the RNA has been lost at
some point during library preparation, either due to cell lysis or
inefficient cDNA capture and amplification. Another metric is the
number of expressed features in each cell, defined as the number of
endogenous genes with non-zero counts for that cell. Cells with very
few expressed genes are likely to be of poor quality as the diverse
transcript population has not been successfully captured. The pro-
portion of reads mapped to genes in the mitochondrial genome
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Fig. 3 | Bioconductor workflow for analyzing single-cell data. A typical analytical workflow using Bioconductor leads to the creation and evolution of
a SingleCellExperiment (sce) object during data processing and downstream statistical analysis (left column). An example of an sce object evolving
throughout the course of a workflow is shown, including visualization, analysis and annotation (right column).

can also be used, as high proportions indicate the possible loss of
cytoplasmic RNA due to cell damage, wherein the mitochondria—
being larger than individual transcript molecules—are less likely to
escape through holes in the cell membrane®. The scater*' package
simplifies the calculation of these various metrics.

Normalization. Systematic differences in coverage between librar-
ies are often observed in scRNA-seq data, such as differences due
to sequencing depth****. This typically arises from differences in
cDNA capture or PCR amplification efficiency across cells, attribut-
able to the difficulty of achieving consistent library preparation with
minimal starting material. Normalization aims to remove these sys-
tematic differences such that they do not interfere with comparisons
of the expression profiles between cells, for example during cluster-
ing or differential expression analyses.
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Here, we consider methods that moderate systematic differ-
ences within a single scRNA-seq experiment that bias all genes in
a similar manner. This includes, for example, a change in sequenc-
ing depth that scales the expected coverage of all genes by a certain
factor. Library size normalization is the simplest strategy for per-
forming scaling normalization, as implemented in scater*'. While
this approach makes the assumption that there is no imbalance
in the differentially expressed genes (DEGs) between any pair of
cells, normalization accuracy is usually not a major consideration
for exploratory scRNA-seq analysis, as there are minimal effects on
cluster separation.

Accurate normalization, however, is important for procedures
that involve estimation and interpretation of per-gene statistics,
as in DEGs. Composition biases that systematically shift log-fold
changes are most often observed when multiple cell types are
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present in a given scRNA-seq dataset. Normalization by deconvolu-
tion overcomes this by pooling counts from many cells to increase
the size of the counts for accurate size factor estimation, followed by
deconvolution into cell-based factors for normalization per-cell, as
implemented in scran®.

Alternatively, BASICS*, zinbwave™ and MAST?” provide model-
based approaches to normalization that can not only handle such
library size or composition biases, but also can adjust for known
covariates or other intrinsic technical factors that could conceal
biologically meaningful variation®. These methods enable more
complex scaling strategies such as non-linear transformations of the
data. For reviews on this topic, see ref. **.

Imputation. Imputation methods have been proposed to address
the challenge of data sparsity in single-cell assays***. As scRNA-seq
experiments frequently fail to measure expression for some genes,
leading to an overabundance of zero-values*, zero-inflated models
have been developed. However, there are differences in the degree of
zero-inflation depending on the type of assay or protocol**, sug-
gesting that the optimal method is assay-dependent. Furthermore,
imputation methods for scRNA-seq data have been shown to gen-
erate false-positive results and decrease the reproducibility of cell-
type specific markers®.

Feature selection. Exploratory analyses of scRNA-seq data is often
directed to characterize heterogeneity across cells. Procedures such
as clustering and dimensionality reduction, compare cells based on
their gene expression profiles. However, the choice of genes to use
in these calculations has a major impact on the behavior and per-
formance of such downstream methods. Feature selection methods
aim to identify genes that contain useful information about the biol-
ogy of the system while removing genes that contain random noise.
By limiting analyses to such genes, interesting biological structure
is preserved without the variance that obscures that structure.
Furthermore, focusing on such a subset of the transcriptome can
significantly reduce the size of the dataset, improving the computa-
tional efficiency of downstream analyses. See refs. °**! for reviews in
feature selection methods.

The simplest approach to feature selection is to select the most
variable genes based on their expression across the population.
This assumes that genuine biological differences will manifest as
increased variation in the affected genes, compared to other genes
that are only affected by technical noise or a baseline level of unin-
teresting biological variation (for example, from transcriptional
bursting). However, the log-transformation does not achieve perfect
variance stabilization. This means that the variance of a gene is more
affected by its abundance than the underlying biological heterogene-
ity. Thus, calculation of the per-gene variance for feature selection
requires modelling of the mean-variance relationship. Packages such
as scran™, BASiCS* and scFeatureFilter adopt this approach.

Alternate metrics to variance have also been proposed, such as
selecting genes based on their deviance, a metric that quantifies how
well each gene fits a null model of constant expression across cells*.
Unlike variance-based feature selection approaches, calculating the
deviance is done on raw unique molecular identifier (UMI) counts,
thus making the approach less sensitive to errors brought on by nor-
malization. The deviance can be calculated using the glmpca package.

Dimensionality reduction. Dimensionality reduction aims to
reduce the number of separate dimensions in the data. This is pos-
sible because different genes are correlated if they are affected by
the same biological process. Thus, we do not need to store separate
information for individual genes, but can instead compress mul-
tiple features into a single dimension. Dimensionality reduction
approaches thus create low-dimensional representations that aim
to preserve the most meaningful structures in the dataset. This has

the additional benefit of reducing noise by averaging across multiple
genes to obtain a more precise representation of patterns in the data
(for example, related to a specific pathway). Computational work in
downstream analyses is also reduced, as calculations only need to
be performed for a few dimensions rather than thousands of genes.
More aggressive dimensionality reduction schemes yield two- or
three-dimensional representations that can be directly visualized to
assist in the interpretation of the results.

A common first step to dimensionality reduction of scRNA-seq
data is principal components analysis (PCA). PCA discovers axes
(principal components, PCs) in high-dimensional space that capture
the largest amount of variation. The top PCs capture the dominant
factors of heterogeneity in the data set, and thus can be used to effi-
ciently perform dimensionality reduction. This takes advantage of
the well-studied theoretical properties of the PCA—namely, that a
low-rank approximation formed from the top PCs is the optimal
approximation of the original data for a given matrix rank. Given this
property, calculations performed using the top PCs (or any similar
low-rank approximation) takes advantage of data compression and
denoising, which includes downstream analyses such as clustering.

No matter the approach, dimensionality reduction for visualiza-
tion necessarily involves discarding information and distorting the
distances between cells. Thus, it is ill-advised to directly analyze
the low-dimensional coordinates used for plotting. Rather, these
plots should only be used to interpret or communicate the results
of quantitative analyses based on a more accurate, higher-rank rep-
resentation of the data. This ensures that analyses make use of the
information that was lost during compression into two dimensions.
For example, given a discrepancy between the visible clusters on a
2-dimensional plot and those identified by clustering using the top
PCs, one would be inclined to favor the latter.

The SingleCellExperiment class has a dedicated component,
reducedDims, for storing lower dimensional representations of
the assay data (Fig. 2). The scater*' package provides convenience
wrapper functions for dimensionality reduction algorithms,
including Principal Components Analysis (PCA), t-Distributed
Stochastic Neighbor Embedding (t-SNE)*, and Uniform Manifold
Approximation and Projection (UMAP)*. Diffusion map methods
are available via the destiny™ package. The zinbwave™ and glmpca®
packages use a zero-inflated negative binomial model and a multi-
nomial model, respectively, for model-based dimensionality reduc-
tion approaches that can account for confounding factors.

Integrating datasets. Large scRNA-seq projects usually need to
generate data across multiple batches due to logistical constraints.
However, the processing of different batches is often subject to
uncontrollable differences, for example, changes in operator or
differences in reagent quality. This results in systematic differ-
ences in the observed expression in cells from different batches.
Furthermore, as the prevalence of scRNA-seq data expands and
reference datasets become available, encountering such confound-
ing variables will become inevitable in meta-analysis contexts. Such
batch effects are problematic as they can be major drivers of het-
erogeneity in the data, masking relevant biological differences and
complicating the interpretation of results.

While generalized linear modeling frameworks can be used to
integrate disparate data sets’, these frameworks may be sub-opti-
mal in the scRNA-seq context. This is often due to the underlying
assumption that the composition of cell populations is either known
or identical across batches of cells. To overcome these limitations,
bespoke methods have been developed for batch correction of sin-
gle-cell data®’ that do not require a priori knowledge about the
composition of the population. This enables exploratory analyses of
scRNA-seq data where such knowledge is usually unavailable.

Before batch correction, it is important to examine the pres-
ence of a batch effect. This can be examined by performing PCA
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on the log-expression values of select genes, followed by graph-
based clustering to obtain a summary of the population structure.
Ideally, clusters should consist of cells from replicate scRNA-seq
datasets. However, if instead clusters are comprised of cells from a
single batch, this indicates that cells of the same type are artificially
separated due to technical differences. Approaches such as t-SNE
and UMAP will also typically show a strong separation between
cells from different batches that are consistent with such cluster-
ing results. Notably, such a diagnostic that relies on the degree of
intermingling may not be effective when the batches involved may
indeed contain unique subpopulations, but is nonetheless a useful
first approximation.

Supervised integration via the labeling of cells a priori (see the
section ‘Annotation’) can be used via packages, such as scMerge”’
and scmap®, to guide the application of any batch correction on the
gene-expression values or to adjust lower dimensional representa-
tions. On the other hand, unsupervised approaches, such as mutual
nearest neighbours (MNN), identify pairs of cells from different
batches that belong in each other’s set of nearest neighbours. Thus,
the difference between cells in MNN pairs can be used as an estimate
of the batch effect, the subtraction of which yields batch-corrected
values™. Vitally, by altering the number of k-nearest neighbors that
are considered, the aggressiveness of the batch correction can be
tuned, wherein a higher k-value results in more generous match-
ing of subpopulations across batches. This MNN-based approach is
implemented in the batchelor package.

The success of the batch correction is contingent on the preser-
vation of biological heterogeneity, as one could envision a correc-
tion method of simply aggregating all cells together, which would
achieve perfect mixing but also discard the biology of interest. To
this end, the CellMixS package can be used to evaluate the degree
of cell mixing across batches. Another useful heuristic is to com-
pare clusters identified in the merged data against those identified
per batch. Ideally, we should see a many-to-one mapping, where the
across-batch clustering is nested inside the within-batch clustering,
indicating that any within-batch structure was preserved post-cor-
rection. A summary statistic such as the Rand index can then be
calculated, where larger Rand indices are more desirable.

Downstream statistical analysis

The choice of methods and workflows can differ greatly depend-
ing on the specific goals of the investigation and the experimental
protocol used. Following data processing, Bioconductor can be used
to generate new biological insights from single-cell data, using tools
that are interoperable with the SingleCellExperiment class and that
scale with cell number. Our online book (https://osca.bioconductor.
org) provides prospective users with workflows and case studies for
downstream analyses and visualizations (Fig. 4).

Clustering. Clustering is used in scRNA-seq data analysis to empir-
ically define groups of cells with similar expression profiles. This
allows us to describe population heterogeneity in terms of discrete
labels that can be more easily understood, rather than attempting
to comprehend the high-dimensional manifold on which the cells
truly reside. After annotation based on differentially expressed
marker genes, the clusters can be treated as proxies for more abstract
biological concepts, such as cell types or states.

It is worth highlighting the distinction between clusters and cell
types. The former is an empirical construct while the latter is a bio-
logical truth (albeit a vaguely defined one). Thus, it is helpful to
realize that clustering, like a microscope, is simply a tool to explore
the data. One can zoom in and out by changing the resolution of
the clustering parameters, and experiment with different clustering
algorithms to obtain alternative perspectives of the data.

Graph-based clustering is a flexible and scalable technique for
clustering large scRNA-seq datasets. A graph is constructed where
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each node is a cell that is connected to its nearest neighbours (NN)
in the high-dimensional space. Edges are weighted based on the
similarity between the cells involved, with higher weight given to
cells that are more closely related. Algorithms such as louvain and
leiden® can then be used to identify clusters of cells.

BiocNeighbors provides an engine for both exact and approxi-
mate nearest-neighbor detection, with scran building the actual
graph. Notably, for large scRNA-seq datasets, approximate NN
methods trade an acceptable loss in accuracy for vastly improved
run times, with the added advantage of smoothing over noise and
sparsity. Alternative approaches include the SIMLR package®, which
uses multiple kernels to learn a distance metric between cells that
best fits the data, and can then be used for clustering and dimen-
sion reduction. For large data, the mbkmeans package implements
a scalable version of the k-means algorithm. Finally, the SC3¢' and
clusterExperiment® packages calculate consensus clusters derived
from multiple parameterizations.

Many of these packages allow quantitative and visual evalua-
tion of the clustering results, alongside external packages designed
solely for data visualization and evaluation (for example, clustree).
Clusters can also be evaluated independently by assessing metrics
such as cluster modularity or the silhouette coefficient.

Differential expression. Differential gene expression (DGE) analy-
sis can be used to identify marker genes that drive the separation
between clusters. These marker genes allow us to assign biologi-
cal meaning to each cluster based on their functional annotation.
In the most obvious case, the marker genes for each cluster are
a priori associated with particular cell types, allowing for cluster-
ing to serve as a proxy for cell-type identity. The same principle
can be applied to detect more subtle differences, such as activation
status or differentiation state. An alternative to DGE analysis for
cell-type annotation is gene-set enrichment analysis, which groups
genes into pre-specified gene modules or biological pathways
to facilitate biological interpretation. We discuss this topic in the
section ‘Annotation.

DGE can also be used to compare individual cells within a given
population across conditions, such as time or treatment, while
adjusting for covariates (for example, patient identification or
batch effects).

Across differential expression methods, two general approaches
stand out. The first approach retrofits well-supported and long-
standing DE analysis frameworks initially designed for bulk RNA-
sequencing (edgeR (ref. ?), DESeq2 (ref. °) and limma-voom (ref. ¢))
that have made the transition to scRNA-seq through various
approaches, such as by creating pseudo-bulk RNA-seq profiles.
Alternatively, approaches such as zinbwave® can be used to down-
weight excess zeros observed in scRNA-seq data during the disper-
sion estimation and model fitting steps prior to assessing differential
expression (DE), and consequently further enabling the adaptation
of bulk RNA-seq-based DE methods for use with scRNA-seq data®.

The second class of approaches is uniquely tailored for single-
cell data because the statistical methods proposed directly model
the zero-inflation component, frequently observed in scRNA-seq
data. These methods explicitly separate gene expression into two
components: the discrete component, which describes the fre-
quency of a discrete component (zero versus non-zero expression);
and the continuous component, where the level of gene expres-
sion is quantified. While all the methods mentioned herein can
test for differences in the continuous component, only this second
class of approaches can explicitly model the discrete component,
and thus test for differences in the frequency of expression. To
do this, the MAST?” package utilizes a hurdle model framework,
whereas the scDD®, BASiCS"” and SCDE' use Bayesian mixture
and hierarchical models, respectively. Together, these methods
are able to provide a broader suite of testing functionality and
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Fig. 4 | Select visualizations derived from various Bioconductor workflows. Various visualizations associated with pre-processing (blue boxes) and
downstream statistical analyses (pink boxes). The example data set used throughout was generated as part of the Human Cell Atlas?'. Details on the
generation of these figures are described in our online companion book (https://osca.bioconductor.org).

can be directly utilized on scRNA-seq data contained within the
SingleCellExperiment class.

For more details regarding DE analysis and the benchmarking of
the various packages mentioned above, see refs. .

Trajectory analysis. Heterogeneity may also be modeled as a con-
tinuous spectrum arising from biological processes, such as cell
differentiation. A specialized application of dimension-reduction
specific to single-cell analysis—trajectory analysis or pseudotime
inference—uses phylogenetic methods to order cells along an
(often time-continuous) trajectory, such as development over time.
Inferred trajectories can identify transition between cell states, a
differentiation process, or events responsible for bifurcations in a
dynamic cellular process®™.

Modern approaches for trajectory inference have minimized
the need for extensive parameterization and can test for differential
gene expression across various topologies (for example, Monocle®,
LineagePulse and switchde’). Moreover, several Bioconductor
packages for trajectory inference (for example, slingshot”,
TSCAN?”, Monocle®, cellTree”” and MFA’”®) were recently demon-
strated to have excellent performance’. As different methods can
produce drastically different results for the same dataset, a suite of
methods and parameterizations must be tested to assess robustness.

Bioconductor facilitates such testing by providing standardized data
representation, such as the SingleCellExperiment class objects. See
ref. ”* for further discussion.

Annotation
The most challenging task in scRNA-seq data analysis is arguably
the interpretation of the results. Obtaining clusters of cells is fairly
straightforward, but it is more difficult to determine what biologi-
cal state is represented by each of those clusters. Doing so requires
bridging the gap between the current dataset and prior biological
knowledge, and the latter is not always available in a consistent and
quantitative manner. As such, interpretation of scRNA-seq data is
often manual and is a common bottleneck in the analysis workflow.
To expedite this step, various computational approaches can
be applied that exploit prior information to assign meaning to an
uncharacterized scRNA-seq dataset. The most obvious sources of
prior information are curated gene sets associated with particular
biological processes (for example, from the Gene Ontology (GO) or
the Kyoto Encyclopedia of Genes and Genomes (KEGG) collections).
An alternative approach involves directly comparing expres-
sion profiles to published reference datasets where each sample or
cell has already been annotated with its putative biological state by
domain experts.
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Gene-set enrichment. Classical gene-set enrichment (GSE)
approaches have the advantage of not requiring reference expres-
sion values. This is particularly useful when dealing with gene sets
derived from the literature or other qualitative forms of biological
knowledge. In the context of cell annotation, GSE is typically per-
formed on a group of cells (or cluster) to identify the gene set (or
pathway) that is enriched in these cells. The enriched pathway can
then be used to deduce a cell type (or state).

Bioconductor provides dedicated packages to programmati-
cally access predefined gene signatures from databases such as
MSigDB”, KEGG”™, Reactome” and Gene Ontology (GO)™.
EnrichmentBrowser” simplifies the compilation of gene-set col-
lections from such repositories. This prior knowledge is used to
test for the enrichment of specific gene modules in scRNA-seq
data, often adapting existing gene-set analysis methods originally
developed for bulk data. The EnrichmentBrowser””, EGSEA* and
fgsea packages each provide some version of classical GSE analy-
sis. Alternative approaches to testing for GSE are implemented in
MAST?, AUCell*" and slalom*.

Automated classification of cells. A conceptually straightforward
annotation approach is to compare the single-cell expression pro-
files with previously annotated reference datasets. Labels can then
be assigned to each cell in an uncharacterized dataset based on the
most similar reference sample(s) or on some other similarity met-
ric. This is a common classification challenge that can be tackled
by standard machine-learning techniques, such as random forests
and support vector machines. Any published and labelled RNA-seq
dataset (bulk or single-cell) can be used as a reference, though its
reliability depends greatly on the domain expertise of the original
authors who assigned the labels in the first place.

The SingleR method® provides one such automated system for
cell type annotation assignment. SingleR labels cells based on the
reference samples with the highest Spearman rank correlations,
and thus can be considered a rank-based variant of k-nearest-
neighbor classification. To reduce noise, SingleR identifies marker
genes between pairs of labels and computes the correlation using
only those markers. A number of built-in reference datasets are
included with the package that are derived from a variety of sources
and tissues, including Immunological Genome project (ImmGen),
ENCODE and the Database for Immune Cell Expression (DICE).

Accessible analysis

With the increased interest in data from single-cell assays,
Bioconductor has developed not only the methods and software
to analyze the data, but also has prioritized making the data itself
and the data analysis tools more easily accessible to both users
and developers. Specifically, the community has contributed data
packages, containing both publicly available published data and
simulated data, and interactive data visualization tools. Making sin-
gle-cell data and data analysis tools more accessible allows research-
ers to leverage these resources in their own work and democratizes
data analysis.

Benchmarking. As new single-cell assays, statistical methods and
corresponding software are developed, it is increasingly impor-
tant to facilitate the publication of data sets, to reproduce existing
analyses as well as to enable comparisons across new and existing
tools. Bioconductor houses a collection of data packages focused on
providing accessible and well-annotated versions of data ready for
analysis, alongside vignettes that can be used to reproduce manu-
script figures and showcase data characteristics.

To facilitate querying of published data packages on
Bioconductor, the ExperimentHub package enables programmatic
access of published data sets using a standardized interface. Of note,
the scRNAseq package provides direct access to a curated selection
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of high-quality scRNA-seq data from various contexts. In addition,
simulated data are useful for benchmarking methods.

Alternately, the splatter package® can simulate scRNA-seq data
that contains multiple cell types, batch effects, varying levels of drop-
out events, differential gene expression and trajectories. The splatter
package uses both its own simulation framework and wraps around
other simulation frameworks with differing generative models to
provide a comprehensive resource for single-cell data simulation.

To promote the reproducibility of benchmark comparisons
assessing the performance of single-cell methods, software pack-
ages have been developed that provide infrastructure to compute
and store the results of applying different methods to a data set. The
SummarizedBenchmark® and CellBench® packages provide inter-
faces for which to store metadata (method parameters and package
versions) and evaluation metrics.

Interactive data visualization. The maturation of web technolo-
gies has opened new avenues for interactive data exploration, aided
by shiny, an R package facilitating development of rich graphical
user interfaces. The iSEE* and singleCellTK packages provide
full-featured applications for interactive visualization of scRNA-
seq datasets through an internet browser, eliminating the need for
programming experience if the instance is hosted on the web. Both
packages directly interface with the SingleCellExperiment data con-
tainer to enable scRNA-seq analysis results.

Outlook

Since the early days of genomics, the Bioconductor project has
embraced the development of open-source and open-develop-
ment software through the R statistical programming language.
Bioconductor has established best practices for coordinated pack-
age versioning and code review. Alongside community-contributed
packages, a core developer team (https://www.bioconductor.org/
about/core-team) implements and maintains the essential infra-
structure, and reviews contributed packages to ensure they satisfy
a set of guidelines to guarantee interoperability across packages.
These packages are organized into BiocViews, an ontology of top-
ics that classify packages by task or technology. For example, top-
ics in single-cell analysis are labeled under the view SingleCell.
Most importantly, the broader Bioconductor community—acces-
sible through various means, including forums, Slack or mailing
lists—is a model of altruism in code sharing and technical help.
Together, these practices produce high-quality, well maintained
packages, contributing to a unified and stable environment for
biological research.

Most recently, the Bioconductor community has developed
state-of-the-art computational methods, infrastructure and interac-
tive data visualization tools available as software packages for the
analysis of data derived from single-cell experiments. Emerging
single-cell technologies in epigenomics, T cell and B cell rep-
ertoires, spatial profiling, and sequencing-based protein profil-
ing®*, promise to continue driving advances in computational
biology. In particular, technologies enabling multimodal profiling
are rapidly developing, and Bioconductor has laid the groundwork
necessary to support statistical methodologies that fully leverage
such approaches.

In addition, Bioconductor’s standardized data containers enable
interoperability within and between Bioconductor packages as well
as other software. Analysis stored in a SingleCellExperiment can be
converted to formats usable with Seurat”, Monocle® and Python’s
scanpy”’, enabling the use of tools that best serve the objective at
hand. Indeed, R has a long history of interoperability with other
programming languages. Four examples are the Rcpp” package for
integrating C++ compiled code into R, the rJava package to call Java
code from within R, the.Fortran() function in base R to call Fortran
code, and the reticulate CRAN package for interfacing with Python.
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This interoperability enables common machine learning frame-
works, such as TensorFlow/Keras, to be used directly in R.

To the newcomer, the wealth of single-cell analyses possible
in Bioconductor can be daunting. To address the rapid growth of
contributed packages within the single-cell analysis space, we have
summarized and highlighted state-of-the-art data infrastructure
(Fig. 2), methods and software, and organized the packages along a
typical workflow (Fig. 3) for the most common single-cell analyses
(Fig. 4). Finally, we have developed an online companion book that
provides more details on focused topics as well as complete cod-
ing workflows (https://osca.bioconductor.org). This effort will be
continuously updated and maintained with new packages as they
emerge, which increases discoverability of Bioconductor resources.

Received: 26 March 2019; Accepted: 14 October 2019;
Published online: 02 December 2019

References

1. Huber, W. et al. Orchestrating high-throughput genomic analysis with
Bioconductor. Nat. Methods 12, 115-121 (2015).

2. Robinson, M. D. et al. edgeR: A Bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics 26,
139-140 (2010).

3. Lawrence, M. et al. Software for computing and annotating genomic ranges.
PLoS Comput. Biol. 9, €1003118 (2013).

4. Aryee, M. J. et al. Minfi: a flexible and comprehensive Bioconductor package
for the analysis of Infinium DNA methylation microarrays. Bioinformatics 30,
1363-1369 (2014).

5. Love, M. I, Huber, W. & Anders, S. Moderated estimation of fold
change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15,
550 (2014).

6. Ritchie, M. E. et al. limma powers differential expression analyses for
RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

7. Serrati, S. et al. Next-generation sequencing: advances and applications in
cancer diagnosis. Onco. Targets Ther. 9, 7355-7365 (2016).

8. Nakato, R. & Shirahige, K. Recent advances in ChIP-seq analysis: from
quality management to whole-genome annotation. Brief. Bioinform. 18,
279-290 (2017).

9. Kukurba, K. R. & Montgomery, S. B. RNA sequencing and analysis.

Cold Spring Harb. Protoc. 2015, 951-969 (2015).

10. Kolodziejczyk, A. A., Kim, J. K., Svensson, V., Marioni, J. C. & Teichmann, S.
A. The technology and biology of single-cell RNA sequencing. Mol. Cell 58,
610-620 (2015).

. Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in
primary glioblastoma. Science 344, 1396-401 (2014).

12. Tirosh., I. et al. Dissecting the multicellular ecosystem of metastatic

melanoma by single-cell RNA-seq. Science 352, 189-196 (2016).

13. Karaayvaz, M. et al. Unravelling subclonal heterogeneity and aggressive
disease states in TNBC through single-cell RNA-seq. Nat. Commun. 9,

3588 (2018).

14. Jean Fan. et al. Linking transcriptional and genetic tumor heterogeneity
through allele analysis of single-cell RNA-seq data. Genome Res. 28,
1217-1227 (2018).

15. Levitin, H. M., Yuan, J. & Sims, P. A. Single-cell transcriptomic analysis of
tumor heterogeneity. Trends Cancer 4, 264-268 (2018).

16. Paulson, K. G. et al. Acquired cancer resistance to combination
immunotherapy from transcriptional loss of class I HLA. Nat. Commun. 9,
3868 (2018).

17. Zeisel, A. et al. Brain structure: cell types in the mouse cortex and
hippocampus revealed by single-cell RNA-seq. Science 347, 1138-1142 (2015).

18. Deng, Q., Ramskéld, D., Reinius, B. & Sandberg, R. Single-cell RNA-seq
reveals dynamic, random monoallelic gene expression in mammalian cells.
Science 343, 193-196 (2014).

19. Kiselev, V. Y., Andrews, T. S. & Hemberg, M. Challenges in unsupervised
clustering of single-cell RNA-seq data. Nat. Rev. Genet. 20, 273-282 (2019).

20. Cannoodt, R., Saelens, W. & Saeys, Y. Computational methods for trajectory
inference from single-cell transcriptomics. Eur. J. Immunol. 46, 2496-2506
(2016).

21. Regev, A. et al. The Human cell atlas. eLife 6, €27041 (2017).

22. Rozenblatt-Rosen, O., Stubbington, M. J. T., Regev, A. & Teichmann, S. A.
The human cell atlas: from vision to reality. Nature 550, 451-453 (2017).

23. Han, X. et al. Mapping the mouse cell atlas by microwell-seq. Cell 173,

1307 (2018).

24. McDavid, A. et al. Data exploration, quality control and testing in
single-cell qPCR-based gene expression experiments. Bioinformatics 29,
461-467 (2013).

1

—

25.

26.

27.

28.

29.

30.

3

—

32.

33.

34.

35.

36.

3

N

3

el

39.

40.

4

—_

42.

4

W

44,

45.

46.

47.

48.

49.

50.

5

—

52.

5

@

54.

55.

Hicks, S. C., Townes, E. W,, Teng, M. & Irizarry, R. A. Missing data and
technical variability in single-cell RNA-sequencing experiments. Biostatistics
19, 562-578 (2018).

Kharchenko, P. V,, Silberstein, L. & Scadden, D. T. Bayesian approach to
single-cell differential expression analysis. Nat. Methods 11, 740-742 (2014).
Finak, G. et al. MAST: a flexible statistical framework for assessing
transcriptional changes and characterizing heterogeneity in single-cell RNA
sequencing data. Genome Biol. 16, 278 (2015).

Lun, A. T. L,, Bach, K. & Marioni, J. C. Pooling across cells to normalize
single-cell RNA sequencing data with many zero counts. Genome Biol. 17,
75 (2016).

Ji, Z. & Ji, H. TSCAN: Pseudo-time reconstruction and evaluation in
single-cell RNA-seq analysis. Nucleic Acids Res. 44, €117 (2016).

Risso, D., Perraudeau, E, Gribkova, S., Dudoit, S. & Vert, J.-P. A general
and flexible method for signal extraction from single-cell RNA-seq data.
Nat. Commun. 9, 284 (2018).

. Chambers, J. M. Object-oriented programming, functional programming and

R. Stat. Sci. 29, 167-180 (2014).

Tian, L. et al. scPipe: a flexible R/Bioconductor preprocessing pipeline for
single-cell RNA-sequencing data. PLoS Comput. Biol. 14, e1006361 (2018).
Wang, Z., Hu, J., Johnson, W. E. & Campbell, J. D. scruff: an R/Bioconductor
package for preprocessing single-cell RNA-sequencing data. BMC Bioinform.
20, 222 (2019).

Lun, AaronT. L. et al. Emptydrops: distinguishing cells from empty droplets
in droplet-based single-cell RNA sequencing data. Genome Biol. 20,

63 (2019).

Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of
single cells. Nat. Commun. 8, 14049 (2017).

Melsted, P. et al. Modular and efficient pre-processing of single-cell rna-seq.
Preprint at bioRxiv https://doi.org/10.1101/673285 (2019).

. Srivastava, A., Malik, L., Smith, T., Sudbery, I. & Patro, R. Alevin efficiently

estimates accurate gene abundances from dscRNA-seq data. Genome Biol. 20,
65 (2019).

. Griffiths, J. A., Richard, A. C., Bach, K, Lun, A. T. L. & Marioni, J. C.

Detection and removal of barcode swapping in single-cell RNA-seq data.
Nat. Commun. 9, 2667 (2018).

Bais, A. S. & Kostka, D. scds: computational annotation of doublets in single
cell RNA sequencing data. Bioinformatics https://doi.org/10.1093/
bioinformatics/btz698 (2019).

Ilicic, T. et al. Classification of low quality cells from single-cell RNA-seq
data. Genome Biol. 17, 29 (2016).

. McCarthy, D. J., Campbell, K. R,, Lun, A. T. L. & Wills, Q. E Scater:

pre-processing, quality control, normalization and visualization of single-cell
RNA-seq data in R. Bioinformatics 33, 1179-1186 (2017).

Vallejos, C. A, Risso, D. R., Scialdone, A., Dudoit, S. & Marioni, J. C.
Normalizing single-cell RNA sequencing data: challenges and opportunities.
Nat. Methods 14, 565-571 (2017).

. Vallgjos, C. A., Richardson, S. & Marioni, J. C. Beyond comparisons of

means: understanding changes in gene expression at the single-cell level.
Genome Biol. 17, 70 (2016).

Huang, M. et al. SAVER: gene expression recovery for single-cell RNA
sequencing. Nat. Methods 15, 539-542 (2018).

Li, W. V. & Li, J. L. An accurate and robust imputation method scImpute for
singlecell RNA-seq data. Nat. Commun. 9, 997 (2018).

Svensson, V. Droplet scRNA-seq is not zero-inflated. Preprint bioRxiv https://
doi.org/10.1101/582064 (2019).

Vieth, B., Ziegenhain, C., Parekh, S., Enard, W. & Hellmann, I. powsimR:
power analysis for bulk and single cell RNA-seq experiments. Bioinformatics
33, 3486-3488 (2017).

Townes, E. W,, Hicks, S. C., Aryee, M. J. & Irizarry, R. A. Feature selection
and dimension reduction for single cell RNA-seq based on a multinomial
model. Preprint at bioRxiv https://doi.org/10.1101/574574 (2019).

Andrews, T. & Hemberg, M. False signals induced by single-cell imputation.
FI1000Res. https://doi.org/10.12688/f1000research.16613.2 (2019).

Andrews, T. & Hemberg, M. M3Drop: Dropout-based feature selection for
scRNASeq. Bioinformatics 35, 2865-2867 (2019).

. Yip, S. H., Sham, P. C. & Wang, J. Evaluation of tools for highly variable

gene discovery from single-cell RNA-seq data. Brief. Bioinform. 20,
1583-1589 (2018).

Lun, A. T. L., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for
low-level analysis of single-cell RNA-seq data with Bioconductor. FI000Res. 5,
2122 (2016).

. van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach.

Learn. Res. 9, 2579-2605 (2008).

Melville, J., McInnes, L. & Healy, ]. UMAP: uniform manifold approximation
and projection for dimension reduction. Preprint at arXiv https://arxiv.org/
abs/1802.03426 (2018).

Angerer., P. et al. Destiny: diffusion maps for large-scale single-cell data in R.
Bioinformatics 32, 1241-1243 (2016).

NATURE METHODS | www.nature.com/naturemethods


https://osca.bioconductor.org
https://doi.org/10.1101/673285
https://doi.org/10.1093/bioinformatics/btz698
https://doi.org/10.1093/bioinformatics/btz698
https://doi.org/10.1101/582064
https://doi.org/10.1101/582064
https://doi.org/10.1101/574574
https://doi.org/10.12688/f1000research.16613.2
https://arxiv.org/abs/1802.03426
https://arxiv.org/abs/1802.03426
http://www.nature.com/naturemethods

NATURE METHODS

56.

57.

58.

59.

60.

6

—

62.

63.

64.

65.

66.

67.

68.

69.

70.

7

—

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in
single-cell RNA-sequencing data are corrected by matching mutual nearest
neighbors. Nat. Biotechnol. 36, 421-427 (2018).

Lin, Y. et al. scMerge leverages factor analysis, stable expression, and
pseudoreplication to merge multiple single-cell RNA-seq datasets. Proc. Natl.
Acad. Sci. USA 116, 9775-9784 (2019).

Kiselev, V. Y., Yiu, A. & Hemberg, M. scmap: projection of single-cell
RNA-seq data across data sets. Nat. Methods 15, 359-362 (2018).

Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden:
guaranteeing well-connected communities. Sci. Rep. 9, 5233 (2019).

Wang, B., Zhu, J., Pierson, E., Ramazzotti, D. & Batzoglou, S. Visualization
and analysis of single-cell RNA-seq data by kernel-based similarity learning.
Nat. Methods 14, 414-416 (2017).

. Kiselev, V. Y. et al. SC3: consensus clustering of single-cell RNA-seq data.

Nat. Methods 14, 483-486 (2017).

Risso, D. et al. clusterExperiment and RSEC: a bioconductor package and
framework for clustering of singlecell and other large gene expression
datasets. PLoS Comp. Biol. 14, €1006378-16 (2018).

Van den Berge, K. et al. Observation weights unlock bulk RNA-seq tools for
zero inflation and single-cell applications. Genome Biol. 19, 24 (2018).
Korthauer, K. D. et al. A statistical approach for identifying differential
distributions in single-cell RNA-seq experiments. Genome Biol. 17,

222 (2016).

Soneson, C. & Robinson, M. D. Bias, robustness and scalability in single-cell
differential expression analysis. Nat. Methods 15, 255-261 (2018).

Wang, T., Li, B., Nelson, C. E. & Nabavi, S. Comparative analysis of
differential gene expression analysis tools for single-cell RNA sequencing
data. BMC Bioinform. 20, 40 (2019).

Crowell, H. L. et al. On the discovery of population-specific state transitions
from multi-sample multi-condition single-cell RNA sequencing data. Preprint
at bioRxiv https://doi.org/10.1101/713412 (2019).

Andrews, T. S. & Hemberg, M. Identifying cell populations with scRNASeq.
Mol. Asp. Med. 59, 114-122 (2018).

Qiu, X. et al. Reversed graph embedding resolves complex single-cell
trajectories. Nat. Methods 14, 979-982 (2017).

Campbell, K. R. & Yau, C. switchde: inference of switch-like differential
expression along single-cell trajectories. Bioinformatics 33, 1241-1242 (2017).

. Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell

transcriptomics. BMC Genomics 19, 477 (2018).

duVerle, D. A., Yotsukura, S., Nomura, S., Aburatani, H. & Tsuda, K. CellTree:
an R/bioconductor package to infer the hierarchical structure of cell
populations from single-cell RNA-seq data. BMC Bioinform. 17,

363 (2016).

Campbell, K. R. & Yau, C. Probabilistic modeling of bifurcations in single-cell
gene expression data using a bayesian mixture of factor analyzers. Wellcome
Open Res. 2, 19 (2017).

Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of
single-cell trajectory inference methods. Nat. Biotechnol. 37, 547 (2019).
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based
approach for interpreting genome-wide expression profiles. Proc. Natl. Acad.
Sci. USA 102, 15545-15550 (2005).

Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. KEGG:
new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids
Res. 45, 353-361 (2017).

Fabregat, A. et al. The reactome pathway knowledgebase. Nucleic Acids Res.
44, 481-487 (2015).

Ashburner, M. et al. Gene ontology: tool for the unification of biology.

Nat. Genet. 25, 25-29 (2000).

Geistlinger, L., Csaba, G. & Zimmer, R. Bioconductor’s EnrichmentBrowser:
seamless navigation through combined results of set and network-based
enrichment analysis. BMC Bioinform. 17, 45 (2016).

Alhamdoosh, M. et al. Combining multiple tools outperforms individual
methods in gene set enrichment analyses. Bioinformatics 33, 414-424 (2017).
Aibar, S. et al. SCENIC: single-cell regulatory network inference and
clustering. Nat. Methods 14, 1083-1086 (2017).

Buettner, E, Pratanwanich, N., McCarthy, D. J., Marioni, J. C. & Stegle, O.
fscLVM: scalable and versatile factor analysis for single-cell RNA-seq.
Genome Biol. 18, 212 (2017).

Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals
a transitional profibrotic macrophage. Nat. Immunol. 20, 163-172 (2019).
Zappia, L., Phipson, B. & Oshlack, A. Splatter: simulation of single-cell RNA
sequencing data. Genome Biol. 18, 174 (2017).

Kimes, P. K. & Reyes, A. Reproducible and replicable comparisons using
SummarizedBenchmark. Bioinformatics 35, 137-139 (2019).

Tian, L. et al. Benchmarking single cell RNA-sequencing analysis pipelines
using mixture control experiments. Nat. Methods 16, 479-487 (2019).

NATURE METHODS | www.nature.com/naturemethods

PERSPECTIVE

87. Rue-Albrecht, K., Marini, E, Soneson, C. & Lun, A. T. L. iSEE: interactive
SummarizedExperiment Explorer. FI000Res. 7, 741 (2018).

88. Peterson, V. M. et al. Multiplexed quantification of proteins and transcripts in
single cells. Nat. Biotechnol. 35, 936-939 (2017).

89. Dey, S. S., Kester, L., Spanjaard, B., Bienko, M. & van Oudenaarden, A.
Integrated genome and transcriptome sequencing of the same cell.

Nat. Biotechnol. 33, 285-289 (2015).

90. Macaulay, IainC. et al. Separation and parallel sequencing of the
genomes and transcriptomes of single cells using GT-seq. Nat. Protoc. 11,
2081-2103 (2016).

91. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in
single cells. Nat. Methods 14, 865-868 (2017).

92. Shahi, P, Kim, S. C., Haliburton, J. R, Gartner, Z. J. & Abate, A. R. Abseq:
ultrahighthroughput single cell protein profiling with droplet microfluidic
barcoding. Sci. Rep. 7, 44447 (2017).

93. Angermueller, C. et al. Parallel single-cell sequencing links transcriptional
and epigenetic heterogeneity. Nat. Methods 13, 229-232 (2016).

94. Cao, J. et al. Joint profiling of chromatin accessibility and gene expression in
thousands of single cells. Science 361, 13801385 (2018).

95. Clark, S. J. et al. scNMT-seq enables joint profiling of chromatin accessibility
DNA methylation and transcription in single cells. Nat. Commun. 9,

781 (2018).

96. Butler, A., Hoffman, P,, Smibert, P,, Papalexi, E. & Satija, R. Integrating
single-cell transcriptomic data across different conditions, technologies, and
species. Nat. Biotechnol. 36, 411-420 (2018).

97. Wolf, E A., Angerer, P. & Theis, E. J. SCANPY: large-scale single-cell gene
expression data analysis. Genome Biol. 19, 15 (2018).

98. Eddelbuettel, D. & Frangois, R. Rcpp: seamless R and C++ integration.

J. Stat. Softw. 40, 1-18 (2011).

Acknowledgements

Bioconductor is supported by the National Human Genome Research Institute (NHGRI)
and National Cancer Institute (NCI) of the National Institutes of Health (NIH) (grant
no. U41HG004059, U24CA180996), the European Union (EU) H2020 Personalizing
Health and Care Program Action (contract number 633974) and the SOUND
Consortium. In addition, M.M., S.C.H., R.G., WH., A.TL.L. and D.R. are supported
by the Chan Zuckerberg Initiative (CZI) DAF (grant no. 2018-183201, 2018-183560),
an advised fund of Silicon Valley Community Foundation. D.R., W.H., M.M. and
S.C.H. are supported by 2019-002443 from the CZI. S.C.H. is supported by the NTH/
NHGRI (grant no. ROOHG009007). R.A.A. and R.G. are supported by the Integrated
Immunotherapy Research Center at Fred Hutch. M.M. is supported by the NCI/NHGRI
(grant no. U24CA232979). L.G. is supported by a research fellowship from the German
Research Foundation (grant no. GE3023/1-1). L.W. and V.J.C. are supported by the
NCI (grant no. U24CA18099). V.J.C. is additionally supported by NCI U01 CA214846
and Chan Zuckerberg Initiative DAF (grant no. 2018-183436). ATLL received support
from CRUK (grant no. A17179) and the Wellcome Trust (grant no. WT/108437/Z/15).
EM. is supported by the German Federal Ministry of Education and Research (grant
no. BMBF 01EOQ1003). M.L.S. is supported by the German Network for Bioinformatics
Infrastructure (grant no. 031A537B). D.R. is supported by the Programma per Giovani
Ricercatori Rita Levi Montalcini from the Italian Ministry of Education, University and
Research. H.P. is supported by the NIH Bioconductor grant (no. U41HG004059).

Author contributions

E.B, VJ.C,LN.C, LG, EM, KR, DR, CS. and L.W. contributed equally to this work.
S.C.H. and R.G. contributed equally to the supervision of this work. S.C.H. and R.G.
conceptualized the manuscript. R.A.A,, AT.L.L, S.C.H. and R.G. wrote the manuscript
with contributions and input from all authors. All authors read and approved the

final manuscript.

Competing interests

R.G. declares ownership in CellSpace Biosciences.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
$41592-019-0654-x.

Correspondence should be addressed to R.G. or S.C.H.

Peer review information Lei Tang was the primary editor on this article and managed its
editorial process and peer review in collaboration with the rest of the editorial team.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© Springer Nature America, Inc. 2019


https://doi.org/10.1101/713412
https://doi.org/10.1038/s41592-019-0654-x
https://doi.org/10.1038/s41592-019-0654-x
http://www.nature.com/reprints
http://www.nature.com/naturemethods

	Orchestrating single-cell analysis with Bioconductor

	Data infrastructure

	The SingleCellExperiment container. 

	Data processing

	Preprocessing. 
	Quality control. 
	Normalization. 
	Imputation. 
	Feature selection. 
	Dimensionality reduction. 
	Integrating datasets. 

	Downstream statistical analysis

	Clustering. 
	Differential expression. 
	Trajectory analysis. 

	Annotation

	Gene-set enrichment. 
	Automated classification of cells. 

	Accessible analysis

	Benchmarking. 
	Interactive data visualization. 

	Outlook

	Acknowledgements

	Fig. 1 Number of Bioconductor packages for the analysis of high-throughput sequencing data over ten years.
	Fig. 2 Overview of the SingleCellExperiment class.
	Fig. 3 Bioconductor workflow for analyzing single-cell data.
	Fig. 4 Select visualizations derived from various Bioconductor workflows.




