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Since 2001, the Bioconductor project1 has attracted a rich com-
munity of developers and users from diverse scientific fields, 
driving the development of open-source software packages 

using the R language for the analysis of high-throughput biological 
data2–6. While bulk profiling technologies have yielded important 
scientific insights and methods7–9, recent advancements in sequenc-
ing technologies to profile samples at single-cell resolution have 
emerged that can answer previously inaccessible scientific ques-
tions10–20. Bioconductor has been home to a wide range of software 
packages used in analyzing bulk profiling data, and more recently it 
has expanded significantly into the realm of single-cell data analy-
sis with a rapidly growing list of community-contributed software 
packages (Fig. 1).

Current single-cell assays can be both high-throughput, measur-
ing thousands to millions of cells, and high dimensional, measur-
ing thousands of features within each individual cell. Compared to 
bulk assays, there are two defining characteristics of single-cell data 
that must be specially handled to achieve biological insight: (1) the 
increased scale of the number of observations (that is, cells) that are 
assayed in large compendiums such as those from the Human Cell 
Atlas21,22 and the Mouse Cell Atlas23; and (2) the increased sparsity 
of the data due to biological fluctuations in the measured traits or 
limited sensitivity for quantifying small numbers of molecules13,24–26. 
These unique characteristics have motivated the development 
of statistical methods tailored for single-cell data analysis27–30. 
Furthermore, as single-cell technologies mature, the increasing 
complexity and volume of data require fundamental changes in data 
access, management and infrastructure alongside specialized meth-
ods to facilitate scalable analyses.

To address these challenges, software packages developed for 
the analysis of single-cell data have become an integral part of the 
Bioconductor project. Herein, we primarily focus on the analysis of 

single-cell RNA-seq (scRNA-seq) data, much of the concepts men-
tioned are also generalizable to other types of single-cell assays. We 
cover data import, common data containers for storing single-cell 
assay data, fast and robust methods for transforming raw single-cell 
data into processed data suitable for downstream analyses, inter-
active data visualization, and downstream analyses. To help users 
leverage this robust and scalable framework, we describe selected 
packages and present an online book (https://osca.bioconductor.
org) covering installation, sources of help, specialized topics per-
taining to specific aspects of scRNA-seq analysis and complete 
workflows analyzing various scRNA-seq datasets. The references 
for all packages are available at http://bioconductor.org/packages/.

Data infrastructure
One of Bioconductor’s strongest advantages is the availability of 
common representations and infrastructure for complex, highly 
interdependent data sets1. Bioconductor uses standardized data con-
tainers to enable modularity and interoperability of diverse pack-
ages while maintaining robust end-user accessibility. To this end, 
Bioconductor employs a flexible object-oriented paradigm called S4 
(ref. 31) that enables encapsulation of multiple object components 
into a single instance with a rich and user-friendly interface. Such 
an approach is especially important for biological analysis, as there 
are often many links between primary data and metadata that need 
to be preserved throughout an analysis.

The SingleCellExperiment container. Bioconductor uses the 
SingleCellExperiment class for storing single-cell assay data and 
metadata (Fig. 2). Primary data, such as count matrices, are stored 
in the assays component as one or more matrices, where rows rep-
resent features (for example, genes and transcripts) and columns 
represent cells. In addition, low-dimensional representations of 
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the primary data, and metadata describing cell or feature charac-
teristics, can also be stored in the SingleCellExperiment object. 
Through the SingleCellExperiment class, all pertinent data and 
results relevant to a scRNA-seq experiment can be stored in a single 
instance. By standardizing the storage of single cell data and results, 
Bioconductor fosters interoperability between single-cell analy-
sis packages and facilitates the development and usage of complex 
analysis workflows.

Data processing
The aim of this section is to describe the precursor steps that are 
common to most scRNA-seq analyses. These preliminary steps 
follow a general workflow (Fig. 3): (1) preprocessing raw sequenc-
ing data to produce a per-gene (or transcript) per-cell expression 
count matrix, followed by creating a SingleCellExperiment object; 
(2) applying quality control metrics and subsequent removal of 
low quality cells that would otherwise interfere with downstream 
analyses; (3) converting counts into normalized expression values 
to eliminate cell- and gene-specific biases; (4) performing feature 
selection to pick a subset of biologically relevant genes for down-
stream analyses; (5) applying dimensionality reduction methods to 
compact the data and reduce noise; and (6), if applicable, integrat-
ing multiples batches of scRNA-seq data.

Preprocessing. For scRNA-seq data, preprocessing involves the align-
ment of sequencing reads to a reference transcriptome and quantifica-
tion into a per-cell and per-gene count matrix of expression values. 
While various preprocessing methods are available as command line 
software, Bioconductor packages such as scPipe32 and scruff33 provide 
a preprocessing workflow that is entirely written in R. For preprocess-
ing workflows utilizing command line software, the DropletUtils34 and 
tximeta Bioconductor packages can import the results from various 
tools, including Cell Ranger35 (10X Genomics), Kallisto-Bustools36 
and Alevin37. Notably, pseudo-alignment methods such as Alevin and 
Kallisto significantly reduce compute time and memory usage.

In all the above workflows, the end result is the import of a 
count matrix into R and creation of a SingleCellExperiment object. 
For specific file formats, we can use dedicated methods from the 
DropletUtils (for 10X data) or tximeta (for pseudo-alignment  
methods) packages.

Quality control. Low-quality libraries in scRNA-seq data can 
arise from a variety of sources such as cell damage during disso-
ciation or failure in library preparation (for example, inefficient 
reverse transcription or PCR amplification). These usually mani-
fest as ‘cells’ with low total counts, few expressed genes and high 
mitochondrial read proportions. These low-quality libraries are 
problematic as they can contribute to misleading results in down-
stream analyses.

For droplet-based protocols, it is common to exclude data from 
droplets that did not contain exactly one cell. The DropletUtils34 
package distinguishes between empty—ambient RNA-containing—
and cell-containing droplets, based on the frequency of each droplet 
barcode observed and a comparison of their respective expression 
profile with that of the ambient solution. It can also remove artifi-
cial cells generated by barcode swapping in droplet-based experi-
ments38. Similarly, droplets that likely contain more than one cell 
(doublets) can be identified using the scran28 or scds39 packages, 
which compare the droplets in question against the expression  
profile of simulated doublets.

After excluding empty droplets and identifying potential dou-
blets, droplets containing potentially damaged cells or exhibiting 
poor read coverage are filtered out. The library size—defined as 
the total sum of counts across all relevant features for each cell—
is an oft-used metric for filtering. Cells with small library sizes 
are more likely to be of low quality, as the RNA has been lost at 
some point during library preparation, either due to cell lysis or 
inefficient cDNA capture and amplification. Another metric is the 
number of expressed features in each cell, defined as the number of 
endogenous genes with non-zero counts for that cell. Cells with very 
few expressed genes are likely to be of poor quality as the diverse 
transcript population has not been successfully captured. The pro-
portion of reads mapped to genes in the mitochondrial genome 
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Fig. 1 | Number of Bioconductor packages for the analysis of high-
throughput sequencing data over ten years. Bioconductor software 
packages associated with the analysis of sequencing data were tracked by 
date of submission over the course of ten years. Software packages were 
uniquely defined by their primary sequencing technology association, with 
examples of specific terms used for annotation in parentheses.

SingleCellExperiment

Cell 1
Cell 2

Cell 4
…

Cell 3

Gene 1
Gene 2
Gene 3
…

Gen
e

Cell
 1

PCA 1

PCA 2

PCA 3

Cell
_id

ba
tch

Cell
 2

Cell
 3

Cell
 4

Ent
re

z … … ……

Feature
metadata

Cell
metadata

Dimension
reductions

Primary and
transformed data

Rows = cellsRows = features

rowData Assays colData reducedDims

Fig. 2 | Overview of the SingleCellExperiment class. The 
SingleCellExperiment class instantiates an object (SingleCellExperiment, 
abbreviated as sce) capable of storing various datatypes generated 
from single-cell assays. An sce object is organized into components 
(for example, rowData, assays, colData, reducedDims). In the assays 
component, the rows represent features such as genes (horizontal 
pink bands), and the columns represent cells (vertical yellow band). 
The rowData and colData components can hold information (such 
as metadata) about those features and cells, respectively. Note that 
in the colData and reducedDims components, cells are represented 
as rows (horizontal yellow bands) and the number of columns in the 
assays component must match the number of rows in the colData and 
reducedDims components.
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can also be used, as high proportions indicate the possible loss of  
cytoplasmic RNA due to cell damage, wherein the mitochondria—
being larger than individual transcript molecules—are less likely to 
escape through holes in the cell membrane40. The scater41 package 
simplifies the calculation of these various metrics.

Normalization. Systematic differences in coverage between librar-
ies are often observed in scRNA-seq data, such as differences due 
to sequencing depth25,28,42. This typically arises from differences in 
cDNA capture or PCR amplification efficiency across cells, attribut-
able to the difficulty of achieving consistent library preparation with 
minimal starting material. Normalization aims to remove these sys-
tematic differences such that they do not interfere with comparisons 
of the expression profiles between cells, for example during cluster-
ing or differential expression analyses.

Here, we consider methods that moderate systematic differ-
ences within a single scRNA-seq experiment that bias all genes in 
a similar manner. This includes, for example, a change in sequenc-
ing depth that scales the expected coverage of all genes by a certain 
factor. Library size normalization is the simplest strategy for per-
forming scaling normalization, as implemented in scater41. While 
this approach makes the assumption that there is no imbalance 
in the differentially expressed genes (DEGs) between any pair of 
cells, normalization accuracy is usually not a major consideration 
for exploratory scRNA-seq analysis, as there are minimal effects on  
cluster separation.

Accurate normalization, however, is important for procedures 
that involve estimation and interpretation of per-gene statistics, 
as in DEGs. Composition biases that systematically shift log-fold 
changes are most often observed when multiple cell types are  
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present in a given scRNA-seq dataset. Normalization by deconvolu-
tion overcomes this by pooling counts from many cells to increase 
the size of the counts for accurate size factor estimation, followed by 
deconvolution into cell-based factors for normalization per-cell, as 
implemented in scran28.

Alternatively, BASiCS43, zinbwave30 and MAST27 provide model-
based approaches to normalization that can not only handle such 
library size or composition biases, but also can adjust for known 
covariates or other intrinsic technical factors that could conceal 
biologically meaningful variation25. These methods enable more 
complex scaling strategies such as non-linear transformations of the 
data. For reviews on this topic, see ref. 42.

Imputation. Imputation methods have been proposed to address 
the challenge of data sparsity in single-cell assays44,45. As scRNA-seq 
experiments frequently fail to measure expression for some genes, 
leading to an overabundance of zero-values46, zero-inflated models 
have been developed. However, there are differences in the degree of 
zero-inflation depending on the type of assay or protocol46–48, sug-
gesting that the optimal method is assay-dependent. Furthermore, 
imputation methods for scRNA-seq data have been shown to gen-
erate false-positive results and decrease the reproducibility of cell-
type specific markers49.

Feature selection. Exploratory analyses of scRNA-seq data is often 
directed to characterize heterogeneity across cells. Procedures such 
as clustering and dimensionality reduction, compare cells based on 
their gene expression profiles. However, the choice of genes to use 
in these calculations has a major impact on the behavior and per-
formance of such downstream methods. Feature selection methods 
aim to identify genes that contain useful information about the biol-
ogy of the system while removing genes that contain random noise. 
By limiting analyses to such genes, interesting biological structure 
is preserved without the variance that obscures that structure. 
Furthermore, focusing on such a subset of the transcriptome can 
significantly reduce the size of the dataset, improving the computa-
tional efficiency of downstream analyses. See refs. 50,51 for reviews in 
feature selection methods.

The simplest approach to feature selection is to select the most 
variable genes based on their expression across the population. 
This assumes that genuine biological differences will manifest as 
increased variation in the affected genes, compared to other genes 
that are only affected by technical noise or a baseline level of unin-
teresting biological variation (for example, from transcriptional 
bursting). However, the log-transformation does not achieve perfect 
variance stabilization. This means that the variance of a gene is more 
affected by its abundance than the underlying biological heterogene-
ity. Thus, calculation of the per-gene variance for feature selection 
requires modelling of the mean-variance relationship. Packages such 
as scran52, BASiCS43 and scFeatureFilter adopt this approach.

Alternate metrics to variance have also been proposed, such as 
selecting genes based on their deviance, a metric that quantifies how 
well each gene fits a null model of constant expression across cells48. 
Unlike variance-based feature selection approaches, calculating the 
deviance is done on raw unique molecular identifier (UMI) counts, 
thus making the approach less sensitive to errors brought on by nor-
malization. The deviance can be calculated using the glmpca package.

Dimensionality reduction. Dimensionality reduction aims to 
reduce the number of separate dimensions in the data. This is pos-
sible because different genes are correlated if they are affected by 
the same biological process. Thus, we do not need to store separate 
information for individual genes, but can instead compress mul-
tiple features into a single dimension. Dimensionality reduction 
approaches thus create low-dimensional representations that aim 
to preserve the most meaningful structures in the dataset. This has 

the additional benefit of reducing noise by averaging across multiple 
genes to obtain a more precise representation of patterns in the data 
(for example, related to a specific pathway). Computational work in 
downstream analyses is also reduced, as calculations only need to 
be performed for a few dimensions rather than thousands of genes. 
More aggressive dimensionality reduction schemes yield two- or 
three-dimensional representations that can be directly visualized to 
assist in the interpretation of the results.

A common first step to dimensionality reduction of scRNA-seq 
data is principal components analysis (PCA). PCA discovers axes 
(principal components, PCs) in high-dimensional space that capture 
the largest amount of variation. The top PCs capture the dominant 
factors of heterogeneity in the data set, and thus can be used to effi-
ciently perform dimensionality reduction. This takes advantage of 
the well-studied theoretical properties of the PCA—namely, that a 
low-rank approximation formed from the top PCs is the optimal 
approximation of the original data for a given matrix rank. Given this 
property, calculations performed using the top PCs (or any similar 
low-rank approximation) takes advantage of data compression and 
denoising, which includes downstream analyses such as clustering.

No matter the approach, dimensionality reduction for visualiza-
tion necessarily involves discarding information and distorting the 
distances between cells. Thus, it is ill-advised to directly analyze 
the low-dimensional coordinates used for plotting. Rather, these 
plots should only be used to interpret or communicate the results 
of quantitative analyses based on a more accurate, higher-rank rep-
resentation of the data. This ensures that analyses make use of the 
information that was lost during compression into two dimensions. 
For example, given a discrepancy between the visible clusters on a 
2-dimensional plot and those identified by clustering using the top 
PCs, one would be inclined to favor the latter.

The SingleCellExperiment class has a dedicated component, 
reducedDims, for storing lower dimensional representations of 
the assay data (Fig. 2). The scater41 package provides convenience 
wrapper functions for dimensionality reduction algorithms, 
including Principal Components Analysis (PCA), t-Distributed 
Stochastic Neighbor Embedding (t-SNE)53, and Uniform Manifold 
Approximation and Projection (UMAP)54. Diffusion map methods 
are available via the destiny55 package. The zinbwave30 and glmpca48 
packages use a zero-inflated negative binomial model and a multi-
nomial model, respectively, for model-based dimensionality reduc-
tion approaches that can account for confounding factors.

Integrating datasets. Large scRNA-seq projects usually need to 
generate data across multiple batches due to logistical constraints. 
However, the processing of different batches is often subject to 
uncontrollable differences, for example, changes in operator or 
differences in reagent quality. This results in systematic differ-
ences in the observed expression in cells from different batches. 
Furthermore, as the prevalence of scRNA-seq data expands and 
reference datasets become available, encountering such confound-
ing variables will become inevitable in meta-analysis contexts. Such 
batch effects are problematic as they can be major drivers of het-
erogeneity in the data, masking relevant biological differences and 
complicating the interpretation of results.

While generalized linear modeling frameworks can be used to 
integrate disparate data sets6, these frameworks may be sub-opti-
mal in the scRNA-seq context. This is often due to the underlying 
assumption that the composition of cell populations is either known 
or identical across batches of cells. To overcome these limitations, 
bespoke methods have been developed for batch correction of sin-
gle-cell data56,57 that do not require a  priori knowledge about the 
composition of the population. This enables exploratory analyses of 
scRNA-seq data where such knowledge is usually unavailable.

Before batch correction, it is important to examine the pres-
ence of a batch effect. This can be examined by performing PCA 

Nature Methods | www.nature.com/naturemethods

http://www.nature.com/naturemethods


PerspectiveNaTuRe MeTHods

on the log-expression values of select genes, followed by graph-
based clustering to obtain a summary of the population structure. 
Ideally, clusters should consist of cells from replicate scRNA-seq 
datasets. However, if instead clusters are comprised of cells from a 
single batch, this indicates that cells of the same type are artificially 
separated due to technical differences. Approaches such as t-SNE 
and UMAP will also typically show a strong separation between 
cells from different batches that are consistent with such cluster-
ing results. Notably, such a diagnostic that relies on the degree of 
intermingling may not be effective when the batches involved may 
indeed contain unique subpopulations, but is nonetheless a useful 
first approximation.

Supervised integration via the labeling of cells a priori (see the 
section ‘Annotation’) can be used via packages, such as scMerge57 
and scmap58, to guide the application of any batch correction on the 
gene-expression values or to adjust lower dimensional representa-
tions. On the other hand, unsupervised approaches, such as mutual 
nearest neighbours (MNN), identify pairs of cells from different 
batches that belong in each other’s set of nearest neighbours. Thus, 
the difference between cells in MNN pairs can be used as an estimate 
of the batch effect, the subtraction of which yields batch-corrected 
values56. Vitally, by altering the number of k-nearest neighbors that 
are considered, the aggressiveness of the batch correction can be 
tuned, wherein a higher k-value results in more generous match-
ing of subpopulations across batches. This MNN-based approach is 
implemented in the batchelor package.

The success of the batch correction is contingent on the preser-
vation of biological heterogeneity, as one could envision a correc-
tion method of simply aggregating all cells together, which would 
achieve perfect mixing but also discard the biology of interest. To 
this end, the CellMixS package can be used to evaluate the degree 
of cell mixing across batches. Another useful heuristic is to com-
pare clusters identified in the merged data against those identified 
per batch. Ideally, we should see a many-to-one mapping, where the 
across-batch clustering is nested inside the within-batch clustering, 
indicating that any within-batch structure was preserved post-cor-
rection. A summary statistic such as the Rand index can then be 
calculated, where larger Rand indices are more desirable.

Downstream statistical analysis
The choice of methods and workflows can differ greatly depend-
ing on the specific goals of the investigation and the experimental 
protocol used. Following data processing, Bioconductor can be used 
to generate new biological insights from single-cell data, using tools 
that are interoperable with the SingleCellExperiment class and that 
scale with cell number. Our online book (https://osca.bioconductor.
org) provides prospective users with workflows and case studies for 
downstream analyses and visualizations (Fig. 4).

Clustering. Clustering is used in scRNA-seq data analysis to empir-
ically define groups of cells with similar expression profiles. This 
allows us to describe population heterogeneity in terms of discrete 
labels that can be more easily understood, rather than attempting 
to comprehend the high-dimensional manifold on which the cells 
truly reside. After annotation based on differentially expressed 
marker genes, the clusters can be treated as proxies for more abstract 
biological concepts, such as cell types or states.

It is worth highlighting the distinction between clusters and cell 
types. The former is an empirical construct while the latter is a bio-
logical truth (albeit a vaguely defined one). Thus, it is helpful to 
realize that clustering, like a microscope, is simply a tool to explore 
the data. One can zoom in and out by changing the resolution of 
the clustering parameters, and experiment with different clustering 
algorithms to obtain alternative perspectives of the data.

Graph-based clustering is a flexible and scalable technique for 
clustering large scRNA-seq datasets. A graph is constructed where 

each node is a cell that is connected to its nearest neighbours (NN) 
in the high-dimensional space. Edges are weighted based on the 
similarity between the cells involved, with higher weight given to 
cells that are more closely related. Algorithms such as louvain and 
leiden59 can then be used to identify clusters of cells.

BiocNeighbors provides an engine for both exact and approxi-
mate nearest-neighbor detection, with scran building the actual 
graph. Notably, for large scRNA-seq datasets, approximate NN 
methods trade an acceptable loss in accuracy for vastly improved 
run times, with the added advantage of smoothing over noise and 
sparsity. Alternative approaches include the SIMLR package60, which 
uses multiple kernels to learn a distance metric between cells that 
best fits the data, and can then be used for clustering and dimen-
sion reduction. For large data, the mbkmeans package implements 
a scalable version of the k-means algorithm. Finally, the SC361 and 
clusterExperiment62 packages calculate consensus clusters derived 
from multiple parameterizations.

Many of these packages allow quantitative and visual evalua-
tion of the clustering results, alongside external packages designed 
solely for data visualization and evaluation (for example, clustree). 
Clusters can also be evaluated independently by assessing metrics 
such as cluster modularity or the silhouette coefficient.

Differential expression. Differential gene expression (DGE) analy-
sis can be used to identify marker genes that drive the separation 
between clusters. These marker genes allow us to assign biologi-
cal meaning to each cluster based on their functional annotation. 
In the most obvious case, the marker genes for each cluster are 
a priori associated with particular cell types, allowing for cluster-
ing to serve as a proxy for cell-type identity. The same principle 
can be applied to detect more subtle differences, such as activation 
status or differentiation state. An alternative to DGE analysis for 
cell-type annotation is gene-set enrichment analysis, which groups 
genes into pre-specified gene modules or biological pathways 
to facilitate biological interpretation. We discuss this topic in the  
section ‘Annotation’.

DGE can also be used to compare individual cells within a given 
population across conditions, such as time or treatment, while 
adjusting for covariates (for example, patient identification or  
batch effects).

Across differential expression methods, two general approaches 
stand out. The first approach retrofits well-supported and long-
standing DE analysis frameworks initially designed for bulk RNA-
sequencing (edgeR (ref. 2), DESeq2 (ref. 5) and limma-voom (ref. 6))  
that have made the transition to scRNA-seq through various 
approaches, such as by creating pseudo-bulk RNA-seq profiles. 
Alternatively, approaches such as zinbwave30 can be used to down-
weight excess zeros observed in scRNA-seq data during the disper-
sion estimation and model fitting steps prior to assessing differential 
expression (DE), and consequently further enabling the adaptation 
of bulk RNA-seq-based DE methods for use with scRNA-seq data63.

The second class of approaches is uniquely tailored for single-
cell data because the statistical methods proposed directly model 
the zero-inflation component, frequently observed in scRNA-seq 
data. These methods explicitly separate gene expression into two 
components: the discrete component, which describes the fre-
quency of a discrete component (zero versus non-zero expression); 
and the continuous component, where the level of gene expres-
sion is quantified. While all the methods mentioned herein can 
test for differences in the continuous component, only this second 
class of approaches can explicitly model the discrete component, 
and thus test for differences in the frequency of expression. To 
do this, the MAST27 package utilizes a hurdle model framework, 
whereas the scDD64, BASiCS43 and SCDE14 use Bayesian mixture 
and hierarchical models, respectively. Together, these methods 
are able to provide a broader suite of testing functionality and 
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can be directly utilized on scRNA-seq data contained within the 
SingleCellExperiment class.

For more details regarding DE analysis and the benchmarking of 
the various packages mentioned above, see refs. 65–67.

Trajectory analysis. Heterogeneity may also be modeled as a con-
tinuous spectrum arising from biological processes, such as cell 
differentiation. A specialized application of dimension-reduction 
specific to single-cell analysis—trajectory analysis or pseudotime 
inference—uses phylogenetic methods to order cells along an 
(often time-continuous) trajectory, such as development over time. 
Inferred trajectories can identify transition between cell states, a 
differentiation process, or events responsible for bifurcations in a 
dynamic cellular process68.

Modern approaches for trajectory inference have minimized 
the need for extensive parameterization and can test for differential 
gene expression across various topologies (for example, Monocle69, 
LineagePulse and switchde70). Moreover, several Bioconductor 
packages for trajectory inference (for example, slingshot71, 
TSCAN29, Monocle69, cellTree72 and MFA73) were recently demon-
strated to have excellent performance74. As different methods can 
produce drastically different results for the same dataset, a suite of 
methods and parameterizations must be tested to assess robustness. 

Bioconductor facilitates such testing by providing standardized data 
representation, such as the SingleCellExperiment class objects. See 
ref. 74 for further discussion.

Annotation
The most challenging task in scRNA-seq data analysis is arguably 
the interpretation of the results. Obtaining clusters of cells is fairly 
straightforward, but it is more difficult to determine what biologi-
cal state is represented by each of those clusters. Doing so requires 
bridging the gap between the current dataset and prior biological 
knowledge, and the latter is not always available in a consistent and 
quantitative manner. As such, interpretation of scRNA-seq data is 
often manual and is a common bottleneck in the analysis workflow.

To expedite this step, various computational approaches can 
be applied that exploit prior information to assign meaning to an 
uncharacterized scRNA-seq dataset. The most obvious sources of 
prior information are curated gene sets associated with particular 
biological processes (for example, from the Gene Ontology (GO) or 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) collections).

An alternative approach involves directly comparing expres-
sion profiles to published reference datasets where each sample or 
cell has already been annotated with its putative biological state by 
domain experts.
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Fig. 4 | Select visualizations derived from various Bioconductor workflows. Various visualizations associated with pre-processing (blue boxes) and 
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Gene-set enrichment. Classical gene-set enrichment (GSE) 
approaches have the advantage of not requiring reference expres-
sion values. This is particularly useful when dealing with gene sets 
derived from the literature or other qualitative forms of biological 
knowledge. In the context of cell annotation, GSE is typically per-
formed on a group of cells (or cluster) to identify the gene set (or 
pathway) that is enriched in these cells. The enriched pathway can 
then be used to deduce a cell type (or state).

Bioconductor provides dedicated packages to programmati-
cally access predefined gene signatures from databases such as 
MSigDB75, KEGG76, Reactome77 and Gene Ontology (GO)78. 
EnrichmentBrowser79 simplifies the compilation of gene-set col-
lections from such repositories. This prior knowledge is used to 
test for the enrichment of specific gene modules in scRNA-seq 
data, often adapting existing gene-set analysis methods originally 
developed for bulk data. The EnrichmentBrowser79, EGSEA80 and 
fgsea packages each provide some version of classical GSE analy-
sis. Alternative approaches to testing for GSE are implemented in 
MAST27, AUCell81 and slalom82.

Automated classification of cells. A conceptually straightforward 
annotation approach is to compare the single-cell expression pro-
files with previously annotated reference datasets. Labels can then 
be assigned to each cell in an uncharacterized dataset based on the 
most similar reference sample(s) or on some other similarity met-
ric. This is a common classification challenge that can be tackled 
by standard machine-learning techniques, such as random forests 
and support vector machines. Any published and labelled RNA-seq 
dataset (bulk or single-cell) can be used as a reference, though its 
reliability depends greatly on the domain expertise of the original 
authors who assigned the labels in the first place.

The SingleR method83 provides one such automated system for 
cell type annotation assignment. SingleR labels cells based on the 
reference samples with the highest Spearman rank correlations, 
and thus can be considered a rank-based variant of k-nearest-
neighbor classification. To reduce noise, SingleR identifies marker 
genes between pairs of labels and computes the correlation using 
only those markers. A number of built-in reference datasets are 
included with the package that are derived from a variety of sources 
and tissues, including Immunological Genome project (ImmGen), 
ENCODE and the Database for Immune Cell Expression (DICE).

Accessible analysis
With the increased interest in data from single-cell assays, 
Bioconductor has developed not only the methods and software 
to analyze the data, but also has prioritized making the data itself 
and the data analysis tools more easily accessible to both users 
and developers. Specifically, the community has contributed data 
packages, containing both publicly available published data and 
simulated data, and interactive data visualization tools. Making sin-
gle-cell data and data analysis tools more accessible allows research-
ers to leverage these resources in their own work and democratizes 
data analysis.

Benchmarking. As new single-cell assays, statistical methods and 
corresponding software are developed, it is increasingly impor-
tant to facilitate the publication of data sets, to reproduce existing 
analyses as well as to enable comparisons across new and existing 
tools. Bioconductor houses a collection of data packages focused on 
providing accessible and well-annotated versions of data ready for 
analysis, alongside vignettes that can be used to reproduce manu-
script figures and showcase data characteristics.

To facilitate querying of published data packages on 
Bioconductor, the ExperimentHub package enables programmatic 
access of published data sets using a standardized interface. Of note, 
the scRNAseq package provides direct access to a curated selection 

of high-quality scRNA-seq data from various contexts. In addition, 
simulated data are useful for benchmarking methods.

Alternately, the splatter package84 can simulate scRNA-seq data 
that contains multiple cell types, batch effects, varying levels of drop-
out events, differential gene expression and trajectories. The splatter 
package uses both its own simulation framework and wraps around 
other simulation frameworks with differing generative models to 
provide a comprehensive resource for single-cell data simulation.

To promote the reproducibility of benchmark comparisons 
assessing the performance of single-cell methods, software pack-
ages have been developed that provide infrastructure to compute 
and store the results of applying different methods to a data set. The 
SummarizedBenchmark85 and CellBench86 packages provide inter-
faces for which to store metadata (method parameters and package 
versions) and evaluation metrics.

Interactive data visualization. The maturation of web technolo-
gies has opened new avenues for interactive data exploration, aided 
by shiny, an R package facilitating development of rich graphical 
user interfaces. The iSEE87 and singleCellTK packages provide 
full-featured applications for interactive visualization of scRNA-
seq datasets through an internet browser, eliminating the need for 
programming experience if the instance is hosted on the web. Both 
packages directly interface with the SingleCellExperiment data con-
tainer to enable scRNA-seq analysis results.

Outlook
Since the early days of genomics, the Bioconductor project has 
embraced the development of open-source and open-develop-
ment software through the R statistical programming language. 
Bioconductor has established best practices for coordinated pack-
age versioning and code review. Alongside community-contributed 
packages, a core developer team (https://www.bioconductor.org/
about/core-team) implements and maintains the essential infra-
structure, and reviews contributed packages to ensure they satisfy 
a set of guidelines to guarantee interoperability across packages. 
These packages are organized into BiocViews, an ontology of top-
ics that classify packages by task or technology. For example, top-
ics in single-cell analysis are labeled under the view SingleCell. 
Most importantly, the broader Bioconductor community—acces-
sible through various means, including forums, Slack or mailing 
lists—is a model of altruism in code sharing and technical help. 
Together, these practices produce high-quality, well maintained 
packages, contributing to a unified and stable environment for  
biological research.

Most recently, the Bioconductor community has developed 
state-of-the-art computational methods, infrastructure and interac-
tive data visualization tools available as software packages for the 
analysis of data derived from single-cell experiments. Emerging 
single-cell technologies in epigenomics, T  cell and B cell rep-
ertoires, spatial profiling, and sequencing-based protein profil-
ing88–95, promise to continue driving advances in computational 
biology. In particular, technologies enabling multimodal profiling 
are rapidly developing, and Bioconductor has laid the groundwork 
necessary to support statistical methodologies that fully leverage  
such approaches.

In addition, Bioconductor’s standardized data containers enable 
interoperability within and between Bioconductor packages as well 
as other software. Analysis stored in a SingleCellExperiment can be 
converted to formats usable with Seurat96, Monocle69 and Python’s 
scanpy97, enabling the use of tools that best serve the objective at 
hand. Indeed, R has a long history of interoperability with other 
programming languages. Four examples are the Rcpp98 package for 
integrating C++ compiled code into R, the rJava package to call Java 
code from within R, the.Fortran() function in base R to call Fortran 
code, and the reticulate CRAN package for interfacing with Python. 
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This interoperability enables common machine learning frame-
works, such as TensorFlow/Keras, to be used directly in R.

To the newcomer, the wealth of single-cell analyses possible 
in Bioconductor can be daunting. To address the rapid growth of 
contributed packages within the single-cell analysis space, we have 
summarized and highlighted state-of-the-art data infrastructure 
(Fig. 2), methods and software, and organized the packages along a 
typical workflow (Fig. 3) for the most common single-cell analyses 
(Fig. 4). Finally, we have developed an online companion book that 
provides more details on focused topics as well as complete cod-
ing workflows (https://osca.bioconductor.org). This effort will be 
continuously updated and maintained with new packages as they 
emerge, which increases discoverability of Bioconductor resources.

Received: 26 March 2019; Accepted: 14 October 2019;  
Published: xx xx xxxx

References
	1.	 Huber, W. et al. Orchestrating high-throughput genomic analysis with 

Bioconductor. Nat. Methods 12, 115–121 (2015).
	2.	 Robinson, M. D. et al. edgeR: A Bioconductor package for differential 

expression analysis of digital gene expression data. Bioinformatics 26,  
139–140 (2010).

	3.	 Lawrence, M. et al. Software for computing and annotating genomic ranges. 
PLoS Comput. Biol. 9, e1003118 (2013).

	4.	 Aryee, M. J. et al. Minfi: a flexible and comprehensive Bioconductor package 
for the analysis of Infinium DNA methylation microarrays. Bioinformatics 30, 
1363–1369 (2014).

	5.	 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold  
change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15,  
550 (2014).

	6.	 Ritchie, M. E. et al. limma powers differential expression analyses for 
RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

	7.	 Serratì, S. et al. Next-generation sequencing: advances and applications in 
cancer diagnosis. Onco. Targets Ther. 9, 7355–7365 (2016).

	8.	 Nakato, R. & Shirahige, K. Recent advances in ChIP-seq analysis: from 
quality management to whole-genome annotation. Brief. Bioinform. 18, 
279–290 (2017).

	9.	 Kukurba, K. R. & Montgomery, S. B. RNA sequencing and analysis.  
Cold Spring Harb. Protoc. 2015, 951–969 (2015).

	10.	Kolodziejczyk, A. A., Kim, J. K., Svensson, V., Marioni, J. C. & Teichmann, S. 
A. The technology and biology of single-cell RNA sequencing. Mol. Cell 58, 
610–620 (2015).

	11.	Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in 
primary glioblastoma. Science 344, 1396–401 (2014).

	12.	Tirosh., I. et al. Dissecting the multicellular ecosystem of metastatic 
melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

	13.	Karaayvaz, M. et al. Unravelling subclonal heterogeneity and aggressive 
disease states in TNBC through single-cell RNA-seq. Nat. Commun. 9,  
3588 (2018).

	14.	Jean Fan. et al. Linking transcriptional and genetic tumor heterogeneity 
through allele analysis of single-cell RNA-seq data. Genome Res. 28, 
1217–1227 (2018).

	15.	Levitin, H. M., Yuan, J. & Sims, P. A. Single-cell transcriptomic analysis of 
tumor heterogeneity. Trends Cancer 4, 264–268 (2018).

	16.	Paulson, K. G. et al. Acquired cancer resistance to combination 
immunotherapy from transcriptional loss of class I HLA. Nat. Commun. 9, 
3868 (2018).

	17.	Zeisel, A. et al. Brain structure: cell types in the mouse cortex and 
hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).

	18.	Deng, Q., Ramsköld, D., Reinius, B. & Sandberg, R. Single-cell RNA-seq 
reveals dynamic, random monoallelic gene expression in mammalian cells. 
Science 343, 193–196 (2014).

	19.	Kiselev, V. Y., Andrews, T. S. & Hemberg, M. Challenges in unsupervised 
clustering of single-cell RNA-seq data. Nat. Rev. Genet. 20, 273–282 (2019).

	20.	Cannoodt, R., Saelens, W. & Saeys, Y. Computational methods for trajectory 
inference from single-cell transcriptomics. Eur. J. Immunol. 46, 2496–2506 
(2016).

	21.	Regev, A. et al. The Human cell atlas. eLife 6, e27041 (2017).
	22.	Rozenblatt-Rosen, O., Stubbington, M. J. T., Regev, A. & Teichmann, S. A. 

The human cell atlas: from vision to reality. Nature 550, 451–453 (2017).
	23.	Han, X. et al. Mapping the mouse cell atlas by microwell-seq. Cell 173,  

1307 (2018).
	24.	McDavid, A. et al. Data exploration, quality control and testing in  

single-cell qPCR-based gene expression experiments. Bioinformatics 29, 
461–467 (2013).

	25.	Hicks, S. C., Townes, F. W., Teng, M. & Irizarry, R. A. Missing data and 
technical variability in single-cell RNA-sequencing experiments. Biostatistics 
19, 562–578 (2018).

	26.	Kharchenko, P. V., Silberstein, L. & Scadden, D. T. Bayesian approach to 
single-cell differential expression analysis. Nat. Methods 11, 740–742 (2014).

	27.	Finak, G. et al. MAST: a flexible statistical framework for assessing 
transcriptional changes and characterizing heterogeneity in single-cell RNA 
sequencing data. Genome Biol. 16, 278 (2015).

	28.	Lun, A. T. L., Bach, K. & Marioni, J. C. Pooling across cells to normalize 
single-cell RNA sequencing data with many zero counts. Genome Biol. 17,  
75 (2016).

	29.	Ji, Z. & Ji, H. TSCAN: Pseudo-time reconstruction and evaluation in 
single-cell RNA-seq analysis. Nucleic Acids Res. 44, e117 (2016).

	30.	Risso, D., Perraudeau, F., Gribkova, S., Dudoit, S. & Vert, J.-P. A general  
and flexible method for signal extraction from single-cell RNA-seq data.  
Nat. Commun. 9, 284 (2018).

	31.	Chambers, J. M. Object-oriented programming, functional programming and 
R. Stat. Sci. 29, 167–180 (2014).

	32.	Tian, L. et al. scPipe: a flexible R/Bioconductor preprocessing pipeline for 
single-cell RNA-sequencing data. PLoS Comput. Biol. 14, e1006361 (2018).

	33.	Wang, Z., Hu, J., Johnson, W. E. & Campbell, J. D. scruff: an R/Bioconductor 
package for preprocessing single-cell RNA-sequencing data. BMC Bioinform. 
20, 222 (2019).

	34.	Lun, AaronT. L. et al. Emptydrops: distinguishing cells from empty droplets 
in droplet-based single-cell RNA sequencing data. Genome Biol. 20,  
63 (2019).

	35.	Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of 
single cells. Nat. Commun. 8, 14049 (2017).

	36.	Melsted, P. et al. Modular and efficient pre-processing of single-cell rna-seq. 
Preprint at bioRxiv https://doi.org/10.1101/673285 (2019).

	37.	Srivastava, A., Malik, L., Smith, T., Sudbery, I. & Patro, R. Alevin efficiently 
estimates accurate gene abundances from dscRNA-seq data. Genome Biol. 20, 
65 (2019).

	38.	Griffiths, J. A., Richard, A. C., Bach, K., Lun, A. T. L. & Marioni, J. C. 
Detection and removal of barcode swapping in single-cell RNA-seq data.  
Nat. Commun. 9, 2667 (2018).

	39.	Bais, A. S. & Kostka, D. scds: computational annotation of doublets in single 
cell RNA sequencing data. Bioinformatics https://doi.org/10.1093/
bioinformatics/btz698 (2019).

	40.	Ilicic, T. et al. Classification of low quality cells from single-cell RNA-seq 
data. Genome Biol. 17, 29 (2016).

	41.	McCarthy, D. J., Campbell, K. R., Lun, A. T. L. & Wills, Q. F. Scater: 
pre-processing, quality control, normalization and visualization of single-cell 
RNA-seq data in R. Bioinformatics 33, 1179–1186 (2017).

	42.	Vallejos, C. A., Risso, D. R., Scialdone, A., Dudoit, S. & Marioni, J. C. 
Normalizing single-cell RNA sequencing data: challenges and opportunities. 
Nat. Methods 14, 565–571 (2017).

	43.	Vallejos, C. A., Richardson, S. & Marioni, J. C. Beyond comparisons of 
means: understanding changes in gene expression at the single-cell level. 
Genome Biol. 17, 70 (2016).

	44.	Huang, M. et al. SAVER: gene expression recovery for single-cell RNA 
sequencing. Nat. Methods 15, 539–542 (2018).

	45.	Li, W. V. & Li, J. L. An accurate and robust imputation method scImpute for 
singlecell RNA-seq data. Nat. Commun. 9, 997 (2018).

	46.	Svensson, V. Droplet scRNA-seq is not zero-inflated. Preprint bioRxiv https://
doi.org/10.1101/582064 (2019).

	47.	Vieth, B., Ziegenhain, C., Parekh, S., Enard, W. & Hellmann, I. powsimR: 
power analysis for bulk and single cell RNA-seq experiments. Bioinformatics 
33, 3486–3488 (2017).

	48.	Townes, F. W., Hicks, S. C., Aryee, M. J. & Irizarry, R. A. Feature selection 
and dimension reduction for single cell RNA-seq based on a multinomial 
model. Preprint at bioRxiv https://doi.org/10.1101/574574 (2019).

	49.	Andrews, T. & Hemberg, M. False signals induced by single-cell imputation. 
F1000Res. https://doi.org/10.12688/f1000research.16613.2 (2019).

	50.	Andrews, T. & Hemberg, M. M3Drop: Dropout-based feature selection for 
scRNASeq. Bioinformatics 35, 2865–2867 (2019).

	51.	Yip, S. H., Sham, P. C. & Wang, J. Evaluation of tools for highly variable  
gene discovery from single-cell RNA-seq data. Brief. Bioinform. 20, 
1583–1589 (2018).

	52.	Lun, A. T. L., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for 
low-level analysis of single-cell RNA-seq data with Bioconductor. F1000Res. 5, 
2122 (2016).

	53.	van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. 
Learn. Res. 9, 2579–2605 (2008).

	54.	Melville, J., McInnes, L. & Healy, J. UMAP: uniform manifold approximation 
and projection for dimension reduction. Preprint at arXiv https://arxiv.org/
abs/1802.03426 (2018).

	55.	Angerer., P. et al. Destiny: diffusion maps for large-scale single-cell data in R. 
Bioinformatics 32, 1241–1243 (2016).

Nature Methods | www.nature.com/naturemethods

https://osca.bioconductor.org
https://doi.org/10.1101/673285
https://doi.org/10.1093/bioinformatics/btz698
https://doi.org/10.1093/bioinformatics/btz698
https://doi.org/10.1101/582064
https://doi.org/10.1101/582064
https://doi.org/10.1101/574574
https://doi.org/10.12688/f1000research.16613.2
https://arxiv.org/abs/1802.03426
https://arxiv.org/abs/1802.03426
http://www.nature.com/naturemethods


PerspectiveNaTuRe MeTHods

	56.	Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in 
single-cell RNA-sequencing data are corrected by matching mutual nearest 
neighbors. Nat. Biotechnol. 36, 421–427 (2018).

	57.	Lin, Y. et al. scMerge leverages factor analysis, stable expression, and 
pseudoreplication to merge multiple single-cell RNA-seq datasets. Proc. Natl. 
Acad. Sci. USA 116, 9775–9784 (2019).

	58.	Kiselev, V. Y., Yiu, A. & Hemberg, M. scmap: projection of single-cell 
RNA-seq data across data sets. Nat. Methods 15, 359–362 (2018).

	59.	Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: 
guaranteeing well-connected communities. Sci. Rep. 9, 5233 (2019).

	60.	Wang, B., Zhu, J., Pierson, E., Ramazzotti, D. & Batzoglou, S. Visualization 
and analysis of single-cell RNA-seq data by kernel-based similarity learning. 
Nat. Methods 14, 414–416 (2017).

	61.	Kiselev, V. Y. et al. SC3: consensus clustering of single-cell RNA-seq data.  
Nat. Methods 14, 483–486 (2017).

	62.	Risso, D. et al. clusterExperiment and RSEC: a bioconductor package and 
framework for clustering of singlecell and other large gene expression 
datasets. PLoS Comp. Biol. 14, e1006378–16 (2018).

	63.	Van den Berge, K. et al. Observation weights unlock bulk RNA-seq tools for 
zero inflation and single-cell applications. Genome Biol. 19, 24 (2018).

	64.	Korthauer, K. D. et al. A statistical approach for identifying differential 
distributions in single-cell RNA-seq experiments. Genome Biol. 17,  
222 (2016).

	65.	Soneson, C. & Robinson, M. D. Bias, robustness and scalability in single-cell 
differential expression analysis. Nat. Methods 15, 255–261 (2018).

	66.	Wang, T., Li, B., Nelson, C. E. & Nabavi, S. Comparative analysis of 
differential gene expression analysis tools for single-cell RNA sequencing 
data. BMC Bioinform. 20, 40 (2019).

	67.	Crowell, H. L. et al. On the discovery of population-specific state transitions 
from multi-sample multi-condition single-cell RNA sequencing data. Preprint 
at bioRxiv https://doi.org/10.1101/713412 (2019).

	68.	Andrews, T. S. & Hemberg, M. Identifying cell populations with scRNASeq. 
Mol. Asp. Med. 59, 114–122 (2018).

	69.	Qiu, X. et al. Reversed graph embedding resolves complex single-cell 
trajectories. Nat. Methods 14, 979–982 (2017).

	70.	Campbell, K. R. & Yau, C. switchde: inference of switch-like differential 
expression along single-cell trajectories. Bioinformatics 33, 1241–1242 (2017).

	71.	Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell 
transcriptomics. BMC Genomics 19, 477 (2018).

	72.	duVerle, D. A., Yotsukura, S., Nomura, S., Aburatani, H. & Tsuda, K. CellTree: 
an R/bioconductor package to infer the hierarchical structure of cell 
populations from single-cell RNA-seq data. BMC Bioinform. 17,  
363 (2016).

	73.	Campbell, K. R. & Yau, C. Probabilistic modeling of bifurcations in single-cell 
gene expression data using a bayesian mixture of factor analyzers. Wellcome 
Open Res. 2, 19 (2017).

	74.	Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of 
single-cell trajectory inference methods. Nat. Biotechnol. 37, 547 (2019).

	75.	Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based 
approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. 
Sci. USA 102, 15545–15550 (2005).

	76.	Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. KEGG: 
new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids 
Res. 45, 353–361 (2017).

	77.	Fabregat, A. et al. The reactome pathway knowledgebase. Nucleic Acids Res. 
44, 481–487 (2015).

	78.	Ashburner, M. et al. Gene ontology: tool for the unification of biology.  
Nat. Genet. 25, 25–29 (2000).

	79.	Geistlinger, L., Csaba, G. & Zimmer, R. Bioconductor’s EnrichmentBrowser: 
seamless navigation through combined results of set and network-based 
enrichment analysis. BMC Bioinform. 17, 45 (2016).

	80.	Alhamdoosh, M. et al. Combining multiple tools outperforms individual 
methods in gene set enrichment analyses. Bioinformatics 33, 414–424 (2017).

	81.	Aibar, S. et al. SCENIC: single-cell regulatory network inference and 
clustering. Nat. Methods 14, 1083–1086 (2017).

	82.	Buettner, F., Pratanwanich, N., McCarthy, D. J., Marioni, J. C. & Stegle, O. 
fscLVM: scalable and versatile factor analysis for single-cell RNA-seq.  
Genome Biol. 18, 212 (2017).

	83.	Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals 
a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019).

	84.	Zappia, L., Phipson, B. & Oshlack, A. Splatter: simulation of single-cell RNA 
sequencing data. Genome Biol. 18, 174 (2017).

	85.	Kimes, P. K. & Reyes, A. Reproducible and replicable comparisons using 
SummarizedBenchmark. Bioinformatics 35, 137–139 (2019).

	86.	Tian, L. et al. Benchmarking single cell RNA-sequencing analysis pipelines 
using mixture control experiments. Nat. Methods 16, 479–487 (2019).

	87.	Rue-Albrecht, K., Marini, F., Soneson, C. & Lun, A. T. L. iSEE: interactive 
SummarizedExperiment Explorer. F1000Res. 7, 741 (2018).

	88.	Peterson, V. M. et al. Multiplexed quantification of proteins and transcripts in 
single cells. Nat. Biotechnol. 35, 936–939 (2017).

	89.	Dey, S. S., Kester, L., Spanjaard, B., Bienko, M. & van Oudenaarden, A. 
Integrated genome and transcriptome sequencing of the same cell.  
Nat. Biotechnol. 33, 285–289 (2015).

	90.	Macaulay, IainC. et al. Separation and parallel sequencing of the  
genomes and transcriptomes of single cells using GT-seq. Nat. Protoc. 11, 
2081–2103 (2016).

	91.	Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in 
single cells. Nat. Methods 14, 865–868 (2017).

	92.	Shahi, P., Kim, S. C., Haliburton, J. R., Gartner, Z. J. & Abate, A. R. Abseq: 
ultrahighthroughput single cell protein profiling with droplet microfluidic 
barcoding. Sci. Rep. 7, 44447 (2017).

	93.	Angermueller, C. et al. Parallel single-cell sequencing links transcriptional 
and epigenetic heterogeneity. Nat. Methods 13, 229–232 (2016).

	94.	Cao, J. et al. Joint profiling of chromatin accessibility and gene expression in 
thousands of single cells. Science 361, 1380–1385 (2018).

	95.	Clark, S. J. et al. scNMT-seq enables joint profiling of chromatin accessibility 
DNA methylation and transcription in single cells. Nat. Commun. 9,  
781 (2018).

	96.	Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating 
single-cell transcriptomic data across different conditions, technologies, and 
species. Nat. Biotechnol. 36, 411–420 (2018).

	97.	Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene 
expression data analysis. Genome Biol. 19, 15 (2018).

	98.	Eddelbuettel, D. & François, R. Rcpp: seamless R and C++ integration.  
J. Stat. Softw. 40, 1–18 (2011).

Acknowledgements
Bioconductor is supported by the National Human Genome Research Institute (NHGRI) 
and National Cancer Institute (NCI) of the National Institutes of Health (NIH) (grant 
no. U41HG004059, U24CA180996), the European Union (EU) H2020 Personalizing 
Health and Care Program Action (contract number 633974) and the SOUND 
Consortium. In addition, M.M., S.C.H., R.G., W.H., A.T.L.L. and D.R. are supported 
by the Chan Zuckerberg Initiative (CZI) DAF (grant no. 2018-183201, 2018-183560), 
an advised fund of Silicon Valley Community Foundation. D.R., W.H., M.M. and 
S.C.H. are supported by 2019-002443 from the CZI. S.C.H. is supported by the NIH/
NHGRI (grant no. R00HG009007). R.A.A. and R.G. are supported by the Integrated 
Immunotherapy Research Center at Fred Hutch. M.M. is supported by the NCI/NHGRI 
(grant no. U24CA232979). L.G. is supported by a research fellowship from the German 
Research Foundation (grant no. GE3023/1-1). L.W. and V.J.C. are supported by the 
NCI (grant no. U24CA18099). V.J.C. is additionally supported by NCI U01 CA214846 
and Chan Zuckerberg Initiative DAF (grant no. 2018-183436). ATLL received support 
from CRUK (grant no. A17179) and the Wellcome Trust (grant no. WT/108437/Z/15). 
F.M. is supported by the German Federal Ministry of Education and Research (grant 
no. BMBF 01EO1003). M.L.S. is supported by the German Network for Bioinformatics 
Infrastructure (grant no. 031A537B). D.R. is supported by the Programma per Giovani 
Ricercatori Rita Levi Montalcini from the Italian Ministry of Education, University and 
Research. H.P. is supported by the NIH Bioconductor grant (no. U41HG004059).

Author contributions
E.B., V.J.C., L.N.C., L.G., F.M., K.R., D.R., C.S. and L.W. contributed equally to this work. 
S.C.H. and R.G. contributed equally to the supervision of this work. S.C.H. and R.G. 
conceptualized the manuscript. R.A.A., A.T.L.L., S.C.H. and R.G. wrote the manuscript 
with contributions and input from all authors. All authors read and approved the  
final manuscript.

Competing interests
R.G. declares ownership in CellSpace Biosciences.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41592-019-0654-x.

Correspondence should be addressed to R.G. or S.C.H.

Peer review information Lei Tang was the primary editor on this article and managed its 
editorial process and peer review in collaboration with the rest of the editorial team.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© Springer Nature America, Inc. 2019

Nature Methods | www.nature.com/naturemethods

https://doi.org/10.1101/713412
https://doi.org/10.1038/s41592-019-0654-x
https://doi.org/10.1038/s41592-019-0654-x
http://www.nature.com/reprints
http://www.nature.com/naturemethods

	Orchestrating single-cell analysis with Bioconductor

	Data infrastructure

	The SingleCellExperiment container. 

	Data processing

	Preprocessing. 
	Quality control. 
	Normalization. 
	Imputation. 
	Feature selection. 
	Dimensionality reduction. 
	Integrating datasets. 

	Downstream statistical analysis

	Clustering. 
	Differential expression. 
	Trajectory analysis. 

	Annotation

	Gene-set enrichment. 
	Automated classification of cells. 

	Accessible analysis

	Benchmarking. 
	Interactive data visualization. 

	Outlook

	Acknowledgements

	Fig. 1 Number of Bioconductor packages for the analysis of high-throughput sequencing data over ten years.
	Fig. 2 Overview of the SingleCellExperiment class.
	Fig. 3 Bioconductor workflow for analyzing single-cell data.
	Fig. 4 Select visualizations derived from various Bioconductor workflows.




