ORIGINAL PAPER

Vol. 31 no. 2 2015, pages 166-169
doi:10.1093/bioinformatics/btu638

Genome analysis

Advance Access publication September 25, 2014

HTSeq—a Python framework to work with high-throughput

sequencing data

Simon Anders”, Paul Theodor Pyl and Wolfgang Huber
Genome Biology Unit, European Molecular Biology Laboratory, 69111 Heidelberg, Germany

Associate Editor: Michael Brudno

ABSTRACT

Motivation: A large choice of tools exists for many standard tasks
in the analysis of high-throughput sequencing (HTS) data. However,
once a project deviates from standard workflows, custom scripts are
needed.

Results: We present HTSeq, a Python library to facilitate the rapid
development of such scripts. HTSeq offers parsers for many
common data formats in HTS projects, as well as classes to represent
data, such as genomic coordinates, sequences, sequencing reads,
alignments, gene model information and variant calls, and provides
data structures that allow for querying via genomic coordinates.
We also present htseg-count, a tool developed with HTSeq that
preprocesses RNA-Seq data for differential expression analysis by
counting the overlap of reads with genes.

Availability and implementation: HTSeq is released as an open-
source software under the GNU General Public Licence and available
from http://www-huber.embl.de/HTSeq or from the Python Package
Index at https://pypi.python.org/pypi/HTSeq.

Contact: sanders@fs.tum.de

Received on February 27, 2014; revised on August 18, 2014; accepted
on September 21, 2014

1 INTRODUCTION

The rapid technological advance in high-throughput sequencing
(HTS) has led to the development of many new kinds of assays,
each of which requires the development of a suitable bioinfor-
matical analysis pipeline. For the recurring ‘big tasks’ in a typical
pipeline, such as alignment and assembly, the bioinformatics
practitioner can choose from a range of standard tools. For
more specialized tasks, and to interface between existing tools,
customized scripts often need to be written.

Here we present HTSeq, a Python library to facilitate the rapid
development of scripts for processing and analysing HTS data.
HTSeq includes parsers for common file formats for a variety of
types of input data and is suitable as a general platform for a
diverse range of tasks. A core component of HTSeq is a con-
tainer class that simplifies working with data associated with
genomic coordinates, i.e. values attributed to genomic positions
(e.g. read coverage) or to genomic intervals (e.g. genomic fea-
tures such as exons or genes). Two stand-alone applications de-
veloped with HTSeq are distributed with the package, namely
htseq-qa for read quality assessment and htseq-count for prepro-
cessing RNA-Seq alignments for differential expression calling.

*To whom correspondence should be addressed.

Most of the features described in the following sections have
been available since the initial release of the HTSeq package in
2010. Since then, the package and especially the htseq-count
script have found considerable use in the research community.
The present article provides a description of the package and also
reports on recent improvements.

HTSeq comes with extensive documentation, including a
tutorial that demonstrates the use of the core classes of HTSeq
and discusses several important use cases in detail. The documen-
tation, as well as HTSeq’s design, is geared towards allowing
users with only moderate Python knowledge to create their
own scripts, while shielding more advanced internals from the
user.

2 COMPONENTS AND DESIGN OF HTSeq

2.1 Parser and record objects

HTSeq provides parsers for reference sequences (FASTA), short
reads (FASTQ) and short-read alignments (the SAM/BAM
format and some legacy formats), and for genomic feature, an-
notation and score data (GFF/GTF, VCF, BED and Wiggle).

Each parser is provided as a class whose objects are tied to a
file name or open file or stream and work as iterator generators,
i.e. they may be used in the head of a for loop and will yield a
sequence of record objects that are taken up by the loop variable.
These record objects are instances of suitable classes to represent
the data records. Wherever appropriate, different parsers will
yield the same type of record objects. For example, the record
class SequenceWithQualities is used whenever sequencing read
with base-call qualities needs to be presented, and hence
yielded by the FastqParser class and also present as a field
in the SAM _Alignment objects yielded by SAM _Reader or
BAM _Reader parser objects (Fig. 1). Specific classes
(GenomicPosition and Genomiclnterval) are used to represent
genomic coordinates or intervals, and these are guaranteed to
always follow a fixed convention (namely, following Python con-
ventions, zero-based, with intervals being half-open), and parser
classes take care to apply appropriate conversion when the
input format uses different convention. The same is true for
functions to write files.

To offer good performance, large parts of HTSeq are written
in Cython (Behnel et al., 2011), a tool to translate Python code
augmented with type information to C. While the code for read-
ing and writing all text-based formats, including text SAM files,
is written in Python/Cython and hence has no external depen-
dencies, the classes BAM_Reader and BAM_Writer wrap around

© The Author 2014. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

ST0Z ‘6 Afenige uo a1B0j01g ale N (oW Jan} wnLokelode | sayosisedoing (Al pe|izs Te /610 [euInoplo X0 'soIlewo Juioig//:dny wodj pepeoumod

http://www-huber.embl.de/HTSeq
https://pypi.python.org/pypi/HTSeq
mailto:sanders@fs.tum.de
``
''
s
 in order
s
sis of
high-throughput sequencing (
)
,
,
,
,
,
 which
,
XPath error Undefined namespace prefix
http://bioinformatics.oxfordjournals.org/

HTSeq

(a) (b) 20M300N30M2I8M
: 0 20 5052 60
SAM_Alignment | | AN

read: SequenceWithQualities

[| |

| |
1000 1020 1320

aligned: boolean
iv: Genomicinterval

~ N
1350 1358

size uer: reference
20 0-20 chrl: 1000-1020
300 20-20 chrl: 1020-1320
30 20-50 chrl: 1320-1350
2 50-52 chrl: 1350-1350
8 52-60 chrl: 1350-1358

ZHZZZE

cigar: list of CigarOperation
objects
... (more fields)

Fig. 1. (a) The SAM_Alignment class as an example of an H7Seq data
record: subsets of the content are bundled in object-valued fields, using
classes (here SequenceWithQualities and Genomiclnterval) that are also
used in other data records to provide a common view on diverse data
types. (b) The cigar field in a SAM_alignment object presents the detailed
structure of a read alignment as a list of CigarOperation. This allows for
convenient downstream processing of complicated alignment structures,
such as the one given by the cigar string on top and illustrated in the
middle. Five CigarOperation objects, with slots for the columns of
the table (bottom) provide the data from the cigar string, along with
the inferred coordinates of the affected regions in read (‘query’) and
reference

functionality from PySam (http://code.google.com/p/pysam))
and are available only if that package has been installed.

The SAM_Alignment class offers functionality to facilitate
dealing with complex, e.g. gapped, alignments (Fig. 1b), with
multiple alignments and with paired-end data. The latter is chal-
lenging because, in the SAM format, an alignment of a read pair
is described by a pair of alignment records, which cannot be
expected to be adjacent to each other. HTSeq provides a func-
tion, pair_SAM_alignments_with_buffer, to pair up these records
by keeping a buffer of reads whose mate has not yet been found,
and so facilitates processing data on the level of sequenced frag-
ments rather than reads.

2.2 The GenomicArray class

Data in genomics analyses are often associated with positions on
a genome, i.e. coordinates in a reference assembly. One example
for such data is read coverage: for each base pair or nucleotide of
the reference genome, the number of read alignments overlap-
ping that position is stored. Similarly, gene models and other
genomic annotation data can be represented as objects describing
features such as exons that are associated with genomic intervals,
i.e. coordinate ranges in the reference.

A core component of HTSeq is the class GenomicArray, which
is a container to store any kind of genomic-position—dependent
data. Conceptually, each base pair position on the genome can
be associated with a value that can be efficiently stored and
retrieved given the position, where the value can be both a
scalar type, such as a number, or a more complex Python
object. In practice, however, such data are often piecewise con-
stant, and hence, the class internally uses a tree structure to store
‘steps’, i.e. genomic intervals with a given value. This has been im-
plemented in C++, building on the map template of the C+-+
standard library, which is typically realized as a red-black tree

{3 | {Ar | {3 | {A} HAB} {B} {}

Fig. 2. Using the class GenomicArrayOfSets to represent overlapping an-
notation metadata. The indicated features are assigned to the array,
which then represents them internally as steps, each step having as
value a set whose elements are references to the features overlapping
the step

(Josuttis, 1999). To link C++ and Python code, we used SWIG
(Beazley et al., 1996). Alternatively, the class also offers a storage
mode based on NumPy arrays (van der Walt ez al., 2011) to
accommodate dense data without steps. If such data become
too large to fit into memory, NumPy’s memmap feature may
be used, which swaps currently unused parts of the data out to
disk. The choice of storage back-end is transparent, i.e. if the user
changes it, no changes need to be made in the code that uses
the GenomicArray objects.

A subclass of GenomicArray, the Genomic ArrayOfSets is suit-
able to store objects associated with intervals that may overlap,
such as genes or exons from a gene model reference. This is
implemented using Python sets (Fig. 2): Each step’s value is a
set of references to the actual objects. When data are inserted
into the array, steps get split and sets get duplicated as needed.
When querying an interval, the sets overlapped by the query
interval are returned, and their union will contain all objects
overlapped by the query interval.

3 DOCUMENTATION AND CODING STRATEGIES

HTSeq comes with extensive documentation to guide developers.
Care has been taken to expect only moderate experience with
Python from the reader. A ‘“Tour’ offers an overview over the
classes and principles of HTSeq by demonstrating their use in
simple examples. Then, two common use cases are discussed in
detail to show how HTSeq can be applied to complex tasks.
The first use case is that of aggregate coverage profiles: given
ChiP-Seq data, e.g. from histone marks, we want to calculate
the profile of these marks with respect to specific positions
in the genome, such as transcription start sites (TSSs), by align-
ing coverage data in windows centred on the TSSs and
averaging over the TSSs of all genes or a subset thereof.
In this use case, one needs to integrate information from two
position-specific data sources, namely a list of TSSs obtained
from annotation data and the aligned reads. Hence, one may
either iterate through the reads first, store this information in a
GenomicArray and then use position-specific access to it when
iterating through the list of TSSs, or, first store the TSSs in a
GenomicArray and use this afterwards when iterating through
the reads. In either case, one dataset is kept in memory in
a form allowing for fast random access, whereas the other is
iterated through with only summary information being kept.

167

ST0Z ‘6 Afenige uo a1B0j01g ale N (oW Jan} wnLokelode | sayosisedoing (Al pe|izs Te /610 [euInoplo X0 'soIlewo Juioig//:dny wodj pepeoumod

http://code.google.com/p/pysam/
is
,
are
,
-
-
is
``
''
,
-
s
,
-
is
s
``
''
ile
http://bioinformatics.oxfordjournals.org/

S.Anders et al.

These approaches are prototypical for scripts built on HTSeq
and hence explained and demonstrated in detail in the documen-
tation (Section ‘A detailed use case: TSS plots’).

The second use case discussed in detail is that of counting
for each gene in a genome how many RNA-Seq reads map to
it. In this context, the HTSeq class CigarOperation is demon-
strated, which represents complex alignments in a convenient
form (Fig. 1b). This section of the documentation also explains
HTSeq’s facilities to handle multiple alignments and paired-end
data.

The remainder of the documentation provides references for
all classes and functions provided by HTSeq, including those
classes not used in the highlighted use cases of the tutorial
part, such as the facilities to deal with variant call format
(VCF) files.

4 HTSEQ-COUNT

We distribute two stand-alone scripts with HTSeq, which can be
used from the shell command line, without any Python know-
ledge, and also illustrate potential applications of the HTSeq
framework. The script Atseq-ga is a simple tool for initial quality
assessment of sequencing runs. It produces plots that summarize
the nucleotide compositions of the positions in the read and the
base-call qualities.

The script htseq-count is a tool for RNA-Seq data analysis:
Given a SAM/BAM file and a GTF or GFF file with gene
models, it counts for each gene how many aligned reads overlap
its exons. These counts can then be used for gene-level differen-
tial expression analyses using methods such as DESeq2 (Love
et al., 2014) or edgeR (Robinson et al., 2010). As the script
is designed specifically for differential expression analysis, only
reads mapping unambiguously to a single gene are counted,
whereas reads aligned to multiple positions or overlapping with
more than one gene are discarded. To see why this is desirable,
consider two genes with some sequence similarity, one of which
is differentially expressed while the other one is not. A read that
maps to both genes equally well should be discarded, because if
it were counted for both genes, the extra reads from the differ-
entially expressed gene may cause the other gene to be wrongly
called differentially expressed, too. Another design choice made
with the downstream application of differential expression test-
ing in mind is to count fragments, not reads, in case of paired-
end data. This is because the two mates originating from the
same fragment provide only evidence for one cDNA fragment
and should hence be counted only once.

As the htseq-count script has found widespread use over the
past 3 years, we note that we recently replaced it with an over-
hauled version, which now allows processing paired-end data
without the need to sort the SAM/BAM file by read name
first. See the documentation for a list of all changes to the
original version.

5 DISCUSSION

HTSeq aims to fill the gap between performant but monolithic
tools optimized for specialized tasks and the need to write data
processing code for HTS application entirely from scratch.
For a number of the smaller tasks covered by HTSeq, good

stand-alone solutions exist, e.g. FastQC (http://www.bioinfor-
matics.babraham.ac.uk/projects/fastqc/) for quality assessment
or Trimmomatic (Bolger et al., 2014) for trimming of reads. If
the specific approaches chosen by the developers of these tools
are suitable for a user’s application, they are easier to use.
However, the need to write customized code will inevitably
arise in many projects, and then, HTSeq aims to offer advantages
over more narrow programming libraries that focus on specific
file formats, e.g. PySam and Picard (http://picard.sourceforge.
net/) for SAM/BAM files, by integrating parsers for many
common file formats and fixing conventions for data interchange
between them. For R developers, similar functionality is now
available within the Bioconductor project (Gentleman et al.,
2004) with packages like Rsamtools and GenomicRanges
(Lawrence et al., 2013). Within Python, HTSeq complements
Biopython (Cock et al., 2009), which provides similar function-
ality for more ‘classic’ bioinformatics tasks such as sequence
analysis and phylogenetic analyses but offers little support for
HTS tasks.

Although most uses of HTSeq will be the development of
custom scripts for one specific analysis task in one experiment,
it can also be useful for writing more general tools. The Atseq-
count script, for example, prepares a count table for differential
expression analysis, a seemingly easy task, which, however, be-
comes complicated when ambiguous cases have to be treated
correctly. Despite being written in Python, htseq-count offers
decent performance: Tested on a standard laptop computer,
htseq-count (version 0.6.1) processed about 1.2 million reads
(0.6M read pairs) per minute, using about 250 MB of RAM to
hold the human gene annotation in memory. When the file was
sorted by position rather than read name, so that mate pairs were
not in adjacent records, processing time increased to a bit less
then twice as much, and, for a SAM file of 26 GB, less than
450 MB of additional space in RAM were needed for the
buffer holding reads with outstanding mates.

When HTSeq was first released in 2010, htseq-count was the
first comprehensive solution for this task, and has since then
been widely used. Recently, further tools for this task have
become available, including the summarizeOverlap function in
the GenomicRanges Bioconductor package (Lawrence et al.,
2013) and the stand-alone tool featureCount (Liao et al., 2014),
which achieves fast runtimes because of being implemented in C.
In a recent benchmark, Fonseca er al. (2014) compared
htseq-count with these other counting tools and judged the
accuracy of htseq-count favourably. Nevertheless, neither htseq-
count nor the other tools offer much flexibility to deal with spe-
cial cases, which is why the HTSeq documentation (section
‘Counting reads’) discusses in detail how users can write their
own scripts for this important use case.

Interval queries are a recurring task in HTS analysis problems,
and several libraries now offer solutions for different program-
ming languages, including BEDtools (Quinlan and Hall, 2010;
Dale et al., 2011) and IRanges/GenomicRanges (Lawrence et al.,
2013). Typically, these methods take two lists of intervals and
report overlaps between them. HTSeq uses a different paradigm,
namely that one list of intervals is read in and stored in a
GenomicArrayOfSets object, and then the other intervals are
queried one by one, in a loop. This explicit looping can
be more intuitive; one example is the read counting problem

168

ST0Z ‘6 Afenige uo a1B0j01g ale N (oW Jan} wnLokelode | sayosisedoing (Al pe|izs Te /610 [euInoplo X0 'soIlewo Juioig//:dny wodj pepeoumod

``
''
-
 --
which
s
il
l
three
s
s
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
s
http://picard.sourceforge.net/
http://picard.sourceforge.net/
``
''
While
about
about
-
less than
very
due to
``
''
http://bioinformatics.oxfordjournals.org/

HTSeq

discussed above, where split reads, gapped alignments, ambigu-
ous mappings, etc. cause much need for treatment of special
cases that is addressed by branching statements within the
inner loop.

In conclusion, HTSeq offers a comprehensive solution to
facilitate a wide range of programming tasks in the context of
HTS data analysis.

Funding: S.A. and W.H. acknowledge support from the
European Union via the 6th Framework Programme network
Chromatin Plasticity (Project no. 35733) and 7th Framework
Programme project Radiant (Project no. 305626).

Conflict of interest: none declared.

REFERENCES

Beazley,D.M. et al. (1996) SWIG: an easy to use tool for integrating scripting lan-
guages with C and C++. In: Proceedings of the 4th USENIX Tcl/Tk workshop.
pp. 129-139.

Behnel,S. er al. (2011) Cython: the best of both worlds. Comput. Sci. Eng., 13,
31-39.

Bolger,A.M. et al. (2014) Trimmomatic: a flexible trimmer for illumina sequence
data. Bioinformatics, 30, 2114-2120.

Cock,P.J. et al. (2009) Biopython: freely available Python tools for
computational molecular biology and bioinformatics. Bioinformatics, 25,
1422-1423.

Dale,R. K. et al. (2011) Pybedtools: a flexible Python library for manipulating
genomic datasets and annotations. Bioinformatics, 27, 3423-3424.

Fonseca,N.A. et al. (2014) RNA-seq gene profiling —a systematic empirical compar-
ison. PLoS ONE, 9, ¢107026.

Gentleman,R.C. er al. (2004) Bioconductor: open software development for
computational biology and bioinformatics. Genome Biol., 5, R80.

Josuttis,N.M. (1999) The C++ Standard Library. Addison-Wesley, Boston.

Lawrence,M. et al. (2013) Software for computing and annotating genomic ranges.
PLoS Comput. Biol., 9, ¢1003118.

Liao,Y. er al. (2014) featurecounts: an efficient general purpose program for
assigning sequence reads to genomic features. Bioinformatics, 30, 923-930.
Love,M.I. et al. (2014) Moderated estimation of fold change and dispersion

for RNA-Seq data with DESeq2. bioRxiv, doi:10.1101/002832.

Quinlan,A.R. and Hall,LM. (2010) Bedtools: a flexible suite of utilities for compar-
ing genomic features. Bioinformatics, 26, 841-842.

Robinson,M.D. et al. (2010) edgeR: a Bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics, 26,
139-140.

van der Walt,S. ef al. (2011) The NumPy array: a structure for efficient numerical
computation. Comput. Sci. Eng., 13, 2230.

169

ST0Z ‘6 Afenige uo a1B0j01g ale N (oW Jan} wnLokelode | sayosisedoing (Al pe|izs Te /610 [euInoplo X0 'soIlewo Juioig//:dny wodj pepeoumod

high-throughput sequencing
http://bioinformatics.oxfordjournals.org/

