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SUMMARY

Transcription factors (TFs) regulate many cellular
processes and can therefore serve as readouts of
the signaling and regulatory state. Yet for many
TFs, the mode of action—repressing or activating
transcription of target genes—is unclear. Here,
we present diffTF (https://git.embl.de/grp-zaugg/
diffTF) to calculate differential TF activity (basic
mode) and classify TFs into putative transcriptional
activators or repressors (classification mode). In
basic mode, it combines genome-wide chromatin
accessibility/activity with putative TF binding sites
that, in classification mode, are integrated with
RNA-seq. We apply diffTF to compare (1) mutated
and unmutated chronic lymphocytic leukemia pa-
tients and (2) two hematopoietic progenitor cell
types. In both datasets, diffTF recovers most known
biology and finds many previously unreported TFs. It
classifies almost 40% of TFs based on their mode of
action, which we validate experimentally. Overall, we
demonstrate that diffTF recovers known biology,
identifies less well-characterized TFs, and classifies
TFs into transcriptional activators or repressors.

INTRODUCTION

Transcription factors (TFs) coordinate dynamic responses to

intra- and extracellular stimuli and regulate a multitude of biolog-

ical processes. Because many signaling cascades activate a

specific set of TFs, observing a change in overall TF activity

can serve as a proxy for activity of signaling pathways (Kim

et al., 2007). The activity of a TF is often cell type specific and de-
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pends on cofactors, binding partners, and local chromatin envi-

ronment (Whyte et al., 2013). Adding to this complexity, the

mode of action of many TFs can vary, making them act as tran-

scriptional activators and repressors, depending on the context

(Han et al., 2018). Thus, to correctly interpret the downstream ef-

fects of a change in TF abundance, it is important to understand

its global mode of action within the context of the study.

TFs are typically lowly abundant proteins and therefore diffi-

cult to detect in proteomics experiments (Kim et al., 2007;

Teng et al., 2008). If they are detected, their abundance and ac-

tivity do not necessarily correspond, because TFs are highly

regulated at the posttranslational level. However, chromatin

immunoprecipitation followed by sequencing (ChIP-seq), which

is the gold-standard technique for measuring genomic TF bind-

ing events, only provides information for one TF at a time and

does not detect global changes in TF binding activity unless spe-

cific experimental normalization methods are used (e.g., spike-

ins) (Bonhoure et al., 2014). In addition, neither proteomics nor

ChIP-seq experiments measure a TF’s mode of action. Activity

and mode of action can be measured by luciferase assays; how-

ever, they are typically done for a specific TF at a specific loca-

tion and therefore have fairly low throughput (Komatsu et al.,

2010; Liu et al., 2011). Databases like TRRUST (Han et al.,

2018) are collecting annotations of regulation modes of TFs

based on the literature and provide a comprehensive resource

for well-studied TF-target interactions. However, for most TFs,

there is contradictory evidence about their molecular mode of

action. In summary, a general framework for determining differ-

ential activity of TFs between conditions and classifying TFs

into transcriptional activators and repressors in a cell-type-

and condition-specific manner is currently lacking.

To move toward closing these gaps, we developed diffTF, a

tool to estimate global changes in TF activities and to classify

them into activators and repressors based on the integration of

genome-wide chromatin accessibility or histone mark ChIP-seq
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data with predicted TF binding sites and RNA sequencing (RNA-

seq) data. We have extensively tested and validated our

approach in two case studies: case study I, comparing two

patient cohorts, each with a large number of heterogeneous

samples, and case study II, comparing two cell types along a dif-

ferentiation trajectory, each with a small number of genetically

identical and thus homogeneous replicates. For case study I,

we obtained publicly available ATAC-seq data of a cohort of

>50 patients suffering from chronic lymphocytic leukemia (CLL)

(Rendeiro et al., 2016). For case study II, we performed ATAC-

seq and RNA-seq on murine multipotent progenitors (MPPs)

versus granulocyte-macrophage progenitors (GMPs) in quadru-

plicate (Rasmussen et al., 2019). In both case studies, diffTF

recovered the known biology, and it was able to classify 39%

and 63% of all expressed TFs based on their mode of action in

case study I and II, respectively. We validated the classification

experimentally by comparing differential expression and differ-

ential activity of TFs in each cell type upon drug stimulation

(case study I) and genetic perturbation (case study II).

RESULTS

Conceptual Derivation of TF Activity and Classification
of TFs into Transcriptional Activators and Repressors
Wedefine TFmotif activity, or TF activity for short, as the effect of

a TF on the state of chromatin as measured by chromatin acces-

sibility or active chromatin marks (i.e., ATAC-seq, DNase

sequencing [DNase-seq], or histone H3 lysine 27 acetylation

[H3K27ac] ChIP-seq). This definition is based on our earlier

work, in which we showed that genetic variants affecting

H3K27ac signal across individuals can be explained by disrup-

tions of TF motifs whenever the variant overlaps with a TF bind-

ing site (TFBSs) (Grubert et al., 2015). This suggests that TFs play

a causal role inmediating the effect of the DNA variant onto chro-

matin marks (Liu et al., 2015). By reversing this argument, we

propose to use the aggregate changes in chromatin accessibility

near putative binding sites of a TF as a readout for its potential

effect on chromatin. A similar concept has been proposed in

other tools that estimate TF activity based on ATAC-seq or

DHS data (Baek et al., 2017; Schep et al., 2017).

Because little is known about the functional mode of action of

TFs, and indeed, most TFs have been reported to act as both

activator and repressor, depending on the study (Han et al.,

2018), we wanted to devise a data-driven approach to classify

TFs into potential activators and repressors. The classification

framework is based on the following assumptions: (1) Increasing

the abundance of an activator TF will increase the average

accessibility at the regulatory elements controlled by the TF,

which will lead to upregulation of its target genes. (2) Increasing

the abundance of a repressor TF will decrease the average

accessibility at the regulatory elements controlled by the TF,

which will lead to a downregulation of its target genes.

Although the assumption for activators is well accepted, it is

less straightforward for repressors: on the one hand, the binding

of the TF increases the accessibility locally; on the other hand,

repression is globally associated with closed chromatin. There-

fore, we test these assumptions in the context of case study I

(see the next section).
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These ideas are implemented in diffTF to globally assess

differential TF activity between two conditions (basic mode; Fig-

ure 1A; Figure S1A) and to classify TFs into activators and re-

pressors (classification mode; Figure 1B). Basic mode is based

on genome-wide accessibility or ChIP-seq (of active chromatin

marks) data and a list of putative TFBSs that can be obtained

by in silico predictions (e.g., using PWMScan; Ambrosini et al.,

2018) or from a collection of ChIP-seq data (e.g., ReMap; Griffon

et al., 2015). It outputs differential TF activity and a p value for

each TF. Briefly, diffTF calculates the log2 fold change in acces-

sibility (or histone ChIP-seq) for each TFBS and summarizes

them per TF while normalizing for GC content (Figure S1B; see

STAR Methods). The significance is assessed using either an

empirical test, based on TF activities from permuted sample la-

bels, or an analytical procedure, which provides a p value based

on t statistic and estimated variance (see STAR Methods; Fig-

ures S2D and S2E). For classification mode, diffTF additionally

requires RNA-seq data to estimate the abundance of each TF

by its expression level (see STAR Methods). It outputs a classifi-

cation into putative activators, repressors, or undetermined for

each TF. To do so, it compares the distribution of correlations

for peaks with putative binding sites (foreground) against all

other peaks (background) and classifies TFs depending on

whether the correlations of putative targets are significantly

more positive than (activator), more negative than (repressor),

or indistinguishable from (undetermined) the background

(Figure 1B).

Case Study I: Differential TF Activity in a Heterogeneous
ATAC-Seq Dataset in CLL
To assess the technical robustness of diffTF and its power to

recover a relevant biological signal, we applied it to a well-stud-

ied biological system, which we found in a study that comprises

a large ATAC-seq dataset comparing different subtypes of the

extensively studied cancer chronic lymphocytic leukemia (CLL)

(Rendeiro et al., 2016).

Chronic lymphocytic leukemia (CLL) is a frequent cancer in the

Western world, particularly among the elderly. It falls into two

major subtypes, which are defined based on the mutation status

of the IgHV locus (mutated CLL [M-CLL] and unmutated CLL

[U-CLL]). In M-CLL, B cells go through normal affinity maturation

with the aid of T helper cells and undergo multiple rounds of

IgHV somatic hypermutation to produce high-affinity B cell re-

ceptors (BCRs). In contrast, U-CLL B cells reach their affinity

maturation in an unregulated manner without T helper cells

(Chiorazzi and Ferrarini, 2011). Overall, this leads to worse clin-

ical outcomes, shorter survival, and higher relapse frequency

(Furman et al., 2014).

The dataset comprises of ATAC-seq data for 56 CLL patients

(88 samples) that are stratified by the mutation status of the IgHV

locus (34 U-CLL, 50 M-CLL, and 4 unclassified; see Table S3).

After data processing and quality control, 25 U-CLL and 27

M-CLL samples remained (Figure S3; see STAR Methods).

Applying diffTF in basic mode revealed 68 differentially active

TFs between the two subtypes of CLL (false discovery rate

[FDR] < 10%; Figure 2A; Table S1).

Because TF binding site predictions, on which diffTF relies,

are inherently noisy and may result in many false-positive
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Figure 1. Schematic Representation of the diffTF Workflow

(A) Simplified workflow illustrating the diffTF basic mode: For each binding site of a given TF (TFBS), the fold change between the two conditions is computed,

followed by comparing their distribution to a background set of fold changes obtained from GC content-matched loci that do not contain the putative TFBS. The

difference in the distributions is visualized in a volcano plot, where the y axis indicates statistical significance and the x axis indicates the effect size. (For a detailed

workflow, see Figure S1A.)

(B) Schematic representation of the diffTF classification mode: TF expression levels are correlated with the accessibility of their target sites. If correlations with its

target sites are more positive than with the background distribution (non-target sites), the TF is classified as putative activator; if they are more negative than with

the background, it is classified as putative repressor; and if they are indistinguishable from the background, it is classified as undetermined (see STARMethods).
predictions when compared with ChIP-seq experiments (Landt

et al., 2012), we wanted to ensure the robustness of diffTF before

focusing on the biological interpretation. To do so, we compared

the results of a diffTF run on all predicted binding sites (see STAR

Methods) to those of a run on ChIP-seq-validated sites only and

found that they strongly correlate (Pearson’s R = 0.84; Figure 2B;

Figures S4A and S4B). Similarly, we found diffTF is highly robust

with respect to other parameters for TF binding site predictions,

such as nucleotide composition of the predicted binding sites for

PWMScan (Figures 4C and 4D), p value thresholds in PWMScan

to predict TFBS (1e�5 versus either 1e�6 or 5e�5; Figures 2C

and 2D, R = 0.62 and 0.87, respectively), and motif database

(JASPAR versus HOCOMOCO; Figure 2E, R = 0.69). Additional

robustness tests such as the impact of different motif extension

sizes are described in STAR Methods and Figures 4E and 4F.

Overall, these tests demonstrate the robustness of diffTF with

respect to the high noise inherent to TFBS predictions. The rea-

sons for the robustness are likely that diffTF aggregates signals

across thousands of TFBSs for each TF and that false-positive

predictions increase the noise without eliminating the signal.

We hypothesized that aggregating signals across many TFBS

per TF may even allow diffTF to detect differences in experi-

ments with little biological signal. To test this, we removed

high-signal regions (i.e., differentially accessible peaks at 5%

FDR; see STARMethods) and found that the resulting differential
TF activities were similar to those obtained from a run on the

full set (R = 0.89), thus demonstrates the power of diffTF to

capture the differential TF activities in low-signal settings (Fig-

ure 2F). In agreement with this, we found that diffTF provides

highly congruent results across a range of sample sizes and

sequencing depths (Figure S4G). Generally, the number of sam-

ples appeared more important than the read depth, with even 1

million to 5 million processed reads providing consistent results

when using all samples (see STAR Methods). Although these re-

sults are dataset specific, they provide guidelines for the applica-

bility of diffTF and are in line with single-cell ATAC-seq data

analyses that show robustness to low coverage for genome-

wide summary statistics (Mezger et al., 2018).

In summary, these results establish the robustness of diffTF

in quantifying differences in TF activities and demonstrate

that aggregating signals across all binding sites is a powerful

and sensitive approach to overcome limitations such as low

coverage and little underlying biological signal.

diffTF Proposes Many Previously Unreported TF
Candidates that Distinguish U-CLL from M-CLL
We next focused on the biological interpretation of the differen-

tially active TFs between M-CLL and U-CLL (FDR 10%; Fig-

ure 2A). About 44% of them have previously been associated

with CLL, and most of them (80%) agree with the reported
Cell Reports 29, 3147–3159, December 3, 2019 3149
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Figure 2. Technical Robustness and Biological Validation of Results from diffTF in Basic Mode Applied to Case Study I

(A) Volcano plot of differential TF activity between U-CLL (n = 27 biological replicates) and M-CLL (n = 25 biological replicates). Significance threshold (10% FDR)

is indicated with a dotted line. TFBS, number of predicted TFBSs. p values are obtained through diffTF using the empirical approach and adjusted by the

Benjamini-Hochberg procedure (y axis).

(B–F) Assessment of technical robustness. (B) Comparison of all predicted TFBSs and TFBSs experimentally validated by ChIP-seq data from ReMap (see also

Figures S4A and S4B). For each TF (n = 640), the percentage of TFBSs that overlap ChIP-seq data is indicated from blue (0%) to red (100%). (C and D) Com-

parisons between p value thresholds in PWMScan to predict TFBS (n = 628 TFs): (C) standard (1e�5) versus stringent (1e�6) and (D) standard (1e�5) versus

relaxed (5e�5). (E) Comparisons between different motif databases (HOCOMOCO v.10 versus JASPAR 2016; n = 412 TFs). (F) Comparisons between different

peak sets (full consensus [allPeaks] versus non-differentially accessible peaks [noDApeaks]; n = 640 TFs). For (C)–(F), R indicates Pearson correlation and TFs are

colored by diffTF significance (5% FDR) in the compared analyses (white, not significant; light green or blue, significant for the x axis or y axis only; purple,

significant in both).

(G) Receive-operator characteristic (ROC) curves for three selected Gene Ontology (GO) terms with high area under the curve (AUC) based on all differentially

active TFs (FDR < 10%) between U-CLL and M-CLL. See Table S2 for the full list of significant GO terms.
condition (i.e., M-CLL or U-CLL; Table S2). Overall, we found that

the differential TFs recapitulate many known biological differ-

ences between M-CLL and U-CLL, such as leukocyte differenti-

ation, immune response, and cell-surface signaling that includes

BCR signaling, all known to be increased in U-CLL (Figure 2G;

Table S2; see STAR Methods).

TFBS prediction is inherently based on TF motifs, which can

be similar across related TFs. We therefore grouped TFs into

TF motif families using the position weight matrix (PWM) clus-

tering tool from RSAT (Castro-Mondragon et al., 2017; clusters

available at https://bit.ly/2J9TaaK). Most significant TFs fell
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into ten groups (Figure S5A). The most active groups of TFs in

U-CLL are the IRF family and STAT2 (Figure 2A), both of which

have been associated with disease onset and progression and

harbor several CLL susceptibility loci (Arvaniti et al., 2011; Have-

lange et al., 2011; Slager et al., 2013). They are followed by a

group of TFs that include c-MYC, a cell proliferation factor that

is highly abundant in U-CLL (Landau et al., 2015; Yeomans

et al., 2016). For M-CLL, we identified TFs that suggest normal

functionality of B cells through the classical BCR, nuclear factor

kB (NF-kB), and Wnt signaling pathways (Table S2). The most

active TF family for M-CLL were the ROR factors (Figure S5A),

https://bit.ly/2J9TaaK


which coactivate NF-kB-dependent survival signaling in CLL

(Minami et al., 2010) and the GATA family, known to prime he-

matopoietic stem cells (HSCs) toward the lymphoid lineage

and to increase self-renewal of the stem cells in CLL (Kikushige

et al., 2011). We also found the EGR family, which are implicated

in aberrantly hypomethylated CpG sites in CLL (Oakes et al.,

2016); Gli1, which is part of the Hedgehog signaling pathway

that regulates apoptosis, thereby supporting survival of M-CLL

cells (Kern et al., 2015); and PPARD, which has recently been

linked toM-CLL through its effect onmetabolic pathways in can-

cer cells (Li et al., 2017).

Among the factors that have not previously been associated

with CLLwe found several TFs significantly higher in U-CLL that

are involved in the regulation of the circadian clock (i.e.,

BMAL1, CLOCK, and NR1D1), which has recently been pro-

posed as a hallmark of cancer (El-Athman and Relógio, 2018).

Other TFs include members of the basic helix-loop-helix family,

such as BHE40, a regulator of mitotic division (D’Annibale et al.,

2014) and essential for the development of B1-a cells (Kreslav-

sky et al., 2017), and TFAP4, TFE3, and TFEB, for which there

are known cases of gene fusions in renal cell carcinoma (Kauff-

man et al., 2014). TFs more active in M-CLL were associated

with pathways relevant for cancer cells and B cells, such as

escape from apoptosis (ZN784) (Kasim et al., 2017), regulation

of cell-cycle progression (ZBTB6) (Chevrier et al., 2014), and

selection of B cells and promotion of fetal B lymphopoiesis

(ARID3A) (Zhou et al., 2015). GFI1 family members are less

active in U-CLL, and their expression and activation might influ-

ence and decrease rates of apoptosis in B cells (Coscia et al.,

2011).

In summary, these results show that diffTF recapitulates much

of the known biology of the two subtypes of CLL and identifies

several TFs that have not previously been associated with CLL

and that are likely implicated in the subtypes of the disease.

Determination of the Molecular Function of TFs:
Transcriptional Repressors and Activators
To gain more mechanistic insights into some regulatory differ-

ences between U-CLL and M-CLL, we applied diffTF in classifi-

cation mode. In addition, we used these data to test the

assumption posed in the beginning that repressors and activa-

tors have an opposing effect on chromatin accessibility at their

target sites, which underlies our classification framework.

To understand the effect of repressors and activators on chro-

matin accessibility, we compared the accessibility footprint (Tn5

insertion sites) of a well-known repressor (REST) and a well-

known activator (STAT2) that are expressed in our cell type.

For REST, we found an increase in accessibility at the borders

of its motif, which likely reflects accessibility induced by the

binding of the TF. Importantly, however, and in line with our as-

sumptions, we found that the accessibility drops below the

genome-wide averagewithin 10 bp of themotif center (Figure 3A,

bottom). This is in contrast to STAT2, which showed increased

chromatin accessibility outside its core binding site, slowly drop-

ping to the genome-wide average over a distance > 100 bp from

the center of the motif and likely representing the effect of the TF

on opening the surrounding chromatin (Figure 3A, top). Thus,

even though there is an increase in accessibility for the repressor
at the immediate binding site, the surrounding chromatin is

highly compact, whereas it is open for the activator. This pro-

vides evidence that the assumption underlying our TF classifica-

tion approach is biologically reasonable.

Applying diffTF in classification mode to the CLL dataset, for

which RNA-seq data were available for eight individuals (after

QC; see STARMethods), we were able to classify 39% of the ex-

pressed TFs (146 of 370) as either putative activators or repres-

sors (STAR Methods; Figure S5B). In Figure 3B, we show an

example of the foreground and background distributions for an

activator (IRF2), a repressor (PAX5), and an unclassified TF

(SP4). To visually assess these distributions for all TFs, we sub-

tracted the background from the foreground distribution and dis-

played it as a heatmap (Figure 3C). This illustrates the shifts we

observe for putative activators and repressors yet shows that a

large fraction of TFs have similar foreground and background

distributions and are therefore classified as undetermined. Our

classification is based on variation across individuals; thus, we

will not be able to classify TFs with low expression variation.

Other reasons for undetermined classifications include post-

translational regulation, such that RNA expression does not cap-

ture the abundance of a TF’s active form, or bifunctional TFs that

act as activator and repressor in the same cell type.

Footprint analyses of all differentially active TFs followed by

principal-component analysis (PCA) revealed four major foot-

print classes that were distinguishable by the accessibility at

the binding site and flanks (as captured by PC1 and PC2,

respectively; Figure 3D). Most TFs classified as repressors fell

into classes III and IV (37 of 57), which are characterized by

low flank accessibility (low PC2), whereas most putative activa-

tors fell into classes I and II (53 of 89), which are characterized by

high flank accessibility (high PC2). This typifies class III and IV,

which included PAX5 (Figure 3E, left), as repressors and class I

and II, which included STAT2 (Figure 3E, right), as activators.

When plotting the footprints for all predicted activators and all

predicted repressors, they overall recapitulate their predicted

molecular mode of action with respect to opening or closing

chromatin in the flanking regions of their binding sites (Figure 3F).

Validation of the Activator/Repressor Classification and
Their Characterization
When we compared our TF classifications to the mode of action

that was curated by the TRRUST database, we found that most

TFs have been classified almost equally often as both activators

and repressors (Figure S5C). Therefore, we had to find another

way to validate our predictions. To do so, we devised the

following testing framework: if our classifications were correct,

we would expect that increasing the abundance of a TF results

in increased motif accessibility for activators and decreased

motif accessibility for repressors. Therefore, differential TF activ-

ity and differential expression should be positively correlated for

activators and negatively correlated for repressors.We assessed

this expectation within the Rendeiro et al. (2016) data: We calcu-

lated differential expression between U-CLL and M-CLL for all

TFs stratified into activators, repressors, and undetermined

and compared this to their differential TF activity. The results

agreed with our expectations of a positive correlation for activa-

tors (Spearman’s rho = 0.22, p = 0.033), a negative correlation for
Cell Reports 29, 3147–3159, December 3, 2019 3151
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Figure 3. Characterization of Results from diffTF in Classification Mode Applied to Case Study I

(A) Exemplary footprints (mean Tn5 insertions centered at TFBS) for a well-known activator (STAT2, top) and a well-known repressor (REST, bottom). Tn5 in-

sertions were normalized to the library size and numbers of samples between U-CLL and M-CLL. The genome-wide average of insertions within accessible

chromatin is shown as a solid gray line.

(B) Foreground (red) and background (gray) distributions of Pearson correlations between RNA expression and signal at ATAC-seq peaks are shown for a putative

activator (IRF2, n = 4,362 TFBS, top), a repressor (PAX5, n = 4,438 TFBS, bottom), and an undetermined TF (SP4, n = 15,938 TFBS,middle). The p values are given

for Wilcoxon rank-sum test and adjusted using the Benjamini-Hochberg procedure.

(C) Difference between foreground and background distributions for all TFs are displayed as a heatmap. Each horizontal line represents the subtraction of the

binned foreground minus the binned background correlation distributions (40 bins) for one TF. TFs are sorted from strongest predicted activator to repressor.

(D) Scatterplot comparing PC1 and PC2 from a PCA of the footprints of all expressed TFs (n = 370). The insets (classes I–IV) display the average footprint across

TFs in that quadrant.

(E) Footprint analysis for one of the strongest putative activators (IRF2, right) and one of the strongest putative repressors (PAX5.A, left). Footprints are shown

separately for M-CLL (blue) and U-CLL (orange) based on the normalized number of Tn5 insertions (top) and as the difference (U-CLL minus M-CLL, bottom).

(F) Average footprints for all significant (FDR < 10%) activators (top) and repressors (bottom) are shown.

See (A) for axis descriptions. The data presented in this figure are based on 27 and 25 biological replicates for U-CLL and M-CLL, respectively.
repressors (rho = �0.37, p = 0.01), and no correlation for unde-

termined TFs (rho = �0.04, p = 0.51; Figure 4A, top). Because

one could argue that this is a bit circular (TF classifications are

based on the same data as the validations), we next assessed

the classifications in an independent experiment. To do so, we

obtained mononuclear cells from four CLL patients of an inde-

pendent patient cohort (H.G., unpublished data) and profiled

RNA-seq and ATAC-seq with and without treating them with

ibrutinib (see STAR Methods). We then calculated TF activity

and differential TF expression before and after treatment while

using the same classification from case study I to stratify the

TFs into putative activators and repressors. We found that 46

of 68 TFs changed in the predicted direction, i.e., a change in

abundance of a predicted activator was positively correlated

with its change in TF activity (rho = 0.29, p = 0.054), while it

was negatively correlated for predicted repressors (rho =

�0.40, p = 0.05) (Figure 4A, bottom). Overall, these results

demonstrate that the transcriptional upregulation of TFs upon
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ibrutinib treatment resulted in a TF activity change that was

consistent with our prediction in 68% of the differentially

active TFs.

To further characterize our putative repressors and activators,

we overlapped their binding sites with chromatin states for

primaryB cells obtained from the Epigenomic Roadmap (Kundaje

et al., 2015). We found that our predicted activators and repres-

sors preferentially locate to active and repressive states, respec-

tively (Figure 4B; Figure S5D). This corroborates our molecular

mode of action predictions and is in line with the observation

that repressor footprints tend to have less accessible chromatin

in their flanking regions than activators (see Figure 3A).

Finally, we verified that our measure of chromatin accessi-

bility-based TF activity reflects a TF’s effect on its target genes

by comparing the direction of expression change of target

genes of a given TF with its change in activity as calculated by

diffTF. The direction agreed in 29 of the 40 tested TFs (Figure 4C;

see STAR Methods). Importantly, this relationship held true
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Figure 4. Experimental Validation for the

Activator/Repressor Classification in Case

Study I.

(A) Correlation of differential TF activity and differ-

ential gene expression (log2 fold changes obtained

with DESeq) for predicted activators (left), unde-

termined TFs (middle), and predicted repressors

(right) for the comparison of U-CLL and M-CLL

(top) and for CLL samples treated with ibrutinib

versus control treatment with DMSO (bottom). TF

classifications were obtained from data of case

study I. Ibrutinib treatment was performed on an

independent patient cohort (n = 4). Spearman’s rho

and p value, as well as the odds ratio (OR) and

p value of Fisher’s exact test, are reported in

the figure. The number (n) of TFs is indicated for

each quadrant. For the bottom row, only TFs that

were significant in diffTF in case study I (FDR <

10%) are shown. Color shadings indicate the

observed versus the expected ratio for each

quadrant (blue, less than expected; red, more than

expected).

(B) Fraction of TFBSs overlapping specific chro-

matin states (Kundaje et al., 2015) are shown for

putative activators (green) and repressors (red).

Only chromatin states with significant differences

between activators and repressors are displayed

(Wilcoxon test, p < 0.05).

(C) Correlation of differential TF activity (diffTF

U-CLL versus M-CLL) and the differential expres-

sion of target genes (median log2 fold change

U-CLL versusM-CLL) are shown. Color of TF labels

represents mode-of-action class (activator, green;

repressor, red) on a continuous scale based on the

correlation strength (odds ratio [OR] and p value are

given for Fisher’s Exact test; R and corresponding

p value are given for Pearson’s correlation).

The data presented in this figure are based on 27

and 25 biological replicates for U-CLL and M-CLL,

respectively.
regardless of whether the TF was classified as activator or

repressor (green or red, respectively, in Figure 4C), thus demon-

strating the correspondence between chromatin-based predic-

tion of the mode of action and its actual effect on the expression

of the target genes.

In summary, we show that diffTF is able to classify TFs by their

mode of action and that the activity of most TFs follows the pre-

dicted direction upon perturbation of their expression level. TFs

that did not follow the expected trend may represent interesting

biology, e.g., posttranslational regulation, such that a change in

expression would not reflect a change in the abundance of its

active form. Future studies may use this information for investi-

gating different ways of regulating the activity of a TF.

Case Study II: Applying diffTF to a Small-Scale
Multiomics Dataset
A common study design is to assess the differences between

two distinct conditions with few biological replicates per condi-

tion. To assess the applicability of diffTF for such data, we
applied it to the well-studied mouse hematopoietic system. We

used eight ATAC-seq and RNA-seq profiles of multipotent pro-

genitor (MPP) cells (Lin�cKit+Sca1+; CD150�CD48+), an early

hematopoietic progenitor population capable of supporting mul-

tilineage blood production (Sun et al., 2014), and compared them

with the more differentiated and myeloid-restricted GMPs

(Lin�cKit+Sca1�; CD16/32+). The data, which are also published

as part of our previous study (Rasmussen et al., 2019), were pro-

cessed using our in-house ATAC-seq pipeline (see STAR

Methods). diffTF (using the analytical procedure; see STAR

Methods) identified the well-known class of master regulators

of myelopoiesis, the CEBP family (C/ebpa, C/ebpb, C/ebpd,

C/ebpε, and C/ebpg) as the most differentially active TFs in

GMPs versus MPPs (Figure 5A; Figures S6A and S6B). In addi-

tion, we observed higher activity of the MYC/MYB factors,

known to be exclusively active in GMPs (Baker et al., 2014),

and NFIL3, which is involved in the generation of natural killer

cells (Gascoyne et al., 2009). Conversely, MPPs showed higher

activity for IRF/STAT, ZEB1, and ITF2 (part of Wnt signaling),
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Figure 5. Results of diffTF in Basic and Classification Mode Applied to Case Study II

TFs are colored according to their predicted classification (red, repressors; gray/black, undetermined; green, activators). Only expressed TFs are shown (n = 268).

(A) Volcano plot of differential TF activity between MPPs (n = 4 biological replicates) and GMPs (n = 4 biological replicates). Only the most significant TFs that are

relevant for hematopoietic stem cell differentiation are labeled (see Table S1 for full list). P values are obtained through diffTF using the analytical approach and

adjusted by the Benjamini-Hochberg procedure (y-axis).

(B) PC1 versus PC2 of a PCA on footprint data in analogy to Figure 3D. Classes are labeled based on Figure 3D.

(C and D) Correlation of differential TF activity and differential expression (log2 fold changes obtained from DESeq) are shown for activators (left), undetermined

TFs (middle), and repressors (right) for the comparison of GMP versusMPP (C) andGMPTET2 knockout versus wild type, which represents independent data (D).

Color shadings in (C) and (D) indicate the observed versus expected log2 ratio for each quadrant (blue, less than expected; red, more than expected). TF

classifications were obtained from thewild-typeGMP andMPP samples. Spearman’s rho and p value, as well as the odds ratio (OR) and p values of Fisher’s exact

test, are provided. The number of TFs is indicated in each quadrant.
as well as TFs from the Homeodomain (HXB7 and HXA10) and

Forkhead (FOXO3) families, all of which are associated with

self-renewal of HSCs (Sands et al., 2013).

Applying diffTF in classification mode classified 158 TFs

(of 268 expressed TFs) as putative activators or repressors. A

PCA of the TF footprints revealed, similar to case study I, that

PC1 separates high from low motif accessibility and PC2 sepa-

rates high from low flank accessibility, thus suggesting this as

a general pattern (Figure 5B). The most differentially active TFs

between MPP and GMP were classified as activators (CEBPs,
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NFIL3, and IRFs) or had overall mixed evidence (i.e., activator

footprint but inconsistent correlation direction of expression

and activity, such as DBP andHLF). Themagnitude of differential

activity of the most differential putative repressor, JUN, was far

below that of the differential activators, indicating that the differ-

entiation process from MPP to GMP is mainly driven by tran-

scriptional activators. We again validated the classifications by

comparing differential activity and differential expression (MPP

versus GMP) and found overall more positive correlations for pu-

tative activators (rho = 0.69, p = 2.1e�15) and more negative
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Figure 6. Comparison of diffTF Results of

Case Study I and II

Footprints (left), correlation distributions (middle),

and expression values (log10-transformed RNA-seq

counts, right) are shown for CEBPB in CLL data from

case study I, where it was classified as putative

repressor (A), and in the GMP (blue) andMPP (yellow)

data from case study II, where it was classified as

activator (B). The p value for both (A) and (B) are given

for the Wilcoxon Rank sum test.
correlations for putative repressors (rho = �0.58, p = 4.9e�7;

Figure 5C). The change in TF activity based on chromatin acces-

sibility was again correlated with the change in target gene

expression, regardless of whether the TF was classified as a

repressor or an activator (Figure S6D).

For the independent validation of the classification, we ob-

tained data from our earlier work (Rasmussen et al., 2019), which

measured the effect of TET2 knockout (KO) in GMP cells. We

calculated the correlations between differential expression and

differential TF activity for TET2 wild type versus KO while strati-

fying the TFs based on the classes from case study II (GMP and

MPP in wild type). We found that 100 of 158 TFs (63%) behaved

in the direction as predicted by their class (Figure 5D).

Overall, these results show that diffTF is able to identify the

known TFs that drive the differentiation from MPP to GMP,

thus demonstrating its power to detect signals for study designs

with a small number of replicates. Furthermore, we show that

our classification scheme correctly predicts the directionality of

change in TF activity upon genetic perturbation in most TFs.

Having performed the activator/repressor classification in two

settingswithin the hematopoieticdifferentiation system,wequan-

tified how many TFs changed their mode of action between the

two case studies. In total, we found 16 TFs were classified as po-

tential activators in case study I and repressors in case study II, or

vice versa (Table S1). Among these, CEBPB showed the most

divergent footprints,whichwere in the samedirectionas thediffTF

classifications in each case study: It is classified as a repressor

and has a repressor-like footprint in CLL (Figure 6A) and is classi-

fied as an activator with an activator-like footprint in GMP/MPP

(Figure 6B). Because CEBPB is one of the TFs driving differentia-

tion in the hematopoietic system, we speculate that its role as a

repressor in CLLmay contribute to themalignancy of the disease.

Comparison with Similar Tools
Finally, we compared diffTF to the few tools with a similar focus

(Baek et al., 2017; Heinz et al., 2010; Schep et al., 2017), both
Cell Rep
qualitatively (chromVAR, BagFooT, and

HOMER; Table S4) and quantitatively

(HOMER and chromVAR). Overall, these

comparisons revealed that although the re-

sults between tools are comparable (see

STAR Methods), diffTF seems more sensi-

tive than, e.g., HOMER, and it provides a

more flexible and tailored analysis frame-

work than chromVAR (which was devel-

oped for single-cell ATAC-seq data)
because of the extensive choice of parameters, diagnostic plots,

TFBS-specific results, visualizations, and pipeline adjustability.

Its most outstanding feature is its ability to directly integrate

RNA-seq with ATAC-seq data for classifying TFs into putative

activators and repressors.

DISCUSSION

We presented a genome-wide method for quantifying differential

TF activity for a large set of TFs simultaneously and for

classifying them into their molecular mode of action as putative

transcriptional activators or repressors. The method, which is

available for download at https://git.embl.de/grp-zaugg/diffTF,

along with comprehensive documentation and example data,

has been applied in the context of two case studies that demon-

strate its power to uncover biologically meaningful changes in TF

activity in (1) a heterogeneous patient cohort of two subtypes of

a disease (U-CLL versus M-CLL) and (2) in a small-scale cell-

type comparison with few but homogeneous biological replicates

(GMP versus MPP in isogenic mice). We extensively tested and

demonstrated the technical robustness of diffTF and showed

that is able to overcome the inherent noisiness of TF binding site

predictions by aggregating data across all putative binding sites.

Calculating differential TF activity based on aggregating sig-

nals across the genome has been proposed before based on

the expression of putative target genes of a certain TF (Boorsma

et al., 2008; Bussemaker et al., 2001). However, using chromatin

instead of gene expression to calculate TF activity has several

advantages: First, chromatin is a simpler trait than gene expres-

sion (which is the result of transcription and degradation) and

thus more sensitive to detect small differences. Second, there

are many more peaks than genes, thus allowing better statistics

and signal-to-noise ratio. Third, the effect on chromatin is locally

defined, whereas the elements regulating gene expression (e.g.,

enhancers) are often not well defined (i.e., enhancer-gene linking

is an active area of research).
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In classification mode, diffTF can classify TFs into putative ac-

tivators and repressors based on the correlation of their expres-

sion level (RNA-seq) and the activity of their putative binding

sites (ATAC-seq). This information is relevant when interpreting

the action of TFs, because it is important to know whether upre-

gulation of a TF has a positive or negative effect on chromatin

(and therefore transcriptional) activity. Our experimental valida-

tions demonstrate that diffTF can correctly predict the direction-

ality of the effect of transcriptional upregulation of TFs on their

chromatin activity upon chemical stimulation (in case study I)

or genetic perturbation (in case study II) for most TFs. Neverthe-

less, we note that diffTF is prone to mis-classifying TFs that (1)

act bifunctionally as activators and repressors, (2) are heavily

regulated posttranslationally, or (3) show little variation in RNA

expression across the samples. Some of these mis-classifica-

tionsmay represent interesting subjects for future investigations.

Furthermore, if two TFs have similar motifs, which makes it diffi-

cult to distinguish them, diffTF may have difficulties in classifying

them correctly. Thus, for distinguishing the functional roles of

TFs from the samemotif-family, further biochemical experiments

are needed. Despite these potential pitfalls, diffTF will be highly

relevant for generating hypotheses about the molecular mecha-

nism of TFs on a global level.

Although similar methods have been proposed for analyzing

ATAC-seqdata (Baek et al., 2017; Schep et al., 2017), ourmethod

has several advantages when dealing with bulk ATAC-seq data

and can be used for histone mark ChIP-seq data: (1) Unlike other

methods that calculate the background theoretically based on

the genome-wide read depth, diffTF is insensitive to sequence

and locus-dependent biases, because we calculate a fold

change between conditions for each region, thus normalizing

for local read depth biases. This is particularly advantageous

for detecting small changes such as those between two hetero-

geneous cohorts in patient-control studies. (2) diffTF allows

integration with matching RNA-seq data to classify TFs into acti-

vators and repressors in a fully data-driven approach within the

same analysis framework. Such classifications are crucial when

interpreting the effects of up/downregulation of a particular fac-

tor. (3) diffTF provides the fold change value for each TFBS,which

allows easy retrospective follow-up analysis, e.g., identifying the

most differential regions regulated by a specific set of TFs. (4) Our

method provides the possibility to analyze time course data addi-

tively by calculating the overall change of slope for each TF (see

STAR Methods). Because of its flexibility, diffTF is computation-

ally expensive, and we provide detailed instructions on memory

and time requirements in the documentation.

Overall, we presented a multiomics data integration strategy

of ATAC-seq and RNA-seq data that calculates differential TF

activity across conditions and classifies TFs based on their

molecular mode of action. The main goal of diffTF is to aid in

formulating testable hypotheses and ultimately improve the un-

derstanding of regulatory mechanisms that are driving differ-

ences in cell state on a system-wide scale.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:
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d LEAD CONTACT AND MATERIALS AVAILABILITY

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

d METHOD DETAILS

B Summary of publicly available data used in analyses

B Tools used

B ATAC-Seq processing

B Description of the diffTF analysis workflow

B Validation of the analytical approach

B Guidance on the number of permutations and whether

to use the analytical or permutation-based approach

B Classification of TFs into activator and repressors

B CLL ATAC-Seq processing

B Running diffTF on the CLL data

B Comparison of diffTF results based on predicted

versus ChIP-Seq validated TFBS

B Assessing impact of TF motif scanning parameters on

diffTF results

B diffTF robustness analysis with respect to internal pa-

rameters for the CLL data

B Assessing dependence of diffTF results on differential

signal strength for CLL data

B GO terms associated with CLL progression

B Assessment of the power of diffTF with respect to sam-

ple size and sequencing depth for CLL data

B RNA-seq processing for CLL data and classification

into activators and repressors

B Correlation of TF activity with target genes expression

for CLL data

B Footprinting analysis for CLL data

B Chromatin state enrichment in CLL data

B CLL data treated with Ibrutinib

B ATAC-seq libraries generation of the CLL treated with

Ibrutinib

B RNA-seq library generation for the CLL dataset treated

with Ibrutinib

B Comparing diffTF results with HOMER for CLL data

B Comparison with similar tools

B HSC mouse data source (FACS sorting step)

B HSC ATAC-Seq libraries generation

B GMP-MPP ATAC-Seq processing

B GMP-MPP diffTF analysis

B GMP-MPP footprinting analysis
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Köster, J., and Rahmann, S. (2012). Snakemake—a scalable bioinformatics

workflow engine. Bioinformatics 28, 2520–2522.

Kreslavsky, T., Vilagos, B., Tagoh, H., Poliakova, D.K., Schwickert, T.A., Wöh-
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Peripheral blood samples Heidelberg University Hospital N/A

Chemicals, Peptides, and Recombinant Proteins

RPMI GIBCO Cat.No. 21875-034

Glutamine GIBCO Cat.No. 25030-24

Pen/Strep GIBCO Cat.No. 15140-122

Ibrutinib Selleckchem Cat.No. S2680

DMSO SERVA Cat.No. 20385

NEBNext High-Fidelity 2x PCR Master Mix New England Biolabs NEB #M0544

Critical Commercial Assays

Nextera index kit Illumina Cat.No. 20027213

DNA High Sensitivity kit Agilent Technologies Cat.No. 5067-4626

miRNeasy Mini Kit QIAGEN Cat.No. 217004

RNA Nano 6000 Assay Kit Agilent Technologies Cat.No. 5067-1511

TruSeq RNA Sample Preparation v2 Kit Illumina RS-122-2001

Deposited Data

Raw human CLL ATAC-seq and

RNA-seq data

Rendeiro et al., 2016 EGA: EGAS00001001821

TET2 knockout mouse ATAC-seq and

RNA-seq data

Rasmussen et al., 2019 GEO: GSE115972

Human reference genome NCBI build

37, GRCh37

Genome Reference Consortium http://www.ncbi.nlm.nih.gov/projects/genome/

assembly/grc/human/

Mouse reference genome NCBI build

38, GRCm38

Genome Reference Consortium http://www.ncbi.nlm.nih.gov/projects/genome/

assembly/grc/human/

Software and Algorithms

diffTF this paper https://difftf.readthedocs.io/en/latest/

Snakemake 5.0 Köster and Rahmann, 2012 https://snakemake.readthedocs.io/; RRID:SCR_003475

Bioconda project Gr€uning et al., 2018 https://bioconda.github.io/

Bioconductor Huber et al., 2015 https://www.bioconductor.org/; RRID:SCR_006442

Conda package manager Continuum Analytics, Inc. https://docs.conda.io/en/latest/

bedtools 2.26.0 Quinlan and Hall, 2010 https://bedtools.readthedocs.io/en/latest/;

RRID:SCR_006646

samtools 1.4 Li et al., 2009 http://www.htslib.org/; RRID:SCR_002105

Bowtie2 2.3.0 Langmead and Salzberg, 2012 http://bowtie-bio.sourceforge.net/bowtie2

deepTools 2.5.0 Ramı́rez et al., 2014 https://deeptools.readthedocs.io/en/develop/;

RRID:SCR_016366

FastQC 0.11.5 Andrews, 2010 https://github.com/s-andrews/FastQC;

RRID:SCR_014583

GATK 3.7 McKenna et al., 2010 https://software.broadinstitute.org/gatk/;

RRID:SCR_001876

pyDNase 0.2.4 Piper et al., 2015 https://pythonhosted.org/pyDNase/; RRID:SCR_005406

STAR 2.4.1 Dobin et al., 2013 https://github.com/alexdobin/STAR; RRID:SCR_015899

MACS2 2.1.1 Zhang et al., 2008 https://github.com/taoliu/MACS; RRID:SCR_013291

multiqc 0.9 Ewels et al., 2016 https://multiqc.info/; RRID:SCR_014982

Subread 1.6.0 Liao et al., 2013 http://subread.sourceforge.net/; RRID:SCR_009803
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Continued
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Picard tools 2.9.0 Broad Institute https://broadinstitute.github.io/picard/;

RRID:SCR_006525

Trimmomatic 0.36 Bolger et al., 2014 http://www.usadellab.org/cms/index.php?

page=trimmomatic; RRID:SCR_011848

PWMScan 1.1.1 Ambrosini et al., 2018 https://ccg.epfl.ch/pwmtools/

HOMER 4.9 Heinz et al., 2010 http://homer.ucsd.edu/homer/; RRID:SCR_010881

BiasAway 0.96 Worsley Hunt et al., 2014 https://github.com/wassermanlab/BiasAway

MEME suite 4.11 Bailey et al., 2009 http://meme-suite.org/; RRID:SCR_001783

Matrix-clustering Castro-Mondragon et al., 2017 http://rsat.sb-roscoff.fr/matrix-clustering_form.cgi

DiffBind 2.8.0 Bioconductor package Ross-Innes et al., 2012 https://bioconductor.org/packages/release/bioc/

html/DiffBind.html; RRID:SCR_012918

DESeq2 1.20.0 Bioconductor package Love et al., 2014 https://bioconductor.org/packages/release/bioc/

html/DESeq2.html; RRID:SCR_015687

csaw 1.14.1 Bioconductor package Lun and Smyth, 2016 https://bioconductor.org/packages/release/bioc/

html/csaw.html

limma 3.36.5 Bioconductor package Ritchie et al., 2015 https://bioconductor.org/packages/release/bioc/

html/limma.html; RRID:SCR_010943

precrec 0.10.1 R package Saito and Rehmsmeier, 2017 http://takayasaito.github.io/precrec/

ChIPseeker 1.20.0 Bioconductor package Yu et al., 2015 http://www.bioconductor.org/packages/release/

bioc/html/ChIPseeker.html

chromVar 1.6.0 Bioconductor package Schep et al., 2017 https://bioconductor.org/packages/release/bioc/

html/chromVAR.html

Other

HOCOMOCO v10 database Kulakovskiy et al., 2013 http://hocomoco10.autosome.ru/; RRID:SCR_005409

JASPAR 2016 database Mathelier et al., 2016 http://jaspar.genereg.net/api/; RRID:SCR_003030

TRRUST v2 database Han et al., 2018 https://www.grnpedia.org/trrust/

ReMap 2015 database Griffon et al., 2015 http://tagc.univ-mrs.fr/remap/

chromHMM data for the primary B cells Kundaje et al., 2015 http://www.roadmapepigenomics.org/

GENCODE v29 Frankish et al., 2019 https://www.gencodegenes.org/
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Judith Zaugg (judith.

zaugg@embl.de). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Informed consent was obtained from all patients and the experiments on CLL samples was approved by the ethics committee of the

medical faculty of the Heidelberg hospital under the number S-254/2016. Peripheral blood was taken from four CLL patients (2 male,

2 female, aged between 61 and 74; Table S3) and separated by Ficoll gradient (GE Healthcare), mononuclear cells were cryopre-

served on liquid nitrogen. Variation related to gender were added as a confounding effect to the analysis and its effect not directly

assessed. CLL samples were used in a paired design - i.e., CLL with treatment versus CLL with control treatment, thus gender and

age are controlled for due to the design of the experiment.

METHOD DETAILS

Summary of publicly available data used in analyses

(1) CLL: We obtained chronic lymphocytic leukemia data (Rendeiro et al., 2016) from the European Genome-phenome Archive

(EGA: EGAD00001002110). The dataset consists of 88 ATAC-Seq samples from 55 patients (34 U-CLL, 50 M-CLL and 4

unclassified) as well as RNA-Seq samples for 10 patients (6 M-CLL and 4 U-CLL) (Table S3). However, except for the

subsampling analysis, we here used only one sample per patient (the one with the suffix ‘‘_1’’), resulting in a total of 52 samples
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(25 U-CLL and 27 M-CLL). MPP/GMP: data described in this study was published as part of our earlier study (Rasmussen

et al., 2019), and is deposited at GEO: GSE115972.

(2) TF binding models: We used the mononucleotide position weight matrices (PWMs) data from the HOCOMOCO v10 database

(Kulakovskiy et al., 2013) for 640 human and 422 mouse TF (Table S3) for all analyses (http://hocomoco10.autosome.ru),

except for the comparison to the JASPAR database (see (5))

(3) ReMap: We used ChIP-seq data for hg19 from ReMap 2015 (Griffon et al., 2015) (http://tagc.univ-mrs.fr/remap/index.php).

(4) TF-target interactions: We used data from TRRUST version 2 (Han et al., 2015), a manually curated database of human and

mouse transcriptional regulatory networks (http://www.grnpedia.org/trrust/).

(5) JASPAR 2016 (Mathelier et al., 2016):We used JASPAR 2016 core PFMs, parsedwith the JASPARRESTful API. (http://jaspar.

genereg.net/api/).

Tools used
We used the workflowmanager Snakemake (Köster and Rahmann, 2012) 5.0 for all described pipelines as well as the Bioconda proj-

ect (Gr€uning et al., 2018) to maintain and handle software via the Conda package manager (https://conda.io/en/latest/). The ATAC-

Seq preprocessing pipeline uses bedtools 2.26.0 (Quinlan andHall, 2010), samtools 1.4 (Li et al., 2009),Bowtie2 2.3.0 (Langmead and

Salzberg, 2012), deepTools 2.5.0 (Ramı́rez et al., 2014), FastQC 0.11.5 (Andrews, 2010), GATK 3.7 (McKenna et al., 2010), MACS2

2.1.1 (Zhang et al., 2008), multiqc 0.9 (Ewels et al., 2016), Subread 1.6.0 (Liao et al., 2013), Picard tools 2.9.0, Trimmomatic 0.36

(Bolger et al., 2014), PWMScan (Ambrosini et al., 2018) web interface (https://ccg.epfl.ch/pwmtools/) and standalone release

1.1.1 (https://sourceforge.net/projects/pwmscan) and R version 3.4. In addition, a number of Bioconductor (Huber et al., 2015) pack-

ages were used, the most important of which are described below. For a full list of used packages and their corresponding versions,

see theGithub repository at https://git.embl.de/grp-zaugg/diffTF. For the various additional analyses that we performed, we used the

following tools:HOMER v4.9 (Heinz et al., 2010), BiasAway 0.96 (Worsley Hunt et al., 2014),MEME suite 4.11 (Bailey et al., 2009) and

the Bioconductor chromVAR package (Schep et al., 2017).

ATAC-Seq processing
The diffTF pipeline requires properly processed and quality-controlled ATAC-Seq data, which can be obtained by any generic ATAC-

seq processing. We used an in-house Snakemake pipeline that starts with raw fastq files and integrates multiple steps for quality

control, adaptor trimming, alignment, as well as general and ATAC-Seq specific post-alignment filtering and processing steps

(see workflow in Figure S1A). In the following we describe the pipeline using the default parameters. First, FastQC is used to assess

the sequence quality. Foreign sequences from the Nextera Transposase agent are removed with Trimmomatic, using the parameters

ILLUMINACLIP:NexteraPE-PE.fa:1:30:4:1:true TRAILING:3 MINLEN:10. Alignment is performed with Bowtie2with -X 2000 (maximal

fragment length), –very-sensitive and against hg19, followed by various cleaning steps (Picard tools CleanSam, FixMateInformation,

AddOrReplaceReadGroups, and ReorderSam) and base quality recalibration using GATK with known variants taken from the pro-

vided GATK bundle for hg19 (SNPs: dbSNP version 138, Indels: Mills_and_1000G_gold_standard.indels). This allows us to detect

and correct systematic errors made by the sequencer when estimating the quality score of each base call, thereby increasing

data quality.

The pipeline then performs various cleaning and filtering steps: (1) removing mitochondrial reads and reads from non-assembled

contigs or alternative haplotypes, (2) filtering reads with amapping quality below a user-specified threshold (default = 10), (3) marking

and removing duplicate reads with Picard tools, (4) adjusting read start sites as described previously(Buenrostro et al., 2013) (4 bp on

the forward and 5 bp on the reverse strand) and (5) removing reads with insertions or deletions using samtools (Figure S3A).

Lastly, a GC bias diagnosis and correction using deepTools and Benjamini’s method (Benjamini and Speed, 2012) is run for each

sample. This helps to assess the severity of the GC bias in the data, namely that of DNA polymerases used for PCR-based amplifi-

cations during the library preparation, which usually results in artificially higher read counts for GC rich regions (Figures S3C andS3D).

The output of the pipeline can be obtained for the (1) original and (2) GC corrected data as well as on the level of (3) individual files

(i.e., one file per replicate) or (4) pooled replicates (i.e., one file per sample). Downstream analyses for these four classes of files

involve peak calling using MACS2 with user-adjustable stringencies and parameters and removal of blacklisted regions. Finally

the pipeline outputs summary statistics and additional files and plots (coverage files for visualization, transcription start site enrich-

ment, sample-specific fragment length distributions (Figure S3B), library complexity measures, PCA (Figures S3E–S3J), sample

correlations).

Description of the diffTF analysis workflow
In summary, diffTF calculates a differential TF activity between two or more conditions for each TF by comparing the distribution of

fold-change differences across all binding sites of a TF to all binding sites from all other TFs. The algorithm is split into 7 steps as

described in the following (see also workflow in Figures S1A and S1B):

1. Generating a consensus peak set

Our approach is based on analyzing read counts in peaks, which requires a consensus peak set across input samples. This can either

be user-provided or it is generated from the sample-specific peaks. For the latter, consensus peaks are generated with the function

dba.peakset in theDiffBind (Ross-Innes et al., 2012) Bioconductor package (using the parameterminOverlap to define the number of
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samples within which a peak should be present). We then retain only peaks from genuine autosomes, thereby filtering sex chromo-

somes, non-assembled contigs as well as alternative haplotypes. The consensus peak set is finally sorted by coordinate to speed up

subsequent computations.

2. Scanning of TF binding sites

For each TF of interest, diffTF needs a set of TF binding sites (TFBS). To generate them, we used the HOCOMOCO database, which

provides TF bindingmodels (PWMs) that are collected from numerous ChIP-Seq experiments for 640 TFs in human and 422 inmouse

(Table S2).We used these PWMs to scan the hg19 genome using thePWMscanweb interface and the standalone version to obtain all

putative binding sites for each TF (cutoff p value - 0.00001, background base composition - 0.29;0.21;0.21;0.29). We finally sort the

TFBS for each TF by coordinates. For user convenience, we provide this sorted list for both human and mouse in the Git repository.

However, diffTF is not limited to any specific database and any tool can be used to predict TFBS.

3. Differential analysis for the consensus peakset

To calculate the fold-change between the two conditions across each peak, we first obtain the counts for the consensus

peakset for each sample using featureCounts from the Subread package with the options -p -B -d 0 -D 2000 -C -Q 10 -O -s

0. We then employ DESeq2 (Love et al., 2014) for count normalization using a cyclic loess approach as implemented in the

normOffsets function of csaw (Lun and Smyth, 2016) from Bioconductor to alleviate potential systematic biases between the

samples. Importantly, unrestricted design formulas can be incorporated into diffTF, making it therefore a very flexible approach

if additional co-variariates should be incorporated to increase statistical power. In addition to the two conditions comparison as

described above (e.g., mutated versus unmutated, wild-type versus mutant, young versus old), diffTF can also incorporate

design formulas for which the predictor variable is continuously-valued rather than binary to analyze time-course data (e.g.,

age, differentiation time, etc). The reported log2 fold-change is then per unit of change of that variable. That is, TFs with a nega-

tive differential TF activity have a negative slope per unit of change of that variable, while TFs with a positive TF activity have a

positive one. To check the normalization results, we generate four types of diagnostic plots: (1) MA plots (Figure S2I), (2) density

plots of normalized and non-normalized counts (see Figure S2H for the normalized counts), (3) mean-average plots (average of

the log–transformed counts versus the fold-change per peak) for each of the sample pairs and (4) mean SD plots (row standard

deviations versus row means).

4. Signal extraction for each TFBS

We then filter for TFBS that overlap with the consensus peak set only while allowing for multiple TFBS per peak (using the program

bedtools intersectwith options -wa -wb). Each TFBS is then extended by 100 bp (user-adjustable) in both directions (motif extension),

followed by extraction of read counts for each sample (featureCounts, see above for the parameters used).

5. Calculation of accessibility fold-change for each TFBS

To avoid biases and dependencies based on TFBS clustering within peaks, we then select the TFBS per TF per peak with the highest

average read count across all samples. On this set we perform a differential accessibility analysis using a standard limma (Ritchie

et al., 2015) workflow employing the functions lmFit and eBayes independently for each TF for the same design formula as used

in step 3 (that is, either a model contrasting two conditions or a continuously-valued model). For count normalization, we use the

consensus peak-derived normalization factors from step 3. As a result we obtain a log2 fold-change value for each selected

TFBS per TF per peak, and in addition we provide various diagnostic plots for each TF (same as in step 3, with additional ECDF

and density plots of the log2FC values, Figures S2H–S2J).

6. GC binning and calculation of differential TF activity values (see also Figure S1B)

(a) GC binning. To reduce biological biases based on differential effects depending on GC content of the local environment of a TF,

we first obtain theGCcontent of each extended TFBSwith bedtools nuc.We then group TFBS into 10 bins (user-adjustable) based on

the GC content of their extended TFBS (e.g., +/�100bp).

(b) Estimation of the differential TF activity. For each bin containing more than 20 TFBS for a given TF, we compare the TF-specific

distribution of log2 fold-changes against a background of log2 fold-changes of all TFBS from all other TFs of the same GC bin. We

then define the difference in means asmean difference for each bin. Finally, for each TF, the differential TF activity is calculated as the

weighted arithmeticmean across all mean difference values for the binswith sufficient data, weighing each value from each bin by the

fraction of TFBS it contains in that TF such that all weights sum to 1.

7. Estimation of significance for differential activity for each TF

The significance and magnitude of the TF-specific TF activity values can be difficult to interpret. To assess their statistical signifi-

cance, we employ a permutation approach to derive empirical p values (hereafter called the empirical approach). We rerun steps

3-6 for a total of 1000 times (user-adjustable) with permuted input data (permutation of condition labels) and then calculate an empir-

ical two-sided p value per TF by comparing the real value with the distribution from the permutations and calculating the proportion of

sampled permutations for which the absolute differential TF activity is larger (Figure S2A). To validate our procedure, we also plot the

density of the TF activity across all permutations and compare it to the real data, which expectedly gives a distribution that is tightly

centered around 0 for the permuted data while the real data show a shift as well as heavier tails (Figure S2B). We finally perform mul-

tiple testing correction using Benjamini-Hochberg (Benjamini and HochbergY, 1995).

If the number of samples is small or only very few samples come from one condition, the number of possible permutations is also

small, therefore making it difficult for the permutation-based approach to accurately assess significance. In such a case, we offer a

modified version of the described pipeline that we call the analytical approach: First, we use DESeq2 instead of limma to calculate
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fold-changes throughout the pipeline for the TF-specific steps, which is slower but better suited for a small number of samples.

Second, instead of employing permutations, we run a modified procedure from step 7 onward to assess the statistical significance

of the differential TF activity: To reduce the dependency of the p value on the sample size (since the number of TFBS can range

between a few dozen andmultiple tens of thousands depending on the TF), we first perform aWelch Two Sample t test for each bin

and calculate the overall significance by converting the resulting T-scores to z-scores, which allows to summarize them across the

bins and convert them to one p value per TF (Figures S2D and S2E). Because we calculate the weighted mean out of the individual

T-scores and therefore end up having a weighted sampling distribution of the mean, we however need to estimate its expected

variance.

(a) Estimation of the variance

To estimate the variance of the weighted mean T-scores for each TF we use the following formula (see https://en.wikipedia.org/wiki/

Propagation_of_uncertainty#Linear_combinations) in which wiand xirepresent the weight and T-statistic value from the t test of a

particular bin i, Covðxi; xjÞ the covariance of two particular bins i and j, and varðxiÞ the variance of the T-statistic value for xi:
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This is done to prevent a systematic misestimation of the variance of the xiterms by assuming it to be 1 for all bins. To properly es-

timate varðxÞ, we employ a bootstrap approach using the boot library in R with a user-adjustable number of bootstrap replicates

(default 10,000), with resampling the bin-specific data and then performing the t test against the full sample as described above.

We then calculate the variance varðxiÞ of the bootstrapped T-scores for each bin. Since the T-scores across the bins are not neces-

sarily independent, we also correct their variance using their pairwise covariance, which is estimated with the term Covðxi; xjÞ using
the bootstrap values for each bin. Across different analyses and datasets, we generally observed that covariances are predominantly

negligible, but for some TFs and bins, they differ significantly from 0 and therefore it is important to incorporate them. A detailed anal-

ysis of the covariances Covðxi; xjÞ between pairs of bins of the TF-specific distribution of log2 fold-changes against a background of

log2 fold-changes from a randomly selected set of TFBS of the same GC bin (see step 6 and the formula in step 7a) revealed that

covariances are negligible in almost all cases. From the 9,099 covariances across all TF and pairs of bins, only 19 cases exceeded

an absolute value of 0.05 and only one 0.2, while over 91% had absolute values of smaller than 0.02 (data not shown). We verified the

validity of this procedure with a simulation script (available upon request) that shows that p values are well behaved for random data

(Figure S2G).

(b) Calculation of one p value per TF

To obtain a p value for each TF, we centralize the distribution of the weighted T scores across all TF by subtracting its mean, which we

obtain from the maximum likelihood estimate of the distribution mean using the locfdr function from the locfdr package in R. We then

calculate p values out of z-scores based on the TF-specific variance calculated above. We finally perform multiple testing correction

using Benjamini-Hochberg method (Benjamini and HochbergY, 1995).

Validation of the analytical approach
We used the GMP/MPP data to verify the validity of our analytical approach by comparing the real signal from the GMP versus MPP

comparison with an array of additional analyses: We first run diffTF within GMP and MPP, respectively, and repeated this for all

possible pairwise combinations (2 versus 2). In addition, we run two types of controls: One regular diffTF analyses of GMP versus

MPP in which we shuffled the TFBS before the binning and calculation of statistical significance and one in-silico simulation based

on random data that mimics precisely the diffTFworkflowwhile incorporating some of the GMP versusMPP specific parameters (see

STARMethods). Overall, we found that comparing GMP versus MPP gives the strongest signal, while comparing only within GMP or

MPP cells still yields signal albeit on a much smaller scale, while the two types of control indeed showed no signal (Figure S2G). The

remaining signal within cell types is a tribute to the high sensitivity of diffTF to pick up small signal and reflects the inter-individual

differences between biological replicates. Lastly, we compared TF activity and p values from the analytical with the empirical

approach, the latter of which was run with all possible 70 permutations that are possible for a 4 versus 4 analysis. The TF activity

values were almost identical (Figure S6C, top), which is not surprising given that the only methodological difference is the usage

of DESeq2 and limma for calculating log2 fold-changes for the empirical and analytical approach, respectively, which also highlights

technical robustness. The ranks of the adjusted p values also correlated significantly (Figure S6C, bottom). We therefore recommend

for the analytical approach to perform at least one within-sample analysis to obtain an idea of the expected signal based on inter-

individual variation of biological replicates.
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Guidance on the number of permutations and whether to use the analytical or permutation-based approach
As explained before, diffTF offers two procedures to calculate significance, andwewant to give some guidance what the significance

in each procedure means, when to use which, and how to adjust the parameters. We note again that the calculation of the TF activity

is not affected by this choice, they are practically identical between the two approaches, while p values may differ although they are

also correlated (Figure S6C).

(1) Permutation-based approach

In this approach, the resulting significance value captures the significance of the effect size (that is, the TF activity) for the real data as

compared to permuted one. Importantly, this significance measure appears independent of the number of binding sites per TF

(r = 0.026, Spearman, see also Figure S2C), and should be usedwhen the number of samples is large enough to perform a reasonable

number of permutations. The range of p values will be determined by the number of permutations (smallest p value equals to 1/ {# of

permutations}) and we recommend at least 1000 permutations (as we have done for the CLL dataset). The number of possible per-

mutations can be calculated with the binomial coefficient ðn =kÞ, with n being the total number of samples across the two conditions

and k either one of the number of samples per condition. For example, when comparing 5 GMP against 4 MPP samples, there are

ð9 =5Þ = ð9 =4Þ = 126 possible permutations. The minimum raw p value pmin > 0 is then ð1 =126Þ � 0.008. This approach is compu-

tationally more expensive than the analytical one.

(2) Analytical approach

Here, the resulting significance value is calculated by performing t tests for each TF and GC bin (see STAR Methods above). Given

that both the p value and to a lesser extend also the T statistic depends on the sample size (i.e., the number of binding sites n), we

checked whether this dependence would explain much of the signal. However, for both CLL and GMP/MPP, we found highly signif-

icant TFs with lower number of binding sites despite the correlations of p value and number binding sites (r =�0.158 and r =�0.409,

respectively, Spearman), thus showing that the biological signal captured by diffTF surpasses the theoretical bias (Figure S2F).

If the number of samples is too small to allow a reasonable number of permutations in the permutation-based approach or compu-

tation time is important, this approach can be used. The number of bootstraps for the variance estimation of the T scores should be

set to a high value, and we recommend values of at least 1,000 or even 10,000. Computation time, however, increases with the num-

ber of bootstraps. For the CLL data, the estimated bootstrap variance approaches the expected value 1 very quickly even for bins

with low numbers of TFBS (the minimum is set to 20).

Classification of TFs into activator and repressors
First, we tried to classify TFs based on literature-mining, using TRRUST. However, we found that most TFs were classified almost

equally often as activator and repressor, which makes it very difficult to determine an overall function for each TF (see Figure S5C).

This is likely due to regulatory interactions being affected by multiple factors such as cell type, study conditions, highly studied TFs

and different experimental conditions. Therefore, we decided to develop a cell-type specific data-driven approach to classify each TF

into putative activator, repressor or undetermined, based on the overall effect on their putative TFBS. Our classifier is based on the

assumption that increasing the level of an activating TF increases chromatin accessibility at its target sites while increasing the level of

a repressing TF decreases it. For this, we first quantile normalized the RNA-Seq count data in order to minimize the effects of outlier

values thatmay have a large influence on the resulting correlations otherwise.We then calculated the Pearson correlation coefficients

between the expression level of each TF and the ATAC-Seq signal of each putative TFBS across all individuals (see Figure S5B for an

example). If themedian of the resulting correlation coefficients was sufficiently positive we consider it an activator, if sufficiently nega-

tive as a repressor, and if it was not significantly different from the background we call it undetermined (see below for what sufficiently

refers to). In detail, for each TF, we calculated the correlationmedian across the foreground (i.e., all peakswith predicted TFBS for the

particular TF) and the background (i.e., all other peaks - peaks without predicted TFBS for the particular TF). The latter was used to

estimate the noise level for themedian correlations for each TF. In particular, to distinguish real correlations from noise (i.e., activator/

repressor from undetermined) we used particular percentiles of the background distribution across the background values for all TF

as a threshold for activators and repressors, respectively. In order to not be dependent on one particular parameterization with

respect to the resulting classification, we provide different variants corresponding to different stringency thresholds (10/90%,

5/95%, 1/99%, 0.1/99.9%, 0.01/0.999%) and give the classification for each of these, thereby providing flexibility for subsequent

analyses and the required level of stringency. Lastly, as additional filter and in addition to the percentile cutoff, we also quantified

whether the foreground and background distribution are significantly different from another using a one-sided Wilcoxon rank sum

test. For TFs that were classified as either repressor or activator but for which the raw p value of the Wilcoxon rank sum test was

not significant, we changed their classification to undetermined, thereby removing TF classifications with weak support. The resulting

classification of activators and repressors for positive and negative medians, respectively, was used to assess the level of coherence

based on TF expression and their TF activity calculated by diffTF. We also summarized the fraction of the activators/repressors in

certain TF cluster from RSAT clustering (see Figure S5A for an example). Notably, most TF families as defined above with the

RSAT clusters, comprised both, predicted activators and repressors, indicating that the molecular function changes even within a

TF family.
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CLL ATAC-Seq processing
We run the ATAC-Seq pipeline on the 52 CLL samples as described above with the indicated default parameter values. The distri-

bution of the number of the fraction of retained and total number of reads across all samples throughout the course of the pipeline

showed the typical pattern, namely that reads were filtered mainly because they were of either of mitochondrial origin or duplicates

(Figure S3A). The fragment length distributions also showed the typical and expected pattern, with peaks at expected lengths (e.g,

mono- and dinucleotides) (Figure S3B). Lastly, they showed that read counts were partially driven by the GC content (see Figure S3C

for a typical profile from a randomly chosen sample), which we eliminated using the GC correction as described. The diagnostic plots

after the GC correction then expectedly indicated no GC dependency (see Figures S3C and S3D). We also performed a PCA analysis

of the consensus peak regions (Figures S3E–S3J).

Running diffTF on the CLL data
We used 52 samples out of 88 available ATAC-Seq samples from the CLL data. We excluded 4 samples because there mutational

status was unknown. Out of 84 remaining samples, we used only one replicate per sample (‘‘_1’’), which resulted in a total of 52 sam-

ples (25 U-CLL and 27M-CLL, see also Table S3) in order to not bias the analysis by overrepresenting particular individuals due to the

varying number of replicates per sample. As discussed abovewe used theGC-corrected BAMfiles hereafter. A PCA analysis of these

peak regions showed a clear separation of the samples based on their IgHV mutation status, but not on any other potentially con-

founding factor like batch, IGVH homology, gender, the patient age at data collection or the patient age when diagnosed (Figures

S3E–S3J). We generated a consensus peakset as described above using 5 samples as the minimum overlap. This retained

48,065 consensus peaks which were used subsequently. As motif extension, we added 100 bp on each side of the predicted in silico

TFBS. As parameters for the peaks and TF-specific differential analysis, we used the design formula: ‘‘� batch +mutationStatus’’ and

fitType = ‘local’. Here, batch andmutationStatus are metadata that are available for each sample and that refer to sample batch and

its mutation status (either mutated or unmutated), respectively. Based on the discussion in step 6, we decided to use 10 bins for our

GC binning approach (that is, ranging from 0%–10% GC content up to 90%–100%).

Comparison of diffTF results based on predicted versus ChIP-Seq validated TFBS
We used TF binding data gathered by ReMap from human ChIP-seq experiments and intersected them with in silico predicted TFBS

using TF bindingmodels from the HOCOMOCOdatabase.We then split the 157 common TFs bywhether or not they overlappedwith

theReMapCHIP-seq data and rerun the diffTF pipeline. Finally, we correlated these two groups with and without ChIP-seq validation

using Pearson correlation. The correlation between the TFBS that were present versus not present in ReMap was 0.54 (p = 3.5e-10)

(Figures S4A and S4B).

Assessing impact of TF motif scanning parameters on diffTF results
For the purpose of assessing the effect of the genome-wide TFBS scanning on diffTF, we varied the p value cutoff in PWMScan

(0.00005, 0.00001, and 0.000001) using the default background base composition of 0.29;0.21;0.21;0.29 as well as varying the back-

ground base composition (0.27;0.23;0.23;0.27) (Figures S4C and S4D). The former resembles the human genome nucleotide compo-

sition, the latter the base composition from the ATAC-Seq peak regions only. For this, we generated the FASTA file of the consensus

peak set with bedtools getfasta and then calculated the background nucleotide composition with fasta-get-markov from theMEME

suite. PWMs fromHOCOMOCO and PFMs from JASPARwere converted into integer log likelihoods using pwm_convert (setting -f as

‘‘real’’ and ‘‘jaspar’’ for PWM and PFM, respectively). Scanning was performed using the script pwm_bowtie_wrapper.

diffTF robustness analysis with respect to internal parameters for the CLL data
As discussed above, we verified the robustness against internal parameters such as the number of permutations or the number of

bootstraps (for the analytical significance calculations) and found that diffTF results are not dependent on these.Most importantly, we

also systematically varied the default motif extension size from the default 100 bp to 0, 50, 200, 400, and 600 bp to investigate the

effect of the extended TFBS on the diffTF results (Figures S4E and S4F). In summary, the TF activity differences were very similar, with

correlations above 0.9 and 0.86 for motif extension sizes from 50-600 for Pearson and Spearman, respectively. Only an extension

size of 0 showed weaker correlation, albeit the values were also surpassing 0.76 and 0.71, respectively. For almost all TFs, the TF

activity difference estimates were consistent across motif extension sizes, with only a few TFs changing directions from positive

to negative values or vice versa. For large extension sizes, the magnitude of the differential TF activity decreased overall. Running

diffTF with no extension size or too large values (> 500), therefore, seems inappropriate as it either excludes too much signal directly

adjacent to the predicted TFBS or the resulting extended TFBS are becoming too wide.

Raw and adjusted p values hadmore differences when varying the extension size, with correlations above 0.53 and 0.58 for exten-

sion sizes from 50-600 for Pearson and Spearman, respectively. Not using anymotif extension showed again weaker correlation with

values at least being 0.28 and 0.35, respectively. In conclusion, the raw and adjusted p value comparison across extension sizes

identified three clusters of TF: a small number of TFs gaining or losing significance with increasing extension size, respectively,

and the majority of TFs being invariant for it. 67% of all TFs that we identified as being significant remained significant throughout

the majority across all extension sizes, while almost 95% were significant for at least one other extension size.
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Assessing dependence of diffTF results on differential signal strength for CLL data
In order to assess the effect of differentially accessible (DA) peaks on diffTF, we generated a peak set excluding DA peaks. For this,

we used DiffBind (with design �batch_number + Condition) and identified 389 and 3569 DA peaks for the mutated and unmutated

condition, respectively, which we then excluded from the original peak set. We then run diffTF with standard parameters (described

above) and correlated the results (see Figure 2F).

GO terms associated with CLL progression
Weobtained ENSEMBL gene IDs fromGENCODE v29 (Frankish et al., 2019) with the org.Hs.eg.dbBioconductor package v3.8.2 and

linked them to the related gene ontology (GO) terms for all biological processes. We then used precrec (Saito and Rehmsmeier, 2017)

R package v0.10.1 to calculate ROC curves for each GO term based on all significant TFs from diffTF (adjusted p value < 0.1). For

filtering, we kept only GO terms with AUC > 0.6 and those with at least 9 but less than 90 TFs to remove GO terms associated with

DNA-binding, which are expected to be enriched for TFs.

Assessment of the power of diffTF with respect to sample size and sequencing depth for CLL data
To test the power of our approach and the dependence on the (i) read depth (coverage) of the BAM files and (ii) number of samples for

each of the two conditions, we performed a subsampling procedure inwhichwe varied both read depth and sample size.We used the

full 84 sample CLL dataset for this in order to maximize the number of samples. To vary the read depth, we used the original, non-GC

corrected CLL data that is produced as part of the output of our ATAC-Seq pipeline and then randomly generated downsampled

BAM files using Picard DownsampleSam with random seeds and PROBABILITY = k, with k ranging from 0.75, 0.50, 0.25, 0.125,

0.06, 0.02 to 0.01. For each of these fractions, we (1) determined the median number of reads these fractions correspond to across

all samples, thereby giving an estimate of the required number of processed reads to produce a particular accuracy and (2) run the

diffTF pipeline with the addition of also varying the number of samples per condition while maintaining the original ratio of the two

conditions (around 60% to 40%). The latter we varied from the full data 34+50 down to 30+45, 25+37, 20+30, 15+23, 10+15, and

down from 9+14 in steps of 1 to 3+5, with the first and second number denoting the number of distinct samples with the condition

unmutated and mutated, respectively. For each of these cases, we in addition performed 50 repetitions to minimize sampling noise.

We then compared the values from the full dataset with each of the two-way subsampled data and evaluated the results by assessing

the fraction of TFs that show the same direction of change (that is, either positive or negative) for the differential TF activity as in the full

data. We split all TFs into three equally sized bins using the 33% and 66% quantile threshold with respect to the absolute differential

TF activity in order to differentiate between TFs with low, medium and high signal, respectively (Figure S4G).

RNA-seq processing for CLL data and classification into activators and repressors
We used all ten available RNA-Seq samples from (Rendeiro et al., 2016) as well as available metadata (e.g., age, sex and condition).

Initial quality control and adaptor trimming (using ILLUMINACLIP:Truseq-2.fa: 1:30:4:5:true TRAILING:3 MINLEN:20 instead) was

performed as described in the ATAC-Seq pipeline. We then aligned the samples to hg19 using STAR (Dobin et al., 2013) with the

parameters –outFilterMultimapNmax 2–quantMode GeneCounts using the Gencode (Harrow et al., 2012) v29 annotation. We filtered

2 out of 10 samples due to data quality that we identified via PCA (data not shown; see also Table S3). We finally employed DESeq2

with the design formula ‘‘� condition,’’ filtered genes with either (1) less than 5 reads on average in either one of the conditions or (2) a

median expression value of 0, and identified those genes corresponding to the TFs fromHOCOMOCO. From the initial list of 640 TFs,

this excluded 270 TFs that were not-expressed according to these criteria, and 370 TFs that we labeled as being expressed and that

we used for the classification into activator or repressor. For the subsequent classification in diffTF, we chose to use the 5/95%cutoff.

See also Figures S5B and S5C for details.

Correlation of TF activity with target genes expression for CLL data
For the CLL target analysis we used the same set of predicted TFBS using PWMscan as with diffTF and annotated each TFBS to the

closest gene using the ChIPseeker (Yu et al., 2015) package in Bioconductor (Huber et al., 2015) using the hg19 annotation. TFBS

located �2,000/+500 bp from the TSS were annotated as promoter TFBS and used for the analysis.-Using expression data from

RNA-seq as described above, we then calculated the median log2 fold-changes of the target genes of a given TF that were defined

as having at least one TFBS of interest in the promoter regions. For the final representation in Figure 4C, we used only TFs that had

more than 200 and less than 1,500 unique target genes.

Footprinting analysis for CLL data
For the CLL footprinting analysis, we selected all 25 U-CLL samples and the 25 samples for M-CLL with the highest read counts,

downsampled all to the sample with the lowest read count (�14.5 million) and merged all U-CLL and M-CLL samples. For all TFs

that are expressed according to the RNA-Seq data, we then took the same set of TFBS as for diffTF, without TFBS that were over-

lapping between activators and repressors, and run the dnase_to_javatreeview.py script from the pyDNase library (Piper et al., 2015)

for each condition to obtain base-specific Tn5 insertions matrices for each TFBS. These values were then normalized to the amount

of reads in the consensus peakset, which was calculated using featureCounts from the Subread package with the parameters -p -B

-d 0 -D 2000 -C -Q 10 -O -s 0. Finally, we removed peaks in blacklisted regions and potential artifacts (> 1000 counts). For generating
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the genomic background for the openness, we binned the consensus peakset with a bin size of 200 bp and randomly selected 10,000

regions for which we then ran again the dnase_to_javatreeview.py script followed by subsequent normalization. We then performed a

PCA analysis and visualized the scatterplot of the first two PC components that collectively contain �36% of the overall variance

(Figure 3D). For this, we normalized the data as follows: For each TF and base pair, we scaled the value for the Tn5 insertions by

dividing it with the TF-specific average number of Tn5 insertions (row mean). For the footprint plots summarizing each quadrant

of the PCA (Figure 3D), we used the same normalized the data for all TFs in the specific quadrant.

Chromatin state enrichment in CLL data
For each TF deemed significant with diffTF that was also expressed according to the RNA-Seq data, we intersected all TFBS that we

obtained with the genome-wide PWMscan scanning (see above for details) with the expanded 18-state model from the chromHMM

(Ernst and Kellis, 2012) data of the primary B cells (Kundaje et al., 2015). For each TF, we then calculated the fraction of its TFBS

overlapping each state. We then grouped the TFs into activators and repressors, visualized their respective distributions with box-

plots, and statistically assessed the differences between activators and repressors using a Wilcoxon rank sum test.

CLL data treated with Ibrutinib
Peripheral blood was taken from 4 CLL patients and separated by Ficoll gradient (GE Healthcare), mononuclear cells were cryopre-

served on liquid nitrogen. Samples were later thawed from frozen as previously described (Dietrich et al., 2018) and MACS sorted for

CD19 positive cells (Milteny autoMACS�). The cells were resuspended in RPMI (GIBCO, Cat.No. 21875-034), with the addition of

2mMglutamine (GIBCO, Cat.No. 25030-24), 1%Pen/Strep (GIBCO, Cat.No. 15140-122) and 10%pooled, heat-inactivated and ster-

ile filtered human type AB male off the clot serum (PAN Biotech, Cat.No. P40-2701, Lot.No:P-020317). 5ml of cell suspension was

cultured in 6-well plates (Greiner Bio-One Cat.No. 657160). To prepare the treatments, Ibrutinib (Selleckchem, Cat.No. S2680) was

dissolved in Dimethyl sulfoxide (DMSO; SERVA, Cat.No. 20385) and stored at �20�C. After thawing, Ibrutinib was prediluted in

DMSO and was added to the plates. Control wells were treated with DMSO in the same concentration as with Ibrutinib treatment.

In both treatment and control, the final DMSO concentration was 0.2%. Cells were incubated at 37�C and 5% CO2 for 6 hours

with or without 500nM ibrutinib. The final cell concentrationwas 2x10̂ 6 cells/ml. After treatment, cell viability and purity was assessed

using FACS. All samples had a viability over 90% and over 95% of CD19+/CD5+/CD3- cells.

ATAC-seq libraries generation of the CLL treated with Ibrutinib
ATAC-seq libraries were generated as described previously (Buenrostro et al., 2013). Cell preparation and transposition was per-

formed according to the protocol, starting with 5x10̂ 4 cells per sample. Purified DNA was stored at �20�C until library preparation

was performed. To generate multiplexed libraries, the transposed DNA was initially amplified for 5x PCR cycles using 2.5 mL each of

25 mM PCR Primer 1 and 2.5 mL of 25 mM Barcoded PCR Primer 2 (included in the Nextera index kit, Illumina, San Diego, CA, USA),

25 mL of NEBNext High-Fidelity 2x PCRMaster Mix (New England Biolabs, Boston, Massachusetts) in a total volume of 50 mL. 5 mL of

the amplified DNAwas used to determine the appropriate number of additional PCR cycles using qPCR. Additional number of cycles

was calculated through the plotting of the linear Rn versus cycle, and corresponds to one-third of the maximum fluorescent intensity.

Finally, amplification was performed on the remaining 45 mL of the PCR reaction using the optimal number of cycles determined for

each library by qPCR (max. 13 cycles in total). The amplified fragments were purified with two rounds of SPRI bead clean-up (1.4x).

The size distribution of the libraries was assessed on Bioanalyzer with a DNA High Sensitivity kit (Agilent Technologies, Santa Clara,

CA), concentration was measured with Qubit� DNA High Sensitivity kit in Qubit� 2.0 Flurometer (Life Technologies, Carlsbad, CA).

Sequencing was performed on NextSeq 500 (Illumina, San Diego, CA, USA) using 75bp paired-end sequencing, generating �450

million paired-reads per run, with an average of 55 million reads per sample.

RNA-seq library generation for the CLL dataset treated with Ibrutinib
RNA was isolated using the miRNeasy Mini Kit (QIAGEN, Cat.No. 217004), starting with 1x10̂ 7 cells per sample. Cells were lysed in

QIAzol Lysis reagent and homogenized using QIAshredder (QIAGEN, Cat.No. 79654), homogenized cell lysates were stored at

�80�C until RNA extraction. RNA extraction was performed according to miRNeasy protocol and purified RNA was stored at

�80�C until further processing. RNA integrity was checked using the RNA Nano 6000 Assay Kit of the Bioanalyzer 2100 system (Agi-

lent Technologies, Santa Clara, CA), and concentration was measured with Qubit� RNA Assay Kit in Qubit� 2.0 Flurometer (Life

Technologies, Carlsbad, CA). Stranded mRNA-Seq libraries were prepared from 250ng of total RNA using the Illumina TruSeq

RNA Sample Preparation v2 Kit (Illumina, San Diego, CA, USA) implemented on the liquid handling robot Beckman FXP2. Obtained

libraries that passed the QC step, which was assessed on the Agilent Bioanalyzer system, were pooled in equimolar amounts. 1.8 pM

solution of each pool of libraries was loaded on the Illumina sequencer NextSeq 500 High output and sequenced uni-directionally,

generating�450million reads per run, each 85 bases long. RNA-seq processing of the data was done analogous as described above

for the original CLL data, using DESeq2 with the design formula ‘‘� treatment + mutational status.’’

Comparing diffTF results with HOMER for CLL data
We also assessed the detection power of diffTF compared to a standard motif enrichment analysis (Figures S7A and S7B). For this,

we generated a set of background sequences for each set of DA peaks in the two conditions, considering the length and GC bias as
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features for the background generation. We then used HOMER (Heinz et al., 2010) to perform an enrichment analysis of motifs from

HOCOMOCO on the DA peaks of each condition as foreground and respective two-fold BiasAway (Worsley Hunt et al., 2014) gener-

ated-sequences as background. We then correlated the diffTF results with the percentage of foreground sequences enriched for the

given motif (HOMER output).

Strikingly, no enriched motifs were found in M-CLL with HOMER, while the few discovered in U-CLL correlated significantly with

differential TF activity as computed by diffTF (Figures S7A and S7B). While we cannot exclude the possibility that some of the TFs

identified by diffTF are false positives, this analysis, together with the observation that diffTF recapitulated many of the known

TFs that distinguish U-CLL from M-CLL (see Figure 2A), highlights the power of diffTF to capture more signal than standard motif

enrichment approaches.

Comparison with similar tools
We first compared diffTF with a more traditional TF motif analysis such as HOMER (Heinz et al., 2010), which looks at motif enrich-

ment in a set of differentially accessible peaks. Strikingly, no enrichedmotifs were found inM-CLLwithHOMER, while the few discov-

ered in U-CLL correlated significantly with differential TF activity as computed by diffTF (Figures S7A and S7B; see also STAR

Methods). While we cannot exclude the possibility that some of the TFs identified by diffTF are false positives, this analysis, together

with the observation that diffTF recapitulated many of the known TFs that distinguish U-CLL from M-CLL (see Figure 2A), highlights

the power of diffTF to capture more signal than standard motif enrichment approaches.

To compare diffTF with an approach that is also based on TF activities we chose chromVAR and BaGFoot (Baek et al., 2017).

We were unfortunately unable to run and adopt the BagFoot workflow for our CLL data due to missing example files and incom-

plete documentation. For chromVAR, which was originally developed for analyzing single cell ATAC-seq data, the results corre-

lated very well overall, with correlation coefficients between 0.75 and 0.93 (Pearson) and 0.69-0.88 (Spearman), depending on the

set of TFs (i.e., all TFs or only those deemed significant by diffTF, therefore predominantly removing TFs with low signal) and

whether chromVAR deviations or deviation scores were compared against (Figures S7C and S7D). Differences likely arise due

to distinct methodological divergences such as comparing fold-changes for peaks (chromVAR) versus binding sites (diffTF) or

whether (diffTF) or not (chromVar) to normalize the TF-specific effect against the mean effect across all TFs (see Figures S7E

and S7F and the more detailed assessment below). However, diffTF goes one step beyond the currently available methods by

classifying TFs based on their mode of regulation - activator or repressor, thus providing important additional insights into their

molecular function.

For the comparison of diffTF with chromVAR (Figures S7C–S7H) we generally mimicked our diffTF analysis in the chromVAR

framework as much as possible. First, we imported all TFBS that overlapped with our peaks and that were used in diffTF using

the getAnnotations function in chromVAR. We then used the same consensus peakset as input as for diffTF (without resizing the

peaks to maximize compatibility). We then derived fragment counts in paired-end mode for the same BAM files using the function

getCounts, followed by GC correction using addGCBias, peak filtering using filterPeaks using the default arguments. To compute

the expectations, we used the CLL group assignments into U-CLL and M-CLL while also normalizing counts, which yields within

each group the average fraction of reads per peak in each sample. After calculating the deviations and deviation scores, we sum-

marized the results per TF by calculating the difference of the means between U-CLL and M-CLL samples separately for both of

them. Finally, we correlated the chromVAR results with the differential TF activity from diffTF.

Generally, as stated and quantified above, diffTF and chromVAR correlate significantly (Pearson; Figures S7C and S7D) and agree

for most TFs, but there are some at first sight discrepancies for TFs located in the second quadrant. They can likely be explained by

the following methodological differences:

1. chromVAR compares only peaks and not individual TFBS, while diffTF computes a log2 fold-change for each TFBS.While peak

log2 fold-change and corresponding TFBS log2 fold-change overall correlate highly (Pearson 0.91), TF-specific differences are

in the range of�0.038 to 0.026 for expressed TFs in log2 fold-change units, which is considerable (47.5 and 26%, respectively)

given that the diffTF TF activity score is in the same scale and ranges from�0.08 to 0.10 (Figures S7E and S7F for two specific

examples and Figure S7G for a summary across TF). Overall, we observe that the mean log2 fold-change across all TFBS is

0.026, while for peaks, it is only 0.019.

2. Unlike chromVAR, diffTF compares each TF against the mean effect across all TF and therefore uses a relative rather than

an absolute value. This explains most of the shift from TFs in Figure S7C in the left upper quadrant because overall, the

mean log2 fold-change across all TFBS is slightly skewed to the positive. Thus, most chromVAR deviation values are

consequently mostly positive (424 out of 640, �66.3%), while diffTF TF activity values are mostly negative (420 out of

640, �65.6%).

3. chromVAR never directly compares the two conditions with one another to compute log2 fold-changes, but only uses the con-

ditions to compute a deviation that is based on the condition-specific expectation. Consequently, it provides a deviation value

for each sample, which then have to be summarized accordingly. The recommended and used approach is to compute the

mean deviation within each condition, the difference of which thenmimics the differential TF activity as used in diffTF.However,

the computation of themean can be prone to outliers (Figure S7H). diffTF does not directly suffer from this issue as it compares

the two groups with one another to derive a log2 fold-change.
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From all expressed TFs for which chromVAR and diffTF differ in their predicted direction of change, we checked in our literature

review for the TFs that were deemed significant in diffTFwhich CLL condition they have been previously been associated with (Table

S2). Only 8 TFs are located in quadrant 2 (GCM1, NR4A3, NR1H2, NR1D1, PPARD, ESR1.A, NF2L1, ZBTB6). Out of these, only

PPARD has been clearly associatedwith either of the two conditions (M-CLL), as also predicted by diffTF. chromVAR, however, asso-

ciated it more with U-CLL, although the deviation value is relatively small.

HSC mouse data source (FACS sorting step)
Single-cell suspensions of mouse bonemarrowwere erythrolysed, enriched for Kit expression (CD117microbeads, Miltenyi Biotech)

and stained with antibodies against surface markers: Lineage (B220-PECy5 (RA3-6B2, eBioscience), CD11b-PECy5 (M1/70,

eBioscience), Ter119, PECy5 (TER-119, eBioscience), CD3e-PECy5 (145-2C11, eBioscience), Gr1-PECy5 (RB6-8C5, eBioscience)),

Sca1-BV421 (D7, BD biosciences), cKit-AlexaFlour 780 (2B8, eBioscience), CD150-APC (TC15-12F12.2, Biolegend), CD48-PE

(HM48-1, eBiocience), CD16/32-PECy7 (93, eBioscience). The following combination of surfacemarkers was used to define hemato-

poietic progenitor populations: Multipotent Progenitor (MPP) cells, Lin-cKit+Sca1+CD150-CD48+; Granulocyte-Monocyte Progenitor

(GMP) cells, Lin-cKit+Sca1-CD16/32+. Cells were sorted on FACSAria III (BD Biosciences) and analyzed using the FlowJo software

(Tree Star inc.). GMP cells from the TET2 knockout mice were isolated with the same GMPmarkers. All additional details such as the

origin of the mouse line as well as detailed information of the knockout preparation is provided in Rasmussen et al. (2019).

HSC ATAC-Seq libraries generation
ATAC-Seq libraries were generated as described previously (Buenrostro et al., 2013; Lara-Astiaso et al., 2014), with the following

modifications. Briefly, 10.000 hematopoietic progenitor cells (MPPs or GMPs) freshly isolated from individual wild-type mice were

sorted into ice-cold FACS buffer (PBS + 2%FBS). The cells were pelleted using a swinging bucket centrifuge (500 x g, 10min,

4�C) with settings for low acceleration/deceleration and washed once in ice-cold PBS. The cell pellets were resuspended in 50 mL

lysis buffer (10mM Tris-HCl pH 7.4, 10mM NaCl, 3mMMgCl2, 0.1% Igepal CA-630) by gentle pipetting and immediately centrifuged

one additional time (500 x g, 10min, 4�C). The supernatant was discarded and the pellet containing released nuclei were resuspended

gently in 25 mL 1xTD buffer containing 1.25 mL Tn5 transposase (Nextera sample preparation kit, Illumina). The transposition reaction

was allowed to proceed for 45min at 37�C whereafter DNA fragments were isolated using MinElute PCR purification columns

(QIAGEN) according to manufacturer’s instructions.

To generate multiplex libraries, the transposed DNA were initially amplified for 5x PCR cycles using 2.5 mL each of dual-index

primers (Nextera index kit, Illumina) and 2.5 mL PCR primer cocktail (PPC, Illumina) in a 25 mL reaction volume of 1x KAPA HiFi

hot-start ready-mix (Kapa BioSystems). The hot-start polymerase was activated prior to adding to the reaction mix by performing

a brief pre-incubation step of 3min at 95�C. The amplified fragments were size-selected with AMPure XP beads (0.5X) to remove frag-

ments larger than 600bp and an aliquot was quantified to determine the optimal PCR cycle number to obtain 1/3 of maximum fluo-

rescence intensity (Library quantification kit, Kapa Biosystems). Finally, PCR amplification was performed using the optimal number

of cycles determined for each library (max. 18 cycles in total), size-selected with AMPure XP beads (0.5X) and eluted in resuspension

buffer (Illumina). The size distribution of the libraries was evaluated on Bioanalyzer (Agilent) and sequenced on NextSeq 500 (Illumina)

using 75bp paired-end sequencing with an average of 25 million reads per sample.

GMP-MPP ATAC-Seq processing
We run the ATAC-Seq pipeline described as above on the four wild-type GMP and four wild-type MPP samples with default param-

eters using themm10 genome. About 30%of the reads successfully passed all the filtering criteria of the pipeline, with themajority of

the reads eliminated at the ‘‘remove duplicates’’ and ‘‘remove mitochondrial reads’’ steps. The fragment length distributions also

showed the typical and expected pattern, with peaks at expected lengths (e.g, mono- and dinucleotides). We used GC correction

as described above to remove technical GC sequencing biases.

GMP-MPP diffTF analysis
We run diffTF for the GMP-MPP dataset and compared the four GMP and MPP samples using default parameters unless otherwise

specified. For identifying the consensus peak set we required a minimum of two samples that need to contain the peak, which re-

sulted in 77,678 peaks. As parameters for the peaks and TF-specific analysis, we used only the stage of the HSC differentiation

(GMP or MPP) in the design formula. Due to the small number of samples and therefore also possible permutations, we used the

analytical approach as described in STAR Methods. For the RNA-Seq data, we applied the same filtering as for the CLL data, see

above. This resulted in 268 out of the 422 TFs to be classified as expressed.

GMP-MPP footprinting analysis
For this footprinting analysis, we used all 8 ATAC-seq samples generated for MPP and GMP cell types and downsampled all to the

sample with the lowest read counts (�8.3million) and subsequently merged themby cell type. For all TFs from the RNA-Seq data that

were significantly differentially expressed in DESeq2 (adj. p value < 0.05), we then took the same set of TFBS as for diffTF and run the

dnase_to_javatreeview.py script from the pyDNase library (Piper et al., 2015) for each condition to obtain base-specific Tn5 insertions

matrices for each TFBS. These values were then normalized to the amount of reads in the consensus peakset, which was calculated
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using featureCounts from the Subread package with the parameters -p -B -d 0 -D 2000 -C -Q 10 -O -s 0. We then scaled the data by

dividing by the mean average Tn5 insertions for each TF. We finally performed a PCA analysis and visualized the first two PC com-

ponents, containing �40% of the overall variance (Figure 5B). For generating the genomic background for the openness, we binned

the consensus peakset with a bin size of 200 bp and randomly selected 10,000 regions for which we then ran again the dnase_to_-

javatreeview.py script followed by subsequent normalization. To generate the footprint plots for each quadrant, we divided the value

of Tn5 insertions at each bp to the mean value of Tn5 insertions in the whole matrix for the specific quadrants in order to enhance the

differences between them in the motif center and the surroundings.

QUANTIFICATION AND STATISTICAL ANALYSIS

All methodological details concerning the statistical tests and analyses were performed are described above in the section

‘‘Description of the diffTF analysis workflow.’’ For the used tools, particularly related to the statistical parts, are summarized in section

‘‘Tools used’’ - mainly R and various packages were used for significance assessment. Statistical results presented in this work, ab-

breviations or methodological details are either described in the main text or the figure captions in case they are shown graphically.

In summary,we used statistical techniques in diffTF to model confounding effects in intermediate steps (e.g., CG bias, sequencing

depth differences) described in the respective sections above, minimizing the influence of known covariates for log2 fold-change

estimates, taking the T statistic rather than the p value in order to not be affected too much by differences in sample sizes related

to different number of binding sites across TF or generally high number of points in the background distribution. For the final signif-

icance assessment, we derived two approaches in order to account for both small number of samples and larger number of samples.

For larger number of samples, a permutation-based approach that gives an empirical FDR is the prefered method, while for smaller

number of samples this approach cannot be used. For the latter case, the analytical approach is suitable, and we clearly describe its

differences and limitations in the sections above.

In various steps, we mitigate the effect of potential outliers and violations of statistical assumptions by normalizing data appropri-

ately (e.g., quantile normalizing the RNA-Seq data prior to running the classification, using DESeq2 for count normalization using a

cyclic loess approach as implemented in the normOffsets function of csaw for normalizing the ATAC-Seq data), running non-para-

metric tests instead of their parametric equivalents (e.g., Wilcoxon rank sum test for testing foreground and background for classi-

fying TFs into activator or repressor), summarizing data by their mean or median (e.g., for the GC binning procedure and the resulting

differential TF activity measure) or capturing trends by data aggregation (e.g., over all binding sites for each TF).

The multiple testing problem is consistently addressed throughout the pipeline in different steps, whenever multiple p values are

generated, and we provide both raw and adjusted p values for the final measures. The adjustment of p values is done using Benja-

mini-Hochberg.

Lastly, a large number of quality control plots visualize and compare the data, which enables users to judge better how well the

method worked, whether assumptions are met or whether data show any types of irregularities.

DATA AND CODE AVAILABILITY

The diffTF pipeline as well as a detailed documentation are publicly available as a Snakemake workflow through https://difftf.

readthedocs.io/en/latest/, from which the Github repository at https://git.embl.de/grp-zaugg/diffTF is also linked. The CLL dataset

treatedwith Ibrutinib supporting the current study has not yet been deposited in a public repository because it is part of ongoingwork,

but is available from the lead author upon request.
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