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ABSTRACT 

Cell based RNAi is a powerful approach to screen for modulators of many cellular processes. However, 

resulting candidate gene lists from cell-based assays comprise diverse effectors, both direct and 

indirect, and further dissecting their functions can be challenging. Here, we screened a genome-wide 

RNAi library for modulators of mitosis and cytokinesis in Drosophila S2 cells. The screen identified 

many previously known genes as well as modulators that have previously not been connected to cell 

cycle control. We then characterized ~300 candidate modifiers further by genetic interaction analysis 

using double RNAi and a multiparametric, imaging-based assay. We found that analyzing cell-cycle 

relevant phenotypes increased the sensitivity for associating novel gene function. Genetic interaction 

maps based on mitotic index and nuclear size grouped candidates into known regulatory complexes of 

mitosis or cytokinesis, respectively, and predicted previously uncharacterized components of known 

processes. For example, we confirmed a role for the Drosophila CCR4 mRNA processing complex 

component l(2)NC136 during the mitotic exit. Our results show that the combination of genome-scale 

RNAi screening and genetic interaction analysis using process-directed phenotypes provides a 

powerful two-step approach to assign components to specific pathways and complexes. 

 

 

Keywords: Synthetic genetic interactions, RNAi, multiparametric analysis, automated imaging, cell 

cycle regulation 
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BACKGROUND  

Large-scale genetic screens have identified components of many biological processes in a broad 

spectrum of organisms (Patton and Zon, 2001; Jorgensen and Mango, 2002; St Johnston, 2002; Boutros 

and Ahringer, 2008). Such experiments have considerably expanded our knowledge of regulatory 

complexes and pathways. In recent years, classical genetic screens have been complemented by cell-

based, loss-of-function experiments using RNAi (Kiger et al., 2003; Boutros et al., 2004; Carpenter 

and Sabatini, 2004; Kittler et al., 2004; DasGupta et al., 2005). While screening technologies have 

made significant advances, moving from candidate ‘hit’ lists to precise delineation of functional 

relationships has remained challenging. Prioritization of candidates for follow-up experimentation 

often relies on prior knowledge, leaving uncharacterized genes untouched. Therefore, systematic and 

scalable secondary lines of screens are necessary to group candidates into functional categories, 

pathways or complexes. 

In yeast, systematic double-perturbation experiments, termed SGA (synthetic genetic arrays), 

dSLAM or E-MAPs (Pan et al., 2004; Tong et al., 2004; Schuldiner et al., 2005), have been employed 

to explore diverse biological processes and have successfully identified previously undiscovered 

functional relationships (Tong et al., 2004; Schuldiner et al., 2005; Collins et al., 2007). Both in S. 

cereviseae and in S. pombe, large collections of mutant alleles are available to generate maps of 

biological processes and compare their phylogenetic relationships (Dixon et al., 2008; Roguev et al., 

2008; Jonikas et al., 2009). The largest scale synthetic genetic interaction study to date has generated 

genetic interaction profiles for about 75% of the yeast genome (Costanzo et al., 2010). While full 

genome genetic interaction analysis has not yet been approached in metazoan cells, the concept of 

systematic co-depletion and quantitative analysis has been applied in C. elegans (Lehner et al., 2006; 

Tischler et al., 2008), Drosophila cells (Bakal et al., 2008; Horn et al., 2011; Fischer et al., 2015) as 

well as mouse (Roguev et al., 2013) and human cell lines (Laufer et al., 2013; Wang et al., 2014). 

Here, we describe a two-stage approach that first prioritizes genes by genome-wide screening 

for subsequent medium-scale, imaging-based synthetic genetic interaction (SGI) analysis. We screened 

for modulators of cell cycle regulation by genome-wide RNAi and high-throughput imaging of 

Drosophila cells.  Then, we used double RNAi to systematically map the functional relationships 

between these genes. This analysis grouped genes into functional modules, and generated hypotheses 

for the function of genes not previously implicated in cell cycle regulation, including CG11753 

(Drosophila SYS1) and l(2)NC136 (Drosophila CNOT3). Taken together, this study demonstrates the 

use of synthetic genetic interaction experiments in metazoan cells to refine functional predictions from 

large-scale perturbation experiments. 
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RESULTS AND DISCUSSION 

A two-step RNAi screening approach for regulators of the cell cycle 

To identify and map potentially novel regulators of the cell cycle we used high-throughput imaging to 

measure the effects of single and double perturbations on cell-cycle relevant phenotypes in Drosophila 

S2 cells (Figure 1A, Material and Methods). First, using a genome-wide RNAi library targeting ~98% 

of the protein coding transcripts (Horn et al., 2010; Horn and Boutros, 2013) we systematically 

interrogated the Drosophila genome for effects of single gene knock downs on the cell cycle. 

Fluorescence microscopy images of nuclei (DNA) and phospho-Histone H3-positive (pH3, 

phosphorylated from mitotic prophase to anaphase) cells were captured for each condition after five 

days knock down. We focused our analysis on three phenotypes extracted from the images: number of 

nuclei (‘cell number’) as a measure of cell viability, and average nuclear area as well as the mitotic 

index (proportion of pH3-positive cells) as measurements directly related to cell cycle relevant 

processes (Materials and Methods). After selecting a set of ~300 putative novel cell cycle regulators 

from the genome-wide dataset, in a second experiment we tested double knockdowns of the candidates 

with 14 well-characterized cell cycle regulators using the same microscopic readouts and assessed 

genetic interactions. That way we aimed at mapping the putative novel regulators to known cell cycle 

processes. 

 

Results of the genome-wide screen 

To identify RNAi reagents that had effects on the cells in the genome-wide screen z-scores were 

computed for each of the three phenotypes. For nuclear area and mitotic index phenotypes we adjusted 

for cell count effects using regression analysis (Materials and Methods). The z-scores of two replicates 

showed strong positive correlations for all three phenotypes (Supplemental Figure 1A). By comparing 

z-scores between the three phenotypes across the entire screen we found that they provided 

complementary information about the effects of gene knockdowns as indicated by their low Pearson 

correlation (Supplemental Figure 1B). Figure 1B highlights the information gain by assessing nuclear 

area and mitotic index in addition to cell count: while genes implicated in different biological processes 

affected cell counts similarly (or had no effect at all), they showed differential effects in the other 

phenotypes. For example, knocking down genes encoding sperm-specific dynein intermediate chains 

(Sdic1, Sdic2, Sdic3, Sdic4) or genes involved in mRNA cleavage and polyadenylation (Cpsf100, 

Cpsf160, and Cpsf73) showed mild to no effects on cell counts, but the mitotic index was increased 

after perturbation of the dynein intermediate chains and decreased after perturbation of the mRNA 

processing factors (Figure 1C). This was also in agreement with their known implications in the cell 

cycle where dyneins are required for mitotic progression, and mRNA processing factors are important 

during interphase (Manley, 1995; Nurminsky et al., 1998). In another example we found that genes 

with a role in cytokinesis could have diverging effects on the mitotic index (increased for tum, pbl, zip, 

and scra; decreased for Incenp, borr, Det, and ial), while invariably decreasing cell counts and 

increasing nuclear area (Figure 1C). This confirmed the requirement of the components of the 

chromosomal passenger complex Incenp (inner centromere protein), Borr (borealin, Drosophila 
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CDCA8), and Det (deterin, Drosophila survivin) for Histone H3 phosphorylation by ial (aurB, aurora B 

kinase) (Carmena et al., 2012), in contrast to the proteins tum (tumbleweed, Drosophila RACGAP1) 

and pbl (pebble, Drosophila ARHGEF5) that are essential for cytokinesis but do not alter phospho-

Histone H3 phosphorylation (Zavortink et al., 2005). Overall, assessing the three complementary 

phenotypes provided a more detailed view on gene functions and highlighted genes with potential roles 

in cell cycle. 

To get a more comprehensive picture of factors affecting nuclear area and mitotic index as 

markers of cell cycle progression we filtered the results of the genome-wide screen for all treatments 

with an absolute z-score ≥ 3 for either of the phenotypes. Of ~15,000 genes assessed by RNAi 

(Supplemental Table S1), knockdowns of ~1,000 (6.7%) resulted in such a phenotype (Supplemental 

Table S2). About 17% of them were specific to nuclear area, 75% to mitotic index, and 8% scored in 

both phenotypes. We grouped the phenotypic profiles of the 1,000 genes by hierarchical clustering of 

their z-scores (Figure 2A). This identified several clusters that were enriched for known cell cycle 

regulators (Figure 2B-E). For example cluster I (Figure 2B) grouped proteins required for formation of 

the mitotic spindle (Teixido-Travesa et al., 2012) including tubulins as well as components of the 

augmin and CCT chaperonin complexes (Supplemental Table S3). Loss of function of these proteins 

commonly increased the mitotic index indicating a mitotic arrest. In contrast cluster IV (Figure 2E) 

grouped components of the COP9 signalosome (CSN)  (Supplemental Table S3) complex, which is 

required during the G1/S transition of the cell cycle (Doronkin et al., 2003). Knocking down CSN 

members commonly decreased the mitotic index, indicating a cell cycle arrest before mitosis. To 

address more systematically the question which processes could be detected by our assay we manually 

annotated a high-confidence list of 131 proteins with well-characterized roles during G1/S transition, 

the G2/M checkpoint, the mitotic spindle, as well as regulators of mitotic progression and cytokinesis 

(Supplemental Table S3). We found that 96 of the known factors (73%), covering all manually 

annotated cell cycle processes, had an absolute z-score ≥ 3 in nuclear area and/or mitotic index 

(Supplemental Figure 2A), which validated our screening approach. Interestingly, when comparing the 

phenotypes (nuclear area and mitotic index) across the different processes we found that they affected 

the phenotypes differently (Supplemental Figure 2B-D), which confirmed the previous observation that 

the measurement of different phenotypes was required to be able to assay different cell cycle processes. 

The genome-wide screen identified many components with phenotypes similar to those of 

known cell cycle regulators (Figure 2A-E). We attempted to use genetic interaction analysis to 

elucidate their functional relationship with the known cell cycle machinery. To this end we selected 

genes from the genome-wide screen that were expressed and displayed mitotic index and nuclear area 

phenotypes, prioritizing genes that had not been linked to cell cycle regulation previously (Bettencourt-

Dias et al., 2004; Bjorklund et al., 2006; Kondo and Perrimon, 2011). We also excluded genes that 

were not conserved in humans, as well as genes with strong viability defects (for details of candidate 

selection see Supplemental Methods). This left us with 275 potential novel modulators from the 

genome-wide screen to be subjected to genetic interaction analysis: 238 with mitotic index phenotypes, 

and 37 with nuclear area phenotype (Supplemental Table S4). In addition we included several controls: 

genes with known roles in cell cycle regulation that also scored in the genome-wide screen, such as 
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components of the anaphase-promoting complex/cyclosome (APC/C) and the COP9 signalosome 

(CSN) complex, as well as genes that had no or only mild effects on the phenotypes of interest in order 

to prevent biases during the analysis of genetic interactions. Together, the list of candidates covered a 

broad range of mitotic index and nuclear area phenotypes, representative of the range of effects 

observed in the genome-wide screen (Figure 2F). 

Different phenotypes identify non-redundant genetic interactions 

To test the set of candidates from the genome-wide screen for genetic interactions we systematically 

co-depleted them with 14 known cell-cycle regulators (‘query’ genes, Supplemental Table S5) in all 

pairwise ‘candidate x query’ combinations. To reduce the influence of potential off-target effects on the 

interaction analysis we used two sequence-independent RNAi reagents to target each candidate and 

each query gene, resulting in overall 20,216 co-RNAi experiments with four independent 

measurements per gene pair. This experimental setup has been shown previously to allow robust 

estimation of single and double-RNAi phenotypes (Horn et al., 2011). Genetic interactions and their 

significance were measured independently for each phenotype as deviations from the multiplicative 

model, which describes the expected combinatorial effect as the product of the single knockdown 

effects, and were summarized in π-scores (Supplemental Table S6). 

For cell count, mitotic index and nuclear area phenotypes we observed a total of 1,419 genetic 

interactions at an experiment-wide false-discovery rate (FDR) of 1%. The mitotic index yielded an 

approximately 10 and 3-fold higher rate of genetic interactions than cell count and nuclear area, 

respectively (Figure 3A), which might be due to the phenotypes of the candidates that were mostly 

mitotic index effects (Supplemental Table S4). We assessed the node degree distribution for each 

phenotype (Figure 3B-D). The majority of genes had only few interactions (‘1-3’) independent of the 

phenotype. The number of positive and negative interactions tended to be unbalanced, and the strongest 

differences were seen for the mitotic index phenotype. Here, many genes had a few positive 

interactions (see ‘1-3’ in Figure 3C), and a few genes had many negative interactions (see ‘7-9’ in 

Figure 3C). By comparing the genetic interactions between phenotypes we found that only 31 gene 

pairs interacted in all three phenotypes. In contrast, 1,183 gene pairs (83.4%) displayed interactions 

specific for a single phenotype (Figure 3E). While genetic interactions between some known cell-cycle 

regulators, such as the members of the CSN complex, where observed in all three phenotypes (Figure 

3F), other regulators, including the APC/C subunits cdc23, ida, Apc10 and fzy, showed genetic 

interactions for the mitotic index phenotype only (Figure 3G). This indicated that measuring different 

cell-cycle relevant phenotypes might be required to connect novel genes to known processes. 

Phenotype-specific interaction networks functionally connect candidate genes 

To systematically predict functional associations of candidate genes, we assessed the similarity of their 

genetic interaction profiles. This type of analysis has been previously shown to provide robust 

approximations of functional associations (Costanzo et al., 2010; Fuxman Bass et al., 2013). We first 

calculated the Pearson correlation coefficient (PCC) between the interaction profiles of all candidates 

for each phenotype. To correct for genes that shared a high PCC with many genes, we transformed the 

PCC data into the connection specificity index (CSI) (Figure 4A), which reduces potential non-specific 
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similarities between genes by ranking the similarities according to the connectivity of their interaction 

partners (Green et al., 2011; Fuxman Bass et al., 2013). 

We assessed whether the CSI improved functional associations between candidate genes 

compared to their single knockdown phenotypes. As expected, using the mitotic index all APC/C 

components tested (ida, cdc23, and fzy) had a high mitotic-index based CSI with Apc10 (Figure 4B). In 

contrast, components of the Augmin complex (wac, dgt2) and the DREAM complex (mip120, mip130) 

shared a lower CSI with Apc10, despite their similar single knockdown effect on mitotic index (Figure 

4B). Several other genes, such as the known modulator of mitosis pont (pontin, member of the 

INO80/SWR1 chromatin remodeling complexes) (Ducat et al., 2008), also had a high CSI with Apc10 

without increasing the mitotic index when depleted alone (Figure 4B), drawing a potential connection 

to the APC/C. We also compared the nuclear-area based CSI of the cytokinesis regulator Rho1 to the 

single knockdown effects of all other genes. This highlighted many known cytokinesis factors (e.g. 

tum, zip, Det), but deprioritized others, likely functionally independent genes that also showed an 

increased nuclear area, such as tsr (twinstar, Drosophila cofilin) a component required for mitotic 

telophase and cytokinesis (Gunsalus et al., 1995) (Figure 4C). Together, this showed that the CSI could 

highlight genes with similar functions that could not be differentiated based on their single knockdown 

effects. 

To identify association more systematically for each phenotype we placed all candidate genes 

in a force-directed network according to their functional similarity (CSI) (Figure 5A-B, S5A). The 

mitotic-index based network associated the APC/C with components facilitating mitotic spindle 

organization and regulation including dynactin subunits (Arp87C) and the CCT chaperonin complex 

member Cct5 (Figure 5A). These close associations with the APC/C were not seen for the other 

phenotypes (Figure 5B, S5A-B). In the proximity of APC/C we observed additional interesting 

connections. We already highlighted the high CSI of the INO80/SWR1 complex member pont (pontin) 

with Apc10. We found more members of different chromatin remodeling complexes in the proximity 

of the APC/C, including dom (domino) and Yeti (both members of SWR1), Nurf-38 (member of 

NURF complex), as well as fs(1)h (female sterile homeotic, a BET family protein). Further, several 

genes involved in regulation of transcription such as pnt (pointed, ETS transcription factor) and 

l(2)NC136 (Not3, member of CCR4-NOT deadenylation complex) were connected to the APC/C. 

Together, this suggested a specific role for regulation of chromatin and transcription during mitosis 

(Morrison and Shen, 2009; Tanenbaum et al., 2015). Other processes/complexes in the proximity of the 

APC/C included the DREAM complex (mip120, mip130), which has been previously shown to 

regulate mitotic events (Beall et al., 2004; Georlette et al., 2007), and the regulators of nuclear import 

Nup107, Nup160 and Kap-alpha3. The latter finding suggested a role for nuclear pore complex 

components during mitosis that has been described before (Loiodice et al., 2004). Other sub-networks 

highlighted known cell-cycle regulatory complexes, such as the CSN, but also processes that are less 

well understood in the context of the cell cycle, such as vesicle trafficking. 

The mitotic-index based network failed to identify known functional associations between 

cytokinesis regulators (Figure 5A, S5C). In contrast, the nuclear-area based network connected Rho1 

with other components of cytokinesis (tum, ial, Det, lin19, and zip) (Figure 5B). Interestingly, several 
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regulators of vesicle trafficking and exocytosis were found in sub-networks connected to cytokinesis, 

suggesting a potential role of exocytosis during cytokinesis that has been previously described (Skop et 

al., 2001). Although vesicle components grouped in the mitotic-index based network as well (e.g. 

Arf72A, CG11753, Syx1A), they were not connected directly to any of the other known processes, 

which highlights the information gain from generating phenotype-specific networks. Despite the 

conservation of some sub-networks across all three phenotypes, such as the CSN, or the APC/C, the 

connections between the processes and to uncharacterized genes were phenotype-specific. With 

mitotic-index based and nuclear-area based networks being stronger indicators of cell-cycle specific 

processes (Figure 5B-C) this provided us with testable hypothesis for potentially novel regulators of the 

cell cycle. 

Golgi-resident and mRNA processing factors modulate mitotic progression 

To assess the validity of our network-based prediction of gene functions we tested the role of two genes 

in cell-cycle relevant assays. The mitotic-index based network connected the APC/C and other 

regulators of mitosis to chromatin remodeling complexes and transcriptional regulators. We followed 

up on one of the genes in proximity to the APC/C, l(2)NC136, which is a member of the conserved 

deadenylation complex CCR4-NOT. Its human ortholog, CNOT3, has been shown to regulate mitotic 

progression by destabilizing the mRNA of the spindle assembly checkpoint (SAC) component MAD1 

(Takahashi et al., 2012). To confirm the predicted role for l(2)NC136 we knocked down the gene in 

Drosophila S2 cells with dsRNAs for four days and triggered a G2/M checkpoint arrest by doxorubicin 

or etoposide treatment for 6 hours to allow cells with intact mitotic progression machinery to exit M-

phase (Figure 5C). Cells depleted of l(2)NC136 displayed a ~4-fold higher frequency of pH3-positive 

nuclei in both treatments compared to a control knockdown, indicating a delay in mitotic exit. To 

validate the conserved function of l(2)NC136 in human cells we knocked down its ortholog, CNOT3, in 

HeLa cells using siRNAs, and assessed the cycle after release from a nocodazole-induced 

prometaphase arrest. Similarly to Drosophila cells, HeLa cells displayed a significant mitotic delay 

(assessed by quantifying G2/M-phase contents; p < 0.019, paired Student’s t-test) after knockdown of 

CNOT3 (Figure 5D and S5D) compared to a control siRNA. These results confirmed a role of 

l(2)NC136 during mitotic exit as was suggested by the network-based predictions. 

 Another process highlighted in both the mitotic-index based and nuclear-area based networks 

was vesicular trafficking. Several components of this network have been shown with cell-cycle specific 

functions previously. For example, syntaxin1A (syx1A), which encodes for a t-SNARE, was shown to 

be required for mitotic telophase (Somma et al., 2002). Gmap and Arf72A are crucial for Golgi 

inheritance during cell division (Rios et al., 2004; Eisman et al., 2006). These genes formed a subgroup 

in the mitotic-index based network also containing the largely uncharacterized gene CG11753 (Figure 

5B). Its human ortholog, SYS1, has been shown with a function during golgi-targeted vesicular 

transport (Behnia et al., 2004; Setty et al., 2004). In agreement with its predicted role, depletion of both 

CG11753 in Drosophila S2 cells or SYS1 in HeLa cells delayed mitotic progression (Figure 5C-D). 

 The mitosis phenotypes seen for l(2)NC136/CNOT3 and CG11753/SYS1 in independent 

assays in Drosophila and human cells showed that hypothesis generated from mitotic-index or nuclear-

area based interaction networks could be validated. Future studies could address more detailed how 
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regulation of transcription and vesicular traffic connect to cell cycle/mitosis. Further, additional sub-

networks could be subjected to similar follow-up analysis to understand their role during the cell cycle. 

Concluding remarks 

This study demonstrates how unbiased, genome-wide screening followed by genetic interaction 

analysis can fine-tune predictions of gene function and guide follow-up experimentation by providing 

more specific and testable hypotheses. Importantly, predictions of gene functions from interactions 

based on phenotypes relevant to the biology examined, such as mitotic index and nuclear area to assay 

cell cycle, were superior to predictions of gene functions from viability/cell-count based interactions. 

Genetic interaction networks based on relevant phenotypes reconstructed known functional relations 

during mitotic progression and cytokinesis and suggested potentially novel regulators. We validated 

novel roles for a mRNA processing component and a Golgi-vesicular transport protein during mitotic 

exit. 

With automated imaging being a versatile tool to simultaneously record multiple quantitative 

phenotypes (Perlman et al., 2005; Fuchs et al., 2010; Fischer et al., 2015) this approach could be 

expanded to other biological processes by assaying relevant markers. Established reporter-based 

readouts to monitor the activity of signaling pathways could also be used to perform genetic interaction 

analysis, and differential networks could be build from experiments using different ways to activate or 

suppress the pathway.  

 
 
DATA ACCESS 

Supplemental Tables S1-S7, Figures S1-S5, and Supplemental Material and Methods are available 

from the journal website and comprise all interaction (π-) scores and p-values.  

METHODS 

Drosophila tissue culture 

We cultured Schneider S2 cells adjusted to serum-free growth medium (D.Mel-2; Invitrogen) in 

Express Five SFM (Invitrogen) supplemented with 20 mM GlutaMAX (Invitrogen) and 1% penicillin-

streptomycin (Invitrogen). 

 

RNAi library 

We used a genome-wide RNAi library targeting ~98% of all coding genes in the Drosophila genome 

designed against FlyBase annotations for the D. melanogaster BDGP genome releases 4 and 5 using 

the NEXT-RNAi software (Horn et al., 2010). In addition, the library covered 1,254 strongly expressed 

regions from the Heidelberg predictions (HDC) of Drosophila genes not covered by FlyBase (Hild et 

al., 2003). Primer and dsRNA sequence information, target mappings as well as the analysis of 

specificity and additional features of the dsRNA designs are available through GenomeRNAi 

(www.genomernai.org) (Schmidt et al., 2013). For screening, the library was aliquoted in 384-well 

plates (black/clear, BD Falcon) with an average of 250ng dsRNA per well in 5ul water. 
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Genome-wide RNAi screening 

In each biological replicate, we seeded 6,500 cells in 40 μl culture medium with 0.2 μl of 0.4 mg 

ml−1 DDAB per well (in black/clear 384-well plates, BD Falcon) and incubated the plates for 5 days at 

25 °C before fixation, staining and imaging of cells. 

 

Cell staining and imaging 

Cell stainings were done using a Beckman Biomek FX robot with 384-well tip head. First, of the 40 μl 

assay volume 15ul were removed and cells were fixed/permeabilized for 60min at room temperature by 

addition of 40 μl of a 6% PFA (SIGMA), 0.3% TX-100 (AppliChem) solution in PBS (SIGMA). Cells 

were washed by removing 40 μl supernatant and addition of 50 μl PBS. Next, 50 μl of the supernatant 

were removed and 10 μl of a monoclonal Phospho-Histone H3 antibody (conjugated to Alexa 

Fluor 647, Cell Signaling, #3458) diluted 1:750 in 4% BSA (GERBU), 0.1% TX-100 (in PBS) were 

added and incubated overnight at 8°C (protected from light). The next day 10 μl supernatant were 

removed and DNA was stained by addition of 40 μl Hoechst 33342 (Invitrogen) diluted 1:2000 in PBS 

and incubation for 30min at room temperature. Finally, cells were washed once by removing 40 μl 

supernatant and adding 50 μl PBS and washed another two times by removing 50 μl supernatant and 

adding 50 μl PBS. Plates were sealed with aluminum sealing tape (Corning) and imaged directly or 

stored at 8°C until imaging.  Fluorescence images were acquired on an IN Cell Analyzer 2000 (GE 

Healthcare) using a 4x Objective, which enables capturing the entire well in one image. One image was 

acquired for each of the two channels (Hoechst and phospho-Histone H3 antibody). 

 

Image analysis 

Image analysis and feature extraction from the 4x images (16bit, 2048x2048 pixels) was performed 

using the R/Bioconductor package EBImage (Pau et al., 2010). The nuclei were segmented and 

identified separately for the Hoechst and phospho-H3 channels. Adaptive thresholding (width of 

moving window 4 pixels) was used to separate nuclei areas from the image background. Nuclei were 

identified by local maximum search on the fluorescence images. The nuclei areas were extended from 

the local maxima by a propagation algorithm (Jones et al., 2005). Nearest neighbor search was used to 

match phospho-H3 objects to nuclei in the Hoechst channel (only mitotic nuclei were visible in the 

phospho-H3 channel). Matches were accepted if the distance between the centers of the objects in both 

channels was smaller than 5 pixels. 84 quantitative features were extracted, out of which we focused on 

three: nuclei count (a correlate of cell count), mitotic index (the ratio of nuclei in the phospho-H3 

channel and the Hoechst channel), and nuclear area. 

 

Computational analysis of the genome-wide RNAi screen 

Raw data of each feature was first log2-transformed. To account for row and/or column effects, a local 

polynomial regression (loess) on the spatial coordinates was fit to each plate and subtracted. Loess-

normalized values were further adjusted for the plate variance, generating z-scores. Replicates were 

summarized for each feature by taking the median. We focused on three of the features: the number of 
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cells per well, the mitotic index and the average nuclear area. Overall, a non-linear trend between cell 

count and the other two phenotypes (nuclear area, mitotic index) was observed. We calculated a model 

(using loess regression) to adjust for cell count effect on these phenotypes and computed z-scores from 

the residuals (Supplemental Table S1). The heatmap of z-scores in Figure 2A was generated using 

hierarchical clustering based on Euclidean distances. 

 

Combinatorial RNAi 

For the double-RNAi screen, we used a candidate-sensitizer design. 125 ng (2.5 μl) of each candidate 

dsRNAs were pipetted into a 384-well clear-bottom microscopy plate (BD Falcon) as described above. 

Then, 125 ng (2.5 μl) of one of the sensitizer dsRNAs were added using a NanoDrop II dispenser 

(Innovadyne), creating ~21,000 combinations (28 sensitizer dsRNAs versus 750 candidate dsRNAs). 

Each pairwise combination of genes was assayed through four pairs of independent dsRNA designs: 

denote by A and A’�the two independent designs targeting one gene and by B and B’�the two 

independent dsRNA reagents targeting the other, then each biological replicate of the experiment 

contained the candidate-sensitizer combinations A-B, A-B’, A’-B, A’-B’. In each well, 6,500 cells 

were seeded in 30 μl culture medium with 0.15 μl of 0.4 mg ml−1 DDAB per well and incubated for 5 d 

at 25°C before fixation, staining and imaging of cells (using the methods described for the genome-

wide screen). 

 

Mathematical modeling of synthetic genetic interactions 

As described previously (Axelsson et al., 2011; Horn et al., 2011) we used a multiplicative model as 

the reference model (null model), which assumes that the double RNAi phenotypic effect of non-

interacting genes is equal to the product of the single RNAi phenotypic effects. The single RNAi 

phenotypic effects (main effects) for the 14 ‘query’ genes were estimated by taking the median effect 

over all candidate genes (per phenotype). To prevent biases for the main-effect estimates of candidate 

genes their main effects were estimated using measurements after the gene was co-depleted with 

control dsRNAs (targeting non-expressed Firefly luciferase). Pair-wise interaction scores were then 

computed as the log-ratio of the measured phenotype and the predicted phenotype (from the reference 

model), which is the product of the two single knock down effects. The significance of an interaction 

was assessed by calculating the deviation from zero from four interaction scores per gene pair (four 

independent co-RNAi experiments per gene pair). To this end a moderated t-test (R/Bioconductor 

package limma) was used, which first estimates the standard errors (SEM) by fitting a linear model 

through the four values, followed by empirical Bayes smoothing of the SEM (Smyth, 2004). P-values 

were adjusted for multiple testing by the method of Benjamini-Hochberg controlling the false 

discovery rate (FDR) (Benjamini and Hochberg, 1995). 

 

Calculation of the connection specificity index on the similarity between genetic interaction 

profiles 

The connectivity specificity index (CSI) is based on a correlation matrix. For each pair of target genes 

the Pearson correlation coefficient (PCC) of the two genetic interaction profiles along all query genes 
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was computed. The CSI of a gene pair A-B was then defined as the fraction of genes connected to A 

and B that have a PCC smaller than the PCC of A and B. A constant of 0.01 was applied in the CSI 

definition of (Green et al., 2011).  

 

Induction of G2/M checkpoint arrest in Drosophila S2 cells 

To test the mitotic arrest after RNAi against genes selected from the primary screen, we triggered G2/M 

checkpoint arrest in Drosophila S2 cells 96 h past dsRNA transfection using 4 μM doxorubicin or 20 

μM etoposide. After 6 h, cells were fixed and stained for their DNA content (Hoechst 33342) and for 

pH3, and their mitotic index phenotype was determined (for details see Supplemental Methods). 

 

FACS-based analysis of mitotic exit in human HeLa cells 

Human HeLa cells were transfected with siRNA pools targeting the gene of interest and cultured for 3d 

under standard conditions. A prometaphase arrest was induced applying 40 ng/ml nocodazole for 18 h 

under standard conditions, and cells were released from this arrest and fixed at different time points up 

to 8 h post release. After propidium iodide staining, cell cycle profiles were determined using FACS 

analysis, counting 10,000 events per sample (for details see Supplemental Methods). 
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Figure 1: Combined genome-wide RNAi and synthetic genetic interaction analysis setup using 

multiple phenotypic readouts. (A) Genome-wide RNAi screening and high-throughput imaging to 

quantify the number of cells, nuclear area, and mitotic index are used to identify cell cycle regulators, 

which are further characterized by genetic interaction analysis. See text for details. (B) Comparison of 

the three phenotypes across the genome-wide dataset. The knockdown conditions (x-axis) are sorted 

according to their cell count phenotype (upper panel). Nuclear area (middle panel) and mitotic index 

(lower panel) phenotypes are shown in the same order. Highlighted in red are proteins that show 

differential effects across the phenotypes. Dashed lines indicate z-score cut-offs of 3 and -3 (points 

below the cut-offs are light grey, points above dark grey). (C) Barplots comparing the phenotypes (per 

functional group) for the knockdowns highlighted in B. Knockdowns of dynein intermediate chain 

proteins and mRNA processing factors show opposing effects on mitotic index, and have no effects on 

the other phenotypes. Knockdowns of proteins required for cytokinesis all increase the nuclear area, 

while they have opposing effects on mitotic index. Dashed lines indicate z-score cut-offs of 3 and -3. 
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Figure 2: Genome-wide RNAi screening identifies known and potential novel regulators of cell 

cycle.  (A) Heatmap of z-scores for 1,018 genes with an absolute z-score ≥ 3 in nuclear area and/or 

mitotic index after hierarchical clustering. Black bars to the left of the heatmap highlight genes that 

were selected for the synthetic genetic interaction (SGI) analysis. Bars on the right of the heatmap 

highlight culsters of genes that are enriched for factors with known roles in cell cycle and are shown in 

greater detail in panels B-E. (B-E) Detailed heatmaps of the clusters highlighted in A. Colors of gene 

names indicate their membership to certain groups of cell cycle regulators (see box). Arrows highlight 

genes that were selected for SGI analysis. See text for details. (F) Scatter plot of nuclear area and 

mitotic index phenotypes for genes selected for SGI analysis (black) on top of the genome-wide data 

(grey). The distribution of candidates and controls selected for the SGI analysis shows that it is 

representative of the effect range observed in the genome wide screen. Different types of candidates 

and controls are indicated by shape (see legend and Supplemental Tables S4-S5). CSN: COP9 
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signalosome, SAC: Spindle assembly checkpoint, CCT: cytosolic chaperonin containing t-complex, 

APC/C: anaphase-promoting complex/cyclosome. 

 

Figure 3: Genetic interactions across different phenotypes.  (A) Comparing the number of genetic 

interactions affecting cell count, mitotic index or nuclear area shows that the majority of interactions 

are found for the mitotic index phenotype. Interactions were estimated from a set of 14 ‘query’ genes, 

and 350 ‘candidate’ genes/controls. (B-D) Node degree distributions showing number of positive 

(yellow bars) and negative (blue bars) genetic interactions per phenotype and on a per-gene basis. (E) 

A Venn diagram shows that there are overlapping, but also many exclusive genetic interactions 

between the phenotypes. (F, G) Genetic interactions within the COP9 signalosome (CSN) largely 

overlap between the phenotypes (F), while genetic interactions within the anaphase-promoting complex 

/ cyclosome (APC/C) are exclusive to the mitotic index (G). In F and G all genetic interactions are 

alleviating, i.e. were less severe than expected according to the reference model. All genetic 

interactions were called at a false discovery rate (FDR) of 1%. 



 19

 
Figure 4: Genetic interaction profiles associate genes with similar functions.  (A) Processing of 

genetic interaction profiles (GI) to predict functional similarity between genes. The profiles (14 π-

scores) of each candidate gene pair were compared per phenotype by calculating the Pearson 

correlation coefficient (PCC). The example shows the PCC between the mitotic-index based profiles of 

the anaphase-promoting complex (APC/C) components Apc10 and ida. The PCC was corrected by 

calculating the connection specificity index (CSI) with a correction factor / constant of 0.01. The 

example shows the relation between the PCC and CSI of Apc10. (B) A comparison of the mitotic-index 

based CSI connecting Apc10 to all tested genes with the single knockdown effect of all genes shows 

additional APC/C components (and cell cycle regulators) in proximity to Apc10. (C) A comparison of 

the nuclear-area based CSI connecting Rho1 to all tested genes with the single knockdown effect of all 

genes shows additional cytokinesis components (and cell cycle factors) in proximity to Rho1. See text 

for details. The point size is proportional to the CSI in B and C.  
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Figure 5: Networks based on cell-cycle relevant phenotypes.  (A-B) Mitotic-index based (A) and 

nuclear-area based (B) functional associations of candidate genes show known cell cycle processes 

(different colors) linked to each other and to uncharacterized genes/processes. Genes were placed in a 

force-directed network based on the genetic interactions for each phenotype. Only gene pairs 

(connections) with connection specificity indices (CSI) > 0.95 are shown. (C) l(2)NC136 and CG11753 

are required for mitotic progression in Drosophila cells. Each gene was knocked down by two 

independent dsRNA designs, ida was knocked down as positive control, and Firefly luciferase was 

used as negative control (‘control’). 96 h past dsRNA transfection, the G2/M checkpoint was triggered 

by doxorubicin or etoposide, and cells were allowed to leave M-phase for 6h before assessing the 

mitotic index. The data shows the mean of 32 (control) or 4 (ida, l(2)NC136, CG11753) replicates, the 

error bars indicate s.e.m. (D) Functional depletion of the human orthologs of l(2)NC136 and CG11753 

(CNOT3 and SYS1, respectively) using siRNAs for 72h shows a delayed mitotic exit after release from 

prometaphase arrest in HeLa cells. Prometaphase arrest was induced by nocodazole treatment for 18h 
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and the fraction of G2/M cells was assessed at different time points after release by FACS analysis. The 

data shows the mean of 3 replicates, the error bars indicate s.e.m. 


