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ABSTRACT

Cell based RNAI is a powerful approach to screen for modulators of many cellular processes. However,
resulting candidate gene lists from cell-based assays comprise diverse effectors, both direct and
indirect, and further dissecting their functions can be challenging. Here, we screened a genome-wide
RNAI library for modulators of mitosis and cytokinesis in Drosophila S2 cells. The screen identified
many previously known genes as well as modulators that have previously not been connected to cell
cycle control. We then characterized ~300 candidate modifiers further by genetic interaction analysis
using double RNAi and a multiparametric, imaging-based assay. We found that analyzing cell-cycle
relevant phenotypes increased the sensitivity for associating novel gene function. Genetic interaction
maps based on mitotic index and nuclear size grouped candidates into known regulatory complexes of
mitosis or cytokinesis, respectively, and predicted previously uncharacterized components of known
processes. For example, we confirmed a role for the Drosophila CCR4 mRNA processing complex
component 1(2)NC136 during the mitotic exit. Our results show that the combination of genome-scale
RNAI screening and genetic interaction analysis using process-directed phenotypes provides a

powerful two-step approach to assign components to specific pathways and complexes.
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BACKGROUND

Large-scale genetic screens have identified components of many biological processes in a broad
spectrum of organisms (Patton and Zon, 2001; Jorgensen and Mango, 2002; St Johnston, 2002; Boutros
and Ahringer, 2008). Such experiments have considerably expanded our knowledge of regulatory
complexes and pathways. In recent years, classical genetic screens have been complemented by cell-
based, loss-of-function experiments using RNAi (Kiger et al., 2003; Boutros et al., 2004; Carpenter
and Sabatini, 2004; Kittler et al., 2004; DasGupta et al., 2005). While screening technologies have
made significant advances, moving from candidate ‘hit’ lists to precise delineation of functional
relationships has remained challenging. Prioritization of candidates for follow-up experimentation
often relies on prior knowledge, leaving uncharacterized genes untouched. Therefore, systematic and
scalable secondary lines of screens are necessary to group candidates into functional categories,

pathways or complexes.

In yeast, systematic double-perturbation experiments, termed SGA (synthetic genetic arrays),
dSLAM or E-MAPs (Pan et al., 2004; Tong et al., 2004; Schuldiner et al., 2005), have been employed
to explore diverse biological processes and have successfully identified previously undiscovered
functional relationships (Tong et al., 2004; Schuldiner et al., 2005; Collins et al., 2007). Both in S.
cereviseae and in S. pombe, large collections of mutant alleles are available to generate maps of
biological processes and compare their phylogenetic relationships (Dixon et al., 2008; Roguev et al.,
2008; Jonikas et al., 2009). The largest scale synthetic genetic interaction study to date has generated
genetic interaction profiles for about 75% of the yeast genome (Costanzo et al., 2010). While full
genome genetic interaction analysis has not yet been approached in metazoan cells, the concept of
systematic co-depletion and quantitative analysis has been applied in C. elegans (Lehner et al., 2006;
Tischler et al., 2008), Drosophila cells (Bakal et al., 2008; Horn et al., 2011; Fischer et al., 2015) as
well as mouse (Roguev et al., 2013) and human cell lines (Laufer et al., 2013; Wang et al., 2014).

Here, we describe a two-stage approach that first prioritizes genes by genome-wide screening
for subsequent medium-scale, imaging-based synthetic genetic interaction (SGI) analysis. We screened
for modulators of cell cycle regulation by genome-wide RNAi and high-throughput imaging of
Drosophila cells. Then, we used double RNAi to systematically map the functional relationships
between these genes. This analysis grouped genes into functional modules, and generated hypotheses
for the function of genes not previously implicated in cell cycle regulation, including CG11753
(Drosophila SYS1) and I(2)NC136 (Drosophila CNOT3). Taken together, this study demonstrates the
use of synthetic genetic interaction experiments in metazoan cells to refine functional predictions from

large-scale perturbation experiments.



RESULTS AND DISCUSSION

A two-step RNAI screening approach for regulators of the cell cycle

To identify and map potentially novel regulators of the cell cycle we used high-throughput imaging to
measure the effects of single and double perturbations on cell-cycle relevant phenotypes in Drosophila
S2 cells (Figure 1A, Material and Methods). First, using a genome-wide RNAI library targeting ~98%
of the protein coding transcripts (Horn et al., 2010; Horn and Boutros, 2013) we systematically
interrogated the Drosophila genome for effects of single gene knock downs on the cell cycle.
Fluorescence microscopy images of nuclei (DNA) and phospho-Histone H3-positive (pH3,
phosphorylated from mitotic prophase to anaphase) cells were captured for each condition after five
days knock down. We focused our analysis on three phenotypes extracted from the images: number of
nuclei (‘cell number’) as a measure of cell viability, and average nuclear area as well as the mitotic
index (proportion of pH3-positive cells) as measurements directly related to cell cycle relevant
processes (Materials and Methods). After selecting a set of ~300 putative novel cell cycle regulators
from the genome-wide dataset, in a second experiment we tested double knockdowns of the candidates
with 14 well-characterized cell cycle regulators using the same microscopic readouts and assessed
genetic interactions. That way we aimed at mapping the putative novel regulators to known cell cycle

processes.

Results of the genome-wide screen

To identify RNAIi reagents that had effects on the cells in the genome-wide screen z-scores were
computed for each of the three phenotypes. For nuclear area and mitotic index phenotypes we adjusted
for cell count effects using regression analysis (Materials and Methods). The z-scores of two replicates
showed strong positive correlations for all three phenotypes (Supplemental Figure 1A). By comparing
z-scores between the three phenotypes across the entire screen we found that they provided
complementary information about the effects of gene knockdowns as indicated by their low Pearson
correlation (Supplemental Figure 1B). Figure 1B highlights the information gain by assessing nuclear
area and mitotic index in addition to cell count: while genes implicated in different biological processes
affected cell counts similarly (or had no effect at all), they showed differential effects in the other
phenotypes. For example, knocking down genes encoding sperm-specific dynein intermediate chains
(Sdicl, Sdic2, Sdic3, Sdic4) or genes involved in mRNA cleavage and polyadenylation (Cpsf100,
Cpsf160, and Cpsf73) showed mild to no effects on cell counts, but the mitotic index was increased
after perturbation of the dynein intermediate chains and decreased after perturbation of the mRNA
processing factors (Figure 1C). This was also in agreement with their known implications in the cell
cycle where dyneins are required for mitotic progression, and mRNA processing factors are important
during interphase (Manley, 1995; Nurminsky et al., 1998). In another example we found that genes
with a role in cytokinesis could have diverging effects on the mitotic index (increased for tum, pbl, zip,
and scra; decreased for Incenp, borr, Det, and ial), while invariably decreasing cell counts and
increasing nuclear area (Figure 1C). This confirmed the requirement of the components of the

chromosomal passenger complex Incenp (inner centromere protein), Borr (borealin, Drosophila



CDCAB), and Det (deterin, Drosophila survivin) for Histone H3 phosphorylation by ial (aurB, aurora B
kinase) (Carmena et al., 2012), in contrast to the proteins tum (tumbleweed, Drosophila RACGAP1)
and pbl (pebble, Drosophila ARHGEFS5) that are essential for cytokinesis but do not alter phospho-
Histone H3 phosphorylation (Zavortink et al., 2005). Overall, assessing the three complementary
phenotypes provided a more detailed view on gene functions and highlighted genes with potential roles
in cell cycle.

To get a more comprehensive picture of factors affecting nuclear area and mitotic index as
markers of cell cycle progression we filtered the results of the genome-wide screen for all treatments
with an absolute z-score > 3 for either of the phenotypes. Of ~15,000 genes assessed by RNAi
(Supplemental Table S1), knockdowns of ~1,000 (6.7%) resulted in such a phenotype (Supplemental
Table S2). About 17% of them were specific to nuclear area, 75% to mitotic index, and 8% scored in
both phenotypes. We grouped the phenotypic profiles of the 1,000 genes by hierarchical clustering of
their z-scores (Figure 2A). This identified several clusters that were enriched for known cell cycle
regulators (Figure 2B-E). For example cluster I (Figure 2B) grouped proteins required for formation of
the mitotic spindle (Teixido-Travesa et al., 2012) including tubulins as well as components of the
augmin and CCT chaperonin complexes (Supplemental Table S3). Loss of function of these proteins
commonly increased the mitotic index indicating a mitotic arrest. In contrast cluster IV (Figure 2E)
grouped components of the COP9 signalosome (CSN) (Supplemental Table S3) complex, which is
required during the G1/S transition of the cell cycle (Doronkin et al., 2003). Knocking down CSN
members commonly decreased the mitotic index, indicating a cell cycle arrest before mitosis. To
address more systematically the question which processes could be detected by our assay we manually
annotated a high-confidence list of 131 proteins with well-characterized roles during G1/S transition,
the G2/M checkpoint, the mitotic spindle, as well as regulators of mitotic progression and cytokinesis
(Supplemental Table S3). We found that 96 of the known factors (73%), covering all manually
annotated cell cycle processes, had an absolute z-score > 3 in nuclear area and/or mitotic index
(Supplemental Figure 2A), which validated our screening approach. Interestingly, when comparing the
phenotypes (nuclear area and mitotic index) across the different processes we found that they affected
the phenotypes differently (Supplemental Figure 2B-D), which confirmed the previous observation that

the measurement of different phenotypes was required to be able to assay different cell cycle processes.

The genome-wide screen identified many components with phenotypes similar to those of
known cell cycle regulators (Figure 2A-E). We attempted to use genetic interaction analysis to
elucidate their functional relationship with the known cell cycle machinery. To this end we selected
genes from the genome-wide screen that were expressed and displayed mitotic index and nuclear area
phenotypes, prioritizing genes that had not been linked to cell cycle regulation previously (Bettencourt-
Dias et al., 2004; Bjorklund et al., 2006; Kondo and Perrimon, 2011). We also excluded genes that
were not conserved in humans, as well as genes with strong viability defects (for details of candidate
selection see Supplemental Methods). This left us with 275 potential novel modulators from the
genome-wide screen to be subjected to genetic interaction analysis: 238 with mitotic index phenotypes,
and 37 with nuclear area phenotype (Supplemental Table S4). In addition we included several controls:

genes with known roles in cell cycle regulation that also scored in the genome-wide screen, such as



components of the anaphase-promoting complex/cyclosome (APC/C) and the COP9 signalosome
(CSN) complex, as well as genes that had no or only mild effects on the phenotypes of interest in order
to prevent biases during the analysis of genetic interactions. Together, the list of candidates covered a
broad range of mitotic index and nuclear area phenotypes, representative of the range of effects
observed in the genome-wide screen (Figure 2F).

Different phenotypes identify non-redundant genetic interactions

To test the set of candidates from the genome-wide screen for genetic interactions we systematically
co-depleted them with 14 known cell-cycle regulators (‘query’ genes, Supplemental Table S5) in all
pairwise ‘candidate x query’ combinations. To reduce the influence of potential off-target effects on the
interaction analysis we used two sequence-independent RNAi reagents to target each candidate and
each query gene, resulting in overall 20,216 co-RNAi experiments with four independent
measurements per gene pair. This experimental setup has been shown previously to allow robust
estimation of single and double-RNAi phenotypes (Horn et al., 2011). Genetic interactions and their
significance were measured independently for each phenotype as deviations from the multiplicative
model, which describes the expected combinatorial effect as the product of the single knockdown

effects, and were summarized in z-scores (Supplemental Table S6).

For cell count, mitotic index and nuclear area phenotypes we observed a total of 1,419 genetic
interactions at an experiment-wide false-discovery rate (FDR) of 1%. The mitotic index yielded an
approximately 10 and 3-fold higher rate of genetic interactions than cell count and nuclear area,
respectively (Figure 3A), which might be due to the phenotypes of the candidates that were mostly
mitotic index effects (Supplemental Table S4). We assessed the node degree distribution for each
phenotype (Figure 3B-D). The majority of genes had only few interactions (‘1-3’) independent of the
phenotype. The number of positive and negative interactions tended to be unbalanced, and the strongest
differences were seen for the mitotic index phenotype. Here, many genes had a few positive
interactions (see ‘1-3” in Figure 3C), and a few genes had many negative interactions (see ‘7-9’ in
Figure 3C). By comparing the genetic interactions between phenotypes we found that only 31 gene
pairs interacted in all three phenotypes. In contrast, 1,183 gene pairs (83.4%) displayed interactions
specific for a single phenotype (Figure 3E). While genetic interactions between some known cell-cycle
regulators, such as the members of the CSN complex, where observed in all three phenotypes (Figure
3F), other regulators, including the APC/C subunits cdc23, ida, Apcl0 and fzy, showed genetic
interactions for the mitotic index phenotype only (Figure 3G). This indicated that measuring different

cell-cycle relevant phenotypes might be required to connect novel genes to known processes.

Phenotype-specific interaction networks functionally connect candidate genes

To systematically predict functional associations of candidate genes, we assessed the similarity of their
genetic interaction profiles. This type of analysis has been previously shown to provide robust
approximations of functional associations (Costanzo et al., 2010; Fuxman Bass et al., 2013). We first
calculated the Pearson correlation coefficient (PCC) between the interaction profiles of all candidates
for each phenotype. To correct for genes that shared a high PCC with many genes, we transformed the

PCC data into the connection specificity index (CSI) (Figure 4A), which reduces potential non-specific



similarities between genes by ranking the similarities according to the connectivity of their interaction

partners (Green et al., 2011; Fuxman Bass et al., 2013).

We assessed whether the CSI improved functional associations between candidate genes
compared to their single knockdown phenotypes. As expected, using the mitotic index all APC/C
components tested (ida, cdc23, and fzy) had a high mitotic-index based CSI with Apcl10 (Figure 4B). In
contrast, components of the Augmin complex (wac, dgt2) and the DREAM complex (mip120, mip130)
shared a lower CSI with Apcl0, despite their similar single knockdown effect on mitotic index (Figure
4B). Several other genes, such as the known modulator of mitosis pont (pontin, member of the
INO80/SWR1 chromatin remodeling complexes) (Ducat et al., 2008), also had a high CSI with Apc10
without increasing the mitotic index when depleted alone (Figure 4B), drawing a potential connection
to the APC/C. We also compared the nuclear-area based CSI of the cytokinesis regulator Rhol to the
single knockdown effects of all other genes. This highlighted many known cytokinesis factors (e.g.
tum, zip, Det), but deprioritized others, likely functionally independent genes that also showed an
increased nuclear area, such as tsr (twinstar, Drosophila cofilin) a component required for mitotic
telophase and cytokinesis (Gunsalus et al., 1995) (Figure 4C). Together, this showed that the CSI could
highlight genes with similar functions that could not be differentiated based on their single knockdown

effects.

To identify association more systematically for each phenotype we placed all candidate genes
in a force-directed network according to their functional similarity (CSI) (Figure SA-B, S5A). The
mitotic-index based network associated the APC/C with components facilitating mitotic spindle
organization and regulation including dynactin subunits (Arp87C) and the CCT chaperonin complex
member Cct5 (Figure 5A). These close associations with the APC/C were not seen for the other
phenotypes (Figure 5B, SS5A-B). In the proximity of APC/C we observed additional interesting
connections. We already highlighted the high CSI of the INO80/SWR1 complex member pont (pontin)
with Apc10. We found more members of different chromatin remodeling complexes in the proximity
of the APC/C, including dom (domino) and Yeti (both members of SWRI1), Nurf-38 (member of
NURF complex), as well as fs(1)h (female sterile homeotic, a BET family protein). Further, several
genes involved in regulation of transcription such as pnt (pointed, ETS transcription factor) and
I(2)NC136 (Not3, member of CCR4-NOT deadenylation complex) were connected to the APC/C.
Together, this suggested a specific role for regulation of chromatin and transcription during mitosis
(Morrison and Shen, 2009; Tanenbaum et al., 2015). Other processes/complexes in the proximity of the
APC/C included the DREAM complex (mip120, mip130), which has been previously shown to
regulate mitotic events (Beall et al., 2004; Georlette et al., 2007), and the regulators of nuclear import
Nupl07, Nupl60 and Kap-alpha3. The latter finding suggested a role for nuclear pore complex
components during mitosis that has been described before (Loiodice et al., 2004). Other sub-networks
highlighted known cell-cycle regulatory complexes, such as the CSN, but also processes that are less
well understood in the context of the cell cycle, such as vesicle trafficking.

The mitotic-index based network failed to identify known functional associations between
cytokinesis regulators (Figure 5A, S5C). In contrast, the nuclear-area based network connected Rhol

with other components of cytokinesis (tum, ial, Det, 1in19, and zip) (Figure 5B). Interestingly, several



regulators of vesicle trafficking and exocytosis were found in sub-networks connected to cytokinesis,
suggesting a potential role of exocytosis during cytokinesis that has been previously described (Skop et
al., 2001). Although vesicle components grouped in the mitotic-index based network as well (e.g.
Arf72A, CG11753, Syx1A), they were not connected directly to any of the other known processes,
which highlights the information gain from generating phenotype-specific networks. Despite the
conservation of some sub-networks across all three phenotypes, such as the CSN, or the APC/C, the
connections between the processes and to uncharacterized genes were phenotype-specific. With
mitotic-index based and nuclear-area based networks being stronger indicators of cell-cycle specific
processes (Figure 5B-C) this provided us with testable hypothesis for potentially novel regulators of the

cell cycle.

Golgi-resident and mRNA processing factors modulate mitotic progression

To assess the validity of our network-based prediction of gene functions we tested the role of two genes
in cell-cycle relevant assays. The mitotic-index based network connected the APC/C and other
regulators of mitosis to chromatin remodeling complexes and transcriptional regulators. We followed
up on one of the genes in proximity to the APC/C, 1(2)NC136, which is a member of the conserved
deadenylation complex CCR4-NOT. Its human ortholog, CNOT3, has been shown to regulate mitotic
progression by destabilizing the mRNA of the spindle assembly checkpoint (SAC) component MAD1
(Takahashi et al., 2012). To confirm the predicted role for I(2)NC136 we knocked down the gene in
Drosophila S2 cells with dsRNAs for four days and triggered a Go/M checkpoint arrest by doxorubicin
or etoposide treatment for 6 hours to allow cells with intact mitotic progression machinery to exit M-
phase (Figure 5C). Cells depleted of 1(2)NC136 displayed a ~4-fold higher frequency of pH3-positive
nuclei in both treatments compared to a control knockdown, indicating a delay in mitotic exit. To
validate the conserved function of I(2)NC136 in human cells we knocked down its ortholog, CNOTS3, in
HeLa cells using siRNAs, and assessed the cycle after release from a nocodazole-induced
prometaphase arrest. Similarly to Drosophila cells, HeLa cells displayed a significant mitotic delay
(assessed by quantifying G,/M-phase contents; p < 0.019, paired Student’s t-test) after knockdown of
CNOT3 (Figure 5D and S5D) compared to a control siRNA. These results confirmed a role of
I(2)NC136 during mitotic exit as was suggested by the network-based predictions.

Another process highlighted in both the mitotic-index based and nuclear-area based networks
was vesicular trafficking. Several components of this network have been shown with cell-cycle specific
functions previously. For example, syntaxinlA (syx1A), which encodes for a t-SNARE, was shown to
be required for mitotic telophase (Somma et al., 2002). Gmap and Arf72A are crucial for Golgi
inheritance during cell division (Rios et al., 2004; Eisman et al., 2006). These genes formed a subgroup
in the mitotic-index based network also containing the largely uncharacterized gene CG11753 (Figure
5B). Its human ortholog, SYS1, has been shown with a function during golgi-targeted vesicular
transport (Behnia et al., 2004; Setty et al., 2004). In agreement with its predicted role, depletion of both
CG11753 in Drosophila S2 cells or SYS1 in HeLa cells delayed mitotic progression (Figure 5C-D).

The mitosis phenotypes seen for I(2)NC136/CNOT3 and CG11753/SYS1 in independent
assays in Drosophila and human cells showed that hypothesis generated from mitotic-index or nuclear-

area based interaction networks could be validated. Future studies could address more detailed how



regulation of transcription and vesicular traffic connect to cell cycle/mitosis. Further, additional sub-

networks could be subjected to similar follow-up analysis to understand their role during the cell cycle.

Concluding remarks

This study demonstrates how unbiased, genome-wide screening followed by genetic interaction
analysis can fine-tune predictions of gene function and guide follow-up experimentation by providing
more specific and testable hypotheses. Importantly, predictions of gene functions from interactions
based on phenotypes relevant to the biology examined, such as mitotic index and nuclear area to assay
cell cycle, were superior to predictions of gene functions from viability/cell-count based interactions.
Genetic interaction networks based on relevant phenotypes reconstructed known functional relations
during mitotic progression and cytokinesis and suggested potentially novel regulators. We validated
novel roles for a mRNA processing component and a Golgi-vesicular transport protein during mitotic
exit.

With automated imaging being a versatile tool to simultaneously record multiple quantitative
phenotypes (Perlman et al., 2005; Fuchs et al., 2010; Fischer et al., 2015) this approach could be
expanded to other biological processes by assaying relevant markers. Established reporter-based
readouts to monitor the activity of signaling pathways could also be used to perform genetic interaction
analysis, and differential networks could be build from experiments using different ways to activate or

suppress the pathway.

DATA ACCESS

Supplemental Tables S1-S7, Figures S1-S5, and Supplemental Material and Methods are available

from the journal website and comprise all interaction (r-) scores and p-values.
METHODS

Drosophila tissue culture
We cultured Schneider S2 cells adjusted to serum-free growth medium (D.Mel-2; Invitrogen) in
Express Five SFM (Invitrogen) supplemented with 20 mM GlutaMAX (Invitrogen) and 1% penicillin-

streptomycin (Invitrogen).

RNA. library

We used a genome-wide RNAI library targeting ~98% of all coding genes in the Drosophila genome
designed against FlyBase annotations for the D. melanogaster BDGP genome releases 4 and 5 using
the NEXT-RNAI software (Horn et al., 2010). In addition, the library covered 1,254 strongly expressed
regions from the Heidelberg predictions (HDC) of Drosophila genes not covered by FlyBase (Hild et
al., 2003). Primer and dsRNA sequence information, target mappings as well as the analysis of
specificity and additional features of the dsRNA designs are available through GenomeRNAi
(www.genomernai.org) (Schmidt et al., 2013). For screening, the library was aliquoted in 384-well

plates (black/clear, BD Falcon) with an average of 250ng dsRNA per well in 5ul water.



Genome-wide RNAI screening
In each biological replicate, we seeded 6,500 cells in 40 pl culture medium with 0.2 pl of 0.4 mg
ml' DDAB per well (in black/clear 384-well plates, BD Falcon) and incubated the plates for 5 days at

25 °C before fixation, staining and imaging of cells.

Cell staining and imaging

Cell stainings were done using a Beckman Biomek FX robot with 384-well tip head. First, of the 40 pl
assay volume 15ul were removed and cells were fixed/permeabilized for 60min at room temperature by
addition of 40 pl of a 6% PFA (SIGMA), 0.3% TX-100 (AppliChem) solution in PBS (SIGMA). Cells
were washed by removing 40 pl supernatant and addition of 50 pl PBS. Next, 50 ul of the supernatant
were removed and 10 pl of a monoclonal Phospho-Histone H3 antibody (conjugated to Alexa
Fluor 647, Cell Signaling, #3458) diluted 1:750 in 4% BSA (GERBU), 0.1% TX-100 (in PBS) were
added and incubated overnight at 8°C (protected from light). The next day 10 pl supernatant were
removed and DNA was stained by addition of 40 pl Hoechst 33342 (Invitrogen) diluted 1:2000 in PBS
and incubation for 30min at room temperature. Finally, cells were washed once by removing 40 pl
supernatant and adding 50 pl PBS and washed another two times by removing 50 pl supernatant and
adding 50 ul PBS. Plates were sealed with aluminum sealing tape (Corning) and imaged directly or
stored at 8°C until imaging. Fluorescence images were acquired on an IN Cell Analyzer 2000 (GE
Healthcare) using a 4x Objective, which enables capturing the entire well in one image. One image was

acquired for each of the two channels (Hoechst and phospho-Histone H3 antibody).

Image analysis

Image analysis and feature extraction from the 4x images (16bit, 2048x2048 pixels) was performed
using the R/Bioconductor package EBImage (Pau et al., 2010). The nuclei were segmented and
identified separately for the Hoechst and phospho-H3 channels. Adaptive thresholding (width of
moving window 4 pixels) was used to separate nuclei areas from the image background. Nuclei were
identified by local maximum search on the fluorescence images. The nuclei areas were extended from
the local maxima by a propagation algorithm (Jones et al., 2005). Nearest neighbor search was used to
match phospho-H3 objects to nuclei in the Hoechst channel (only mitotic nuclei were visible in the
phospho-H3 channel). Matches were accepted if the distance between the centers of the objects in both
channels was smaller than 5 pixels. 84 quantitative features were extracted, out of which we focused on
three: nuclei count (a correlate of cell count), mitotic index (the ratio of nuclei in the phospho-H3

channel and the Hoechst channel), and nuclear area.

Computational analysis of the genome-wide RNAI screen

Raw data of each feature was first log,-transformed. To account for row and/or column effects, a local
polynomial regression (loess) on the spatial coordinates was fit to each plate and subtracted. Loess-
normalized values were further adjusted for the plate variance, generating z-scores. Replicates were

summarized for each feature by taking the median. We focused on three of the features: the number of

10



cells per well, the mitotic index and the average nuclear area. Overall, a non-linear trend between cell
count and the other two phenotypes (nuclear area, mitotic index) was observed. We calculated a model
(using loess regression) to adjust for cell count effect on these phenotypes and computed z-scores from
the residuals (Supplemental Table S1). The heatmap of z-scores in Figure 2A was generated using

hierarchical clustering based on Euclidean distances.

Combinatorial RNAI

For the double-RNALI screen, we used a candidate-sensitizer design. 125 ng (2.5 pl) of each candidate
dsRNAs were pipetted into a 384-well clear-bottom microscopy plate (BD Falcon) as described above.
Then, 125 ng (2.5 pl) of one of the sensitizer dsSRNAs were added using a NanoDrop II dispenser
(Innovadyne), creating ~21,000 combinations (28 sensitizer dSRNAs versus 750 candidate dsRNAs).
Each pairwise combination of genes was assayed through four pairs of independent dsSRNA designs:
denote by A and A’[Ithe two independent designs targeting one gene and by B and B’[the two
independent dsRNA reagents targeting the other, then each biological replicate of the experiment
contained the candidate-sensitizer combinations A-B, A-B’, A’-B, A’-B’. In each well, 6,500 cells
were seeded in 30 pl culture medium with 0.15 pl of 0.4 mg ml™' DDAB per well and incubated for 5 d
at 25°C before fixation, staining and imaging of cells (using the methods described for the genome-

wide screen).

Mathematical modeling of synthetic genetic interactions

As described previously (Axelsson et al., 2011; Horn et al., 2011) we used a multiplicative model as
the reference model (null model), which assumes that the double RNAi phenotypic effect of non-
interacting genes is equal to the product of the single RNAi phenotypic effects. The single RNAi
phenotypic effects (main effects) for the 14 ‘query’ genes were estimated by taking the median effect
over all candidate genes (per phenotype). To prevent biases for the main-effect estimates of candidate
genes their main effects were estimated using measurements after the gene was co-depleted with
control dsRNAs (targeting non-expressed Firefly luciferase). Pair-wise interaction scores were then
computed as the log-ratio of the measured phenotype and the predicted phenotype (from the reference
model), which is the product of the two single knock down effects. The significance of an interaction
was assessed by calculating the deviation from zero from four interaction scores per gene pair (four
independent co-RNAi experiments per gene pair). To this end a moderated t-test (R/Bioconductor
package limma) was used, which first estimates the standard errors (SEM) by fitting a linear model
through the four values, followed by empirical Bayes smoothing of the SEM (Smyth, 2004). P-values
were adjusted for multiple testing by the method of Benjamini-Hochberg controlling the false

discovery rate (FDR) (Benjamini and Hochberg, 1995).

Calculation of the connection specificity index on the similarity between genetic interaction
profiles
The connectivity specificity index (CSI) is based on a correlation matrix. For each pair of target genes

the Pearson correlation coefficient (PCC) of the two genetic interaction profiles along all query genes
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was computed. The CSI of a gene pair A-B was then defined as the fraction of genes connected to A
and B that have a PCC smaller than the PCC of A and B. A constant of 0.01 was applied in the CSI
definition of (Green et al., 2011).

Induction of G,/M checkpoint arrest in Drosophila S2 cells

To test the mitotic arrest after RN A1 against genes selected from the primary screen, we triggered G,/M
checkpoint arrest in Drosophila S2 cells 96 h past dsRNA transfection using 4 uM doxorubicin or 20
uM etoposide. After 6 h, cells were fixed and stained for their DNA content (Hoechst 33342) and for
pH3, and their mitotic index phenotype was determined (for details see Supplemental Methods).

FACS-based analysis of mitotic exit in human HelLa cells

Human HeLa cells were transfected with siRNA pools targeting the gene of interest and cultured for 3d
under standard conditions. A prometaphase arrest was induced applying 40 ng/ml nocodazole for 18 h
under standard conditions, and cells were released from this arrest and fixed at different time points up
to 8 h post release. After propidium iodide staining, cell cycle profiles were determined using FACS

analysis, counting 10,000 events per sample (for details see Supplemental Methods).
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Figure 1: Combined genome-wide RNAI and synthetic genetic interaction analysis setup using
multiple phenotypic readouts. (A) Genome-wide RNAI screening and high-throughput imaging to
quantify the number of cells, nuclear area, and mitotic index are used to identify cell cycle regulators,
which are further characterized by genetic interaction analysis. See text for details. (B) Comparison of
the three phenotypes across the genome-wide dataset. The knockdown conditions (x-axis) are sorted
according to their cell count phenotype (upper panel). Nuclear area (middle panel) and mitotic index
(lower panel) phenotypes are shown in the same order. Highlighted in red are proteins that show
differential effects across the phenotypes. Dashed lines indicate z-score cut-offs of 3 and -3 (points
below the cut-offs are light grey, points above dark grey). (C) Barplots comparing the phenotypes (per
functional group) for the knockdowns highlighted in B. Knockdowns of dynein intermediate chain
proteins and mRNA processing factors show opposing effects on mitotic index, and have no effects on
the other phenotypes. Knockdowns of proteins required for cytokinesis all increase the nuclear area,

while they have opposing effects on mitotic index. Dashed lines indicate z-score cut-offs of 3 and -3.
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Figure 2: Genome-wide RNAI screening identifies known and potential novel regulators of cell
cycle. (A) Heatmap of z-scores for 1,018 genes with an absolute z-score > 3 in nuclear area and/or
mitotic index after hierarchical clustering. Black bars to the left of the heatmap highlight genes that
were selected for the synthetic genetic interaction (SGI) analysis. Bars on the right of the heatmap
highlight culsters of genes that are enriched for factors with known roles in cell cycle and are shown in
greater detail in panels B-E. (B-E) Detailed heatmaps of the clusters highlighted in A. Colors of gene
names indicate their membership to certain groups of cell cycle regulators (see box). Arrows highlight
genes that were selected for SGI analysis. See text for details. (F) Scatter plot of nuclear area and
mitotic index phenotypes for genes selected for SGI analysis (black) on top of the genome-wide data
(grey). The distribution of candidates and controls selected for the SGI analysis shows that it is
representative of the effect range observed in the genome wide screen. Different types of candidates

and controls are indicated by shape (see legend and Supplemental Tables S4-S5). CSN: COP9
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signalosome, SAC: Spindle assembly checkpoint, CCT: cytosolic chaperonin containing t-complex,

APC/C: anaphase-promoting complex/cyclosome.
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Figure 3: Genetic interactions across different phenotypes. (A) Comparing the number of genetic
interactions affecting cell count, mitotic index or nuclear area shows that the majority of interactions
are found for the mitotic index phenotype. Interactions were estimated from a set of 14 ‘query’ genes,
and 350 ‘candidate’ genes/controls. (B-D) Node degree distributions showing number of positive
(yellow bars) and negative (blue bars) genetic interactions per phenotype and on a per-gene basis. (E)
A Venn diagram shows that there are overlapping, but also many exclusive genetic interactions
between the phenotypes. (F, G) Genetic interactions within the COP9 signalosome (CSN) largely
overlap between the phenotypes (F), while genetic interactions within the anaphase-promoting complex
/ cyclosome (APC/C) are exclusive to the mitotic index (G). In F and G all genetic interactions are
alleviating, i.e. were less severe than expected according to the reference model. All genetic

interactions were called at a false discovery rate (FDR) of 1%.
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Figure 4: Genetic interaction profiles associate genes with similar functions. (A) Processing of
genetic interaction profiles (GI) to predict functional similarity between genes. The profiles (14 =n-
scores) of each candidate gene pair were compared per phenotype by calculating the Pearson
correlation coefficient (PCC). The example shows the PCC between the mitotic-index based profiles of
the anaphase-promoting complex (APC/C) components Apcl0O and ida. The PCC was corrected by
calculating the connection specificity index (CSI) with a correction factor / constant of 0.01. The
example shows the relation between the PCC and CSI of Apc10. (B) A comparison of the mitotic-index
based CSI connecting Apcl0 to all tested genes with the single knockdown effect of all genes shows
additional APC/C components (and cell cycle regulators) in proximity to Apc10. (C) A comparison of
the nuclear-area based CSI connecting Rhol to all tested genes with the single knockdown effect of all
genes shows additional cytokinesis components (and cell cycle factors) in proximity to Rhol. See text

for details. The point size is proportional to the CSI in B and C.

19



Mitotic index MNuclear area

Mitotic
gpindls

=% cops- -
signalosomsa

o == aAnaphase-
e promoting

_w complax

9]
o

O Conirol

L LH B § h Domorubioin
(111 B & h Etopoide
nos

noe

a4

nog

ooo

@

Falaiwa numbar of

Hela cals n G,
[ EERREE

Absdute mitaic indax
{fraciaon pH3 positva cals)

controd Ida I{2JWC136 CG11753
RHAI

]
]

b 43 (1] RO

Time past rzlease from
prometaphass amest ]

Figure 5

Figure 5: Networks based on cell-cycle relevant phenotypes. (A-B) Mitotic-index based (A) and
nuclear-area based (B) functional associations of candidate genes show known cell cycle processes
(different colors) linked to each other and to uncharacterized genes/processes. Genes were placed in a
force-directed network based on the genetic interactions for each phenotype. Only gene pairs
(connections) with connection specificity indices (CSI) > 0.95 are shown. (C) I(2)NC136 and CG11753
are required for mitotic progression in Drosophila cells. Each gene was knocked down by two
independent dsRNA designs, ida was knocked down as positive control, and Firefly luciferase was
used as negative control (‘control’). 96 h past dsSRNA transfection, the G2/M checkpoint was triggered
by doxorubicin or etoposide, and cells were allowed to leave M-phase for 6h before assessing the
mitotic index. The data shows the mean of 32 (control) or 4 (ida, 1(2)NC136, CG11753) replicates, the
error bars indicate s.e.m. (D) Functional depletion of the human orthologs of 1(2)NC136 and CG11753
(CNOT3 and SYS1, respectively) using siRNAs for 72h shows a delayed mitotic exit after release from

prometaphase arrest in HeLa cells. Prometaphase arrest was induced by nocodazole treatment for 18h
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and the fraction of G2/M cells was assessed at different time points after release by FACS analysis. The

data shows the mean of 3 replicates, the error bars indicate s.e.m.
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