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With high-dimensional data, variable-by-variable statistical testing
is often used to select variables whose behavior differs across con-
ditions. Such an approach requires adjustment for multiple testing,
which can result in low statistical power. A two-stage approach
that first filters variables by a criterion independent of the test
statistic, and then only tests variables which pass the filter, can
provide higher power. We show that use of some filter/test statis-
tics pairs presented in the literature may, however, lead to loss of
type | error control. We describe other pairs which avoid this
problem. In an application to microarray data, we found that
gene-by-gene filtering by overall variance followed by a t-test
increased the number of discoveries by 50%. We also show that
this particular statistic pair induces a lower bound on fold-change
among the set of discoveries. Independent filtering—using filter/
test pairs that are independent under the null hypothesis but
correlated under the alternative—is a general approach that can
substantially increase the efficiency of experiments.

gene expression | multiple testing

n many experimental contexts which generate high-dimensional

data, variable-by-variable statistical testing is used to select vari-
ables whose behavior differs across the set of studied conditions.
Each variable is associated with a null hypothesis which asserts
that behavior for that variable does not differ across conditions.
A null hypothesis is rejected when observed data, summarized
into a per-variable p-value, are deemed to be inconsistent with
the hypothesis. In biology, for example, microarrays or high-
throughput sequencing may be used to identify genes (variables)
whose expression level shows systematic covariation with a treat-
ment or phenotype of interest. The evidence for such covariation
is assessed by applying a statistical test to each gene separately. In
the case of microarrays, gene-by-gene #-tests are frequently used
for two-class comparisons. This approach can be generalized to
more complex experimental designs through the use of ANOVA
(1); it has also been refined for experiments with small sample
sizes by the introduction of moderated variance estimators (2),
as in the SAM (3) and limma (4) software. When transcript
abundance is measured by high-throughput sequencing rather
than microarrays, gene-level p-values may instead be computed
on the basis of gene-level read count statistics (5).

Because a large number of hypothesis tests are performed in
such variable-by-variable analyses, many true-null hypotheses
will produce small p-values by chance. As a consequence, numer-
ous false positives, or type I errors, will result if p-values are
compared to standard single-test thresholds. There are well-
established procedures which address the multiple testing pro-
blem by adjusting the p-values to control various experiment-wide
false positive measures, e.g., the family-wise error rate (FWER)
or the false discovery rate (FDR). (See ref. 6 for a review).

Multiple testing adjustment provides control over the extent to
which false positives occur, but such control comes at the cost of
reduced power to detect true positives. Further, this power reduc-
tion worsens as more hypotheses are tested. Typically, the number
of genes represented on a microarray is in the tens of thousands,
while the number of differentially expressed genes may be only a
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few dozen or hundred. As a consequence, the power of an experi-
ment to detect a given differentially expressed gene could poten-
tially be quite low.

In the microarray literature, several authors have suggested
filtering to reduce the impact that multiple testing adjustment
has on detection power (7-12). Conceptually similar screening
approaches have also been proposed for variable selection in
high-dimensional regression models (13, 14). In filtering for
microarray applications, the data are first used to identify and
remove a set of genes which seem to generate uninformative
signal. Second, formal statistical testing is applied only to genes
which pass the filter. An effective filter will enrich for true differ-
ential expression while simultaneously reducing the number of
hypotheses tested at stage two—making multiple testing adjust-
ment less severe. Such filtering is further motivated by the obser-
vation that the set of genes which are not differentially expressed
can be partitioned into two groups: (i) genes that are not ex-
pressed in any of the conditions of the experiment or whose
reporters on the array lack sensitivity to detect their expression;
and (ii) genes that are expressed and detectable, but not differ-
entially expressed across conditions.

This two-stage approach, the use of which need not be re-
stricted to gene expression applications, assesses each variable
on the basis of both a filter statistic (U’) and a test statistic
(U™). Both statistics are required to exceed their respective cut-
offs. Note, however, that the two-stage approach is not equivalent
to standard hypothesis testing based on the joint distribution of
the filter and test statistics: the latter uses a joint null distribution
to compute type I error rate, while the former only considers the
null distribution of the stage-two test statistic.

Some authors specifically recommend using nonspecific or
unsupervised filters which do not make use of sample class labels,
and they suggest that nonspecific filtering will not interfere with
formal statistical testing (7, 9). Nonspecific filter statistics
include, for example, the overall variance and overall mean—
computed across all arrays, ignoring class label. Some Affymetrix
arrays permit Present/Absent calls for each gene; requiring a
minimum fraction of Present calls across all arrays also yields
a nonspecific filter (15).

While filtering has the potential to substantially increase the
number of discoveries (Fig. 1), its validity has been debated.
One criticism is that data-based filtering constitutes a statistical
test. Ignoring this fact, and computing and adjusting the remain-
ing p-values as if filtering had not taken place, may result in overly
optimistic adjusted p-values and a true false positive rate which is
larger than reported. Clearly, increasing the number of discov-
eries only implies an increase in statistical power if the additional
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Fig. 1. Power assessment of filtering applied to the
ALL data (12,625 genes). R, the number of genes called
differentially expressed between the two cytogenetic
groups, was computed for different stage-one filters,
filtering stringencies, and FDR-adjusted p-value cutoffs.
In all cases, a standard t-statistic (T) was used in stage
two, and adjustment for multiple testing was by the
method of ref. 24. Similar results were obtained with
other adjustment procedures. Filter cutoffs were se-
lected so that a fraction 0 of genes were removed. A
random filter, which arbitrarily selected and removed
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one half of the genes, was also considered. (A) Filtering
on overall variance (5?). At all FDR cutoffs, increasingly
stringent filtering increased total discoveries, even
though fewer genes were tested. This effect was not,
however, due to the reduction in the number of hypoth-
eses alone: filtering half of the genes at random re-
duced total discoveries by approximately one half, as
expected. (B) Filtering on overall mean (Y), on the other
hand, produced a small increase in rejections at low
stringency, but then substantially reduced rejections,
and thus power, at higher stringencies. (C) Effect of in-
creasing filtering stringency for fixed adjusted p-value
cutoff @ = 0.1. At higher stringencies, both filters even-
tually reduced rejections. For the ALL data, this effect oc-
curred much more quickly for the overall mean filter.
With the overall variance filter, the number of rejections
increased by up to 50%. (D) Filtering on overall

Overall mean
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discoveries are enriched for real differential expression. If, on
the other hand, filtering simply increases the false positive rate
without our knowledge, matters have been made worse rather
than better.

In the remainder of this article, we clarify these issues. We first
point out pitfalls that can arise when an inappropriate filter
statistic is used. We then show that with an appropriate choice
of filter and test statistics, discoveries are increased while type I
error control is maintained, thereby producing a genuine increase
in detection power.

Results

Filtering Increases Discoveries. We considered a dataset obtained
from samples of 79 individuals with B-cell acute lymphoblastic
leukemia (ALL), for which mRNA profiles were measured using
Affymetrix HG-U95Av2 microarrays (16, 17). The samples fell
into two groups: 37 with the BCR/ABL mutation and 42 with
no observed cytogenetic abnormalities. The Robust Multichip
Average algorithm (RMA) was used to preprocess the microarray
data and produce an expression summary for each gene in each
sample (18). Instructions for accessing these data, and for repro-
ducing the analyses reported here, are given in SI Text.

We considered both overall variance and overall mean as
filtering criteria. In both cases, the fraction 6 € [0, 1] of genes with
the lowest overall variance (or mean) were removed by the filter.
The special case 8 =0 corresponds to no filtering. We then
applied a standard #-test to those genes which passed the filter.

Fig. 1 A and B shows R, the total number of rejections, as a
function of the cutoff on FDR-adjusted p-values. A good choice
of filter substantially increased the number of null hypotheses re-
jected. For the overall variance filter and 0 in (0, 0.5), procedures
with higher values of @ dominated those with lower values over a
wide range of adjusted p-value cutoffs. The overall mean filter, on
the other hand, was less effective, particularly for 8 > 0.10. In
fact, for @ > 0.25 the overall mean filter led to substantially fewer
rejections than a standard unfiltered approach (Fig. 1 B and C).

This difference between the performance of the two filters is
not surprising, and provides an example of how prior knowledge
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Rank of filter statistic

mean (6 = 0.5 is shown) removed many significant |T;|
(e.g., |T;| >4), while filtering on overall variance
retained them.

min max

can be incorporated into the analysis via choice of filter. Probes
on Affymetrix arrays are known to produce a wide range of
fluorescence intensities, even in the absence of target, making
overall mean a poor predictor for nonexpression (19).

Pitfalls: Type I Error Control Is Lost. In the preceding section, we
showed that a well-chosen filter can substantially increase the
number of null hypotheses rejected. Of course, increased rejec-
tions correspond to increased power only if the false positive rate
is still under control. In this section, we present several examples
which demonstrate that filtering can, for an inappropriate choice
of statistics, lead to loss of such control. In subsequent sections,
however, we show how to avoid this problem.

In ref. 8 the authors discuss a filter which requires the fraction
of present calls to exceed a threshold in at least one condition.
Similar results are obtained by requiring the average expression
value to be sufficiently large in at least one condition. Although
such filters do not meet the nonspecificity criterion, they have a
sensible motivation: genes whose products are absent in some
conditions but present in others are typically of biological inter-
est. Fig. 24 shows, however, that such a strategy has the potential
to adversely affect the false positive rate. The conditional null
distribution for test statistics passing the filter is not the same
as the unconditional distribution, and under some conditions,
it can have much heavier tails. If one nonetheless uses the uncon-
ditional null distribution to compute p-values, these will be overly
optimistic, and excess false positives will result.

Certain nonspecific filters, for which the filter statistic does not
depend on sample class labels, can also invalidate type I error
control. Consider applying the following procedure to a two-class
dataset: ignore class labels but cluster the samples using, for ex-
ample, k-means clustering with k = 2; filter based on the absolute
value of a gene-level t-statistic computed for the two inferred
clusters. Test genes which pass the filter with a ¢-statistic com-
puted for the two real classes. If there are genes with strong
differential expression, clustering will recover the true class labels
with high probability, making the filter and test statistics identical.
In effect, this procedure computes gene-level #-statistics as usual
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Fig. 2. (A) The null distribution of the test statistic is affected by filtering on the maximum of within-class averages. In this example, all genes have a known
common variance, the filter statistic is the maximum of within-class means, and the test statistic is a z-score. The unconditional distribution of the test statistic
for nondifferentially expressed genes is a standard normal. Its conditional null distribution, given that the filter statistic (U') exceeds a certain threshold (u*),
however, has much heavier tails. Using the unconditional null distribution to compute p-values after filtering would therefore be inappropriate. See S/ Text for
full details. (B and C) Overall variance filtering and the imma moderated t-statistic. Data for 5,000 nondifferentially expressed genes were generated according
to the limma Bayesian model (ny = n, = 2, dy = 3, s3 = 1). (B) Filtering on overall variance (¢ = 0.5) preferentially eliminated genes with small s;, causing gene-
level standard deviation estimates for genes passing the filter (histogram) to be shifted relative to the unconditional distribution used to generate the data
(dashed curve). The limma inverse 2> model was unable to provide a good fit (solid curve) to the s; passing the filter. (C) The fitting problems lead to a posterior
degrees-of-freedom estimate of co. As a consequence, p-values were computed using an inappropriate null distribution, producing too many true-null p-values
close to zero, i.e., loss of type | error rate control. An analogous analysis comparing biological replicates from the ALL study—so that real array data were used
but no gene was expected to exhibit significant differential expression—yielded qualitatively similar results.

but only formally tests the most extreme results. If the standard
t-distribution is used to obtain p-values, type I error rate control
will clearly be lost.

More realistic nonspecific filters can also detrimentally affect
the conditional distribution of the test statistic. The limma t-sta-
tistic (7) is based on an empirical Bayes approach which models
the gene-level error variances {62, ..., 6% } with a scaled inverse y*
distribution. For many microarray datasets, this distribution pro-
vides a good fit (4). In ref. 7, an overall variance filter is combined
with the limma T. Because the within-class variance estimator (s?)
and the overall variance are correlated, filtering on overall var-
iance will deplete the set of genes with low s? (Fig. 2B). A scaled
inverse y2 will then no longer provide a good fit to the data pas-
sing the filter, causing the limma algorithm to produce a posterior
degrees-of-freedom estimate of co. This has two consequences:
(i) gene-level variance estimates will be ignored, leading to an
unintended analysis based on fold change only; and (ii) the p-va-
lues will be overly optimistic (Fig. 2C). See SI Text for details.

Conditional Control Is Sufficient. Having shown that a two-stage
approach need not maintain control of type I error rates, even
when a nonspecific filter is used, we now examine conditions
under which control is maintained.

First, observe that with filtering, false positives and rejections
in general are only made at stage two. Therefore, type I errors
cannot arise from those hypotheses that have been filtered
out, since none of these are rejected. Second, observe that the
distributions of the test statistics at stage two are conditional dis-
tributions, since we only consider test statistics corresponding to
hypotheses which have passed the filter. (The pitfalls we describe
above demonstrate that for some filters, this conditioning can in
fact change the null distribution.) Combining these two observa-
tions, we see that the overall FWER is given by the conditional
probability of a false positive at stage two; and the overall FDR,
by the conditional expectation of the ratio of false to total discov-
eries at stage two. To control these type I error rates, we therefore
require a filter that leads to a conditional distribution of the
{U!": i € 4} which is consistent with the requirements of the
p-value computation and multiple testing adjustment procedures.
One may, of course, adapt these procedures to accommodate
conditioning-induced changes in the null distributions. In the next
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section, however, we will consider a simpler alternative: the use of
filters that leave the distributions of true-null test statistics un-
changed. In this case, the same procedures which are appropriate
for unfiltered data are still appropriate after conditioning on
filter passage.

Marginal Independence of Filter and Test Statistics. For gene i, the
two-stage approach employs two statistics, U! and U¥, but only
compares U/'—for those hypotheses passing the filter—to a null
distribution. The unconditional null distribution of U is often
used for this purpose, but will only produce correct p-values if
the conditional and unconditional null distributions of U7 are
the same. When the null distribution of U does not depend on
the value of U!, we call this marginal independence for gene i.

Several commonly used pairs of statistics satisfy this marginal
independence criterion for true-null hypotheses. Let %, denote
the set of indices for true nulls, and Y; = (Y}, ..., Y}, ), the data
for gene i. If Y;, ..., Y, are independent and identically distrib-
uted normal for each i € %, then both the overall mean and
overall variance filter statistics are marginally independent of
the standard two-sample ¢-statistic. If, on the other hand,
Yi,....Y;, are only exchangeable for each i € %, then every
permutation-invariant filter statistic—including overall mean
and variance, and robust versions of the same—is independent
of the Wilcoxon rank sum statisticc. ANOVA or the Kruskall-
Wallis test permit extension to more than two classes. Proofs
are given in SI Text.

In summary, the pairs of filter and test statics described above
are such that for true-null hypotheses, the conditional marginal
distributions of the test statistics after filtering are the same as the
unconditional distributions before filtering. As a consequence,
the unadjusted stage-two p-values will have the correct size for
single tests. This is an important and necessary starting point
for multiple testing adjustments which attempt to control the
experiment-wide type I error rate.

FWER: Bonferroni and Holm Adjustments. Independence of U! and
U for each i € #, means that stage-two p-values computed
using the unconditional null distribution of U will be correct.
Furthermore, the marginal independence property can be
used to directly understand the impact of using the Bonferroni
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adjustment (or, by extension, the Holm step-down adjustment) in
combination with filtering. The Bonferroni correction would
ideally adjust p-values with multiplication by the expected num-
ber of hypotheses passing the filter (see SI Zext). In fact, we multi-
ply by the observed value of |.Z|. Often, the researcher fixes ||,
meaning that the two quantities are equal; even when || is
random, the ratio of E|.| to |.#| will be close to 1 with high
probability when the number of hypotheses is large.

FWER: Westfall and Young Adjustment. The Westfall and Young
minP or maxT adjustments (20) typically provide the greatest
power among generally applicable methods for FWER control.
They take full advantage of correlation among p-values (or test
statistics), and when all null hypotheses are true, the nominal
FWER is exact, not an upper bound. The single-step minP
adjusted p-values, for example, are given by

ﬁiEP(I]Iégle<Pi | HY). (1]

where € denotes {1,...,m}, H{ denotes the intersection of all
null hypotheses whose index is in A4, p; are the observed p-values,
and P;, the random variables. The step-down minP procedure is
even less conservative, adjusting the ordered p-values p;) <
Pr2) £ -« SPrpmy In a similar but progressively less aggressive
fashion. See ref. 6 or 20 for details.

When filtering, the Westfall and Young minP adjustment for
those p-values passing the filter now becomes

Bi=P(min P, <p; | M.H). [2]

The same reasoning used to prove that [1] controls the FWER
may also be used to show that [2] provides conditional control
of the FWER, given .. Further, we have shown above that
conditional control for each .# implies overall control.

Importantly, the distributions of the minima in [1] and [2]
are rarely known. In practice, they are typically estimated by
bootstrapping or by permuting sample labels from the original
data. Estimation by sample label permutation is appropriate only
when, under H;, the Y;;, ..., Y;, are exchangeable. In the ST Text
we show that if filtering is based on a permutation-invariant
statistic (like the overall variance or overall mean) and if the
distributions of the components of true-null Y; are exchangeable
before filtering, then they are also conditionally exchangeable
after filtering. Further, filters which change the correlation
structure among the p-values but which preserve exchangeability
will not adversely affect permutation-based Westfall and Young
p-value adjustment: permutation is performed after filtering, and
thus on data which reflect the conditional correlation structure,
as required for estimation of the conditional distribution of the
minimum in [2].

FDR Control and the Joint Distribution. FDR-controlling procedures
which adjust p-values require, at a minimum, accurate computa-
tion of single-test type I error rates. When the unconditional null
distribution is used to compute p-values after filtering, equivalence
of the unconditional and conditional null distributions of U™ is
therefore necessary for FDR control—to ensure that the unad-
justed, postfilter p-values are in fact true p-values. The marginal
independence criterion guarantees this equivalence.
Adjustment procedures which make no further requirements
on dependence among the p-values, such as that of ref. 21,
can then be applied directly to the postfilter p-values to control
the FDR. Less conservative and more widely used adjustments
such as refs. 22 and 23, on the other hand, make additional as-
sumptions about the joint distribution of the test statistics. A suf-
ficient condition for the method of ref. 22, for example, is positive
regression dependence (PRD) on each element from %, (21).

Bourgon et al.

Filtering can, however, change the correlation structure among
the p-values for null hypotheses passing the filter, even when
the marginal independence criterion is satisfied. It is therefore
possible that the conditional dependence structure after filtering
is inappropriate for some adjustment procedures, even though
the unconditional dependence structure before filtering did not
present any problems.

In our experience with microarrays, reasonable filters do
not create substantial differences between the unconditional
and conditional correlation structure of the p-values. Further,
the dependence conditions under which the more powerful
FDR adjustments have been shown to work are more general
than even PRD (23). However, if exploration of the data suggests
filter-induced problems with the joint distribution, one can revert
to the method of ref. 21; whether the loss of power associated
with this more conservative approach is offset by gains due to
filtering will then depend on the particulars of the data. Alterna-
tively, if strong correlations are present between the variables, a
multivariate analysis strategy that takes these into account more
explicitly might be preferable to variable-by-variable testing.

Filtering and the Weighted FDR. In ref. 24 the authors describe a
weighted p-value adjustment procedure which increases detec-
tion power for those hypotheses of greatest interest to the
researcher. Their original procedure uses a priori weights, but
ref. 25 suggests the use of data-derived weights based on the
overall variance. Filtering, using overall variance and the p-value
adjustment of ref. 22, is closely related to this data-based
weighted adjustment. The two-stage approach compares the or-
dered p-values which pass the filter to progressively less stringent
thresholds. Under the weighted procedure, if weight zero is as-
signed to hypotheses with low overall variance, and weight
m/|4| is assigned to hypotheses with high overall variance, this
set of p-values is compared to the exact same set of thresholds.
The two-stage and weighted approaches are not, however, iden-
tical. The two-stage approach never rejects null hypotheses which
have been filtered out. In the weighted approach, on the other
hand, a weight of zero leads to a less favorable adjustment to
the p-value, but the corresponding null hypothesis may still be
rejected if the evidence against it is strong. As a consequence,
under the weighted approach, zero-weight hypotheses can contri-
bute to the number of false positives and the total number of
rejections, and thus to the FDR.

The weighted false discovery rate (WFDR) provides a better
analog to two-stage filtering. Let R; be an indicator for rejection
of H;, and for a fixed weight vector w, define

M fo S R >0
m WLRI rzwll ’

i=1 i=1

Ow) =

and Q(w) = 0 otherwise. Then WFDR(w) is defined to be the
expected value of Q(w) (24). Unlike the weighted approach to
the FDR, hypotheses assigned weight zero make no contribution
to the WFDR. As a consequence, two-stage FDR control using
the procedure of ref. 22 is exactly equivalent to weighted WFDR
control using the procedure of ref. 24. Further, for fixed w, this
procedure controls the WFDR under the PRD assumption (26).
Data-derived weights W, however, are random. If PRD also holds
conditionally given W (or, equivalently, /), then this procedure
controls WFDR(W), and by implication the two-stage filtering
procedure controls the standard FDR.

Variance Filtering, Fold Change, and the t-Statistic. Practitioners
frequently compute per-variable p-values, adjust these for multi-
ple testing, but then only pursue findings for which the adjusted
p-value is significant and the observed fold change exceeds
some value relevant for their application. While this approach
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improves interpretability of results, the effective type I error rate
is not obvious.

It turns out that such a strategy is related to two-stage filtering.
There is a straightforward relationship linking the overall
variance, the difference in within-class means (the logarithm of
the fold change), and the standard within-class variance estimator
used in the f-statistic (see [S3] in SI Text). As a consequence,
filtering on overall variance, or equivalently, on overall standard
deviation, induces a lower bound on fold change. This bound’s
value increases somewhat as the p-value decreases, and Fig. 3
illustrates the effect. For small samples, this increase is negligible;
for larger sample sizes, however, it is appreciable. Importantly,
the induced log-fold-change bound is a multiple of the threshold
used in an overall standard deviation filter.

Discussion

In the context of variable-by-variable statistical testing, numerous
authors have suggested filtering as a means of increasing sensi-
tivity. This suggestion is typically motivated by a general purpose
experimental technology which interrogates a large number of
targets, a substantial (but unknown) fraction of which are in
fact uninformative. In the context of gene expression, one often
uses stock arrays that interrogate all known or hypothesized gene
products. In a given experiment, however, many genes may not be
expressed in any of the samples, or not expressed sufficiently to
generate informative signal. Similar situations exist in other
application domains. We and other authors have shown that
filtering has the potential to increase the number of discoveries.
Increasing discoveries, however, is only beneficial if the overall
false positive rate can still be correctly controlled or estimated.

In this article we have shown that inappropriate filtering has
the potential to adversely affect type I error rate control. This
effect can occur in two different ways:

The first, more immediate problem arises from dependence
between the filter and test statistics. If the two are not indepen-
dent under the null hypothesis, but the unconditional distribution
of the test statistic is nonetheless used to compute nominal
p-values, single-test error rates may be underestimated. Multiple
testing adjustment procedures rely on correct unadjusted
p-values; without these, control of the experiment-wide error rate
can be lost. We provide one solution—the use of filter and test
static pairs which are marginally independent under the null
hypothesis—and we give some concrete examples. When the
sample size is large enough, the use of an empirical null distribu-
tion offers another potential solution, provided that the effects of
conditioning can be correctly incorporated. Importantly, the filter
and test statistics need not be independent when the null hypoth-
esis is false. Indeed, positive correlation between the two statistics
under the alternative hypothesis (Fig. 1D) is required if one hopes
to increase detection power by filtering.

A second, more subtle, problem may also arise; namely, some
commonly used p-value adjustments only accommodate a certain
degree of dependence among the unadjusted p-values. Filtering
can affect dependence between p-values, even when the marginal
independence criterion is satisfied. The relevance of this concern
is application dependent, but in our experience, it is not a serious
problem for microarray gene expression data. Further, we show
above that permutation-based implementations of the FWER-
controlling procedure of ref. 20 can be safely combined with
permutation-invariant filters. The FDR-controlling procedure
of ref. 21 can also be applied without additional restrictions,
and less conservative FDR-controlling procedures can be applied
as well if their requirements are met conditionally.

In addition to analyzing power and type I error rate, we have
also pointed out a relationship between filtering by overall var-
iance and filtering by fold change. This relationship has important
implications. If variation among samples is low, effects whose size
is not of practical importance can nonetheless achieve statistical
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Fig.3. Overall variance (or equivalently, overall standard deviation) filtering
example, using the ALL data, comparing 3 BCR/ABL and 3 control subjects.
(A) Volcano plot contrasting log-fold change (D;) with p-value, as obtained
from a standard t-test. The impact of filtering is shown: overall variance
filtering is equivalent to requiring a minimum fold change—where the
bound increases as the p-value decreases. For n; = n, = 3, the induced fold
change bound was essentially constant for p; < 1072 (dashed line). As a
consequence, the two-stage approach—removing the 50% of genes with
lowest overall variance and then applying a standard t-test to what re-
mains—was approximately equivalent to applying a t-test to the full dataset
but only rejecting null hypotheses when p; <0.01 and the fold change
exceeded 1.35x (0.43 on the log, scale). (B) The rate at which the induced
fold-change bound converges to its limit depends on sample size. For small
samples, this bound, D*(p), is essentially a constant multiple of the cutoff on
overall standard deviation (u*) for all p-values of practical interest; for larger
sample sizes, however, genes producing more significant p-values are also
subject to a more stringent bound.

significance—when, for example, the numerator of the #-statistic
is small but the denominator is smaller still. Fig. 3 shows that if
the r-test is preceded by overall variance filtering, discoveries with
small effect size are avoided. The magnitude of the induced lower
bound on fold change is not obvious from the variance threshold,
so we provide software for making the necessary computations in
the genefilter package for Bioconductor (27).

Moderated ¢-statistics like the limma T are also often used
to avoid discoveries with small effect sizes. Further, the null
distribution for 7 is typically more concentrated than that of
the standard ¢-statistic. In many cases, this concentration also pro-
duces power gains—gains which may exceed those obtained by
the combination of variance filtering and the standard #-statistic.
Can even greater power gains be obtained by combining filtering
and moderation? Perhaps, but Fig. 2C shows that such an
approach has the potential to inflate the false positive rate when
the sample size is small. Thus, we do not recommend combining
limma with a filtering procedure which interferes with its distri-
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butional assumptions. We are therefore left with two options:
variance filtering combined with the standard T, or an unfiltered
T. Each option addresses the issue of small effect sizes, and each
can improve power. Which one provides the best improvement is
data dependent, and we provide further examples and discussion
in ST Text.

We have pointed out a close relationship between filtering, a
weighted approach to FDR, and WFDR control. Filtering is ana-
logous to the use of a common weight (m/|.Z|) for all hypotheses
passing the filter, and weight zero for the remainder. The use of
continuously varying weights, on the other hand, has been shown
to be optimal for certain experiment-wide definitions of type I
error rate and power, and schemes for data-based estimation
of these weights have been proposed (28, 29). Our aim in this
article, however, has not been to identify an optimal procedure,
but rather to better understand filtering and to explore its effect
on power and error rate control. Further, the simplicity of filter-
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ing—in terms of both implementation and interpretation—is very
appealing and may offset a degree of suboptimality.

Finally, Fig. 1 shows that a poor choice of filter statistic or
cutoff can actually reduce detection power. Power can be substan-
tially improved, on the other hand, when the filter and cutoff are
chosen to leverage prior knowledge about the assay’s behavior
and the underlying biology. Because such choices are application
specific, data visualization is crucial. Tools which generate
diagnostic plots like those of Fig. 1 are provided in the genefilter
package. In summary, filtering is not just an algorithmic improve-
ment to p-value adjustment; instead, when applied appropriately,
it is an intuitive way of incorporating additional information,
resulting in a better model for the data.
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