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1. Introduction

Mantle cell lymphoma (MCL) is an uncommon aggressive B-cell neoplasm which predominantly affects older adults and in the majority of cases is
characterized by the t(11;14)(q13;q32) IGH-CCND1 translocation, leading to cyclin D1 overexpression. Although TP53 and KMT2D mutations provide
prognostic information [1], mutations do not offer predictive value for treatment response in MCL (with the exception of TP53). To improve our
knowledge of the mutational landscape in MCL, we used targeted next generation sequencing (NGS) and drug viability assays to explore drug sus-
ceptibility or resistance based on genomic alterations. We found SAMHDI (Sterile alpha motif and histidine aspartic domain containing deoxy-
nucleoside triphosphate triphosphohydrolase 1) as a recurrently mutated gene (8.5 % of investigated cases, 4/47 samples). Furthermore, we provide
evidence of in vitro resistance of SAMHDI1 mutated patient-derived MCL cells to cytarabine and fludarabine. SAMHDI is a gene which was first
described to be mutated in Aicardi-Goutiere Syndrome [2]. The known functions of SAMHD1 include regulation of the intracellular dNTP pool and
DNA repair [3]. Somatic SAMHD1 mutations have been reported to occur in lymphoproliferative disorders such as chronic lymphocytic leukaemia
(CLL), where mutations were found in 3% of treatment naive and 11 % of refractory/relapsed cases [4] and were detected at higher VAF after
treatment [5]. Also, SAMHDI mutations were found in 18 % of investigated cases of T-prolymphocytic leukaemia (T-PLL) [6].

2. Methods

We sequenced a total of 47 MCL samples by means of targeted NGS (sample details listed in Supplementary Materials and Methods, covered regions
listed in Supplementary Table 1). The study included peripheral blood samples from 25 MCL patients with leukemic disease and 22 frozen nodal or
extranodal MCL tissue samples. Mutation calling was performed using a previously published pipeline [7]. Mean age of the cohort is 64.4 years (range
43-98) with a male predominance (83 % of samples), 12 of the analysed samples represent pre-treated MCLs. Whole exome (WES) and whole genome
sequencing (WGS) data was additionally available for 4 and 3 of samples, respectively. To explore the prognostic significance of SAMHD1 mutations in
MCL, samples with sufficient overall survival data from our cohort (n = 35) were merged with cases from a recently published MCL study [8] (n = 55),
amounting to a total of 7 SAMHDI mutated and 83 wild type cases. To understand the impact of mutations (including SAMHD1) on the response to
drugs, we exposed a set of patient-derived primary MCL cells (n = 14, 11 SAMHD1 wild type and 3 SAMHDI mutated) to increasing concentrations of
cytarabine (ara-C), fludarabine, doxorubicine and nutlin-3a using the ATP-based CellTiter Glo assay (Promega), as previously described [9] (complete
cell viability data provided in Supplementary Table 3). Associations between cell viability and genotype were identified by Student’s t-test (two-sided,
equal variance) and p-values were adjusted for multiple testing using the Benjamini-Hochberg procedure. The study was approved by the Ethics
Committee Heidelberg (University of Heidelberg, Germany; S-206/2011; S-356/2013) and the Cantonal Ethics Committee of Zurich (BASEC Nr.
2018-01618). Patients provided written informed consent prior to study.

3. Results

In addition to mutations in known disease drivers such as TP53 (n = 19, 40.4 %) and ATM (n = 12, 25.5 %), we identified mutations in KMT2D (n =
6, 12.8 %), NFKBIE (n = 5, 10.6 %) and NOTCHI (n = 5, 10.6 %) (Fig. 1A and detailed list of all identified mutations provided in Supplementary
Table 2). Additionally, we found SAMHDI mutations in four samples (n = 4, 8.5 %), two in previously treated and two in untreated patients. The
mutational pattern is consistent with the hypothesized tumour suppressor function of SAMHDI with nonsense, missense and frameshift mutations
(Fig. 1B). All SAMHD1 mutations had a high variant allele frequency (VAF, range 87-99 %), indicating hemizygous or homozygous mutations. In three
of the mutated samples, genomic data revealed deletion of chromosome 20q or uniparental disomy, explaining the high VAF. The presence of SAMHD]1
mutations was not associated with significant differences in overall survival (p = 0.22, Fig. 1C). Sample size of mutated cases was too small to explore
associations between survival and different treatment protocols. Cell viability screening showed a significant difference in drug response to the
nucleoside analogues cytarabine (adjusted p-value = 1E-04) and fludarabine (adjusted p-value = 4E-03), showing higher cell viability after 48 h in
SAMHD1 mutated compared to unmutated patient-derived MCL cells (Fig. 2A, Supplementary Tables 3-4 and Supplementary Fig. 1), indicating that
these mutations confer in vitro resistance. No significant differences in cell viability was observed in TP53 mutated versus wild type samples for purine
analogues, but TP53 mutated MCL cells showed resistance for the MDM2 inhibitor nutlin-3a (adjusted p-value 3E-03, Fig. 2B and Supplementary
Fig. 1).
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4. Discussion

In a recent MCL study [8], SAMHD1 mutations were found in 5/82 cases (6.1 % of samples) with two additional cases carrying SAMHD1 deletions,
furthermore Roider et al. [10] analysed the expression and mutational status of SAMHD]1 in patients of the MCL Younger and Elderly Trials and found
mutations in 13/182 cases (7.1 % of the samples), thus overall at a similar rate as in our study (8.5 %) confirming that SAMHD] is recurrently mutated
in MCL. Cytarabine is an efficient agent in the treatment of MCL [11], and our findings support further investigations on SAMHDI mutations as
biomarkers of cytarabine resistance. For example, the reported higher incidence of SAMHD1 mutations in refractory/relapsed CLL [4] could be due to
selection of therapy resistant clones, since fludarabine is a commonly used agent (e.g. in the FCR regimen: fludarabine, cyclophosphamide, rituximab).
We did not observe prognostic impact of SAMHD1 mutations in our limited-sized cohort. Similarly neither SAMHD1 protein expression nor SAMHD1
mutations were associated with complete remission (CR) or failure-free survival (FFS) rates in the aforementioned study of the MCL Younger and
Elderly Trials [10], but higher SAMHD1 expression was associated with improved FFS in elderly patients treated with the R-CHOP (Rituximab,
Cyclophosphamide, Doxorubicin, Vincristine, Prednisone) regimen. In acute myeloid leukaemia (AML) decreased SAMHD1 expression has been
shown to be a biomarker that positively predicts response to cytarabine [12] and decitabine [13] treatment. Surprisingly, we found that SAMHD1
mutations (which are predicted to impair its function) in MCL are associated with in vitro resistance to both cytarabine and fludarabine. Interestingly,
Roider et al. provide evidence that high SAMHD1 expression in cell lines is associated with decreased susceptibility to Cytarabine exposure and that
this effect was weakened when combining Cytarabine with Vincristine, hypothesizing that combination chemoimmunotherapy regimens (such as
Hyper-CVAD) might overcome the cytarabine resistance in SAMHD1 mutated MCLs [10]. SAMHD1 is expressed at lower levels in B-cells compared to
T-cells and myeloid cells [14]. A disruption by mutation or deletion could lead to an imbalance in nucleotide levels ultimately resulting in cytarabine
resistance, for example by increasing dCTP levels, which compete with the metabolization of cytarabine to its active form ara-CTP, since elevated
dNTP levels have been demonstrated in SAMHDI mutated T-PLL cells [6]. The observation that AML, T-PLL and MCL with altered SAMHD1 expression
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Fig. 1. Mutations in the analyzed mantle cell lymphoma cohort and survival estimate.

A) Gene mutations identified by targeted NGS sequencing (Oncoprint). Red cells represent mutations, top histogram indicates mutated genes per sample.

B) Schematic representation of SAMHD1 with SAM (sterile alpha motif) and HD (histidine aspartic) domain. Symbols represent found SAMHD1 mutations: nonsense
(red pentagon), missense (orange circles) and frameshift (purple square) mutations.

C) Kaplan-Meier estimate of overall survival (OS) of 90 MCL patients, of which seven have mutated SAMHD]1 (blue line). Censored patients are indicated by vertical
marks, no significant effect on survival was found (p = 0.22).
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Fig. 2. Effects of SAMHDI and TP53 mutations on drug response.

A) Boxplots illustrating cell viability after exposure to four different drugs (cytarabine, doxorubicine, fludarabine and nutlin-3a) by SAMHDI mutational status.
Fraction of cells alive are shown (mean of 5 concentrations tested). SAMHDI mutations confer resistance to fludarabine (adjusted p-value 4E-04) and cytarabine
(adjusted p-value 1E-04).

B) Boxplots illustrating cell viability after exposure to four different drugs (cytarabine, doxorubicine, fludarabine and nutlin-3a) by TP53 mutational status. Fraction
of cells alive are shown (mean of 5 concentrations tested). TP53 mutations confer resistance to nutlin-3a (adjusted p-value 3E-03).

(either by deletion, mutation or other mechanisms) respond differently might therefore be explained by differences in cell type and by different
functional effect depending on type of alteration. A recent article by Davenne and co-workers [15] reported functional and pharmacological effects of
SAMHD1 depletion in CLL cells, notably identifying forodesine as a potent agent in cells lacking SAMHD1 and elucidating the underlying mechanism.
These results raise the possibility of a targeted use of forodesine in MCL carrying disrupting SAMHD1 mutations, further highlighting the potential of
SAMHDI as a predictive biomarker.

In conclusion, we report that SAMHDI is recurrently mutated in MCL and confers resistance to nucleoside analogue therapy in vitro. Further
investigations are needed to potentially translate our in vitro result to clinical settings and to understand the resistance-conferring mechanism.
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