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ABSTRACT

Motivation: The IntAct repository is one of the largest and most

widely used databases for the curation and storage of molecular

interaction data. These datasets need to be analyzed by computa-

tional methods. Software packages in the statistical environment R

provide powerful tools for conducting such analyses.

Results: We introduce Rintact, a Bioconductor package that allows

users to transform PSI-MI XML2.5 interaction data files from IntAct

into R graph objects. On these, they can use methods from R and

Bioconductor for a variety of tasks: determining cohesive subgraphs,

computing summary statistics, fitting mathematical models to the

data or rendering graphical layouts. Rintact provides a programmatic

interface to the IntAct repository and allows the use of the analytic

methods provided by R and Bioconductor.

Availability: Rintact is freely available at http://bioconductor.org

Contact: huber@ebi.ac.uk

1 INTRODUCTION

Protein–protein interaction mapping is a widely used approach

to obtain a picture of cellular protein networks. The IntAct

(Kerrien et al., 2006) database is a primary repository for the

publication of molecular interaction data. There are many types
of interactions, and each experiment is subject to effects that

lead to error, so access to software tools for analysis and

visualization is essential.
XML formats are intended for data exchange. They are

usually not directly amenable for computational queries nor

manipulations, and a transformation into data structures

appropriate for the analysis of interest is needed.
We describe the Bionconductor package Rintact, which

provides a programmatic interface to IntAct. It translates the

primary data encoded in PSI-MI XML2.5 (Kerrien et al., 2007)

files into R graph objects (R Development Core Team, 2007),

which can then be analyzed by a variety of computational
methods (Barenco et al., 2006; Chiang et al., 2007; Gentleman

et al., 2004; Markowetz et al., 2005; Radivoyevitch, 2004;

Siek et al., 2000–2001).

2 OBTAINING INTERACTION DATA

To illustrate the use of Rintact, we access the human CoIP

data measured by Ewing et al. (2007) and the Y2H data by
Stelzl et al. (2005). Files can either be downloaded and read
from the local file system or read directly from the remote site;

we construct the filename vectors for downloaded files:

4 efiles ¼ sprintf(‘‘human_ewing-2007-1_%02d.xml’’, 1:4)

4 sfiles ¼ sprintf(‘‘human_stelzl-2005-1_1_%02d.xml’’, 1:2)

and convert the files into R intactGraph objects.

4 ewingG ¼ intactXML2Graph (efiles)
4 stelzlG ¼ intactXML2Graph (sfiles)

Because both CoIP and Y2H use a bait/prey system, the

resulting graph has directed edges from the bait to the prey.
To estimate the translation time of the function

intactXML2Graph, we applied it to seven separate datasets
from Utez et al. (2000) (two datasets), Cagney et al. (2001),

Giot et al. (2003), Stelzl et al. (2005), Zhao et al. (2005) and
Ewing et al. (2007). The data vary in size, and we found the
general trend suggests a linear time algorithm based on the

number of interactions. Thus Rintact provides a feasible
approach in parsing the IntAct PSI-MI XML2.5 files.
IntAct uses internal, persistent identifiers called IntAct

accession codes to unify the various identifier schemes of
submitted datasets. The PSI-MI XML2.5 files provide transla-
tion information from the contained IntAct accession codes to

various other commonly used molecule identifiers. This
information allows the rendering of the interaction datasets
using different types of molecule identifiers.

4 ID ¼ nodes(ewingG)[c(1, 45)]
4 translateIntactID(ewingG, ID, c("geneName",

‘‘uniprotId’’))

geneName uniprotId

EBI-1003700 ‘‘CENPH’’ ‘‘Q9H3R5’’
EBI-1046072 ‘‘PPP4C’’ ‘‘P60510’’

The function intactXML2Graph can also be called on
protein complex membership XML files, and the structure of

the output is an intactHyperGraph. The relationship
between proteins in multi-protein complexes is not binary;
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each protein complex can be represented as a hyperedge, and so

the collection of protein complexes is a hypergraph.

3 COMPUTATIONAL ANALYSIS

After obtaining the molecular interaction data, we can exploit
the various statistical methods in R and Bioconductor. For
example, we can identify the densely connected subgraphs in

Ewing et al.’s data using the highlyConnSG function from the
RBGL package. Since highlyConnSG takes an undirected
graph without self-loops, we first need to call the functions
ugraph and removeSelfLoops on the directed data graph.

4 g1 ¼ removeSelfLoops(ugraph(ewingG))
4 hc1 ¼ highlyConnSG(g1)

A graph G with n vertices is highly connected if removal of

any set of less than n=2 vertices does not disconnect G. Calling
the length function on the first element of hc1 enumerates
the number of highly connected subgraphs at 328, of which the
largest has 640 vertices.

We can use the package ppiStats to compute summary statis-
tics. Defining a viable prey (VP) as a protein that was found as a
prey at least once in a given dataset (viable bait (VB) and viable

bait/prey (VBP) are defined analogously (Chiang et al., 2007), we
can produce the bar chart in Figure 1. It shows that Stelzl et al.’s
(2005) Y2H data had a comparable number of viable baits to

viable prey while in Ewing et al.’s (2007) CoIP experiment the
viable prey population is larger than that of the viable baits.
We can view a subset of the CoIP data by rendering the

subgraph induced by 10 baits and the group of preys they pull

down in Figure 2 using Rgraphviz, and so we can easily see the
clustering effects of the CoIP technology. Rintact can also work
with the STRING database and the Cytoscape software via the

Gaggle (Shannon et al., 2006) Bioconductor package. Other
annotations can be obtained via the biomaRt (Durinck et al.,
2005) Bioconductor package.

4 DISCUSSION

We have shown the capabilities of Rintact. While there are

several software tools that also read PSI-MI XML2.5 files,
Rintact has the additional benefit of being a computational
conduit between IntAct and the analytic methods found in

R and Bioconductor. Rintact provides an efficient and
straightforward approach towards the analysis of molecular
interaction data.
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Fig. 1. The Bar chart shows the viable bait and prey distributions of the

two datasets.

Fig. 2. The CoIP subgraph restricted to 10 baits and their pulldowns.

Each selected bait is rendered in a unique color while all the prey are

rendered in light green.
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