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Abstract

Detecting the targets of drugs and other molecules in intact cellular contexts is a
major objective in drug discovery and in biology more broadly. Thermal proteome
profiling (TPP) pursues this aim at proteome-wide scale by inferring target
engagement from its effects on temperature-dependent protein denaturation.
However, a key challenge of TPP is the statistical analysis of the measured
melting curves with controlled false discovery rates at high proteome coverage
and detection power. We present non-parametric analysis of response curves
(NPARC), a statistical method for TPP based on functional data analysis and
nonlinear regression. We evaluate NPARC on five independent TPP datasets and
observe that it is able to detect subtle changes in any region of the melting
curves, reliably detects the known targets, and outperforms a melting
point-centric, single-parameter fitting approach in terms of specificity and
sensitivity. NPARC can be combined with established analysis of variance
(ANOVA) statistics and enables flexible, factorial experimental designs and
replication levels. To facilitate access to a wide range of users, a freely available
software implementation of NPARC is provided.

Keywords: Drug Discovery; Proteomics; Functional Data Analysis

Introduction
Determining the cellular interaction partners of drugs and other small molecules
remains a key challenge [1, 2, 3, 4]. In drug research, better assays to detect tar-
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gets (and off-targets) would provide valuable information on drugs’ mechanisms
of action, reveal potential reasons for side effects, and elucidate avenues for drug
repurposing. More broadly, in cell biology basic research, the dynamical landscape
of binding partners of metabolites, messengers or chemical probes contains much
uncharted territory. Thermal proteome profiling (TPP) addresses these needs by
screening for protein targets of drugs or small molecules in living cells on a proteome-
wide scale [5, 6]. TPP combines multiplexed quantitative mass spectrometry with
the cellular thermal shift assay (CETSA) [7], which identifies binding events from
shifts in protein thermostability (see Figure S1 for a detailed explanation). A typical
TPP experiment generates temperature dependent abundance measurements for a
large part of the cellular proteome. Drug binding proteins can then be inferred by
comparing the melting curves of proteins between samples treated with drug and
vehicle (negative control without drug).

Applications of TPP successfully identified previously unknown protein-ligand in-
teractions [5], protein complexes [8] and downstream effects of drugs in signaling
networks [6, 9, 10, 11] in human cells. Recently it has also been extended to study
drug resistance in bacteria [12] and targets of antimalarial drugs in plasmodium [13].
There is urgent interest in further advancing its component technologies, including
experimental and computational aspects, in order to maximize its biological discov-
ery potential [14, 15, 16, 17, 18, 19].

The central computational task in TPP data analysis is the comparison of the tem-
perature dependent abundance measurements—which can be visualized as melting
curves—for each protein with and without (or with various concentrations of) drug.
The aim is to detect changes in thermostability from statistically significant changes
in the melting curves.

A naive approach is to summarize each curve into a single parameter, such as
the melting point (7y,), which is defined as the temperature of half-maximum rel-
ative abundance (horizontal line in Figure 1A). Its value is estimated by fitting a
parametric model separately for the control and treatment conditions and compar-
ing the estimates. Statistical significance is assessed using replicates and hypothesis
testing, such as a t- or z-test. While the approach has delivered valid and im-
portant results [5, 6, 20, 21], we will see in the following that it tends to lead to
needlessly high rates of false negatives. There are three main reasons for that: first,
drug-induced effects on thermostability do not always imply significant shifts in T},
(Figure 1B-C). Second, the true Ty, of a protein can lie outside of the measured tem-
perature range, which impairs its estimation (Figure 1D). Both scenarios can result
in important targets being missed in the analysis (Figure 1E). The third reason is
a more subtle statistical one: hypothesis tests using only the point estimates of T},
do not take into account goodness-of-fit of the parametric model or the confidence
range of the estimates. Thus, important information is ignored, which statistically
leads to loss of power.

Here, we propose an alternative approach that compares whole curves instead
of summary parameters and does not rely on T, estimation. The method, non-
parametric analysis of response curves (NPARC), is based on a branch of statistical
data analysis that works on continuous functions rather than individual numbers,
termed functional data analysis [22]. Tt considers the measured melting curves as
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samples from an underlying stochastic process with a smooth mean function—which
can be modelled parametrically or non-parametrically [23]—and constructs its hy-
pothesis tests directly on these samples. NPARC’s F-statistic uses a more flexible
model that makes fewer assumptions on the data than T),-estimation, is compu-
tationally more stable, and it directly uses the information from replicates. As a
consequence, reliable estimates of the null distribution of this statistic can be ob-
tained, it shows higher sensitivity for small but reproducible effects, and failures
due to model misspecification or outliers are reduced. This increases proteome cov-
erage, which can make the difference between missing or detecting an important
drug target.

We demonstrate NPARC on the five published datasets introduced in Table 1. We
also compare its results to those of the Tj,-based method used by [6]. Three of the
experiments used the cancer drugs panobinostat or dasatinib in different concentra-
tions, one investigated the effects of the high-affinity, ATP-competitive pan-kinase
inhibitor staurosporine, one the cellular metabolite ATP. While the cancer drugs
interact with limited sets of proteins, the two other compounds are promiscuous

binders and affect the thermostability of a large fraction of the cellular proteome.

Experimental Procedures

Datasets and preprocessing

Five TPP datasets (Table 1) were obtained from the supplements of the respective
publications. Each dataset contained relative abundance measurements per protein
and temperature which had been scaled to the value measured at 37°C (the lowest of
the ten temperatures assayed) and subjected to the global normalization procedure
described by Savitski et al. [5]. Only proteins quantified with at least one unique
peptide in each of two replicates of the vehicle and compound treated conditions

were included in the analysis; the resulting proteome coverages are listed in Table 1.

Curation of lists of expected targets

Lists of expected protein targets for the pan-kinase inhibitor staurosporine and ATP
were obtained from Gene Ontology Consortium annotations via the Bioconductor
annotation packages AnnotationDbi (version 1.36.2), org.Hs.eq.db (version 3.4.0)
and GO.db (version 3.4.0). Terms and numbers of annotated proteins are shown in
Table 2.

Mathematical model

NPARC is based on fitting two competing models to the data, a null model and
an alternative model. The null model states that the relative protein abundance
at temperature ¢ (given in °C) is explained by a single smooth function pg(t) irre-
spective of the treatment condition (Figure 2A). The alternative model posits two
condition-specific functions: pr(t) for the treatment condition and uy (t) for the
vehicle condition (Figure 2B). Deviations between observed data and fitted model
are referred to as residuals, and the sum of squared residuals (RSS) serves as an

indicator of each model’s goodness-of-fit. We then compute
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RSSo = Z (5.0 — po(t))”, (1)

t,i,c

RSS1 = (wrie — pe(t)’ (2)

t,i,c

where z; ; . is the measured value at temperature ¢ for experimental replicate ¢ and
condition ¢ € {V, T}, and the summations extend over all temperatures, replicates,
and conditions.

Choice of the mean function

The mean functions pg(t), pur(t) and py(t) are each chosen from the same space
of smooth functions f : Ry — [0,1] spanned by the three parameters a,b € R,
foo €10,1] and the prescription

1_foo

I0=rieaw

+ foo- (3)
The shape of these functions is sigmoid, and the functional form (3) can be mo-
tivated by simplifying protein thermodynamics considerations [5]. The mean func-
tions and the RSS values are computed separately from the data for each protein.

In order not to overburden the notation, we omit the protein indices.

Hypothesis test statistic

To discriminate between null and alternative models, we compute the F-statistic

_ d>y RSSy — RSS)

F= dy RSSq ’ @

with da/1 > 0 defined as below. F' quantifies the relative reduction in residuals
from null to alternative model. While F' is by definition always positive, it will be
small for proteins not affected by the treatment, while a high value of F' indicates
a reproducible change in thermostability.

Null distribution

To compute a p-value from a value of the F-statistic (4), we need its null distri-
bution, i.e., its statistical distribution if the data generating process is described
by a common mean function pg(t). If the residuals were independent and identi-
cally normal distributed, this distribution would be given by an analytical formula,
namely that of the F(dy,dy)-distribution with parameters dy,ds > 0, and these
parameters—sometimes called degrees of freedom—would be explicitly given from
the number of measurements and number of model parameters that go into the
computation of RSS(y and RSS:. In practice, this is not the case, since the residu-
als are heteroscedastic (i.e. have different variances at different temperatures) and
correlated. However, the family of F(d;,ds)-distributions is quite flexible, and we
can approximate the distribution of the F-statistic (4) on data occurring in practice
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with an F(dy, ds)-distribution with different “effective degrees of freedom” dy, ds.
To this end, we separately approximate the numerator and denominator of F' as

RSSo — RSSy u, o2

—_— 2
dl dl X (dl)a (5>
RSSl Hy 0'8 2
L2 ay), ©)

and use the fact that the ratio of two y2-distributed random variables x2(dy), x2(d2)
has an F(dy, da)-distribution [24]. The scale parameter o3 and the effective degrees
of freedom d; and dy are estimated from the the empirical distributions—across
proteins—of RSSy and RSS;. Thus, we assume that 03, d;, ds are the same for all
proteins. In particular, we estimate o2 from the moments of RSS; — RSS as

1 V&I"(RSS() — RSSl) (7)
2 mean(RSSy — RSS;)’

op =

where mean and variance are computed across proteins on the observed values
of RSSy — RSS1 (see Supplementary Methods for details). Then, d; and ds are
obtained by numerical optimization of the likelihoods for models (5) and (6) using
the fitdistr function of the R package MASS [25].

p-values

For each protein, a p-value is computed from its F-statistic and the cumulative
F-distribution with parameters di,ds as described above. The multiset of p-values
across all proteins is corrected for multiple testing with the method of Benjamini and

Hochberg [26]. The outcome of such an analysis is exemplarily shown in Figure 2C.

Results

Application to panobinostat

We assessed the ability of NPARC to detect drug targets on a dataset on panobi-
nostat (Table 1). Panobinostat is a broad-spectrum histone deacetylase (HDAC)
inhibitor known to interact with HDAC1, HDAC2, HDAC6, HDACS, HDACI10,
and tetratricopeptide repeat protein 38 (TTC38) [6].

Out of 3649 proteins reproducibly quantified across both biological replicates in
both treatment conditions, NPARC yielded 16 proteins with Benjamini-Hochberg
adjusted p-values < 0.01. They contained the expected HDAC targets (Figure 3A-
E) as well as TTC38, the histone proteins H2AFV or H2AFZ (the two variants
could not be distinguished by mass spectrometry), and zinc finger FYVE domain-
containing protein 28 (ZFYVE28) (Figure 3F-H). These proteins were previously
identified as direct or indirect targets of panobinostat [6, 11]. In addition, eight more
proteins were detected for which no direct or indirect interactions with panobinostat
have been described (Figure S3). They reached statistical significance because they
either showed effect sizes comparable to known panobinostat targets, or more subtle
but highly reproducible changes in a similar strength to those already described
for dasatinib target BTK (Figure 1B). We reanalyzed the more recent 2D-TPP
dataset of short-term (15 min) panobinostat-treatment of HepG2 cells [11] for these
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proteins. All of them were identified and quantified at sufficient peptide coverage,
but none of them showed stabilization. We thus conclude that the additionally found
proteins are likely not direct binders of panobinostat, but rather indirect effects, like
altered protein-protein interactions or post-translational modifications. The longer
(5 hours) incubation time of the assay used to generate the panobinostat dataset
in Table 1 makes it more sensitive to such effects.

Beyond two-group comparisons

Since NPARC is based on analysis of variance (ANOVA), it admits experimental
designs in which the covariate has multiple levels. An example is the dataset for the
BCR-ABL inhibitor dasatinib, which comprises measurements on cells treated at
two different concentrations as well as untreated cells. NPARC successfully identified
known targets of dasatinib (Figure S4).

Replicate agreement and model fit diagnostics

Application of the Ty,-based approach by [6] to the panobinostat data failed to
detect HDAC1 and HDAC2. This was because the data for these proteins had
relatively high variance in the drug-treated condition, as is visible in Figure 3A-B.
This led to their exclusion according to one of the data quality filter criteria of that
method (Table 3), namely the criterion that asks for sufficiently high coefficients of
determination (R?). In contrast, a better and statistically sound trade-off between
variability and effect size is an integral part of NPARC, and does not require an ad
hoc filter criterion.

To further assess the price of the various filter criteria of the Ty,-based approach
by [6], we tabulated the numbers of proteins affected by them in each of the five
datasets. These proteins would, in principle, not be detectable by that method,
no matter how strong the effect. Their numbers amounted to 14-25% of the total
numbers of proteins for which melting points could be determined in both replicates
(Figure 1E and Table 4) and to 21-32% of all proteins irrespective of melting point
availability (Figure S2). In contrast, the F-test of NPARC could be applied to all
proteins irrespective of these or similar criteria, a fact which contributed to the
increased protein coverage and sensitivity of NPARC.

Effects beyond those on the melting point

Many of the proteins detected by NPARC displayed reproducible changes in curve
shape, while their T),-shifts were small, and not considered significant by the Ty,-
based approach (Figure 4). An example is the effect of staurosporine on protein
kinase C beta (PRKCB), shown in Figure 1C. PRKCB is part of the PKC family,
whose members were the first reported staurosporine targets [27, 4] and also exhibit
similar characteristics (Figure S5).

Further examples include the effects of staurosporine on RanGTP binding tRNA
export receptor exportin-T (XPOT) and two members of the p38 MAPK signal-
ing pathway: Mitogen-activated protein kinase 14 (MAPK14) and MAP kinase-
activated protein kinase 2 (MAPKAPK?2) (Figure 4); and the effect of dasatinib
on Bruton tyrosine kinase (BTK), an important drug target in B-cell leukemia
(Figure 1B).
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Missing melting point estimates

For highly thermostable proteins, the T}, in one or more of the treatment conditions
can be outside of the tested temperature range of a TPP experiment (Figure 1E).
One example is NAD(P)H quinone dehydrogenase 2 (NQO2), a cytosolic flavopro-
tein and a common off-target of kinase inhibitors [28, 29, 30]. In concordance with
previous CETSA studies that found NQO2 to be highly stable [31], we observed
denaturation only beginning at 67 °C (Figure 1D). Staurosporine treatment fur-
ther stabilized NQO2 to an extent that it showed no sign of melting in the tested
temperature range. The T,-based approach by [6] will discard such proteins, in or-
der to avoid potential problems from extrapolation of the fit beyond the measured
temperature range. In contrast, the functional data analysis approach of NPARC
is able to detect changes in any part of the melting curves, without reference to a
single point such as Ty,.

Sensitivity and specificity

So far, we have described increased sensitivity of NPARC, i.e., its ability to de-
tect more true targets. However, this is only useful if at the same time specificity
is maintained, i.e., if false positive detection remains under control. To compare
these performance characteristics between NPARC and the T,-based approach, we
computed pseudo receiver operator characteristic (ROC) curves for each of these
methods on the staurosporine data and the ATP data, using as pseudo ground truth
lists of expected targets from Gene Ontology annotation (Table 2). Here, the term
pseudo refers to the fact that these target lists, and hence the ROC curves, are
only approximations of the truth; however, the relative ranking of two methods in
such a pseudo-ROC comparison is likely to be faithful even in the presence of such
approximation error [32].

Figure 5 shows the results of NPARC on both datasets, as well as those of the z-
test of the T,-based approach by [6] applied to the individual replicates (displayed
as a continuous lines parameterized by the z-cutoff), and those of the full procedure
of [6] (shown by isolated points, due to its single, fixed cutoff). On the staurosporine
data, the full procedure of [6] performs close to NPARC. For the individual z-tests,
as well as overall on the ATP data, NPARC shows superior performance. Given
that the decision rule set of [6] (listed in Table 5) and its cutoff parameters were
developed and tuned partly on the staurosporine data, these results indicate that
NPARC has fewer “fudge parameters” and is likely to be superior in applications
to new datasets.

Discussion

Thermal proteome profiling offers the possibility to comprehensively characterize
ligand-protein interactions on a proteome-wide scale in living cells. However, the
method poses the analytical challenge of how to identify statistically significant
shifts in thermostability amongst thousands of measurements.

To address this challenge, we introduced a functional data analysis approach to
test for treatment effects by comparing competing models by their goodness-of-fit.
This enables detection of treatment effects even if a (de-)stabilization of a protein is
not captured by a single summary parameter like the T;,. The presented method is
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based on a sound statistical foundation and does not rely on hard-to-choose cutoff
or tuning parameters. We showed that our method compares favourably to previous
approaches with respect to sensitivity and specificity for several exemplary datasets,
including ones with specific and ones with promiscuous binders.

The approach fits into the framework of analysis of variance (ANOVA) or linear
models, and can thus be extended to experimental designs more complex than
treatment-control comparisons, such as multiple levels (e.g. drug concentrations)
per covariate, multiple covariates and interactions.

The suggested framework is flexible with regard to the mean function used to
represent the melting behavior and can be adapted to the particular biological
process of interest. To represent nonlinear relationships, approaches include locally
linear regression [33], spline regression [34, 35] and nonlinear parametric regression.
Here, we chose the latter as it incorporates a priori knowledge about the data
and thus has favourable estimation efficiency. For example, sigmoid curves have
horizontal asymptotes at both sides of the temperature range. In contrast, splines
and local regression tend to overfit data near the boundaries of the observation
range.

In a cellular environment we occasionally observe non-sigmoid melting curves for
subsets of proteins. One possible reason is the presence of protein subpopulations
each with distinct melting curves [16]. For example, the formation of protein com-
plexes, the binding to other molecules, or the localization in cellular compartments
can lead to deviations from the idealized sigmoid melting curve expected from the
same protein in purified form. Our model currently does not account for such sys-
tematic and reproducible shape deviations. This could be adapted in future work
by adding a low-parametric systematic modification to the sigmoid mean function.

We have considered CETSA experimental designs, where the temperature is the
major experimental variable and drug concentration is either zero or a chosen value.
It appears relatively straightforward to extend NPARC to the isothermal dose re-
sponse (ITDR) design [6, 7] where temperature is held constant and the drug con-
centration is varied across a range of values. A further extension of interest would
be to 2D-TPP [11] where both factors are changed.

We employ the same “average” null distribution for all proteins, which we ob-
tain by estimating its parameters (di,ds,00) from the distributions of residuals
across all proteins. It is conceivable that determining null distributions in a protein-
dependent manner, for instance by stratification, could increase the overall power
of the method.

The here presented approach is likely to increase the accuracy of profiling protein-
ligand interactions in living cells. To facilitate access to a wide range of users we
have implemented NPARC in a freely available R workflow [36].
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Table 1 Datasets and sample sizes.

Dataset Treatment Concentration  Buffer  Cell line  Intact cells or lysate  Proteins  Reference
ATP data MgATP 2 ptM PBS K562 Lysate 4177 9
Dasatinib 0.5 ptM data Dasatinib 0.5 tM PBS K562 Intact Cells 4625 5
Dasatinib 5 ptM data Dasatinib 5 pM PBS K562 Intact Cells 4154 5
Panobinostat data Panobinostat 1 pM PBS K562 Intact Cells 3649 6
Staurosporine data Staurosporine 20 M PBS K562 Lysate 4505 5

Table 2 Expected targets per dataset.

Dataset Gene Ontology term Number of proteins in dataset with this term
ATP ATP-binding 558
Staurosporine  protein kinase activity 187

Table 3 A priori filters applied in the original TPP analysis workflow [6] to select proteins for
hypothesis testing.

Rule number Rule

Both fitted curves for the vehicle and compound treated condition have a coef-
Zt(zt_ﬂc(t»Q with (t)
So(@—a)2 fe
1 being the model prediction for condition ¢ at temperature ¢, Z being the mean of
all measurements for the protein within a particular condition and replicate, and

the summation extending over all temperatures.

ficient of determination R2 > 0.8, where R? := 1 —

5 The two curves fitted to the two replicates of the vehicle conditions have a plateau
foo < 0.3.
3 In each biological replicate, the steepest slope of the melting curve in the vehicle

and treatment condition needs to be < —0.06 °C—1.

Table 4 Coverage of proteins applicable for hypothesis testing by the original TPP analysis
workflow [6].

Dataset Tm outside T available but curves T available and curves
measured range  not passing a priori filters passing a priori filters
ATP data 220 1004 2953
Dasatinib 0.5 pM data 689 768 3168
Dasatinib 5 pM data 667 507 2980
Panobinostat data 320 461 2868
Staurosporine data 621 631 3253

Table 5 Decision ruleset applied in the original TPP analysis workflow [6] to combine z-test
p-values across replicates in an experimental design with two biological replicates.

Rule number Rule

1 The Benjamini-Hochberg adjusted z-test p-values fulfill predefined thresholds in
each replicate.

2 Both T1, differences are either positive or negative in the two biological replicates.

3 The smallest absolute difference between treatment and vehicle Ty, is greater

than the absolute T}, difference between the two vehicle experiments.

Additional Files
The following Figures and Tables can be found in the Supplementary Material.

Additional file 1 — Supplementary Methods
Detailed description of the fitting procedures for the scaling parameter, melting points, and mean functions of the
model.

Additional file 2 — Table S1
Spreadsheet containing the results of the NPARC approach and of the T},-based approach for all datasets listed in
Table 1.

Additional file 3 — Supplementary Figures S1-S5
PDF containing Supplementary Figures S1-S5.
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Additional file 4 — Supplementary Figure S6
All proteins detected by the NPARC approach with Benjamini-Hochberg adjusted F'-test p-values < 0.01 in the
staurosporine data.

Additional file 5 — Supplementary Figure S7
All proteins detected by the NPARC approach with Benjamini-Hochberg adjusted F'-test p-values < 0.01 in the
ATP data.
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Figure 1 TPP data analysis challenges. (A)-(D) Examples for protein melting curves with and
without drug (see color keys). In each case, ten temperatures were assayed, and two experimental
replicates were made per condition, indicated by circle and triangle symbols. Fits of the sigmoid
model (Eqn. (3)) to both replicates jointly are shown by smooth lines. (A) For serine/threonine
protein kinase 4 (STK4), the binding of staurosporine is reflected by a marked shift between the
curves. The fitted values for the melting points (Tm) are shown. (B) For Bruton’s tyrosine kinase
(BTK), there is a small but reproducible shift between the curves. (C) Protein kinase C beta
(PRKCB) is destabilized by staurosporine; the effect occurs mainly at lower temperatures. (D)
NAD(P)H quinone dehydrogenase 2 (NQO2) is strongly stabilized by staurosporine. While in each
case, the effects of drug binding are clearly reproducible between replicates, the Tr,-based
approach of [6] only detects (A) and misses (B)-(D). In the case of (B) and (C), the fitted Tr, are
too similar, so that the statistical test does not assess the difference as significant. In the case of
(D), no reasonable estimate for Ty, in the staurosporine treated condition can be obtained, as it
would lie outside the measured temperature range, and the protein is discarded from the analysis.
In contrast, NPARC, the method proposed in this article, detects all four cases. (E) The fraction
of proteins in each of the datasets of Table 1 that is missed by the Tr,-based approach due to
failure to estimate T, or to meet the goodness-of-fit criterion (Table 3).
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Figure 2 Principles of NPARC, illustrated for protein STK4 under staurosporine treatment.
(A) Fit of the null model, i.e., no treatment effect (black line). The goodness-of-fit is quantified
by RSSo, the sum of squared residuals (dashed lines). As in Figure 1, the triangle and circle
symbols indicate the experimental replicates. (B) Fit of the alternative model, with separate
curves for the treated (orange) and the vehicle condition (grey). Due to the higher flexibility of
the model, the sum of squared residuals RSS; is always less than or equal to RSSg. (C) The
question whether the improvement in the goodness-of-fit, i.e., the difference RSSo — RSS1, is
strong enough to reject the null hypothesis can be addressed with the variant of the F-test
described in the main text. Each point in the plot corresponds to a different protein. The
highlighted example STK4 has a large F'-statistic and a small p-value.
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Figure 3 Direct and indirect targets of the HDAC inhibitor panobinostat detected by NPARC
(FDR < 0.01 according to the method of Benjamini and Hochberg [26]). (A)-(E) Data and curve
fits for five HDACs that show significant shifts in their thermostability. HDAC1 and HDAC2 are
not detected by the Tr-based approach of [6], since the higher variance between the replicates of
the panobinostat-treated condition leads to them being eliminated by the filter heuristics of that
method (Table 3). In contrast, NPARC naturally takes the variance into account in the
computation of the F-statistic and does not require such filtering steps. (F)-(H) Data and curve
fits for known non-HDAC targets.
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Figure 4 NPARC is sensitive to small but reproducible Ti,-shifts. The plot compares the effect
size measure used by NPARC, namely RSSog — RSS1 (y-axis), to the Tiy-difference (z-axis) for
those proteins in the staurosporine dataset for which T}, estimates could be obtained. Proteins
with Benjamini-Hochberg adjusted p-values < 0.01 are marked in red if they were exclusively
found by NPARC, and in green if they were also detected by the Ti,-based approach of [6]. NPARC
detects targets with small Ti,-differences if the measurements are reproducible between replicates.
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Figure 5 Sensitivity and specificity. Shown are pseudo-ROC curves, with expected hits (as a
proxy for true positives) along the y-axis and unexpected hits (as a proxy for false positives) along
the z-axis. The curves are obtained by varying the p-value cutoff of the F-test of NPARC (which
is computed across replicates), and of the z-test of the Tm-based approach [6] (which is computed
separately for each replicate). The asterisks indicate the result from the decision rules of [6] on
the z-test results (Table 5). The dots indicate a threshold of 0.01 on the Benjamini-Hochberg
adjusted p-values from NPARC (derived on both replicates in parallel) and on the
Benjamini-Hochberg adjusted p-values from the Tiy-based approach (computed individually for
each replicate). NPARC is modestly better than the Ti,-based approach on the staurosporine data
(A), and substantially better on the ATP data (B). The proteins found by NPARC at
Benjamini-Hochberg adjusted p-value < 0.01 are also shown in Supplementary Figures S6 and S7.
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