Downloaded from http://www.jci.org on January 8, 2018. https://doi.org/10.1172/JCI193801

The Journal of Clinical Investigation RESEARCH ARTICLE

Drug-perturbation-based stratification of blood cancer
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As new generations of targeted therapies emerge and tumor genome sequencing discovers increasingly comprehensive
mutation repertoires, the functional relationships of mutations to tumor phenotypes remain largely unknown. Here, we
measured ex vivo sensitivity of 246 blood cancers to 63 drugs alongside genome, transcriptome, and DNA methylome
analysis to understand determinants of drug response. We assembled a primary blood cancer cell encyclopedia data set that
revealed disease-specific sensitivities for each cancer. Within chronic lymphocytic leukemia (CLL), responses to 62% of drugs
were associated with 2 or more mutations, and linked the B cell receptor (BCR) pathway to trisomy 12, an important driver
of CLL. Based on drug responses, the disease could be organized into phenotypic subgroups characterized by exploitable
dependencies on BCR, mTOR, or MEK signaling and associated with mutations, gene expression, and DNA methylation.
Fourteen percent of CLLs were driven by mTOR signaling in a non-BCR-dependent manner. Multivariate modeling revealed
immunoglobulin heavy chain variable gene (IGHV) mutation status and trisomy 12 as the most important modulators

of response to kinase inhibitors in CLL. Ex vivo drug responses were associated with outcome. This study overcomes

the perception that most mutations do not influence drug response of cancer, and points to an updated approach to
understanding tumor biology, with implications for biomarker discovery and cancer care.

Introduction
The clinical response to anticancer agents is heterogeneous, which
is amajor barrier to effective cancer care. Being able to more accu-
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rately predict response before choice of treatment would improve
response rates, reduce unnecessary treatments, and be more
economical. However, predicting patient response to drugs is not
reliable for most cancers, owing to a lack of predictive biomarkers
and our incomplete understanding of the mechanisms underlying
response heterogeneity (1, 2).

Determinants of drug response have been investigated in
immortalized cancer cell lines (http://www.cancerRxgene.org,
ref. 3; http://www.broadinstitute.org/ccle, ref. 4; http://www.
broadinstitute.org/ctrp, ref. 5), and recent technology improve-
ments have increased throughput (6) and used near-complete
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Figure 1. Study outline. By combining functional drug response screening with omics profiling, we systematically queried drug response phenotypes,
underlying molecular predictors, and pathway dependencies of leukemia and lymphoma. mt, mutant.

genetic profiles (7). However, the properties of disease cells and
the heterogeneity of a disease can only be partially captured using
cell line panels. An ideal platform to query mechanisms underly-
ing variable drug response will directly interrogate primary cancer
cells of individual patients. Clonal selection is reduced by short-
term culture of primary cells, and the true genetic and phenotyp-
ic diversity of a disease is represented by a large, representative
cohort of patient-derived samples. Rare mutations (from the long
tail of the mutation distribution in the disease) are included, which
enables uncovering determinants of drug response that might be
missed using current methods. A unique feature of such direct use
of patient cells is the potential to derive individualized therapeutic
options for the donating patients (8-11) and the ability to pursue
sensitivity signals clinically (12). Indeed, several studies have
yielded novel genetic markers and drug repurposing opportuni-
ties based on individual patient observations (13-15).

Targeted treatments have revolutionized care of some blood
cancers (16-19). While a new generation of targeted drugs is
emerging for leukemia and lymphoma (20-23), surprisingly little
use has been made of molecular information for therapeutic strat-
ification (24, 25). This is in part due to shortcomings of traditional
biomarker discovery in clinical trials, where throughput is limit-
ed in both drug number and sample size. Here we propose that
by mapping the distinctive signaling pathway dependencies and
drug sensitivity patterns of individual cancers in parallel, it is pos-
sible to discover genotype-phenotype associations and underlying
molecular mechanisms in a more rapid and systematic fashion,
and thus to better support precision medicine stratification. We
report a large-scale study of drug sensitivities of primary leukemia
and lymphoma that links drug responses to genotypes and molec-
ular processes involved in disease pathogenesis.
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Results

Mapping drug sensitivity of primary leukemia and lymphoma cells. We
measured the effect of drugs used clinically or targeting pathways
important in cancer on the viability of primary leukemia and lym-
phoma samples of B cell, T cell, and myeloid origin ex vivo (Figures
1and 2, and Supplemental Tables 1-3; supplemental material avail-
able online with this article; https://doi.org/10.1172/JCI93801DS1).
We used a T-shaped experimental design in order to cover hetero-
geneity of responses widely, among 12 diseases, and deeply (184
samples) within 1 disease, chronic lymphocytic leukemia (CLL).

To query molecular determinants of drug response, we used
targeted sequencing and whole-exome sequencing (WES) (Sup-
plemental Table 4) for paired tumor and normal samples, mapping
of structural variants, genome-wide DNA methylation profiles
(450k/850k microarrays), and RNA sequencing (RNA-Seq), and
assembled the Primary Blood Cancer Cell Encyclopedia (PACE).

We profiled 246 patient and 3 control samples with 64 drugs
(data of 63 used after data quality control) in series of 5 concentra-
tions, which resulted in a drug response matrix of 79,680 measure-
ments. Similar to clinical response heterogeneity, drugs showed a
heterogeneous spectrum of responses across samples (Supplemen-
tal Figure 1). We began the data analysis by clustering the drugs
based on the similarity of their response profiles across CLL sam-
ples (Figure 3). The clustering gave a detailed reflection of drug tar-
get identity or relatedness. For instance, the responses to inhibitors
targeting the B cell receptor (BCR) components Bruton’s tyrosine
kinase (BTK), phosphatidylinositol 3-kinase (PI3K), and spleen
tyrosine kinase (SYK) were highly correlated across the 184 CLL
samples and showed a distinctive profile, which was shared with
inhibitors of kinases downstream of the BCR, including AKT, LYN,
and SRC. A BCR-like profile was also elicited by nominally unrelated
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Figure 2. Overview of sample cohort and drugs. (A) Pathology classification of samples. The largest groups were chronic lymphocytic leukemia (CLL;
n=184), T cell prolymphocytic leukemia (T-PLL; n = 25), and mantle cell lymphoma (MCL; n = 10). Color indicates cell lineage: B cell (blue), T cell (orange),
myeloid (green), and normal blood cells (gray). The dashed line indicates a scale break. (B) Compounds tallied by their targets. Green indicates FDA-
approved drugs and purple indicates drugs that are tool compounds or in clinical development. (C) The genetic landscape of our CLL cohort (n = 184),
including recurrent copy number variations (CNVs, green) and somatic mutations (blue); instances of missing data are shown in gray. Previously reported
associations include the frequent co-occurrence of del17p13 and TP53 mutation (Fisher test: P = 10°", odds ratio = 29), del11g22 and ATM mutation (Fisher
test: P = 0.05, odds ratio = 3.7). In addition, we detected a mutual exclusivity pattern between del13g14 and trisomy 12 (Fisher test: P = 0.0006, odds ratio
=0.2). ALK, anaplastic lymphoma kinase; FL, follicular lymphoma; HCL-V, hairy cell leukemia variant; h(MNC, human mononuclear cell; LPL, lymphoplas-
macytic lymphoma; NA, not available; PTCL-NQS, peripheral T cell ymphoma not otherwise specified.

drugs including AZD7762, PF477736 (targeting checkpoint kinase,
CHEK), and AT13387 (targeting heat shock protein, HSP90).

To understand the unexpected activity of AZD7762 and
PF477736, we used the kinobeads assay, which quantifies

drug-protein binding affinity through competition with immobi-
lized nonselective binders and proteome-wide quantitative mass
spectrometry (26). In addition to CHEK1/2 kinases, both drugs
targeted dozens of other proteins (Supplemental Table 5). We
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Figure 3. Drug profile similarities reflect mode of action. “Cuilt by association” prediction of drug targets and mechanism of action. For each pair of drugs
used in the screen, the Pearson correlation coefficient (r) was computed from the viabilities of the 184 CLL samples after drug treatment (average of the

2 lowest concentrations). The rows and columns of the resulting drug-drug correlation matrix were arranged based on the hierarchical clustering shown

at the bottom, and the matrix is displayed as a heatmap. The major blocks are (i) kinase inhibitors targeting the B cell receptor, including idelalisib (PI3K),
ibrutinib (BTK), duvelisib (PI3K), PRT062607 (SYK); (ii) inhibitors of redox signaling/reactive oxygen species (ROS) (MIS-43, SD07, SD51); and (iii) BH3
mimetics (navitoclax, venetoclax). The scatter plots show 3 instances of pairwise correlation analyses of drugs.

intersected these target lists with proteins that were identified as
BCR effectors based on their BCR-dependent phosphorylation in
lymphoma cell lines after BCR engagement (27). This intersection
yielded 16 proteins, including well-known BCR pathway mem-
bers (Figure 4). We then tested the effect of AZD7762 on proximal
BCR signaling by measuring anti-IgM-induced calcium release in
HBL2 and BL60 cell lines, commonly used models for lymphoma.
Similar to ibrutinib, AZD7762 blocked anti-IgM-induced calcium
mobilization (Supplemental Figure 2). To characterize the drug’s
effects further downstream of the BCR, we assayed the activa-
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tion of signaling targets using phospho-specific antibodies in a
lymphoma cell line (HBL-2) and 5 primary CLL samples. Upon
AZD7762 exposure, we observed consistent downregulation of
p-AKT, p-BTK, and p-SYK, but not p-S6 (mTOR) (Supplemen-
tal Figure 3), and induction of apoptosis (Supplemental Figure
4). AZD7762 caused stronger viability effects in unmutated CLL
(U-CLL) samples, which we confirmed under conditions of cocul-
ture with stroma cells (Supplemental Figure 4).

To follow up on the AT13387 result, we investigated 2 addi-
tional HSP9O inhibitors, ganetespib and onalespib, in 120 of the
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CLL samples. Consistent with our data for AT13387, these drugs
had higher activity in U-CLL than in M-CLL (Supplemental Fig-
ure 5). HSP9O0 inhibitors are known to attenuate BCR and nucle-
ar factor-kB (NF-kB) signaling (28), and our findings are in line
with a report that AT13387 compromises the activity of the pivot-
al BCR-proximal effector SYK, which was identified as an HSP90
client protein (29).

Together, these results show that the similarity of response pro-
files across a large set of patient samples accurately assigns drugs
into groups of similar mechanisms of action. In line with this con-
cept, the phenotypic clustering of drugs depended on the sample
selection; when we performed the same analysis on the T cell pro-
lymphocytic leukemia (T-PLL) samples, the cluster of BCR-target-
ing drugs largely dissolved, while other clusters (reactive oxygen
species [ROS], Bcl-2 homology domain 3, BH3 mimetics) — less
dependent on disease-specific activity — remained (Supplemental
Figure 6). We conclude that the drug perturbations acted as spe-
cific molecular probes for the tumor cells’ survival dependencies
and that drug response profiles allow “guilt by association”-based
mapping of drug targets. They enable the discovery of unexpected
targets, as demonstrated by the targeting of the BCR signaling cas-
cade by molecules originally designed to inhibit HSP90 or CHEK.

Disease-specific drug sensitivity phenotypes. To gain a global over-
view of drug response patterns across all patients, we employed
t-distributed stochastic neighbor embedding (¢.-SNE), a machine
learning algorithm for visualizing a set of objects in a 2-dimension-
al plane. This unsupervised analysis partitioned different disease
types (i.e., T cell lymphomas, HCL, lymphoplasmacytic lympho-
ma [LPL], CLL) and the healthy mononuclear cells into distinct
clusters based on their drug sensitivities (Figure 5A). This finding
indicates that drug responses depend on disease, reflecting under-
lying cell lineages, differentiation states, and pathway activities.
To further dissect the influence of disease on drug response and to
identify disease-specific vulnerabilities, we compared each drug’s
viability effects across diseases (Figure 5B and Supplemental Fig-
ure 7). T-PLL was not responsive to BCR inhibitors, as expected,
but was also more resistant to other drugs, including apoptosis-

inducing BH3 mimetics and AT13387. In contrast, T-PLL was most
sensitive to thapsigargin, a noncompetitive inhibitor of the sarco-/
endoplasmic reticulum Ca?* ATPase (SERCA), and to JAK inhib-
itors (P < 0.001), revealing repurposing opportunities for these
drugs, some of which are already in clinical use. In CLL, BH3
mimetics and BCR inhibitors showed disease-specific activity,
similar to clinical observations. Acute myeloid leukemia (AML)
was sensitive to tamatinib (targeting SYK) and tipifarnib (target-
ing farnesyl protein transferase), and marginal zone lymphoma
(MZL) was resistant to BCR inhibitors and other kinase inhibitors,
a result consistent with prevalent reliance of MZL on NF-kB-acti-
vating mutations (30). Mantle cell lymphoma (MCL) was pref-
erentially sensitive to YM155 (P < 0.001), a cytotoxic agent with
unclear mechanism of action reported to target survivin, Mcl-1
(31), and PI3K signaling (32). Mirroring clinical observations,
subsets of MCL samples were sensitive to BCR inhibitors or the
mTOR inhibitor everolimus (23, 33). Hairy cell leukemia (HCL),
which commonly carries the BRAF V60OE mutation (34), was dis-
tinctly responsive to BRAF and MEK inhibition.

These results validate our experimental approach, as they
show how the clinical response of diseases is recapitulated.
Moreover, they demonstrate that fine-grained classification of
disease is possible based on drug response phenotypes, and how
new disease-specific drug sensitivities with potential clinical
exploitation can be uncovered.

Drug-perturbation-based functional classification of CLL. To
gain a global overview of drug response patterns across patients
we clustered tumors and drugs by response (Figure 6A and Sup-
plemental Figure 8). We considered each concentration separate-
ly, in a model-free approach that allows for dose-dependent tar-
get specificity. Within CLL, response to BCR inhibitors formed a
dominant and continuous gradient that separated the samples by
their immunoglobulin heavy chain variable (IGHV) region muta-
tion status. IGHV status (U-CLL or mutated [M-CLL]) reflects the
cellular differentiation stage of the tumor-initiating cell and pro-
vides a key biological subdivision of CLL with major clinical impli-
cations (35). Our finding is consistent with the increased BCR sig-
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Figure 5. Disease-specific drug response phenotypes of blood cancers. (A) t-distributed stochastic neighbor embedding (t-SNE), a machine learning algo-
rithm for dimensionality reduction, was used to visualize similarities among 246 patient samples with respect to the 315 drug sensitivity measurements
(each of 63 drugs at 5 concentrations). The plot shows a distinctive separation of pathologic disease entities based on their drug sensitivity pattern. The
line plots show mean viabilities for individual disease entities (CLL, gray; HCL, yellow; MCL, purple; and T-PLL, brown) and drugs across 5 concentrations,
highlighting disease-specific differences. (B) Primary data for individual drugs provide examples for disease-specific response and sample variation (CLL,
n=184; HCL, n = 3; MCL, n =10; T-PLL, n = 25). FL, follicular lymphoma; HCL-V, hairy cell leukemia variant; hMNC, human mononuclear cell; LPL, lympho-
plasmacytic lymphoma PTCL-NOS, peripheral T cell ymphoma not otherwise specified.

naling capacity in U-CLL (36) and shows the ability of drug-based
screening to probe key survival pathways. Within this dominant
gradient driven by BCR dependence, we discovered a group of
patients with M-CLL that were sensitive to everolimus, an mTOR
inhibitor. Moreover, comparison of the responses revealed that
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a subset of these rely on mTOR signaling activity independent
of BCR signaling. A similar organization, with a gradient of BCR
activity and a subgroup with BCR-independent mTOR activity,
appeared in MCL, a related B cell lymphoma. Clinical studies
demonstrated strong activity of the BTK inhibitor ibrutinib and
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the mTOR inhibitor temsirolimus in subsets of MCL (23, 37), and
our finding reveals potential biomarkers for treatment. Altogeth-
er, the patterns that we observed based on unsupervised analysis
suggest that CLL can be subdivided into functional disease cat-
egories based on drug response, which is in line with CLL being
able to arise from multiple driver pathways that can be activated
to different degrees. Moreover, they suggest that there is a limited
repertoire of such constellations and that most tumors fall into a
finite number of signature clusters.

A model of phenotypic heterogeneity of CLL. To further dissect
signaling activities and survival dependencies in CLL, we select-
ed drugs that probe specific molecular pathways. First, we com-
pared 3 drugs that inhibit BCR signaling targets: ibrutinib (BTK),
idelalisib (PI3K), and PRT062607 (SYK). These 3 targets are key
components of proximal BCR signaling. While the responses of
CLL samples to these agents ex vivo were variable across tumors,
they were similar across the 3 drugs (Figure 6B). Next, we selected
drugs that showed more differences between each other and com-
pared dependency on BCR (BTK, SYK, PI3K) with MEK (selume-
tinib) and mTOR (everolimus) (Figure 6C and Supplemental Fig-
ure 9, A and B). The spread-out distribution of the samples reflects
a heterogeneous response of CLLs to inhibition of these signaling
components. To dissect this distribution, we stratified the analy-
sis between U- and M-CLL. We found that U-CLLs are relatively
homogeneous and predominantly rely on BTK and MEK signal-
ing, consistent with MEK/ERK activation downstream of the BCR
(Figure 6D). In contrast, M-CLLs showed a more heterogeneous
organization, with BTK-independent response groups character-
ized by mTOR sensitivity. To further explore the relationships
between responses to inhibition of BCR, mTOR, and MEK in
CLL, we exposed primary CLL samples (6 M-CLL and 6 U-CLL)
to ibrutinib, idelalisib, selumetinib, and everolimus and compared
the drug-induced gene-expression changes (Supplemental Figure
9C). While the tumors’ transcriptional responses to ibrutinib and
idelalisib were similar, larger differences existed between each
tumor’s response to BCR inhibitors, selumetinib (MEK) and ever-
olimus (mTOR). This finding implies that CLL survival signaling
can be mediated by the BCR as well as by BCR-independent path-
ways through mTOR and/or MEK.

Based on these results, we devised a simple classification tree
with binary thresholds of response (Figure 7A and Supplemental
Figure 10). It stratifies CLL based on response to ibrutinib (BTK
group n = 50/184), response to the mTOR inhibitor everolimus
but not to inhibition of upstream BTK (mTOR group n = 26/184),
response to the MEK inhibitor selumetinib, but not to ibrutinib
or everolimus (MEK group n = 23/184), and a group with weak
response (n = 85/184). Although defined based on these 3 ref-
erence drugs, the BTK and mTOR groups showed coordinated
differences in their responses to other drugs as well (Figure 7B).
The BTK group was consistently more responsive to other BCR
inhibitors (idelalisib [PI3K], spebrutinib [BTK], duvelisib [PI3K],
and PRT062607 [SYK]) and multiple other kinase inhibitors (e.g.,
ATM, DNA-PK, CHEK). Notably, the mTOR group exhibited
increased sensitivity to the casein kinase 2 (CK2) inhibitor silmita-
sertib (Figure 7C). This unanticipated cosensitivity is in line with a
recent report of a biological link between CK2 and mTOR activity
(38). The mTOR group also exhibits specific sensitivity towards
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venetoclax and navitoclax (Figure 7C), both inhibitors of the anti-
apoptotic protein BCL-2.

Phenotypic subgroups have distinct molecular characteristics. We
next asked whether this drug response phenotype-based classifi-
cation of patients was associated with distinct molecular profiles
or clinical outcomes. Patients in the mTOR group had a longer
time to treatment (TTT) compared with the MEK and BTK groups
(Supplemental Figure 11A; P = 0.04). At the genetic level, we
found trisomy 12 to be enriched in the BTK and mTOR groups and
absent in weak responders (Supplemental Figure 11B). Trisomy
12 is a structural variant of poorly understood molecular function
that occurs in 15%-20% of CLL patients and is associated with a
higher incidence of aggressive transformation (39). In contrast,
the most frequent alteration in CLL, dell3q14, was enriched in
weak responders but depleted in the BTK group. Del13q14 involves
the putative pathogenic disease loci DLEU2 and microRNA clus-
ter MIR15A-MIR16-1 (39), and our finding might provide further
leads towards functional annotation of this deletion. The mTOR
group consisted almost exclusively (22 of 23) of M-CLL and com-
prised 3 of the 4 cases with mutations in KLHL6. Deleterious
mutations of KLHL6 are involved in B lymphocyte antigen recep-
tor signaling (40). These results indicate that intrinsic molecular
differences underlie the phenotypic response groups.

At the level of gene expression, we searched for genes differ-
entially expressed between the groups (Supplemental Figure 11C).
We applied gene set enrichment analysis (Supplemental Figures 12
and 13) and detected enrichment of gene sets known to be associ-
ated with increased polycomb repressive complex 1 (PRC1) activity
(41), TNF-a stimulation, and IL-2 for the mTOR group. IL-2 induc-
es survival signals in CLL (42) and T cells (43) through p-70S6 and
mTOR activity. As a functional link has been reported between
active IL-2 signaling and higher IL-10 expression in CLL (44), we
investigated expression of several cytokines that are important for
CLL survival or characteristic of distinct B cell subsets (45) (Supple-
mental Figure 11D). Of these, we found only IL-10 to be upregulat-
ed in the mTOR group. Moreover, within the mTOR group, IL-10
expression was correlated with better response to everolimus (P =
0.03, Supplemental Figure 14). Increased expression of IL-10 is a
property of regulatory B cells (B10 cells) (46), and our result might
be related to the recent discovery of a subset of M-CLL that shows
a B10-like phenotype associated with BCR anergy (47). To further
dissect the roles of cytokines, we exposed primary CLL cells (n =
16) to different concentrations of cytokines (IL-2, -4, -10, and -21),
LPS, and anti-IgM. IL-4, -10, and -21 had prosurvival effects on
most samples. However, an effect of IL-10 stimulation was mark-
edly absent in the samples from the mTOR group, possibly due to
already high endogenous levels (Supplemental Figure 15).

Together, these findings reveal unacknowledged heterogene-
ity of signaling dependencies in CLL. We summarize them in the
signaling model shown in Figure 8. The majority of U-CLL cases
depend on dominant, canonical BCR signaling. In contrast, a sub-
set of M-CLLs show BCR-independent signaling mediated through
mTOR, which can act downstream of cytokines or chemokines.

Comprehensive survey of molecular determinants of response in
CLL. Most cancer mutations have not been linked to drug response.
Based on the cohesiveness of the above results, we used PACE to
perform a comprehensive survey of genetic determinants of drug
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Figure 6. Functional classification of blood cancer based on drug per-
turbations. (A) A global overview of the drug response landscape reveals
heterogeneity within diseases and functionally defined disease subgroups.
The heatmap matrix shows the viability measurements for 246 samples
(rows) and 17 of the drugs at 2 concentrations each (columns). The data
are shown on a Z-score scale, i.e., centered and scaled within each column.
The color bars to the right show sample annotations. Prior to clustering,
samples were divided into 6 disease groups, indicated by the horizontal
gaps. A more detailed version of this plot is available in Supplemental
Figure 8. (B) Relative effects of ibrutinib (BTK), idelalisib (PI3K), and
PRT062607 (SYK) on each of the 184 CLL samples are shown in ternary
plots. Given percentage viability values (v) of 3 drugs compared, the rela-
tive effect of drug / is measured by (100 - v)/(300 - [v, + v, + v.]), for
i=1,2,and 3. Numbers per sample add up to 1 and correspond to positions
within an equilateral triangle. The maximum of 100 - v, as a measure of
the overall susceptibility of the sample, is shown by dot size. Each drug is
represented by the average of the 2 lowest concentrations. Response to
the BCR inhibitors was similar in the majority of CLL samples. Prior treat-
ment is indicated by dot color (green: pretreated, n = 52; yellow: untreated,
n =132). (C) In contrast, comparison of relative responses to ibrutinib,
selumetinib, and everolimus revealed a heterogeneous response. (D) Same
data as in panel C, but separately plotted for U- and M-CLL (n = 74 and

n = 98, respectively). U-CLL showed predominant reliance on BTK and MEK
signaling, whereas M-CLL showed a less BTK-dependent response pattern,
with many cases of predominant MEK or mTOR sensitivity. FL, follicular
lymphoma; HCL-V, hairy cell leukemia variant; hMNC, human mononuclear
cell; LPL, lymphoplasmacytic lymphoma PTCL-NQS, peripheral T cell lym-
phoma not otherwise specified.

response in CLL, including IGHV status, somatic gene mutations,
and structural variants (Figure 9). The most prominent factor was
IGHV mutation status, which was associated with response to 42
(67%) drugs (¢ test, FDR = 10%), including idelalisib and ibrutinib,
which are in clinical use (Figure 10A). Robust differences were seen
even at the lowest concentrations. For instance, 156 nM ibrutinib
led to a mean viability of 89.2% in U-CLL versus 99.5% in M-CLL
(P < 0.001). These effect sizes are comparable to previous, small-
er studies investigating individual drug effects (48). We confirmed
them in a FACS-based annexin V/propidium iodide assay for apop-
tosis (Supplemental Figure 16). Similarly, several multi-kinase
inhibitors were more active in U-CLL. Indeed, the strongest asso-
ciations of response with IGHV status were observed for dasatinib
and for 3 of the drugs already discussed above, the HSP9O0 inhibitor
AT13387 and the CHEK inhibitors PF477736 and AZD7762. These
results show how the critical role of BCR signaling renders CLL
cells sensitive to a broad range of kinase inhibitors that act by mul-
tiple target engagement of BCR components. While our data show
direct correspondences between the individual signaling activity
pattern of a tumor and its response to ex vivo drug testing, they also
highlight the caveat that clinical translation requires more sophisti-
cation than naive indication based on effect size in the assay; trials
of dasatinib in CLL had limited success (49).

Responses to 53 drugs (84% of compounds) were modu-
lated by at least 1 mutation (including IGHV), and 39 (62%) of
drugs were associated with 2 or more mutations, indicating that
the influence of gene mutations on drug responses is more per-
vasive than anticipated based on cell line-based surveys (3, 5).
These mutations targeted diverse molecular processes (Figure
9 and Supplemental Figure 17) including DNA damage (dell17p,
TP53), MEK/ERK signaling (RAS, BRAF), transcription regula-
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tion (CREBBP), pre-mRNA processing and splicing (PRPF8), but
also comprised mutations with less well-understood function
(UMODL1, gain8q24, ABI3BP).

TP53 mutations, which often co-occur with deletion of one
allele of chromosome 17p, are associated with clinical resistance
to chemotherapy and are the only genetic marker currently used to
guide treatment decisions in CLL (50). Their effect was captured
by PACE,; fludarabine and doxorubicin had reduced activity in
CLL with TP53 mutation or del17p13 (Figure 9 and Supplemental
Figure 17, A and B). Nutlin-3, which targets the MDM2/p53 inter-
action, also had decreased effect in TP53-mutant CLL (Figure
9B). Within mutant cases, the viability effects were associated
with clone size, as expected from the drug’s mechanism of action.
Analogous associations between TP53 and response to nutlin-3
and fludarabine were found in MCL (Supplemental Figure 17C).

We investigated the impact of pretreatment status on gene-
drug response associations, since 52 of 184 CLL patients had
received treatment with chemotherapy and immunotherapy or
either alone before sample collection. None of them had received
kinase inhibitors. A notable difference between the pretreated and
untreated samples was a higher prevalence of TP53 mutations in
the pretreated group (P = 4.7 x 107, Fisher test), a consequence
of clonal selection under chemotherapy. Consequently, pretreat-
ed samples showed less response to fludarabine (Supplemental
Figure 18) and nutlin-3, drugs with strong dependence on p53
function. The second main difference between pretreated and
untreated samples was the higher prevalence of U-CLL cases (P
=2.3x107, Fisher test), due to progressive disease and thus more
frequent need for treatment of U-CLL. This explains the stronger
response to kinase inhibitors of pretreated samples. However,
when considering pretreatment status separately in the TP53-wild
type and -mutant groups, or in U-CLL and M-CLL, the association
of pretreatment status with response to fludarabine or ibrutinib
disappeared. We also systematically analyzed the impact of pre-
treatment and used pretreatment status as a blocking factor in the
association tests of drug responses and genetic features (Supple-
mental Figure 19). A comparison of the association test P values
shown in Figure 9 and the same analysis blocked for pretreatment
indicates that the 2 analyses are highly concordant (Supplemental
Figure 20). These results suggest that effects of pretreatment with
chemo-immunotherapy were largely captured by TP53 and IGHV
mutation status, and otherwise were negligible with regard to our
drug response association analyses.

HCL cases, which all carried the BRAF V600OE mutation, had
distinctive sensitivity to BRAF and MEK inhibition (Supplemen-
tal Figure 17D), whereas in BRAF-mutated CLL, the response to
BRAF inhibition was less pronounced. This finding suggests that
BRAF mutations are key disease drivers in HCL, but not CLL,
where alternative survival signals (BCR) dominate also in the con-
text of BRAF mutations. Indeed, only 3 of 10 BRAF-mutant CLL
cases had the V60OE substitution, and only 2 of these were clonal.
KRAS-mutant CLL was sensitive to MEK inhibition, and showed
increased viability with the BRAF inhibitor encorafenib, reflecting
paradoxical BRAF activation (Supplemental Figure 17E).

CLL samples with mutations of the transcriptional cofac-
tor CREBBP, known as a key driver in follicular lymphoma
(51), were more sensitive to the mTOR inhibitor everolimus.
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Figure 7. Hierarchical model of drug response phenotypes in CLL. (A) We derived a decision tree model that classifies CLL patients into 4 drug-response-
based groups. First, we asked if ibrutinib caused strong viability effects (BTK group n = 50/184), second, whether the remaining patient samples respond-
ed to everolimus (MTOR group n = 26/184) and third, whether they responded to selumetinib (n = 23/184). The remaining patients were classified as weak
responders (n = 85/184) (Supplemental Figure 10). (B) Summary of cosensitivities for the 4 groups. We compared drug responses of each group to all
samples from the remaining groups (average of the 2 lowest concentrations) using Student’s t test. Significant differences (FDR = 5%) with a mean effect
size greater than 5% are shown. The heatmap visualizes mean viabilities, row-centered and scaled to zero mean and unit standard deviation. (C) Exempla-
ry plots of individual sample data for 4 of the drugs shown in panel B. The BH3 mimetic navitoclax and the CK2 inhibitor silmitasertib had stronger viability
effects in the mTOR group. AZD7762 and idelalisib had stronger viability effects in the BTK group.

UMODLI mutations were associated with resistance to BH3

mimetics (Supplemental Figure 17F).

Trisomy 12 is observed in 15%-20% of CLL and while clinical-
ly distinct, little is known about the molecular pathways involved.

jci.org  Volume128  Number1

January 2018

CLL with trisomy 12 showed a characteristic response profile
with multiple drug associations, including increased sensitivity
to PI3K, mTOR, and MEK inhibitors (Figure 10B). These associ-
ations persisted when we assessed them separately within U- and
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Figure 8. A model for the roles of BCR, mTOR, and MEK pathway activities in CLL. BCR-dependent cases are highly sensitive to inhibition of SYK, BTK,
and PI3K. MEK and mTOR activation occur downstream of BCR. Most U-CLL patients belong to this group. In contrast, there is a group of CLL where cells
receive survival signals from alternative sources (e.g., cytokines/chemokines) and whose drug response pattern is inconsistent with canonical BCR signal-
ing, as the effect of inhibiting mTOR is greater than for BTK. PI3K, phosphatidylinositol 3-kinase; IKKp, IkBa-Kinase-complexes; AMPK, AMP-activated
protein kinase; TSC1/2, hamartin/tuberin; PDK1, pyruvate dehydrogenase kinase 1; SGK3, serine/threonine-protein kinase; PLC, phosphoinositide-phos-
pholipase C; PKCB, protein kinase C ; CBM, CARMA1-Bcl10-MALT1 complex; mTOR, mechanistic target of rapamycin; SYK,spleen tyrosine kinase; BTK,

Bruton'’s tyrosine kinase; Lyn, tyrosine kinase Lyn.

M-CLL (Supplemental Figure 21). In addition, we observed asso-
ciations that were present only within M-CLL, including reduced
sensitivity to chaetoglobosin A for cases with trisomy 12. To fur-
ther investigate the relationship between MEK/ERK signaling
and trisomy 12, we studied additional ERK (SCH772984) and
MEK (cobimetinib, trametinib) inhibitors. These also showed
preferential activity in CLL with trisomy 12 (Supplemental Fig-
ure 22), pointing to an essential role for MEK/ERK signaling in
CLL with trisomy 12.

To explore the effect of trisomy 12 at the level of gene expres-
sion, we compared RNA-Seq data of CLL with and without triso-
my 12. In addition to the expected gene dosage effect on chromo-
some 12 (Supplemental Figure 23A), we found 109 differentially
expressed genes not on chromosome 12, based on stringent cut-
offs (FDR = 0.1 and absolute logarithmic [base 2] fold change >
1.5). Of these, 72 were up- and 37 downregulated (Supplemental
Figure 23B). We performed parametric analysis of gene set enrich-
ment (PAGE) (52) on a more permissive list of all genes with a raw
Pvalue less than 0.05. This analysis linked trisomy 12 to gene sets
annotated with BCR, PI3K, AKT, and mTOR signaling, chemo-
kine signaling, and with regulation of the actin cytoskeleton (Sup-
plemental Figure 24).

These results indicate that CLL with trisomy 12 has a specific
signaling signature. Indeed, this disease subgroup was reported to
exhibit increased p-ERK levels (53), shorter time to progression
(54), and a distinct response to the BTK inhibitor ibrutinib (55).

To explore the role of trisomy 12 across cancer types, we tabulated
its incidence in the Mitelman database (56) and found it strongly
overrepresented in tumors with B cell lineage (Supplemental Fig-
ure 25). Altogether, these findings suggest that trisomy 12 drives B
cell lymphoma by modulating PI3K, MEK/ERK, and mTOR path-
ways and amplifying BCR signaling.

We conclude that in addition to the known biomarkers in CLL,
there are a surprisingly large number of gene-drug associations,
which in view of the disease’s genetic heterogeneity implies a
commensurate heterogeneity in responses to drugs. The example
of trisomy 12 shows how an association of a genetic feature with a
spectrum of drugs can elucidate molecular mechanisms. Associa-
tions can be context-specific, as exemplified by the driver versus
passenger nature of BRAF mutations in HCL versus CLL.

Understanding complex networks of drug response predictors. The
molecular basis of variable drug response phenotypes is multifac-
torial and can involve multiple layers including gene mutations,
gene expression, and DNA methylation (7). While the results
presented above provide a comprehensive catalog of marginal
associations of single mutations, an understanding of the combi-
natorial interplay of multiple factors will be essential for a mean-
ingful prediction of drug response. To address this challenge, we
applied linear regression with lasso regularization and derived
for each drug a multivariate predictor composed of genetic, gene
expression, and DNA methylation covariates (Figures 11 and 12)

(57). We first assessed to what extent single omics data types or
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Figure 9. Genomics of drug sensitivity in CLL. (A) Drug responses are modulated by many of the mutations recurrent in CLL. The y axis shows the negative
logarithm of the t-test P values of all tested associations. Viabilities across different drug concentrations were aggregated using Tukey’s median polish
method. Each circle represents a drug-gene association. Tests with P values smaller than the threshold corresponding to a false discovery rate (FDR) of 10%
(method of Benjamini and Hochberg) are indicated by colored circles, where the colors represent the gene mutations and structural aberrations. To control
for potential confounding effects of prior treatment history of the donating patients, we also performed this analysis with pretreatment status as a blocking
factor in the association tests; the results of this analysis are provided in Supplemental Figure 19 and are concordant with those shown here (Supplemental
Figure 20). (B) Primary data of selected drug-gene associations. The fraction of cells for trisomy 12 and the allele frequency (AF) for the mutations TP53,
PRPF8, and CREBBP is shown by the color code.
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the combination of all our omics data explained the variable drug
responses. Responses to chemotherapeutics and nutlin-3 were
predominantly explained by genetic factors, whereas response to
BCR inhibitors was best predicted by IGHV, gene expression, and
DNA methylation (Figure 11).

Next, we visualized predictor profiles for individual drugs,
focusing on the genetic variables and a 3-category summary of
the DNA methylation data (58). The profiles were reflective of
the drugs’ mechanisms of action. For nutlin-3 and fludarabine,
TP53 and del17p were the most dominant predictors (Figure 12).
The predictor profiles for BCR inhibitors highlighted IGHV status
and trisomy 12 as key factors, but additional aberrations includ-

only partially explained by TP53 mutation status, since

within wild-type TP53 CLL, doxorubicin response had

predictive value for OS (Figure 13C). Next, we fitted multi-
variate Cox models (Supplemental Tables 6-10) using established
covariates [age, pretreatment, trisomy 12, del11q22.3, del17p13,
TP53 mutation, IGHV status] and individual drug responses as
continuous variables. Again, doxorubicin response was associat-
ed with OS (P = 0.03, Supplemental Table 6). Response to BCR
inhibitors was associated with inferior TTT (ibrutinib, idelalisib,
PRT062607) and OS (PRT062607) (Figure 13A) and was partly
explained by association with IGHV status. However, also with-
in M-CLL, response to BCR inhibition was negatively correlated
with TTT, and BCR inhibitors were significantly associated with
TTT in multivariate models considering age, pretreatment, tri-
somy 12, del11q22.3, del17p13, TP53 mutation, and IGHV status
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functional disease groups showed clear
enrichments with regard to many genetic
features, but our attempts at describing
the drug response groups through clas-
sification approaches using genetic fea-
tures failed, which further highlights the
unique and nonredundant information
conveyed by functional readouts for pre-
cision oncology.

The distinct drug response pheno-
type of trisomy 12 in CLL implies ampli-
fication of BCR signaling as the mech-

021] | l l b4
0.1 I 1

R?2

0.0 - . - - —m -

All anism underlying this driver mutation,
I a finding that would explain short pro-
gression-free survival (54), high p-ERK
levels (53), the different response pat-
tern to ibrutinib (55), and the charac-
teristic incidence of trisomy 12 in B cell

Figure 11. Explanatory power of data types for drug response prediction. Explanatory power (R?) of

the features from the different data types for prediction of drug response. For fludarabine, doxorubicin,
and nutlin-3, we fit multivariate regression models to predict the average viability value across all 5
concentrations. For the targeted drugs ibrutinib (BTK), idelalisib (PI3K), selumetinib (MEK), everolimus
(mTOR), and PRT062607 (SYK), we used the average of the 2 lowest concentrations, 156 and 625 nM,

as the dependent variable. As predictors, we used the different data types as indicated by the colors:
demographics (age, sex), mutations, IGHV status, pretreatment (coded as 0/1), and the top 20 principal
components of the gene expression or DNA methylation data matrices. In addition to using each data
type separately, we also fit models with all data types combined (gray). L1 (lasso) regularization was
used, with the parameter lambda chosen by cross-validation, and shown are mean and standard devia-
tion across 100 repetitions. Drug responses to nutlin-3 and fludarabine were predominantly explained by
gene mutations and copy number variants (genetics). In contrast, response to kinase inhibitors was best

explained by IGHV status, gene expression, or methylation patterns.

(Supplemental Tables 8-10). Together, these results show that
drug-response phenotyping reads out disease-relevant biology
beyond what is conferred by established biomarkers.

Discussion

Our work maps the drug sensitivity landscape of primary leuke-
mia and lymphoma cells and links response phenotypes to under-
lying molecular properties. We demonstrate that biomarkers for
drug response can be read out by short-term drug response pro-
filing within days, and that their information content matches or
exceeds conventional biomarkers as well as omic profiling. PACE
recapitulates the complete spectrum of known biomarkers (e.g.,
TP53, BRAF, RAS, and IGHV mutations) and reports a surprising-
ly large set of previously unappreciated modifiers of response to
drugs including chemotherapeutics and targeted agents.

Within CLL, we developed a functional disease classification
based on BCR, MEK, and mTOR signaling and demonstrate that
the resulting groups are characterized by distinctive sensitivities
to many drugs. Although our current classification is a simplifi-
cation and is likely to evolve, we show that it uncovers disease-
relevant biology and bears the potential for clinical exploitation.
The model identifies CLL cases that predominantly rely on BCR
signaling, and cases in which BCR-independent alternative sig-
naling activities contribute to cell survival and proliferation. These

jci.org  Volume128  Number1  January 2018

malignancies.

Even though the assay does not
explicitly probe any particular drug’s
mechanism of action, our results show
that cell viability profiles measured
across a diverse spectrum of drugs and
many samples constitute unique foot-
prints that can be used, via similarity and
clustering, to sort tumors and drugs into
biologically meaningful groups. More-
over, such profiles can be used to reveal
individual tumor’s pathway dependen-
cies, and to discover drug repurposing
opportunities. While precise molecular
understanding of factors underlying
response remains a fundamental goal, clinical exploitation may
start from such phenotypic readouts. In this respect, one clinically
exploitable finding is the cosensitivity patterns observed for the
drug sensitivity groups, which can provide a starting point for the
development of combination therapies.

Our study extends the range of available biomarker types for
blood cancers, which currently include IGHV status, DNA meth-
ylation profile, gene expression, and gene mutations (59). We
were able to predict clinical endpoints in CLL from ex vivo drug
response data. In part, this reflected transitive associations with
established genetic markers, but multivariate analysis showed
that drug response phenotypes improve current models. Hence,
ex vivo drug response testing presents a powerful window into
cells that is often more directly linked to cell physiology than cur-
rent molecular data.

Prior efforts in biomarker development employed large-scale
cell line-based drug screens (3-5, 60) and have sparked suc-
cessful efforts of reanalysis (61). On the other hand, there were
challenges to reproducibility across laboratories (62), and expe-
riences with the older generation of chemosensitivity tests have
been disappointing (63). Current improvements to molecular
characterization and data analysis suggest consilience at the level
of detected biological associations (64). Here, we show high con-
sistency between drug-genotype associations measured in a pri-
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Figure 12. Multivariate regression models for drug response. Visualization of fitted adaptive L1 (lasso) regularization multivariate models using gene
mutations, IGHV status, pretreatment, and methylation clusters (coded as 0/0.5/1) as predictors (gene expression and DNA methylation principal com-
ponents were set aside due to redundancy). Each matrix shows the predictor values corresponding to the model for a drug, and the response values are
shown in the scatter plot below. The fitted model coefficients are shown by horizontal bars. Negative coefficients (e.g., trisomy 12) indicate lower viability
after drug treatment (i.e., greater sensitivity) if the feature is present. The red and blue boxes indicate the non-zero regression coefficients and their signs
LP, low programmed; IP, intermediate programmed; HP, high programmed.
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Figure 13. Ex vivo drug response and outcome. (A) Association of drug responses with time from sampling to treatment (TTT, n = 174) and overall survival
(0S; n =184), assessed by univariate Cox regressions. Shown are estimated hazard ratios (HR) and 95% confidence intervals. The average viability values,
across all 5 concentrations for fludarabine, doxorubicin, and nutlin-3, and across the 2 lowest concentrations 156 and 625 nM for the targeted drugs
ibrutinib (BTK), idelalisib (P13K), selumetinib (MEK), everolimus (mTOR), and PRT062607 (SYK), were scaled such that a unit change of the regressor cor-
responds to 10% change in cell viability. (B) Kaplan-Meier plots for OS stratified by TP53 mutation status, and nutlin-3 and doxorubicin response. Patient
groups of nutlin-3 or doxorubicin responders and weak responders were defined by ex vivo drug responses dichotomized using maximally selected rank
statistics to visualize effects. The same 172 CLL patient samples were used for all 3 Kaplan-Meier plots. Thirty-six patient samples were TP53 mutated,
and 39 and 40 patient samples were in the nutlin-3 or doxorubicin weak-responder groups, respectively. (C) Analogous to the rightmost plot in panel B, but

limited to patients with wild-type TP53.

mary-cell-based assay with molecular and clinical data. Crucial
for the cogency is the large number of patients sampled, which
provides statistical power and reduces spurious associations. In
contrast to cell line-based screens that yielded surprisingly few
truly novel genotype-phenotype associations (3-5), our data show
that high sensitivity to discover molecular associations can be
achieved by studying primary tumor samples in sufficient num-
bers within disease entities. In this manner, the potentially strong
effects of cell of origin can be disentangled.

In our analysis, we considered cell viabilities at one or a few
well-chosen drug treatment doses and thus avoided fitting para-
metric dose-response curve models or otherwise summarizing
dose-response data across a wide range of doses. This choice was
motivated by dose-dependent polypharmacology. In particular,
kinase inhibitors typically bind to multiple kinases, with differ-
ent affinities for each, and with different biological effects on cell
physiology of each binding event. For instance, for encorafenib
our data were consistent with relatively specific binding to BRAF
V60O0E at low drug concentrations, whereas for higher concentra-
tions other kinases appeared affected, too. Summarizing such data
into a single value would, in effect, obscure the mutation-specific
effect of this drug. More generally, at higher concentrations gener-
ic toxicity is expected to dominate over specific target effects.
Moreover, to the extent that the data are intended as a model for
what may happen in vivo, interest is on the effect of a drug at a con-
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centration it will have at a therapeutic dose, not at exponentially
higher or lower concentrations.

Our work highlights the complexity of genotype-phenotype
relationships in cancer, which cannot be captured by simple uni-
variate associations. Multivariate modeling indicated variable
explanatory power of different omics data types, with drug-depen-
dent model complexity and prediction performance. For instance,
the response to BCR inhibitors depended on IGHV status (includ-
ing its associated gene expression and DNA methylation patterns)
and trisomy 12, reflecting the multiple layers of biology involved.
PACE (http://pace.embl.de) provides a data resource to study such
relationships in depth.

Short-term ex vivo drug assays coanalyzed with molecular
profiles have the potential to become a key instrument to uncover
mechanisms underlying drug response variation and to develop
precision cancer care and stratification.

Methods
Patient samples. We included peripheral blood samples from 246 leu-
kemia and lymphoma patients and 3 healthy donors (Supplemental
Table 3). Blood was separated by a Ficoll gradient (GE Healthcare),
and mononuclear cells were cryopreserved.

Compounds. Compounds were obtained from Sigma-Aldrich,
Enzo Life Sciences, Selleck Chemicals, and Merck and were dissolved
in DMSO at 0.1-50 mM (mainly 10 mM) and stored at -20°C. For a
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detailed list of compounds, see Supplemental Tables 1 and 2. Spebru-
tinib was obtained from Celgene, LGX818 from Novartis. ROS-tar-
geting agents (MIS-43, SDO7, SD51) were provided by A. Mokhir,
Erlangen, Germany.

Drug response assays. Drug response assays were performed with
RPMI-1640 (Invitrogen) supplemented with penicillin/streptomycin
(Invitrogen), L-glutamine (Invitrogen), and 10% pooled and heat-in-
activated AB-type human serum (RPMI-HS, MP Biomedicals).
Final DMSO concentrations did not exceed 0.5%. Cell viability was
determined after 48 hours using the ATP-based CellTiter Glo assay
(Promega). Luminescence was measured with a Tecan Infinite F200
Microplate Reader (Tecan Group AG) and with an integration time
of 0.2 seconds per well. We verified the linearity of the relationship
between the readout of the CellTiter Glo assay and cell count through
a dilution series (1 x 10° to 1 x 10° cells per well), which we performed
in 384-well format. CellTiter Glo reagent for stable luminescence
was titrated, and a volume of 12 pl/well was picked for all reported
experiments. We performed a pilot screen in 384-well format with 67
compounds (for 16 drugs with one and 51 drugs with two concentra-
tions), using duplicate wells per drug and concentration. We plated
compounds in polypropylene 96-well storage plates (Thermo Fisher
Scientific), which were stored at -20°C. For each batch of samples,
a new drug-storage plate was thawed and compounds were diluted
by addition of RPMI-HS. Ten microliters of the compound dilutions
were plated in white 384-well assay plates (Greiner Bio One). Plates
were sealed with breathable foil (Sigma-Aldrich) in order to reduce
evaporation on plate edges. Cells were incubated with compounds
for 48 and 72 hours at 37°C in a pilot experiment, followed by imme-
diate readout. As few effects were exclusively observed at 72 hours,
we performed the main screen using a 48-hour incubation time only
to reduce potential noise. We used 1 well per drug and concentra-
tion in the plate design. Sixty-four drugs in 5 concentrations across
249 patient samples were studied. Due to instability and subsequent
batch effects, bortezomib was excluded. For all downstream analy-
sis 63 drugs were used. Screening was done in 384-well assay plates.
Drugs were preplated and frozen. For screening, we selected patient
donors who had a white blood cell (WBC) count greater than 25,000
and samples for which we had at least 5 x 107 cells available. After
thawing and DMSO removal, primary patient cells were incubated in
cell culture medium at room temperature for 3 hours on a roll mixer.
The intention of this procedure was 2-fold: (a) to completely wash out
remaining DMSO, and (b) to only consider cells during cell counting
that survived the freezing procedure. Although the percentage of cells
that survived the freezing was variable between patient samples, we
observed no significant loss of cell viability during the 48-hour incu-
bation time (in negative control wells, i.e., without drug treatment),
as shown in Supplemental Figure 29. Indeed, we observed a trend for
increased ATP luminescence after the 48-hour incubation, perhaps
due to recovery of the cells from freezing stress. Of note, no cell pro-
liferation is expected in these culture conditions. For each sample, we
dispensed a volume of 15 pl in each well of the 384-well plates with
stock solution concentration of 1.3 x 10° cells/ml. The final cell con-
centration was 2 x 10* cells per well.

Genome and transcriptome analysis. For 107 patients, we performed
WES on tumor DNA and constitutive normal DNA. DNA was extract-
ed using the QIAamp DNA kit (Qiagen) according to manufacturer’s
protocol. DNA quantification was performed on a Qubit 2.0 Flourom-
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eter (Life Technologies). Libraries for WES were prepared on the Sure-
Select Automated Library Prep and Capture System (Agilent Technol-
ogies) according to the manufacturer’s protocol (version E.3). In brief,
genomic DNA (1.5-3 pg) from each sample was fragmented to a length
distribution peak of 150 to 200 nt for the preparation of paired-end
sequencing libraries. Enrichment for exomic sequence was performed
using Agilent SureSelect V4+UTR in-solution capture reagents fol-
lowing vendor’s protocol v2.0.1. Sequencing was carried out on HiSeq
2000 machines (Illumina) with 3 samples multiplexed per lane.

For RNA-Seq, RNA was extracted from 123 patients using the
RNA RNeasy mini kit (Qiagen) according to the manufacturer’s pro-
tocol. RNA quantification was performed on a Qubit 2.0 Flourometer.
Quality was assessed on an Agilent 2100 Bioanalyzer. An RNA integ-
rity number (RIN) of at least 8 was required. RNA-Seq libraries were
prepared according to the manufacturer’s protocol (Illumina TruSeq
RNA sample preparation v2). Sequencing was performed on Illumina
HiSeq 2000 machines with 2-3 samples multiplexed per lane.

Targeted sequencing. Sequencing was performed on a GS Junior
benchtop sequencer (Roche) as described previously (65). Targeted
sequencing was performed for BRAF (n = 231), NOTCHI (n = 231),
TP53 (n = 230), SF3BI (n = 231), MYD88 (n = 230), KRAS (n = 188),
NRAS (n=188), EZH2 (n =188), and PIK3CA (n = 188). IGHV analysis
was performed as described previously (66).

DNA copy number variants. DNA copy numbers were assessed
using Illumina CytoSNP-12 and HumanOmni2.5-8 microarrays (n =
169). DNA (200 ng) was processed according to the manufacturer’s
instructions. Arrays were read out using the iScan array scanner. Copy
number variants were verified by using the exome sequencing data
(n =107). Fluorescence in situ hybridization (FISH) analysis was per-
formed for del11q22.3 (n = 162), del17p13 (n = 159), del13ql4 (n = 155),
trisomy 12 (n = 152), del6q21 (n = 132), and gain8q24 (n = 125). Infor-
mation on structural variants from FISH, exome sequencing, and SNP
arrays was combined into 1 table (n = 219).

DNA methylation arrays. Genome-wide DNA methylation profiling
was performed as described previously (58). A total of 196 CLL patients
were assayed by Illumina Infinium HumanMethylation 450k or 850k.

Data availability. European Genome-Phenome Archive (EGA)
accession EGAS0000100174. The complete data and computational
analysis code used in this study are available from www.bioconductor.
org in the R package pace.

Statistics. To quantify the response of a patient sample to a drug
at a given concentration, we used viability relative to the control, i.e.,
the CellTiter Glo luminescence readout of the respective well divid-
ed by the median of luminescence readouts of the 32 DMSO control
wells on the same plate. Integrative data analysis of gene and RNA
sequencing, CNV, methylation profiles and drug responses was per-
formed using R version 3 and included univariate association tests,
multivariate regression with and without lasso penalization, Cox
regression, generalized linear models, principal component analysis
and clustering. The complete data analysis is described in further
detail in the supplemental methods (Section 4), and a computer-
executable transcript of analyses is provided in the form of Rmark-
down files via http://pace.embl.de.

Study approval. The study was approved by the Ethics Commit-
tee Heidelberg (University of Heidelberg, Germany; S-206/2011;
§-356/2013). Patients who donated tumor material provided written
informed consent prior to study.
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