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Introduction
The clinical response to anticancer agents is heterogeneous, which 
is a major barrier to effective cancer care. Being able to more accu-

rately predict response before choice of treatment would improve 
response rates, reduce unnecessary treatments, and be more 
economical. However, predicting patient response to drugs is not 
reliable for most cancers, owing to a lack of predictive biomarkers 
and our incomplete understanding of the mechanisms underlying 
response heterogeneity (1, 2).

Determinants of drug response have been investigated in 
immortalized cancer cell lines (http://www.cancerRxgene.org, 
ref. 3; http://www.broadinstitute.org/ccle, ref. 4; http://www.
broadinstitute.org/ctrp, ref. 5), and recent technology improve-
ments have increased throughput (6) and used near-complete 
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Results
Mapping drug sensitivity of primary leukemia and lymphoma cells. We 
measured the effect of drugs used clinically or targeting pathways 
important in cancer on the viability of primary leukemia and lym-
phoma samples of B cell, T cell, and myeloid origin ex vivo (Figures 
1 and 2, and Supplemental Tables 1–3; supplemental material avail-
able online with this article; https://doi.org/10.1172/JCI93801DS1). 
We used a T-shaped experimental design in order to cover hetero-
geneity of responses widely, among 12 diseases, and deeply (184 
samples) within 1 disease, chronic lymphocytic leukemia (CLL).

To query molecular determinants of drug response, we used 
targeted sequencing and whole-exome sequencing (WES) (Sup-
plemental Table 4) for paired tumor and normal samples, mapping 
of structural variants, genome-wide DNA methylation profiles 
(450k/850k microarrays), and RNA sequencing (RNA-Seq), and 
assembled the Primary Blood Cancer Cell Encyclopedia (PACE).

We profiled 246 patient and 3 control samples with 64 drugs 
(data of 63 used after data quality control) in series of 5 concentra-
tions, which resulted in a drug response matrix of 79,680 measure-
ments. Similar to clinical response heterogeneity, drugs showed a 
heterogeneous spectrum of responses across samples (Supplemen-
tal Figure 1). We began the data analysis by clustering the drugs 
based on the similarity of their response profiles across CLL sam-
ples (Figure 3). The clustering gave a detailed reflection of drug tar-
get identity or relatedness. For instance, the responses to inhibitors 
targeting the B cell receptor (BCR) components Bruton’s tyrosine 
kinase (BTK), phosphatidylinositol 3-kinase (PI3K), and spleen 
tyrosine kinase (SYK) were highly correlated across the 184 CLL 
samples and showed a distinctive profile, which was shared with 
inhibitors of kinases downstream of the BCR, including AKT, LYN, 
and SRC. A BCR-like profile was also elicited by nominally unrelated 

genetic profiles (7). However, the properties of disease cells and 
the heterogeneity of a disease can only be partially captured using 
cell line panels. An ideal platform to query mechanisms underly-
ing variable drug response will directly interrogate primary cancer 
cells of individual patients. Clonal selection is reduced by short-
term culture of primary cells, and the true genetic and phenotyp-
ic diversity of a disease is represented by a large, representative 
cohort of patient-derived samples. Rare mutations (from the long 
tail of the mutation distribution in the disease) are included, which 
enables uncovering determinants of drug response that might be 
missed using current methods. A unique feature of such direct use 
of patient cells is the potential to derive individualized therapeutic 
options for the donating patients (8–11) and the ability to pursue 
sensitivity signals clinically (12). Indeed, several studies have 
yielded novel genetic markers and drug repurposing opportuni-
ties based on individual patient observations (13–15).

Targeted treatments have revolutionized care of some blood 
cancers (16–19). While a new generation of targeted drugs is 
emerging for leukemia and lymphoma (20–23), surprisingly little 
use has been made of molecular information for therapeutic strat-
ification (24, 25). This is in part due to shortcomings of traditional 
biomarker discovery in clinical trials, where throughput is limit-
ed in both drug number and sample size. Here we propose that 
by mapping the distinctive signaling pathway dependencies and 
drug sensitivity patterns of individual cancers in parallel, it is pos-
sible to discover genotype-phenotype associations and underlying 
molecular mechanisms in a more rapid and systematic fashion, 
and thus to better support precision medicine stratification. We 
report a large-scale study of drug sensitivities of primary leukemia 
and lymphoma that links drug responses to genotypes and molec-
ular processes involved in disease pathogenesis.

Figure 1. Study outline. By combining functional drug response screening with omics profiling, we systematically queried drug response phenotypes, 
underlying molecular predictors, and pathway dependencies of leukemia and lymphoma. mt, mutant.
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drug-protein binding affinity through competition with immobi-
lized nonselective binders and proteome-wide quantitative mass 
spectrometry (26). In addition to CHEK1/2 kinases, both drugs 
targeted dozens of other proteins (Supplemental Table 5). We 

drugs including AZD7762, PF477736 (targeting checkpoint kinase, 
CHEK), and AT13387 (targeting heat shock protein, HSP90).

To understand the unexpected activity of AZD7762 and 
PF477736, we used the kinobeads assay, which quantifies 

Figure 2. Overview of sample cohort and drugs. (A) Pathology classification of samples. The largest groups were chronic lymphocytic leukemia (CLL;  
n = 184), T cell prolymphocytic leukemia (T-PLL; n = 25), and mantle cell lymphoma (MCL; n = 10). Color indicates cell lineage: B cell (blue), T cell (orange), 
myeloid (green), and normal blood cells (gray). The dashed line indicates a scale break. (B) Compounds tallied by their targets. Green indicates FDA- 
approved drugs and purple indicates drugs that are tool compounds or in clinical development. (C) The genetic landscape of our CLL cohort (n = 184), 
including recurrent copy number variations (CNVs, green) and somatic mutations (blue); instances of missing data are shown in gray. Previously reported 
associations include the frequent co-occurrence of del17p13 and TP53 mutation (Fisher test: P = 10–11, odds ratio = 29), del11q22 and ATM mutation (Fisher 
test: P = 0.05, odds ratio = 3.7). In addition, we detected a mutual exclusivity pattern between del13q14 and trisomy 12 (Fisher test: P = 0.0006, odds ratio 
= 0.2). ALK, anaplastic lymphoma kinase; FL, follicular lymphoma; HCL-V, hairy cell leukemia variant; hMNC, human mononuclear cell; LPL, lymphoplas-
macytic lymphoma; NA, not available; PTCL-NOS, peripheral T cell lymphoma not otherwise specified.
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tion of signaling targets using phospho-specific antibodies in a 
lymphoma cell line (HBL-2) and 5 primary CLL samples. Upon 
AZD7762 exposure, we observed consistent downregulation of 
p-AKT, p-BTK, and p-SYK, but not p-S6 (mTOR) (Supplemen-
tal Figure 3), and induction of apoptosis (Supplemental Figure 
4). AZD7762 caused stronger viability effects in unmutated CLL 
(U-CLL) samples, which we confirmed under conditions of cocul-
ture with stroma cells (Supplemental Figure 4).

To follow up on the AT13387 result, we investigated 2 addi-
tional HSP90 inhibitors, ganetespib and onalespib, in 120 of the 

intersected these target lists with proteins that were identified as 
BCR effectors based on their BCR-dependent phosphorylation in 
lymphoma cell lines after BCR engagement (27). This intersection 
yielded 16 proteins, including well-known BCR pathway mem-
bers (Figure 4). We then tested the effect of AZD7762 on proximal 
BCR signaling by measuring anti–IgM-induced calcium release in 
HBL2 and BL60 cell lines, commonly used models for lymphoma. 
Similar to ibrutinib, AZD7762 blocked anti–IgM-induced calcium 
mobilization (Supplemental Figure 2). To characterize the drug’s 
effects further downstream of the BCR, we assayed the activa-

Figure 3. Drug profile similarities reflect mode of action. “Guilt by association” prediction of drug targets and mechanism of action. For each pair of drugs 
used in the screen, the Pearson correlation coefficient (r) was computed from the viabilities of the 184 CLL samples after drug treatment (average of the 
2 lowest concentrations). The rows and columns of the resulting drug-drug correlation matrix were arranged based on the hierarchical clustering shown 
at the bottom, and the matrix is displayed as a heatmap. The major blocks are (i) kinase inhibitors targeting the B cell receptor, including idelalisib (PI3K), 
ibrutinib (BTK), duvelisib (PI3K), PRT062607 (SYK); (ii) inhibitors of redox signaling/reactive oxygen species (ROS) (MIS−43, SD07, SD51); and (iii) BH3 
mimetics (navitoclax, venetoclax). The scatter plots show 3 instances of pairwise correlation analyses of drugs.
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inducing BH3 mimetics and AT13387. In contrast, T-PLL was most 
sensitive to thapsigargin, a noncompetitive inhibitor of the sarco-/
endoplasmic reticulum Ca2+ ATPase (SERCA), and to JAK inhib-
itors (P < 0.001), revealing repurposing opportunities for these 
drugs, some of which are already in clinical use. In CLL, BH3 
mimetics and BCR inhibitors showed disease-specific activity, 
similar to clinical observations. Acute myeloid leukemia (AML) 
was sensitive to tamatinib (targeting SYK) and tipifarnib (target-
ing farnesyl protein transferase), and marginal zone lymphoma 
(MZL) was resistant to BCR inhibitors and other kinase inhibitors, 
a result consistent with prevalent reliance of MZL on NF-κB–acti-
vating mutations (30). Mantle cell lymphoma (MCL) was pref-
erentially sensitive to YM155 (P < 0.001), a cytotoxic agent with 
unclear mechanism of action reported to target survivin, Mcl-1 
(31), and PI3K signaling (32). Mirroring clinical observations, 
subsets of MCL samples were sensitive to BCR inhibitors or the 
mTOR inhibitor everolimus (23, 33). Hairy cell leukemia (HCL), 
which commonly carries the BRAF V600E mutation (34), was dis-
tinctly responsive to BRAF and MEK inhibition.

These results validate our experimental approach, as they 
show how the clinical response of diseases is recapitulated. 
Moreover, they demonstrate that fine-grained classification of 
disease is possible based on drug response phenotypes, and how 
new disease-specific drug sensitivities with potential clinical 
exploitation can be uncovered.

Drug-perturbation-based functional classification of CLL. To 
gain a global overview of drug response patterns across patients 
we clustered tumors and drugs by response (Figure 6A and Sup-
plemental Figure 8). We considered each concentration separate-
ly, in a model-free approach that allows for dose-dependent tar-
get specificity. Within CLL, response to BCR inhibitors formed a 
dominant and continuous gradient that separated the samples by 
their immunoglobulin heavy chain variable (IGHV) region muta-
tion status. IGHV status (U-CLL or mutated [M-CLL]) reflects the 
cellular differentiation stage of the tumor-initiating cell and pro-
vides a key biological subdivision of CLL with major clinical impli-
cations (35). Our finding is consistent with the increased BCR sig-

CLL samples. Consistent with our data for AT13387, these drugs 
had higher activity in U-CLL than in M-CLL (Supplemental Fig-
ure 5). HSP90 inhibitors are known to attenuate BCR and nucle-
ar factor-κB (NF-κB) signaling (28), and our findings are in line 
with a report that AT13387 compromises the activity of the pivot-
al BCR-proximal effector SYK, which was identified as an HSP90 
client protein (29).

Together, these results show that the similarity of response pro-
files across a large set of patient samples accurately assigns drugs 
into groups of similar mechanisms of action. In line with this con-
cept, the phenotypic clustering of drugs depended on the sample 
selection; when we performed the same analysis on the T cell pro-
lymphocytic leukemia (T-PLL) samples, the cluster of BCR-target-
ing drugs largely dissolved, while other clusters (reactive oxygen 
species [ROS], Bcl-2 homology domain 3, BH3 mimetics) — less 
dependent on disease-specific activity — remained (Supplemental 
Figure 6). We conclude that the drug perturbations acted as spe-
cific molecular probes for the tumor cells’ survival dependencies 
and that drug response profiles allow “guilt by association”–based 
mapping of drug targets. They enable the discovery of unexpected 
targets, as demonstrated by the targeting of the BCR signaling cas-
cade by molecules originally designed to inhibit HSP90 or CHEK.

Disease-specific drug sensitivity phenotypes. To gain a global over-
view of drug response patterns across all patients, we employed 
t-distributed stochastic neighbor embedding (t-SNE), a machine 
learning algorithm for visualizing a set of objects in a 2-dimension-
al plane. This unsupervised analysis partitioned different disease 
types (i.e., T cell lymphomas, HCL, lymphoplasmacytic lympho-
ma [LPL], CLL) and the healthy mononuclear cells into distinct 
clusters based on their drug sensitivities (Figure 5A). This finding 
indicates that drug responses depend on disease, reflecting under-
lying cell lineages, differentiation states, and pathway activities. 
To further dissect the influence of disease on drug response and to 
identify disease-specific vulnerabilities, we compared each drug’s 
viability effects across diseases (Figure 5B and Supplemental Fig-
ure 7). T-PLL was not responsive to BCR inhibitors, as expected, 
but was also more resistant to other drugs, including apoptosis- 

Figure 4. Target profiling of AZD7762 
and PF477736. Binding affinity scores 
were determined proteome-wide using 
the kinobead assay (26); lower scores 
indicate stronger physical binding. Here, 
the data are shown for those proteins 
that had a score less than 0.5 in at least 
one assay, and that were previously 
identified as responders to B cell recep-
tor stimulation with anti-IgM in B cell 
lines (27).
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naling capacity in U-CLL (36) and shows the ability of drug-based 
screening to probe key survival pathways. Within this dominant 
gradient driven by BCR dependence, we discovered a group of 
patients with M-CLL that were sensitive to everolimus, an mTOR 
inhibitor. Moreover, comparison of the responses revealed that 

a subset of these rely on mTOR signaling activity independent 
of BCR signaling. A similar organization, with a gradient of BCR 
activity and a subgroup with BCR-independent mTOR activity, 
appeared in MCL, a related B cell lymphoma. Clinical studies 
demonstrated strong activity of the BTK inhibitor ibrutinib and 

Figure 5. Disease-specific drug response phenotypes of blood cancers. (A) t-distributed stochastic neighbor embedding (t-SNE), a machine learning algo-
rithm for dimensionality reduction, was used to visualize similarities among 246 patient samples with respect to the 315 drug sensitivity measurements 
(each of 63 drugs at 5 concentrations). The plot shows a distinctive separation of pathologic disease entities based on their drug sensitivity pattern. The 
line plots show mean viabilities for individual disease entities (CLL, gray; HCL, yellow; MCL, purple; and T-PLL, brown) and drugs across 5 concentrations, 
highlighting disease-specific differences. (B) Primary data for individual drugs provide examples for disease-specific response and sample variation (CLL,  
n = 184; HCL, n = 3; MCL, n = 10; T-PLL, n = 25). FL, follicular lymphoma; HCL-V, hairy cell leukemia variant; hMNC, human mononuclear cell; LPL, lympho
plasmacytic lymphoma PTCL-NOS, peripheral T cell lymphoma not otherwise specified.
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the mTOR inhibitor temsirolimus in subsets of MCL (23, 37), and 
our finding reveals potential biomarkers for treatment. Altogeth-
er, the patterns that we observed based on unsupervised analysis 
suggest that CLL can be subdivided into functional disease cat-
egories based on drug response, which is in line with CLL being 
able to arise from multiple driver pathways that can be activated 
to different degrees. Moreover, they suggest that there is a limited 
repertoire of such constellations and that most tumors fall into a 
finite number of signature clusters.

A model of phenotypic heterogeneity of CLL. To further dissect 
signaling activities and survival dependencies in CLL, we select-
ed drugs that probe specific molecular pathways. First, we com-
pared 3 drugs that inhibit BCR signaling targets: ibrutinib (BTK), 
idelalisib (PI3K), and PRT062607 (SYK). These 3 targets are key 
components of proximal BCR signaling. While the responses of 
CLL samples to these agents ex vivo were variable across tumors, 
they were similar across the 3 drugs (Figure 6B). Next, we selected 
drugs that showed more differences between each other and com-
pared dependency on BCR (BTK, SYK, PI3K) with MEK (selume-
tinib) and mTOR (everolimus) (Figure 6C and Supplemental Fig-
ure 9, A and B). The spread-out distribution of the samples reflects 
a heterogeneous response of CLLs to inhibition of these signaling 
components. To dissect this distribution, we stratified the analy-
sis between U- and M-CLL. We found that U-CLLs are relatively 
homogeneous and predominantly rely on BTK and MEK signal-
ing, consistent with MEK/ERK activation downstream of the BCR 
(Figure 6D). In contrast, M-CLLs showed a more heterogeneous 
organization, with BTK-independent response groups character-
ized by mTOR sensitivity. To further explore the relationships 
between responses to inhibition of BCR, mTOR, and MEK in 
CLL, we exposed primary CLL samples (6 M-CLL and 6 U-CLL) 
to ibrutinib, idelalisib, selumetinib, and everolimus and compared 
the drug-induced gene-expression changes (Supplemental Figure 
9C). While the tumors’ transcriptional responses to ibrutinib and 
idelalisib were similar, larger differences existed between each 
tumor’s response to BCR inhibitors, selumetinib (MEK) and ever-
olimus (mTOR). This finding implies that CLL survival signaling 
can be mediated by the BCR as well as by BCR-independent path-
ways through mTOR and/or MEK.

Based on these results, we devised a simple classification tree 
with binary thresholds of response (Figure 7A and Supplemental 
Figure 10). It stratifies CLL based on response to ibrutinib (BTK 
group n = 50/184), response to the mTOR inhibitor everolimus 
but not to inhibition of upstream BTK (mTOR group n = 26/184), 
response to the MEK inhibitor selumetinib, but not to ibrutinib 
or everolimus (MEK group n = 23/184), and a group with weak 
response (n = 85/184). Although defined based on these 3 ref-
erence drugs, the BTK and mTOR groups showed coordinated 
differences in their responses to other drugs as well (Figure 7B). 
The BTK group was consistently more responsive to other BCR 
inhibitors (idelalisib [PI3K], spebrutinib [BTK], duvelisib [PI3K], 
and PRT062607 [SYK]) and multiple other kinase inhibitors (e.g., 
ATM, DNA-PK, CHEK). Notably, the mTOR group exhibited 
increased sensitivity to the casein kinase 2 (CK2) inhibitor silmita-
sertib (Figure 7C). This unanticipated cosensitivity is in line with a 
recent report of a biological link between CK2 and mTOR activity 
(38). The mTOR group also exhibits specific sensitivity towards 

venetoclax and navitoclax (Figure 7C), both inhibitors of the anti-
apoptotic protein BCL-2.

Phenotypic subgroups have distinct molecular characteristics. We 
next asked whether this drug response phenotype–based classifi-
cation of patients was associated with distinct molecular profiles 
or clinical outcomes. Patients in the mTOR group had a longer 
time to treatment (TTT) compared with the MEK and BTK groups 
(Supplemental Figure 11A; P = 0.04). At the genetic level, we 
found trisomy 12 to be enriched in the BTK and mTOR groups and 
absent in weak responders (Supplemental Figure 11B). Trisomy 
12 is a structural variant of poorly understood molecular function 
that occurs in 15%–20% of CLL patients and is associated with a 
higher incidence of aggressive transformation (39). In contrast, 
the most frequent alteration in CLL, del13q14, was enriched in 
weak responders but depleted in the BTK group. Del13q14 involves 
the putative pathogenic disease loci DLEU2 and microRNA clus-
ter MIR15A–MIR16-1 (39), and our finding might provide further 
leads towards functional annotation of this deletion. The mTOR 
group consisted almost exclusively (22 of 23) of M-CLL and com-
prised 3 of the 4 cases with mutations in KLHL6. Deleterious 
mutations of KLHL6 are involved in B lymphocyte antigen recep-
tor signaling (40). These results indicate that intrinsic molecular 
differences underlie the phenotypic response groups.

At the level of gene expression, we searched for genes differ-
entially expressed between the groups (Supplemental Figure 11C). 
We applied gene set enrichment analysis (Supplemental Figures 12 
and 13) and detected enrichment of gene sets known to be associ-
ated with increased polycomb repressive complex 1 (PRC1) activity 
(41), TNF-α stimulation, and IL-2 for the mTOR group. IL-2 induc-
es survival signals in CLL (42) and T cells (43) through p-70S6 and 
mTOR activity. As a functional link has been reported between 
active IL-2 signaling and higher IL-10 expression in CLL (44), we 
investigated expression of several cytokines that are important for 
CLL survival or characteristic of distinct B cell subsets (45) (Supple-
mental Figure 11D). Of these, we found only IL-10 to be upregulat-
ed in the mTOR group. Moreover, within the mTOR group, IL-10 
expression was correlated with better response to everolimus (P = 
0.03, Supplemental Figure 14). Increased expression of IL-10 is a 
property of regulatory B cells (B10 cells) (46), and our result might 
be related to the recent discovery of a subset of M-CLL that shows 
a B10-like phenotype associated with BCR anergy (47). To further 
dissect the roles of cytokines, we exposed primary CLL cells (n = 
16) to different concentrations of cytokines (IL-2, -4, -10, and -21), 
LPS, and anti-IgM. IL-4, -10, and -21 had prosurvival effects on 
most samples. However, an effect of IL-10 stimulation was mark-
edly absent in the samples from the mTOR group, possibly due to 
already high endogenous levels (Supplemental Figure 15).

Together, these findings reveal unacknowledged heterogene-
ity of signaling dependencies in CLL. We summarize them in the 
signaling model shown in Figure 8. The majority of U-CLL cases 
depend on dominant, canonical BCR signaling. In contrast, a sub-
set of M-CLLs show BCR-independent signaling mediated through 
mTOR, which can act downstream of cytokines or chemokines.

Comprehensive survey of molecular determinants of response in 
CLL. Most cancer mutations have not been linked to drug response. 
Based on the cohesiveness of the above results, we used PACE to 
perform a comprehensive survey of genetic determinants of drug 
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tion (CREBBP), pre-mRNA processing and splicing (PRPF8), but 
also comprised mutations with less well-understood function 
(UMODL1, gain8q24, ABI3BP).

TP53 mutations, which often co-occur with deletion of one 
allele of chromosome 17p, are associated with clinical resistance 
to chemotherapy and are the only genetic marker currently used to 
guide treatment decisions in CLL (50). Their effect was captured 
by PACE; fludarabine and doxorubicin had reduced activity in 
CLL with TP53 mutation or del17p13 (Figure 9 and Supplemental 
Figure 17, A and B). Nutlin-3, which targets the MDM2/p53 inter-
action, also had decreased effect in TP53-mutant CLL (Figure 
9B). Within mutant cases, the viability effects were associated 
with clone size, as expected from the drug’s mechanism of action. 
Analogous associations between TP53 and response to nutlin-3 
and fludarabine were found in MCL (Supplemental Figure 17C).

We investigated the impact of pretreatment status on gene–
drug response associations, since 52 of 184 CLL patients had 
received treatment with chemotherapy and immunotherapy or 
either alone before sample collection. None of them had received 
kinase inhibitors. A notable difference between the pretreated and 
untreated samples was a higher prevalence of TP53 mutations in 
the pretreated group (P = 4.7 × 10–7, Fisher test), a consequence 
of clonal selection under chemotherapy. Consequently, pretreat-
ed samples showed less response to fludarabine (Supplemental 
Figure 18) and nutlin-3, drugs with strong dependence on p53 
function. The second main difference between pretreated and 
untreated samples was the higher prevalence of U-CLL cases (P 
= 2.3 × 10–5, Fisher test), due to progressive disease and thus more 
frequent need for treatment of U-CLL. This explains the stronger 
response to kinase inhibitors of pretreated samples. However, 
when considering pretreatment status separately in the TP53–wild 
type and -mutant groups, or in U-CLL and M-CLL, the association 
of pretreatment status with response to fludarabine or ibrutinib 
disappeared. We also systematically analyzed the impact of pre-
treatment and used pretreatment status as a blocking factor in the 
association tests of drug responses and genetic features (Supple-
mental Figure 19). A comparison of the association test P values 
shown in Figure 9 and the same analysis blocked for pretreatment 
indicates that the 2 analyses are highly concordant (Supplemental 
Figure 20). These results suggest that effects of pretreatment with 
chemo-immunotherapy were largely captured by TP53 and IGHV 
mutation status, and otherwise were negligible with regard to our 
drug response association analyses.

HCL cases, which all carried the BRAF V600E mutation, had 
distinctive sensitivity to BRAF and MEK inhibition (Supplemen-
tal Figure 17D), whereas in BRAF-mutated CLL, the response to 
BRAF inhibition was less pronounced. This finding suggests that 
BRAF mutations are key disease drivers in HCL, but not CLL, 
where alternative survival signals (BCR) dominate also in the con-
text of BRAF mutations. Indeed, only 3 of 10 BRAF-mutant CLL 
cases had the V600E substitution, and only 2 of these were clonal. 
KRAS-mutant CLL was sensitive to MEK inhibition, and showed 
increased viability with the BRAF inhibitor encorafenib, reflecting 
paradoxical BRAF activation (Supplemental Figure 17E).

CLL samples with mutations of the transcriptional cofac-
tor CREBBP, known as a key driver in follicular lymphoma 
(51), were more sensitive to the mTOR inhibitor everolimus. 

response in CLL, including IGHV status, somatic gene mutations, 
and structural variants (Figure 9). The most prominent factor was 
IGHV mutation status, which was associated with response to 42 
(67%) drugs (t test, FDR = 10%), including idelalisib and ibrutinib, 
which are in clinical use (Figure 10A). Robust differences were seen 
even at the lowest concentrations. For instance, 156 nM ibrutinib 
led to a mean viability of 89.2% in U-CLL versus 99.5% in M-CLL 
(P < 0.001). These effect sizes are comparable to previous, small-
er studies investigating individual drug effects (48). We confirmed 
them in a FACS-based annexin V/propidium iodide assay for apop-
tosis (Supplemental Figure 16). Similarly, several multi-kinase 
inhibitors were more active in U-CLL. Indeed, the strongest asso-
ciations of response with IGHV status were observed for dasatinib 
and for 3 of the drugs already discussed above, the HSP90 inhibitor 
AT13387 and the CHEK inhibitors PF477736 and AZD7762. These 
results show how the critical role of BCR signaling renders CLL 
cells sensitive to a broad range of kinase inhibitors that act by mul-
tiple target engagement of BCR components. While our data show 
direct correspondences between the individual signaling activity 
pattern of a tumor and its response to ex vivo drug testing, they also 
highlight the caveat that clinical translation requires more sophisti-
cation than naive indication based on effect size in the assay; trials 
of dasatinib in CLL had limited success (49).

Responses to 53 drugs (84% of compounds) were modu-
lated by at least 1 mutation (including IGHV), and 39 (62%) of 
drugs were associated with 2 or more mutations, indicating that 
the influence of gene mutations on drug responses is more per-
vasive than anticipated based on cell line–based surveys (3, 5). 
These mutations targeted diverse molecular processes (Figure 
9 and Supplemental Figure 17) including DNA damage (del17p, 
TP53), MEK/ERK signaling (RAS, BRAF), transcription regula-

Figure 6. Functional classification of blood cancer based on drug per-
turbations. (A) A global overview of the drug response landscape reveals 
heterogeneity within diseases and functionally defined disease subgroups. 
The heatmap matrix shows the viability measurements for 246 samples 
(rows) and 17 of the drugs at 2 concentrations each (columns). The data 
are shown on a Z-score scale, i.e., centered and scaled within each column. 
The color bars to the right show sample annotations. Prior to clustering, 
samples were divided into 6 disease groups, indicated by the horizontal 
gaps. A more detailed version of this plot is available in Supplemental 
Figure 8. (B) Relative effects of ibrutinib (BTK), idelalisib (PI3K), and 
PRT062607 (SYK) on each of the 184 CLL samples are shown in ternary 
plots. Given percentage viability values (vi) of 3 drugs compared, the rela-
tive effect of drug i is measured by (100 – vi)/(300 – [v1 + v2 + v3]), for  
i = 1, 2, and 3. Numbers per sample add up to 1 and correspond to positions 
within an equilateral triangle. The maximum of 100 – vi, as a measure of 
the overall susceptibility of the sample, is shown by dot size. Each drug is 
represented by the average of the 2 lowest concentrations. Response to 
the BCR inhibitors was similar in the majority of CLL samples. Prior treat-
ment is indicated by dot color (green: pretreated, n = 52; yellow: untreated, 
n = 132). (C) In contrast, comparison of relative responses to ibrutinib, 
selumetinib, and everolimus revealed a heterogeneous response. (D) Same 
data as in panel C, but separately plotted for U- and M-CLL (n = 74 and  
n = 98, respectively). U-CLL showed predominant reliance on BTK and MEK 
signaling, whereas M-CLL showed a less BTK-dependent response pattern, 
with many cases of predominant MEK or mTOR sensitivity. FL, follicular 
lymphoma; HCL-V, hairy cell leukemia variant; hMNC, human mononuclear 
cell; LPL, lymphoplasmacytic lymphoma PTCL-NOS, peripheral T cell lym-
phoma not otherwise specified.
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CLL with trisomy 12 showed a characteristic response profile 
with multiple drug associations, including increased sensitivity 
to PI3K, mTOR, and MEK inhibitors (Figure 10B). These associ-
ations persisted when we assessed them separately within U- and 

UMODL1 mutations were associated with resistance to BH3 
mimetics (Supplemental Figure 17F).

Trisomy 12 is observed in 15%–20% of CLL and while clinical-
ly distinct, little is known about the molecular pathways involved. 

Figure 7. Hierarchical model of drug response phenotypes in CLL. (A) We derived a decision tree model that classifies CLL patients into 4 drug-response-
based groups. First, we asked if ibrutinib caused strong viability effects (BTK group n = 50/184), second, whether the remaining patient samples respond-
ed to everolimus (mTOR group n = 26/184) and third, whether they responded to selumetinib (n = 23/184). The remaining patients were classified as weak 
responders (n = 85/184) (Supplemental Figure 10). (B) Summary of cosensitivities for the 4 groups. We compared drug responses of each group to all 
samples from the remaining groups (average of the 2 lowest concentrations) using Student’s t test. Significant differences (FDR = 5%) with a mean effect 
size greater than 5% are shown. The heatmap visualizes mean viabilities, row-centered and scaled to zero mean and unit standard deviation. (C) Exempla-
ry plots of individual sample data for 4 of the drugs shown in panel B. The BH3 mimetic navitoclax and the CK2 inhibitor silmitasertib had stronger viability 
effects in the mTOR group. AZD7762 and idelalisib had stronger viability effects in the BTK group.
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To explore the role of trisomy 12 across cancer types, we tabulated 
its incidence in the Mitelman database (56) and found it strongly 
overrepresented in tumors with B cell lineage (Supplemental Fig-
ure 25). Altogether, these findings suggest that trisomy 12 drives B 
cell lymphoma by modulating PI3K, MEK/ERK, and mTOR path-
ways and amplifying BCR signaling.

We conclude that in addition to the known biomarkers in CLL, 
there are a surprisingly large number of gene-drug associations, 
which in view of the disease’s genetic heterogeneity implies a 
commensurate heterogeneity in responses to drugs. The example 
of trisomy 12 shows how an association of a genetic feature with a 
spectrum of drugs can elucidate molecular mechanisms. Associa-
tions can be context-specific, as exemplified by the driver versus 
passenger nature of BRAF mutations in HCL versus CLL.

Understanding complex networks of drug response predictors. The 
molecular basis of variable drug response phenotypes is multifac-
torial and can involve multiple layers including gene mutations, 
gene expression, and DNA methylation (7). While the results 
presented above provide a comprehensive catalog of marginal 
associations of single mutations, an understanding of the combi-
natorial interplay of multiple factors will be essential for a mean-
ingful prediction of drug response. To address this challenge, we 
applied linear regression with lasso regularization and derived 
for each drug a multivariate predictor composed of genetic, gene 
expression, and DNA methylation covariates (Figures 11 and 12) 
(57). We first assessed to what extent single omics data types or 

M-CLL (Supplemental Figure 21). In addition, we observed asso-
ciations that were present only within M-CLL, including reduced 
sensitivity to chaetoglobosin A for cases with trisomy 12. To fur-
ther investigate the relationship between MEK/ERK signaling 
and trisomy 12, we studied additional ERK (SCH772984) and 
MEK (cobimetinib, trametinib) inhibitors. These also showed 
preferential activity in CLL with trisomy 12 (Supplemental Fig-
ure 22), pointing to an essential role for MEK/ERK signaling in 
CLL with trisomy 12.

To explore the effect of trisomy 12 at the level of gene expres-
sion, we compared RNA-Seq data of CLL with and without triso-
my 12. In addition to the expected gene dosage effect on chromo-
some 12 (Supplemental Figure 23A), we found 109 differentially 
expressed genes not on chromosome 12, based on stringent cut-
offs (FDR = 0.1 and absolute logarithmic [base 2] fold change > 
1.5). Of these, 72 were up- and 37 downregulated (Supplemental 
Figure 23B). We performed parametric analysis of gene set enrich-
ment (PAGE) (52) on a more permissive list of all genes with a raw 
P value less than 0.05. This analysis linked trisomy 12 to gene sets 
annotated with BCR, PI3K, AKT, and mTOR signaling, chemo
kine signaling, and with regulation of the actin cytoskeleton (Sup-
plemental Figure 24).

These results indicate that CLL with trisomy 12 has a specific 
signaling signature. Indeed, this disease subgroup was reported to 
exhibit increased p-ERK levels (53), shorter time to progression 
(54), and a distinct response to the BTK inhibitor ibrutinib (55). 

Figure 8. A model for the roles of BCR, mTOR, and MEK pathway activities in CLL. BCR-dependent cases are highly sensitive to inhibition of SYK, BTK, 
and PI3K. MEK and mTOR activation occur downstream of BCR. Most U-CLL patients belong to this group. In contrast, there is a group of CLL where cells 
receive survival signals from alternative sources (e.g., cytokines/chemokines) and whose drug response pattern is inconsistent with canonical BCR signal-
ing, as the effect of inhibiting mTOR is greater than for BTK. PI3K, phosphatidylinositol 3-kinase; IKKβ, IκBα-Kinase-complexes; AMPK, AMP-activated 
protein kinase; TSC1/2, hamartin/tuberin; PDK1, pyruvate dehydrogenase kinase 1; SGK3, serine/threonine-protein kinase; PLC, phosphoinositide-phos-
pholipase C; PKCβ, protein kinase C β; CBM, CARMA1-Bcl10-MALT1 complex; mTOR, mechanistic target of rapamycin; SYK,spleen tyrosine kinase; BTK, 
Bruton’s tyrosine kinase; Lyn, tyrosine kinase Lyn.
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Figure 9. Genomics of drug sensitivity in CLL. (A) Drug responses are modulated by many of the mutations recurrent in CLL. The y axis shows the negative 
logarithm of the t-test P values of all tested associations. Viabilities across different drug concentrations were aggregated using Tukey’s median polish 
method. Each circle represents a drug-gene association. Tests with P values smaller than the threshold corresponding to a false discovery rate (FDR) of 10% 
(method of Benjamini and Hochberg) are indicated by colored circles, where the colors represent the gene mutations and structural aberrations. To control 
for potential confounding effects of prior treatment history of the donating patients, we also performed this analysis with pretreatment status as a blocking 
factor in the association tests; the results of this analysis are provided in Supplemental Figure 19 and are concordant with those shown here (Supplemental 
Figure 20). (B) Primary data of selected drug-gene associations. The fraction of cells for trisomy 12 and the allele frequency (AF) for the mutations TP53, 
PRPF8, and CREBBP is shown by the color code.
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ing del13q14 contributed to the predictors for ibrutinib 
and the SYK inhibitor PRT062607 (Figure 12). Pretreat-
ment status was not selected as a prediction feature for 
most drugs, and where selected its coefficient was mostly 
small, but there were a few notable exceptions, including 
rotenone (Supplemental Figure 26).

Our multivariate analysis points to a fundamental 
and previously underappreciated role of trisomy 12 in 
CLL biology. It also highlights roles of other aberrations, 
including del13q14, and suggests that DNA methyla-
tion patterns contain information about disease biology 
beyond what is implied by IGHV status.

Impact on outcome. The use of primary patient cells 
allowed us to assess associations of drug response phe-
notypes with clinical outcomes. Consistent with previous 
reports (24, 50), mutations of TP53, SF3B1, and BRAF, the 
deletions del17p13 and del11q23, and IGHV status were 
individually associated with TTT and/or overall survival 
(OS) (Supplemental Figure 27). We asked whether ex vivo 
drug responses predicted outcome and to what extent 
they could improve upon the established biomarkers. 
First, we considered drugs whose response was associat-
ed with TP53 mutation status, the most prominent clini-
cal biomarker for CLL. We found that good responses to 
doxorubicin, fludarabine, and nutlin-3 were each predic-
tive of better OS (Figure 13, A and B); when limiting the 
analysis to untreated patients, the results were similar 
(Supplemental Figure 28). Moreover, these results were 
only partially explained by TP53 mutation status, since 
within wild-type TP53 CLL, doxorubicin response had 
predictive value for OS (Figure 13C). Next, we fitted multi-

variate Cox models (Supplemental Tables 6–10) using established 
covariates [age, pretreatment, trisomy 12, del11q22.3, del17p13, 
TP53 mutation, IGHV status] and individual drug responses as 
continuous variables. Again, doxorubicin response was associat-
ed with OS (P = 0.03, Supplemental Table 6). Response to BCR 
inhibitors was associated with inferior TTT (ibrutinib, idelalisib, 
PRT062607) and OS (PRT062607) (Figure 13A) and was partly 
explained by association with IGHV status. However, also with-
in M-CLL, response to BCR inhibition was negatively correlated 
with TTT, and BCR inhibitors were significantly associated with 
TTT in multivariate models considering age, pretreatment, tri-
somy 12, del11q22.3, del17p13, TP53 mutation, and IGHV status 

the combination of all our omics data explained the variable drug 
responses. Responses to chemotherapeutics and nutlin-3 were 
predominantly explained by genetic factors, whereas response to 
BCR inhibitors was best predicted by IGHV, gene expression, and 
DNA methylation (Figure 11).

Next, we visualized predictor profiles for individual drugs, 
focusing on the genetic variables and a 3-category summary of 
the DNA methylation data (58). The profiles were reflective of 
the drugs’ mechanisms of action. For nutlin-3 and fludarabine, 
TP53 and del17p were the most dominant predictors (Figure 12). 
The predictor profiles for BCR inhibitors highlighted IGHV status 
and trisomy 12 as key factors, but additional aberrations includ-

Figure 10. Impact of IGHV and trisomy 12 status on drug sensi-
tivity in CLL. (A) Drug responses are modulated by IGHV status. 
The units on the x axis of the volcano plot are the difference in 
percentage viability; negative values indicate higher sensitivity 
in U-CLL than in M-CLL. For each drug, the 5 concentration steps 
were tested separately. Drugs with 3 or more significant associa-
tions are labeled, and the largest viability effect and correspond-
ing P value are shown. Significant differences were evident for 
core BCR pathway inhibitors (duvelisib, idelalisib, spebrutinib), 
nominal CHEK inhibitors (PF477736, AZD7762, SCH 900776), 
AT13387, and dasatinib. The dashed line indicates an FDR of 
10% (P < 0.0026). (B) Similar to panel A, for trisomy 12. Negative 
values indicate higher sensitivity in cases with trisomy 12.
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functional disease groups showed clear 
enrichments with regard to many genetic 
features, but our attempts at describing 
the drug response groups through clas-
sification approaches using genetic fea-
tures failed, which further highlights the 
unique and nonredundant information 
conveyed by functional readouts for pre-
cision oncology.

The distinct drug response pheno-
type of trisomy 12 in CLL implies ampli-
fication of BCR signaling as the mech-
anism underlying this driver mutation, 
a finding that would explain short pro-
gression-free survival (54), high p-ERK 
levels (53), the different response pat-
tern to ibrutinib (55), and the charac-
teristic incidence of trisomy 12 in B cell 
malignancies.

Even though the assay does not 
explicitly probe any particular drug’s 
mechanism of action, our results show 
that cell viability profiles measured 
across a diverse spectrum of drugs and 
many samples constitute unique foot-
prints that can be used, via similarity and 
clustering, to sort tumors and drugs into 
biologically meaningful groups. More-
over, such profiles can be used to reveal 
individual tumor’s pathway dependen-
cies, and to discover drug repurposing 
opportunities. While precise molecular 
understanding of factors underlying 

response remains a fundamental goal, clinical exploitation may 
start from such phenotypic readouts. In this respect, one clinically 
exploitable finding is the cosensitivity patterns observed for the 
drug sensitivity groups, which can provide a starting point for the 
development of combination therapies.

Our study extends the range of available biomarker types for 
blood cancers, which currently include IGHV status, DNA meth-
ylation profile, gene expression, and gene mutations (59). We 
were able to predict clinical endpoints in CLL from ex vivo drug 
response data. In part, this reflected transitive associations with 
established genetic markers, but multivariate analysis showed 
that drug response phenotypes improve current models. Hence, 
ex vivo drug response testing presents a powerful window into 
cells that is often more directly linked to cell physiology than cur-
rent molecular data.

Prior efforts in biomarker development employed large-scale 
cell line–based drug screens (3–5, 60) and have sparked suc-
cessful efforts of reanalysis (61). On the other hand, there were 
challenges to reproducibility across laboratories (62), and expe-
riences with the older generation of chemosensitivity tests have 
been disappointing (63). Current improvements to molecular 
characterization and data analysis suggest consilience at the level 
of detected biological associations (64). Here, we show high con-
sistency between drug-genotype associations measured in a pri-

(Supplemental Tables 8–10). Together, these results show that 
drug-response phenotyping reads out disease-relevant biology 
beyond what is conferred by established biomarkers.

Discussion
Our work maps the drug sensitivity landscape of primary leuke-
mia and lymphoma cells and links response phenotypes to under-
lying molecular properties. We demonstrate that biomarkers for 
drug response can be read out by short-term drug response pro-
filing within days, and that their information content matches or 
exceeds conventional biomarkers as well as omic profiling. PACE 
recapitulates the complete spectrum of known biomarkers (e.g., 
TP53, BRAF, RAS, and IGHV mutations) and reports a surprising-
ly large set of previously unappreciated modifiers of response to 
drugs including chemotherapeutics and targeted agents.

Within CLL, we developed a functional disease classification 
based on BCR, MEK, and mTOR signaling and demonstrate that 
the resulting groups are characterized by distinctive sensitivities 
to many drugs. Although our current classification is a simplifi-
cation and is likely to evolve, we show that it uncovers disease- 
relevant biology and bears the potential for clinical exploitation. 
The model identifies CLL cases that predominantly rely on BCR 
signaling, and cases in which BCR-independent alternative sig-
naling activities contribute to cell survival and proliferation. These 

Figure 11. Explanatory power of data types for drug response prediction. Explanatory power (R2) of 
the features from the different data types for prediction of drug response. For fludarabine, doxorubicin, 
and nutlin-3, we fit multivariate regression models to predict the average viability value across all 5 
concentrations. For the targeted drugs ibrutinib (BTK), idelalisib (PI3K), selumetinib (MEK), everolimus 
(mTOR), and PRT062607 (SYK), we used the average of the 2 lowest concentrations, 156 and 625 nM, 
as the dependent variable. As predictors, we used the different data types as indicated by the colors: 
demographics (age, sex), mutations, IGHV status, pretreatment (coded as 0/1), and the top 20 principal 
components of the gene expression or DNA methylation data matrices. In addition to using each data 
type separately, we also fit models with all data types combined (gray). L1 (lasso) regularization was 
used, with the parameter lambda chosen by cross-validation, and shown are mean and standard devia-
tion across 100 repetitions. Drug responses to nutlin-3 and fludarabine were predominantly explained by 
gene mutations and copy number variants (genetics). In contrast, response to kinase inhibitors was best 
explained by IGHV status, gene expression, or methylation patterns.
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Figure 12. Multivariate regression models for drug response. Visualization of fitted adaptive L1 (lasso) regularization multivariate models using gene 
mutations, IGHV status, pretreatment, and methylation clusters (coded as 0/0.5/1) as predictors (gene expression and DNA methylation principal com-
ponents were set aside due to redundancy). Each matrix shows the predictor values corresponding to the model for a drug, and the response values are 
shown in the scatter plot below. The fitted model coefficients are shown by horizontal bars. Negative coefficients (e.g., trisomy 12) indicate lower viability 
after drug treatment (i.e., greater sensitivity) if the feature is present. The red and blue boxes indicate the non-zero regression coefficients and their signs 
LP, low programmed; IP, intermediate programmed; HP, high programmed.
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centration it will have at a therapeutic dose, not at exponentially 
higher or lower concentrations.

Our work highlights the complexity of genotype-phenotype 
relationships in cancer, which cannot be captured by simple uni-
variate associations. Multivariate modeling indicated variable 
explanatory power of different omics data types, with drug-depen-
dent model complexity and prediction performance. For instance, 
the response to BCR inhibitors depended on IGHV status (includ-
ing its associated gene expression and DNA methylation patterns) 
and trisomy 12, reflecting the multiple layers of biology involved. 
PACE (http://pace.embl.de) provides a data resource to study such 
relationships in depth.

Short-term ex vivo drug assays coanalyzed with molecular 
profiles have the potential to become a key instrument to uncover 
mechanisms underlying drug response variation and to develop 
precision cancer care and stratification.

Methods
Patient samples. We included peripheral blood samples from 246 leu-
kemia and lymphoma patients and 3 healthy donors (Supplemental 
Table 3). Blood was separated by a Ficoll gradient (GE Healthcare), 
and mononuclear cells were cryopreserved.

Compounds. Compounds were obtained from Sigma-Aldrich, 
Enzo Life Sciences, Selleck Chemicals, and Merck and were dissolved 
in DMSO at 0.1–50 mM (mainly 10 mM) and stored at –20°C. For a 

mary-cell-based assay with molecular and clinical data. Crucial 
for the cogency is the large number of patients sampled, which 
provides statistical power and reduces spurious associations. In 
contrast to cell line–based screens that yielded surprisingly few 
truly novel genotype-phenotype associations (3–5), our data show 
that high sensitivity to discover molecular associations can be 
achieved by studying primary tumor samples in sufficient num-
bers within disease entities. In this manner, the potentially strong 
effects of cell of origin can be disentangled.

In our analysis, we considered cell viabilities at one or a few 
well-chosen drug treatment doses and thus avoided fitting para-
metric dose-response curve models or otherwise summarizing 
dose-response data across a wide range of doses. This choice was 
motivated by dose-dependent polypharmacology. In particular, 
kinase inhibitors typically bind to multiple kinases, with differ-
ent affinities for each, and with different biological effects on cell 
physiology of each binding event. For instance, for encorafenib 
our data were consistent with relatively specific binding to BRAF 
V600E at low drug concentrations, whereas for higher concentra-
tions other kinases appeared affected, too. Summarizing such data 
into a single value would, in effect, obscure the mutation-specific 
effect of this drug. More generally, at higher concentrations gener-
ic toxicity is expected to dominate over specific target effects. 
Moreover, to the extent that the data are intended as a model for 
what may happen in vivo, interest is on the effect of a drug at a con-

Figure 13. Ex vivo drug response and outcome. (A) Association of drug responses with time from sampling to treatment (TTT; n = 174) and overall survival 
(OS; n = 184), assessed by univariate Cox regressions. Shown are estimated hazard ratios (HR) and 95% confidence intervals. The average viability values, 
across all 5 concentrations for fludarabine, doxorubicin, and nutlin-3, and across the 2 lowest concentrations 156 and 625 nM for the targeted drugs 
ibrutinib (BTK), idelalisib (PI3K), selumetinib (MEK), everolimus (mTOR), and PRT062607 (SYK), were scaled such that a unit change of the regressor cor-
responds to 10% change in cell viability. (B) Kaplan-Meier plots for OS stratified by TP53 mutation status, and nutlin-3 and doxorubicin response. Patient 
groups of nutlin-3 or doxorubicin responders and weak responders were defined by ex vivo drug responses dichotomized using maximally selected rank 
statistics to visualize effects. The same 172 CLL patient samples were used for all 3 Kaplan-Meier plots. Thirty-six patient samples were TP53 mutated, 
and 39 and 40 patient samples were in the nutlin-3 or doxorubicin weak-responder groups, respectively. (C) Analogous to the rightmost plot in panel B, but 
limited to patients with wild-type TP53.
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eter (Life Technologies). Libraries for WES were prepared on the Sure
Select Automated Library Prep and Capture System (Agilent Technol-
ogies) according to the manufacturer’s protocol (version E.3). In brief, 
genomic DNA (1.5–3 μg) from each sample was fragmented to a length 
distribution peak of 150 to 200 nt for the preparation of paired-end 
sequencing libraries. Enrichment for exomic sequence was performed 
using Agilent SureSelect V4+UTR in-solution capture reagents fol-
lowing vendor’s protocol v2.0.1. Sequencing was carried out on HiSeq 
2000 machines (Illumina) with 3 samples multiplexed per lane.

For RNA-Seq, RNA was extracted from 123 patients using the 
RNA RNeasy mini kit (Qiagen) according to the manufacturer’s pro-
tocol. RNA quantification was performed on a Qubit 2.0 Flourometer. 
Quality was assessed on an Agilent 2100 Bioanalyzer. An RNA integ-
rity number (RIN) of at least 8 was required. RNA-Seq libraries were 
prepared according to the manufacturer’s protocol (Illumina TruSeq 
RNA sample preparation v2). Sequencing was performed on Illumina 
HiSeq 2000 machines with 2–3 samples multiplexed per lane.

Targeted sequencing. Sequencing was performed on a GS Junior 
benchtop sequencer (Roche) as described previously (65). Targeted 
sequencing was performed for BRAF (n = 231), NOTCH1 (n = 231), 
TP53 (n = 230), SF3B1 (n = 231), MYD88 (n = 230), KRAS (n = 188), 
NRAS (n = 188), EZH2 (n = 188), and PIK3CA (n = 188). IGHV analysis 
was performed as described previously (66).

DNA copy number variants. DNA copy numbers were assessed 
using Illumina CytoSNP-12 and HumanOmni2.5-8 microarrays (n = 
169). DNA (200 ng) was processed according to the manufacturer’s 
instructions. Arrays were read out using the iScan array scanner. Copy 
number variants were verified by using the exome sequencing data 
(n = 107). Fluorescence in situ hybridization (FISH) analysis was per-
formed for del11q22.3 (n = 162), del17p13 (n = 159), del13q14 (n = 155), 
trisomy 12 (n = 152), del6q21 (n = 132), and gain8q24 (n = 125). Infor-
mation on structural variants from FISH, exome sequencing, and SNP 
arrays was combined into 1 table (n = 219).

DNA methylation arrays. Genome-wide DNA methylation profiling 
was performed as described previously (58). A total of 196 CLL patients 
were assayed by Illumina Infinium HumanMethylation 450k or 850k.

Data availability. European Genome-Phenome Archive (EGA) 
accession EGAS0000100174. The complete data and computational 
analysis code used in this study are available from www.bioconductor.
org in the R package pace.

Statistics. To quantify the response of a patient sample to a drug 
at a given concentration, we used viability relative to the control, i.e., 
the CellTiter Glo luminescence readout of the respective well divid-
ed by the median of luminescence readouts of the 32 DMSO control 
wells on the same plate. Integrative data analysis of gene and RNA 
sequencing, CNV, methylation profiles and drug responses was per-
formed using R version 3 and included univariate association tests, 
multivariate regression with and without lasso penalization, Cox 
regression, generalized linear models, principal component analysis 
and clustering. The complete data analysis is described in further 
detail in the supplemental methods (Section 4), and a computer- 
executable transcript of analyses is provided in the form of Rmark-
down files via http://pace.embl.de.

Study approval. The study was approved by the Ethics Commit-
tee Heidelberg (University of Heidelberg, Germany; S-206/2011; 
S-356/2013). Patients who donated tumor material provided written 
informed consent prior to study.

detailed list of compounds, see Supplemental Tables 1 and 2. Spebru-
tinib was obtained from Celgene, LGX818 from Novartis. ROS-tar-
geting agents (MIS-43, SD07, SD51) were provided by A. Mokhir, 
Erlangen, Germany.

Drug response assays. Drug response assays were performed with 
RPMI-1640 (Invitrogen) supplemented with penicillin/streptomycin 
(Invitrogen), L-glutamine (Invitrogen), and 10% pooled and heat-in-
activated AB-type human serum (RPMI-HS, MP Biomedicals). 
Final DMSO concentrations did not exceed 0.5%. Cell viability was 
determined after 48 hours using the ATP-based CellTiter Glo assay 
(Promega). Luminescence was measured with a Tecan Infinite F200 
Microplate Reader (Tecan Group AG) and with an integration time 
of 0.2 seconds per well. We verified the linearity of the relationship 
between the readout of the CellTiter Glo assay and cell count through 
a dilution series (1 × 106 to 1 × 103 cells per well), which we performed 
in 384-well format. CellTiter Glo reagent for stable luminescence 
was titrated, and a volume of 12 μl/well was picked for all reported 
experiments. We performed a pilot screen in 384-well format with 67 
compounds (for 16 drugs with one and 51 drugs with two concentra-
tions), using duplicate wells per drug and concentration. We plated 
compounds in polypropylene 96-well storage plates (Thermo Fisher 
Scientific), which were stored at –20°C. For each batch of samples, 
a new drug-storage plate was thawed and compounds were diluted 
by addition of RPMI-HS. Ten microliters of the compound dilutions 
were plated in white 384-well assay plates (Greiner Bio One). Plates 
were sealed with breathable foil (Sigma-Aldrich) in order to reduce 
evaporation on plate edges. Cells were incubated with compounds 
for 48 and 72 hours at 37°C in a pilot experiment, followed by imme-
diate readout. As few effects were exclusively observed at 72 hours, 
we performed the main screen using a 48-hour incubation time only 
to reduce potential noise. We used 1 well per drug and concentra-
tion in the plate design. Sixty-four drugs in 5 concentrations across 
249 patient samples were studied. Due to instability and subsequent 
batch effects, bortezomib was excluded. For all downstream analy-
sis 63 drugs were used. Screening was done in 384-well assay plates. 
Drugs were preplated and frozen. For screening, we selected patient 
donors who had a white blood cell (WBC) count greater than 25,000 
and samples for which we had at least 5 × 107 cells available. After 
thawing and DMSO removal, primary patient cells were incubated in 
cell culture medium at room temperature for 3 hours on a roll mixer. 
The intention of this procedure was 2-fold: (a) to completely wash out 
remaining DMSO, and (b) to only consider cells during cell counting 
that survived the freezing procedure. Although the percentage of cells 
that survived the freezing was variable between patient samples, we 
observed no significant loss of cell viability during the 48-hour incu-
bation time (in negative control wells, i.e., without drug treatment), 
as shown in Supplemental Figure 29. Indeed, we observed a trend for 
increased ATP luminescence after the 48-hour incubation, perhaps 
due to recovery of the cells from freezing stress. Of note, no cell pro-
liferation is expected in these culture conditions. For each sample, we 
dispensed a volume of 15 μl in each well of the 384-well plates with 
stock solution concentration of 1.3 × 106 cells/ml. The final cell con-
centration was 2 × 104 cells per well.

Genome and transcriptome analysis. For 107 patients, we performed 
WES on tumor DNA and constitutive normal DNA. DNA was extract-
ed using the QIAamp DNA kit (Qiagen) according to manufacturer’s 
protocol. DNA quantification was performed on a Qubit 2.0 Flourom-
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