
The proliferative history shapes the DNA methylome of B-cell 
tumors and predicts clinical outcome

Martí Duran-Ferrer1,2,*, Guillem Clot1,2, Ferran Nadeu1,2, Renée Beekman1,2, Tycho 
Baumann2,3, Jessica Nordlund4, Yanara Marincevic-Zuniga4, Gudmar Lönnerholm5, 
Alfredo Rivas-Delgado1,3, Silvia Martin1,2, Raquel Ordoñez2,6, Giancarlo Castellano1, Marta 
Kulis1, Ana Queirós1, Lee Seung-Tae7, Joseph Wiemels8, Romina Royo9, Montserrat 
Puiggrós9, Junyan Lu10, Eva Gine1,2,3, Sílvia Beà1,2,13, Pedro Jares1,2,13, Xabier Agirre2,6, 
Felipe Prosper2,6,11, Carlos López-Otín2,12, Xosé S. Puente2,12, Christopher C. Oakes13, 
Thorsten Zenz13,14, Julio Delgado1,2,3, Armando López-Guillermo1,2,3, Elías Campo1,2,15, 
José Ignacio Martin-Subero1,2,15,16,*

1Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain 2Centro 
de Investigación Biomédica en Red de Cáncer, CIBERONC, Spain 3Servicio de Hematología, 
Hospital Clínic, IDIBAPS, Barcelona, Spain 4Department of Medical Sciences, Molecular 
Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden 5Department of 
Women’s and Children’s Health, Pediatrics, Uppsala University, Uppsala, Sweden 6Centro de 
Investigación Médica Aplicada (CIMA), IDISNA, Pamplona, Spain 7Department of Laboratory 
Medicine, Yonsei University College of Medicine, Korea 8Center for Genetic Epidemiology, 
University of Southern California, Los Angeles 9Programa Conjunto de Biología Computacional, 
Barcelona Supercomputing Center (BSC), Institut de Recerca Biomèdica (IRB), Spanish National 
Bioinformatics Institute, Universitat de Barcelona, Barcelona, Spain 10European Molecular Biology 
Laboratory (EMBL), Heidelberg, Germany 11Hematology and Cell Therapy Department, Clínica 
Universidad de Navarra, Universidad de Navarra, Avenida Pío XII, 36 31008 Pamplona, Spain 
12Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología 
(IUOPA), Universidad de Oviedo, Oviedo, Spain 13Division of Hematology, Department of Internal 
Medicine, The Ohio State University, Columbus, OH 14Department of Medical Oncology and 
Hematology, University Hospital Zürich and University of Zürich, Zürich, Switzerland 
15Departament de Fonaments Clinics, Facultat de Medicina, Universitat de Barcelona, Barcelona, 
Spain 16Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain

*Correspondence: maduran@clinic.cat, imartins@clinic.cat.
AUTHOR CONTRIBUTIONS
Investigator contributions were as follows: M.D-F., G.C., F.N. and R.B. performed DNA methylome, ChIP-Seq, transcriptome, 
genetic, clinical and/or statistical analyses; T.B., J.N., Y.N-Z., G.L., A.R-D., S.M., R.O., G.C., M.K., A.C-Q., L.S-T., J.W., J.L., E.G., 
S.B., P.J., X.A., F.P., C.L-O., X.S.P., C.C.O., T.Z., J.D., A.L-G., and E.C. contributed to sample biological and/or clinical annotation; 
R.R. and M.P. provided computational support. M.D-F. and J.I.M.-S. participated in the study design. M.D-F., F.N., R.B., T.B., J.D., 
A.L-G., E.C. and J.I.M.-S. participated in data interpretation. J.I.M.-S. directed the research and wrote the manuscript together with 
M.D-F.

COMPETING INTERESTS
The authors declare no competing interests.

Editor summary:
Martin-Subero and colleagues analyze DNA methylation patterns in B cell tumors and developmental cells-of-origin, and develop 
epiCMIT, a methylation-based mitotic clock with prognostic relevance.

HHS Public Access
Author manuscript
Nat Cancer. Author manuscript; available in PMC 2021 June 01.

Published in final edited form as:
Nat Cancer. 2020 November ; 1(11): 1066–1081. doi:10.1038/s43018-020-00131-2.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Abstract

We report a systematic analysis of the DNA methylation variability in 1,595 samples of normal 

cell subpopulations and 14 tumor subtypes spanning the entire human B-cell lineage. Differential 

methylation among tumor entities relates to differences in cellular origin and to de novo epigenetic 

alterations, which allowed us to build an accurate machine learning-based diagnostic algorithm. 

We identify extensive patient-specific methylation variability in silenced chromatin associated 

with the proliferative history of normal and neoplastic B cells. Mitotic activity generally leaves 

both hyper- and hypomethylation imprints, but some B-cell neoplasms preferentially gain or lose 

DNA methylation. Subsequently, we construct a DNA methylation-based mitotic clock called 

epiCMIT, whose lapse magnitude represents a strong independent prognostic variable in B-cell 

tumors and is associated with particular driver genetic alterations. Our findings reveal DNA 

methylation as a holistic tracer of B-cell tumor developmental history, with implications in the 

differential diagnosis and prediction of clinical outcome.

Introduction

The process of neoplastic transformation implies a dramatic alteration of cellular identity 1. 

However, cancer cells partially maintain molecular imprints of the cellular lineage and 

maturation stage from which they originate 2. B-cell neoplasms are a paradigmatic model of 

this model, as the maturation stage of different B-cell neoplasms is the main principle 

behind the World Health Organization classification of these tumors 3. Over the last years, 

multiple studies analyzed the DNA methylome, a bona fide epigenetic mark related to 

cellular identity and gene regulation 1,4 during the entire B-cell maturation program 5 and in 

various B-cell neoplasms spanning the whole maturation spectrum. These include B-cell 

acute lymphoblastic leukemia (ALL) 6,7 derived from precursor B cells, mantle cell 

lymphoma (MCL) 8,9 and chronic lymphocytic leukemia 10,11 (CLL) derived from pre- and 

post-germinal center mature B cells, diffuse large B-cell lymphoma (DLBCL) 12 derived 

from germinal center B cells, and multiple myeloma (MM) 13,14 derived from terminally-

differentiated plasma cells. These studies have revealed a dynamic DNA methylome during 

B-cell maturation as well as novel insights into the cellular origin, pathogenic mechanisms 

and clinical behavior of B-cell neoplasms, as reviewed in 15. However, a global analysis of 

the entire normal cell differentiation program and derived neoplasms is neither available for 

B cells nor for any other human cell lineage. Thus, we herein exploit both previously 

generated DNA methylation datasets as well as newly generated data to systematically 

decipher the sources of DNA methylation variability across B-cell neoplasms. This 

comprehensive approach using over 2,000 samples including training and validation series 

indicates that the human DNA methylome is more dynamic than previously appreciated 
5,11,16 and reveals previously hidden biological insights and clinical associations. In 

particular, de novo disease-specific hypomethylation in active regulatory regions is 

associated with differential transcription factor binding and targets genes important for 

disease-specific pathogenesis. From the clinical perspective, we define a set of epigenetic 

biomarkers that can accurately classify B-cell neoplasms requiring differential clinical 

management and construct a DNA methylation-based mitotic clock, called epiCMIT, as a 

personalized predictor of clinical behavior within each B-cell neoplasm.
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Results

Initial data processing and global DNA methylation dynamics in normal and neoplastic B 
cells

We analyzed previously published DNA methylation profiles of samples from normal and 

neoplastic B cells spanning the entire B-cell differentiation spectrum, all generated with the 

450k microarray platform from Illumina. These included 10 normal B-cell subpopulations 5 

as well as the main five categories of B-cell neoplasms, i.e. ALL 6,7, MCL 8, CLL 10,17, 

DLBCL (own unpublished series) and MM 13 (Fig. 1a and Supplementary Table 1). 

Following the guidelines of the TCGA Consortium (https://www.cancer.gov/about-nci/

organization/ccg/blog/2018/bcr-tips), we selected samples containing a tumor-cell content 

greater than 60%. The validity of this percentage was experimentally confirmed analyzing 

methylation profiles of sorted and unsorted tumor cells from MCL and CLL samples 

(Extended Data Fig. 1a). Tumor cell content was estimated by flow cytometry 5,8,10,13,17, 

genetic data18 and/or lineage-specific DNA methylation patterns (Supplementary Table 2), 

and was highly concordant (Extended Data Fig. 1b). However, MM samples showed that 

DNA methylation-based estimation of tumor cell content was far lower than that estimated 

by flow cytometry (Extended Data Fig. 1c, d), as expected due their loss of B-cell identity 
13. Interestingly, some DLBCL samples also showed a similar effect (Extended Data Fig. 1c, 

d), and therefore in MM and DLBCL, tumor cell content was estimated by flow cytometry 

and genetic data, respectively. After all filtering criteria (Methods), we generated a curated 

data matrix containing 1,595 high quality samples (Fig. 1a and Supplementary Table 1) with 

DNA methylation values for 437,182 CpGs, which was used in all downstream analyses.

This comprehensive dataset was used to step-wise dissect the DNA methylation variability 

of normal and neoplastic B cells at different levels, including cancer-specific, tumor entity-

specific, tumor subtype-specific and individual-specific variability (Fig. 1b). Out of all the 

studied CpGs, only 12% show stable DNA methylation levels in normal and neoplastic B 

cells, and target expressed genes (Fig. 1c-g, Extended Data Fig. 1e-h, and Supplementary 

Table 3), indicating that the great majority of the DNA methylome (88%) is labile during 

normal B-cell development and neoplastic transformation. We could not identify any de 
novo epigenetic signature shared by all B-cell tumors. Therefore, the observed DNA 

methylation variability was related to differences among B-cell tumor entities and subtypes 

as well as patient-specific variability.

Disease-specific hypomethylation targeting regulatory regions is associated with 
transcription factor bindings and differential gene expression

An unsupervised principal component analysis showed that different B-cell neoplasms 

cluster separately (Fig. 2a and Extended Data Fig. 2a), with neoplasms grouped according to 

the maturation stage of their cellular origin, i.e. ALL together with pre-germinal center B 

cells and mature B-cell neoplasms together with germinal-center experienced B cells. Next, 

to identify DNA methylation signatures associated with malignant transformation, we 

focused on the 63% of genome with potential tumor-specific DNA methylation signatures 

(Fig. 2b). We detected varying numbers of de novo tumor-specific DNA methylation 

(tsDNAm) changes, ranging from 616 in CLL to 49,279 in MM (Fig. 2b, c, Extended Data 
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Fig. 2b, c, d, Supplementary Tables 4 and 5, and Methods). Overall, hypermethylation was 

enriched at CpG islands and promoter-related regions, whereas hypomethylation occurred at 

low CpG content regions (Extended Data Fig. 2e). Remarkably, we observed that DNA 

methylation changes manifested differently in distinct neoplasms. ALL and DLBCL showed 

more tumor-specific DNA hypermethylation (tsDNAm-hyper), whereas MCL, CLL and MM 

acquired more tumor-specific DNA hypomethylation (tsDNAm-hypo), being this skew 

towards hypomethylation remarkable in MM (Fig. 2b-c). These distinct preferences among 

neoplasms are not apparently related to differential expression of DNA methyltransferases 

(DNMTs), as we could not identify any clear association between the hypermethylation/

hypomethylation ratio and the DNMT1, DNMT3A or DNMT3B expression levels 

(Supplementary Figure 1).

Next, we sought to identify potential upstream mediators for de novo DNA methylation 

signatures in each B-cell tumor. As transcription factor (TF) binding has been reported to 

induce hypomethylation at regulatory regions 19, we performed TFs binding site prediction 

analysis in active regulatory elements (i.e. marked by H3K27ac) containing tsDNAm-hypo 

CpG (Methods). Interestingly, the entities in which tsDNAm-hypo was predominantly 

located in H3K27ac regions (Fig. 2c) showed enrichments for binding sites of TFs expressed 

in each respective entity and with a previously reported association with their pathogenesis, 

such as SPI1/SPIB and EBF1 in ALL, TCF/ZEB in MCL, and NFAT in CLL (Fig. 2d, 

Extended Data Fig. 2f and Supplementary Table 6) 20–22. In the case of DLBCL and MM, 

their tsDNAm-hypo CpGs were actually depleted of active regulatory elements (Fig. 2c), 

suggesting that TF binding may not be a major factor leading to their tumor-specific DNA 

methylation signatures. However, the fraction of tsDNAm-hypo CpGs located in regulatory 

regions was enriched in TFs potentially involved in the respective diseases, such as FOX 

family in DLBCL 23, and NRL (a member of the oncogenic MAF family), ISL1, TEAD, and 

YY1 in MM 24–27 (Fig. 2d).

Beyond the potential role of TFs in shaping tumor-specific DNA methylation signatures, we 

also investigated the downstream transcriptional associations of tsDNAm-hypo signatures. 

An analysis of transcriptional profiles of cases from all five diseases revealed a total of 94 

genes associated with tsDNAm-hypo genes expressed in a disease-specific manner (Fig. 2e). 

Although some of the identified genes have been shown specifically expressed in a particular 

disease, such as CTLA4 and KSR2 in CLL 28, this comprehensive analysis provides a rich 

resource of disease-specific candidate genes in which differential DNA methylation may 

play a role in their deregulation.

Accurate classification of 14 clinico-biological subtypes of B cell neoplasms using 
epigenetic biomarkers

The B-cell neoplasms shown in Fig. 1a represent broad categories which are further 

classified into subtypes with different clinico-biological features based on genetic, 

transcriptional or epigenetic features 3. These include high-hyperdiploid (HeH) ALLs, and 

ALLs with structural variants: rearrangements affecting 11q23/MLL, three different 

chromosomal translocations, i.e. t(12;21), t(1;19), and t(9;22), as well as the dicentric 

chromosome dic(9;20) 6; Cluster 1 (C1, DNA methylation patterns related to germinal 
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center-inexperienced cells) and Cluster 2 (C2, DNA methylation patterns related to germinal 

center-experienced cells) MCLs which mostly reflect conventional and leukemic non-nodal 

MCLs8; naïve-like/low-programmed, intermediate/intermediate-programmed and memory-

like/high-programmed CLLs 10,11, and finally DLBCLs categorized according to the cell of 

origin classification into germinal center B cell (GCB) and activated B cell (ABC) 29, and 

not according to the most recent genetic classifications30,31, whose link with epigenetic 

profiles deserves further investigation. In MM, a previous report did not show robust 

methylation differences among the distinct cytogenetic subtypes 13 and thus MM 

subgrouping was not included in our analyses. Here, we focused on the identification of 

epigenetic biomarkers that may allow a comprehensive diagnosis of B-cell tumor entities 

and subtypes. We built a classifier algorithm that yielded 56 CpGs as the optimal number 

distributed along 5 predictors (Extended Data Fig. 3a, b and Supplementary Table 7, 

Methods) to accurately discriminate the main B-cell tumor entities as a first step (predictor 

1), and subsequently B-cell tumor subtypes as a second step (predictors 2, 3, 4 or 5) (Fig. 

3a). The accuracy of the five predictors was evaluated using nested 10-fold stratified cross-

validation in the training series (n=1,345) and with external validation series (n=711) (Fig. 

3b). Overall, we obtained very high accuracies in the predictions in both main B-cell tumor 

entities (mean sensitivity was 97% for training series and 99% for validation series) and B-

cell tumor subtypes (mean sensitivity was 90% for training series and 97% for validation 

series). This epigenetic classifier may represent the basis for a simple and accurate 

diagnostic tool for B-cell tumor subtypes with different clinical management (Code 

availability section).

Patient-specific DNA methylation changes are associated with silent chromatin without an 
impact on gene expression

To determine patient-specific changes within each tumor subtype (Fig. 1b, level 4), we 

computed the total number and the number of hyper- and hypomethylation changes in every 

single patient within each B-cell tumor subtype as compared to HPC. As each B-cell tumor 

entity is derived from a distinct cellular origin, this approach has the advantage of fixing a 

reference point for all B-cell tumors. Furthermore, each methylation change was further 

classified as being extensively modulated or not during normal B-cell development 5, i.e. B 

cell-related changes or B cell-independent changes, respectively (Fig. 4a). Overall, we found 

large differences in the numbers of DNA methylation changes per patient (Fig. 4a and 

Supplementary Table 8), and all B-cell tumors showed a similar degree of DNA methylation 

variability (Extended Data Fig. 4a). We also detected strikingly high correlations between 

the degree of B-cell related and B-cell independent DNA methylation changes (Fig. 4b, 

Extended Data Fig. 4b and Supplementary Table 8). This association suggests that the 

overall DNA methylation burden of the tumor in each individual patient may be shaped by a 

similar underlying phenomenon. Supporting this concept, we observed that CpGs 

undergoing hypomethylation both in the B cell-related and B cell-independent fractions are 

mainly located in low CpG-content, low-signal heterochromatin, and the associated genes 

are constitutively silent both in normal and neoplastic B cells (Fig. 4c-e and Extended Data 

Fig. 4c-f). In the case of hypermethylation, CpGs in both fractions are located mainly in 

promoter regions and CGIs with H3K27me3-repressed and poised-promoter chromatin 
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states, and affect genes that remain silent across normal differentiation and neoplastic 

transformation of B cells (Fig. 4f-h, Extended Data Fig. 4c, g-i).

Collectively, these findings indicate that most DNA methylation changes in B-cell tumor 

patients occur in silent chromatin regions in the absence of concurrent phenotypic changes, 

suggesting that a mechanism independent from gene regulation may underlie their overall 

DNA methylation landscape.

Development of an epigenetic mitotic clock reflecting the proliferative history of normal 
and neoplastic B cells

Beyond the classical role of DNA methylation as gene regulator, an accumulating body of 

published evidence supports the concept that hypomethylation of low CpG-content 

heterochromatin and hypermethylation of high CpG-content polycomb target regions 

accumulate during cell division in a way consistent with an epigenetic mitotic clock32–39. 

Here, we observe that the inter-patient methylation variability in B-cell tumors mainly 

affects inactive chromatin, including hypomethylation of heterochromatin and 

hypermethylation of regions marked with H3K27me3-containing chromatin states (Fig. 4c-h 

and Extended Data Fig. 4d-i). Based on this data, these DNA methylation changes most 

likely reflect the different tumor cell proliferative histories of individual patients. Thus, we 

next performed a step-wise selection of CpGs whose methylation change would reflect the 

cell mitotic history (Fig. 5a, Extended Data Fig. 5a and Methods). First, we selected CpGs 

within constitutively silenced/poised chromatin. Second, we identified CpGs methylated 

(≥0.9) or unmethylated (≤0.1) in HPC samples that extensively lose or gain methylation (a 

difference of at least 0.5) in bmPC samples. This difference was used to capture CpGs 

undergoing extensive methylation changes between cells with the lowest and highest 

proliferative histories in the B-cell lineage. Third, we obtained 184 CpGs located at 

constitutive H3K27me3-containing regions and 1,164 CpGs at constitutive heterochromatin 

which gain and lose DNA methylation upon cell division, respectively (Fig. 5a, b, 

Supplementary Table 9 and Methods). Fourth, we next constructed two mitotic clocks with 

these two sets of CpGs, one gaining DNA methylation upon cell division called 

epigenetically-determined Cumulative MIToses (epiCMIT)-hyper and one losing DNA 

methylation called epiCMIT-hypo (Fig. 5a, b and Methods). We initially evaluated both 

mitotic clocks in normal B cells and observed a high correlation (R=0.96, p-value<2e-16), 

with B-cell subpopulations distributed according to their accumulated proliferative history 

during B-cell differentiation and not to their current proliferation status (Fig. 5c, left panel). 

This association between the degree of hyper- and hypomethylation supports previous 

observations in colorectal cancer40 and indicates that mitotic cell division in normal B cells 

leaves both hyper- and hypomethylated imprints. Although this high correlation between the 

two mitotic clocks was also observed for MCL, CLL and DLBCL (Fig. 5c), it does not seem 

to be a universal phenomenon, as no correlation was observed in ALL and MM. In line with 

the overall trend to gain methylation in ALL and to lose methylation in MM (Fig. 2b), we 

observed that the epiCMIT-hyper was greater than the epiCMIT-hypo in ALL samples, and 

the opposite in MM. These differences do not seem to arise from differential expression of 

DNMTs (Supplementary Figure 1). As a final step in the epiCMIT mitotic clock 

development, we then selected the highest score from the epiCMIT-hyper and epiCMIT-

Duran-Ferrer et al. Page 6

Nat Cancer. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



hypo per sample to derive a unique epiCMIT value (Fig. 5a, d, Supplementary Table 9 and 

Methods). The epiCMIT shall then reflect the relative accumulation of mitotic cell divisions 

of a particular sample, including the mitotic history associated with normal cell development 

as well as with malignant transformation and progression. Moreover, the epiCMIT cannot be 

affected by a different distribution of cell cycle phases in tumor samples, since the DNA 

methylome remains rather stable during the whole cell cycle 41.

Validation of the epiCMIT score as mitotic clock in normal and neoplastic B cells

The applicability of the epiCMIT as mitotic clock was validated through several 

perspectives. First, we used an independent in vitro B-cell differentiation model of primary 

NBCs into plasma cells42, in which cell divisions were controlled by carboxyfluorescein 

succinimidyl ester (CFSE) staining (Extended Data Fig. 5b). At days 4 and 6, different B 

cells were separated based on their proliferation history measured by CFSE dilution, and we 

observed that epiCMIT increases in cells with lower CFSE concentration, i.e. higher 

proliferative history (Fig. 5e, left panel). The genes related to epiCMIT-CpGs remained 

silenced in all these conditions regardless of the cell phenotype and proliferative history(Fig. 

5e, right panel). Second, we studied the link between the epiCMIT and genetic changes 

using WGS data of 138 CLL patients from our cohort17. We observed that the epiCMIT was 

correlated with the total number of somatic mutations and with genomic complexity 

measured by the number of driver genetic alterations, i.e. mutations with positive selection 

(Extended Data Fig. 5c, d). Additionally, we measured the activity of know mutational 

processes through the analysis of single base substitution (SBS) signatures43 (Extended Data 

Fig. 5e). We detected significant correlations between our epiCMIT and signatures SBS5 

and SBS1, which have been previously described as mitotic-like mutational processes (Fig. 

5f and Extended Data Fig. 5f). We also identified a significant link between the epiCMIT 

and the non-canonical AID signature (SBS9) 17,43 in IGHV mutated CLL, possibly 

reflecting accumulated rounds of cell divisions in the germinal center of the ancestor B cell 

prior to its transformation to CLL (Extended Data Fig. 5g). Third, although the epiCMIT is 

aimed at capturing the proliferative history of the cell, a relationship with cell proliferation is 

expected in tumors (more proliferative history implies higher proliferation, although it also 

depends on time). Accordingly, the epiCMIT was higher in MCL cases showing high Ki-67 

(a proliferation marker) than in cases with low Ki-67 expression (Fig. 5g). Furthermore, 

leukemic CLL cases with high epiCMIT, although not considered to be proliferative, showed 

higher expression of genes related with cell proliferation and MYC activity (Fig. 5h and 

Supplementary Table 10). Thus, these data suggest that cases with higher proliferative 

history also seem to have higher proliferative capacity at the time of sampling.

We next compared the epiCMIT with two previously proposed hypermethylation-based 

mitotic clocks called epiTOC and MiAge 37,39 (Supplementary Table 8 and Methods). In 

addition, we calculated a hypomethylation-based mitotic clock using a previously defined 

pan-cancer set of CpGs losing methylation called PMDsoloWCGW CpGs38 (Supplementary 

Table 8 and Methods). Focusing on hypermethylation-based mitotic clocks, the epiCMIT 

showed excellent correlations with epiTOC and MiAge in B-cell neoplasms acquiring 

polycomb-related hypermethylation (mostly ALL, but also DLBCL and MCL); a moderate 

correlation in the case of CLL, which acquires more hypo- than hypermethylation, and a 
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total lack of correlation in the case of MM, which mostly loses DNA methylation (Fig. 5i 

upper panel and Extended Data Fig. 5h). Interestingly, identical observations were obtained 

comparing the epiCMIT and the widely-reported CpG island methylator phenotype (CIMP) 

in human cancer44, suggesting that the pan-cancer CIMP score may also represent a measure 

of the cell mitotic history. Interestingly, the opposite scenario was found when comparing 

epiCMIT with the hypomethylation-based mitotic clock PMDsoloWCGW. We showed 

excellent correlations between epiCMIT and PMDsoloWCGW in tumors with extensive 

DNA hypomethylation (mostly MM and CLL, but also MCL and DLBCL) and a null 

correlation in ALL (Fig. 5i, bottom panel). In spite of these striking discrepancies in ALL 

and MM, mitotic clocks were in general highly correlated, even though the poor overlap of 

their underlying CpGs, indicating that cell proliferative history can be traced with different 

sets of CpGs (Extended Data Fig. 5i). Additionally, we observed that epiCMIT is highly 

correlated with the total number of DNA methylation changes accumulated in all samples 

since the HPC stage, suggesting that the overall DNA methylation landscape seems to be 

strongly influenced by the cell proliferative history (Fig. 5i bottom panel and Extended Data 

Fig. 5h). Finally, epiCMIT outperformed all mitotic clocks to identify cells with different 

proliferative histories using the controlled setting of the in vitro B-cell differentiation model 

(Extended Data Fig. 5b, j), a finding that suggests its higher accuracy to trace the B-cell 

proliferative history. Collectively, all these analyses suggest that the epiCMIT is a more 

universal mitotic clock than previously reported mitotic clocks exclusively based on hyper- 

or hypomethylation.

A potential confusing aspect related to epiCMIT is the fact that DNA methylation changes 

take place during aging 45,46 and can be used to predict chronological age 47–49, as 

exemplified with the Horvath’s epigenetic clock 50. To study the potential relationship 

between mitotic activity and the aging process, we first analyzed the epiCMIT in normal B 

cells with low (NBC) and high (MBC) epiCMIT values in samples from infants, young 

adults and elderly donors (Extended Data Fig. 6a, left). This analysis did not reveal any 

evidence linking the epiCMIT with the chronological age of healthy donors, which indeed is 

accurately predicted by the Horvath’s aging clock (Extended Data Fig. 6a). In the case of B-

cell tumors, we observed the same general tendency. Pediatric ALL samples show the 

highest epiCMIT range despite the very low age range, and thus a negligible association 

between epiCMIT and age. In DLBCL we observed a similar scenario, since 30 and 90-year-

old patients showed similar epiCMIT levels. Only in MCL and CLL patients we observed 

minor correlations between epiCMIT and patient’s age (Extended Data Fig. 6a, right). We 

then applied the Horvath’s clock to patient samples and, as previously shown in other 

cancers50, we found significant epigenetic age acceleration with some pediatric ALL 

patients reaching an impressive predicted age over 200 years. Interestingly, we found that 

the epiCMIT shows a highly significant correlation with the epigenetic age predicted by 

Horvath’s clock in the majority of B-cell tumors subtypes (R=0.62, p-value<2el6), 

suggesting that epigenetic age acceleration may be related to the increased proliferation of 

cancer cells (Extended Data Fig. 6a, bottom). Despite this intriguing correlation that 

deserves further investigation, the epiCMIT and Horvath’s clocks seem to be targeting 

different molecular features, as their underlying CpGs show markedly distinct genomic 
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locations, DNA methylation dynamics in normal and neoplastic B cells, chromatin 

enrichments and gene expression of their associated genes (Extended Data Fig. 6b-f).

The epiCMIT is a strong independent variable predicting clinical behavior in B-cell tumors

In normal B-cell maturation, the epiCMIT gradually augments as B cells proliferate, an 

increase that is particularly marked in highly proliferative GC B cells (Fig. 5d). In neoplastic 

B cells, however, the interpretation of the epiCMIT is less trivial and must be divided into 

two components: the epiCMIT of the cell of origin and the epiCMIT acquired in the course 

of the neoplastic transformation and progression (Fig. 6a). Therefore, the relative epiCMIT 

must be compared among patients from entities arising from the same B-cell maturation 

stage and should be a dynamic variable during cancer progression. Thus, we compared the 

epiCMIT in two paradigmatic transitions between precursor conditions and overt cancer, i.e. 

monoclonal gammopathy of undetermined significance (MGUS) and MM, as well as 

monoclonal B cell lymphocytosis (MBL) and CLL categorized according to their cellular 

origin. This analysis showed an overall lower epiCMIT in precursor lesions compared with 

overt cancer (Fig. 6b, upper panels). In line with this finding, the epiCMIT increased in 

paired CLL samples at diagnosis and progression before treatment as well as in sequential 

ALL samples at diagnosis, first relapse and second relapse (Fig. 6a, lower panels).

Based on these observations, we next wondered whether the epiCMIT could be useful to 

predict the clinical behavior of B-cell neoplasms. We analyzed specific B-cell tumor 

subtypes based on cytogenetic subtypes (i.e. ALL) or cell of origin (i.e. MCL, CLL and 

DLBCL), and thus having a similar ground state proliferative history (Fig. 6a). In ALL, high 

epiCMIT was consistently associated with longer overall survival (OS), OS after relapse and 

relapse-free survival (RFS) of the patients (Fig. 6c, d and Extended Data Fig. 7a). These 

epiCMIT associations maintained an independent statistical significance from the well-

established ALL cytogenetic groups as prognostic variable in RFS and OS, and a marginal 

significance in OS after relapse. In contrast to ALL, the opposite clinical scenario was 

observed in mature B-cell neoplasms. In each of the CLL subtypes, a high epiCMIT was 

strongly associated with a worse prognosis using time to first treatment (TTT) as end-point 

variable, both from sampling time (Fig. 6e) and in cases whose sample was obtained close to 

diagnosis (Extended Data Fig. 7b). Additionally, the epiCMIT as continuous variable 

showed a highly significant independent prognostic impact in the context of major 

prognostic factors in CLL, including the IGHV status and TP53 alterations (deletion and 

mutation) (Extended Data Fig. 7c). Overall, it seems that the epiCMIT, CLL epigenetic 

subgroups 10,11,51, and genomic complexity measured by the total number of driver 

alterations 17,52 are the most significant independent variables associated with prognosis in 

CLL. In addition, despite the variability of treatments in our initial CLL series, the epiCMIT 

also showed marginal significance in OS (Extended Data Fig. 7d). All these findings were 

widely confirmed in an additional series of 210 CLL patients treated mainly with chemo-

immunotherapy (Fig. 6f and Extended Data Fig. 7b, d). In the case of MCL, the epiCMIT 

showed an independent poor prognostic impact in the two cell-of-origin subtypes (C1 and 

C2), an observation that was confirmed in an extended series in the more aggressive and 

prevalent C1 group (Fig. 6g, h). In the case of the two cell-of-origin DLBCL subtypes, our 

data suggest that high epiCMIT could also represent a poor prognostic variable (Extended 
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Data Fig. 7e). Finally, our epiCMIT score showed an overall superior prognostic value 

compared with all the other DNA methylation-based mitotic clocks in all B-cell tumors with 

the largest number of patients (Extended Data Fig. 8).

epiCMIT is associated with specific genetic driver alterations in CLL

Despite the independent prognostic impact of epiCMIT and genetic alterations in CLL, we 

next assessed which CLL driver alterations could potentially confer a proliferative advantage 

to neoplastic cells, and subsequently a higher epiCMIT. To that end, we exploited 477 CLL 

samples in which we had DNA methylation data and whole exome sequencing (WES)17 

(Fig. 7a). We initially depicted all driver genetic changes in each CLL subtype divided in 

high and low epiCMIT (Extended Data Fig. 9a). Next, we interrogated the levels of 

epiCMIT in patients with each driver genetic alteration both in the whole cohort and in each 

epigenetic subgroup separately (Fig. 7b, Extended Data Fig. 9b and Methods). We showed 

significant and positive associations of epiCMIT with 23 genetic driver alterations (Fig. 7b) 
17,52. The majority of these genetic alterations have been previously linked to an adverse 

clinical behavior of patients, such as NOTCH1, TP53, SF3B1, ATM, BIRC3 or EGR2. 

Interestingly, epiCMIT showed an association with a recently identified non-coding genetic 

driver associated with poor prognosis in CLL, the U1 spliceosomal RNA 53. Remarkably, 

the presence of some genetic alterations was associated with high epiCMIT indistinctly in all 

patients, such as TP53, while others were particularly associated with epiCMIT within CLL 

subgroups, such as SF3B1 and ATM in i-CLL.

Collectively, these results suggest that the well-established clinical impact of certain genetic 

alterations in CLL may be explained by their association with a high proliferative potential, 

being this association different for certain genetic alterations depending on the maturation 

state of the cellular origin.

Discussion

Here, we have followed a systematic approach to dissect the sources of DNA methylation 

variability of B-cell neoplasms in the context of the normal B-cell differentiation program. 

Overall, we found that the methylation levels of 88% of the studied CpGs are modulated in 

normal and/or neoplastic B cells, suggesting that the human DNA methylome is even more 

dynamic than previously appreciated 5,16. The extensive DNA methylation variability among 

different B-cell neoplasms is in part related to imprints of normal cell development, a 

phenomenon that has been recently used to classify not only B-cell neoplasms 8,10,11,51 but 

also solid tumors 2,54. In addition, each B-cell neoplasm also shows de novo disease-specific 

hyper- and hypomethylation, being the latter possibly related to binding of disease-specific 

TFs and subsequent disease-specific gene expression profiles.

In spite of the widely-reported importance of DNA methylation at regulatory regions, we 

identified that the majority of DNA methylation changes in B-cell neoplasms are located in 

inactive chromatin. These DNA methylation changes are manifested mainly in the form of 

hypomethylation of heterochromatin and hypermethylation of H3K27me3-containing 

regions, a phenomenon previously observed in colorectal cancer40. Compelling published 

evidences32–38 and our data support the notion that mitotic cell division leaves 
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transcriptionally-inert epigenetic imprints onto the DNA located in repressive chromatin 

environments. More recently, this knowledge has led to the concept of using DNA 

methylation as a mitotic clock 37–39 and also has been confirmed at the single cell level 55,56. 

Here, we identified that using only hyper- or hypomethylation to build a mitotic clock may 

be insufficient to capture the mitotic history of cancer cells, as some neoplasms seem to 

preferentially gain or lose DNA methylation upon cell division. For instance, ALL seems to 

acquire broad hypermethylation upon cell division, whereas we consistently observed the 

opposite scenario in MM. Thus, using exclusively hyper- or hypomethylation37–39 to 

determine the mitotic history of MM or ALL cells would incongruently lead to the 

conclusion that they have not proliferated beyond their cellular origin. Therefore, to 

circumvent these limitations, our epiCMIT uses several filters to carefully select both hyper- 

and hypomethylation in CpGs. The strict filtering criteria together with the high correlation 

with previous cell type-independent mitotic clocks suggest the epiCMIT may represent a 

pan-cancer mitotic clock. Here, we showed that epiCMIT captures the entire mitotic history 

of B cells, including cell division associated both with normal development as well as 

neoplastic transformation and progression. Thus, the epiCMIT should not be compared 

among B-cell tumors arising from different normal counterparts but its relative magnitude 

must be studied in those arising from a particular maturation stage. Within each of these 

subgroups, the relative epiCMIT has a superior prognostic value than previous mitotic 

clocks and a profound independent prognostic value from other well-established clinical 

variables in B-cell tumors. Increased epiCMIT is associated with worse clinical outcome in 

CLL and MCL, suggesting that superior proliferative history before treatment seems to 

determine future proliferative capacity of CLL and MCL cells. Strikingly, we consistently 

found the opposite pattern in ALL, a finding in line with recent reports showing that the 

prese nee of CIMP is associated with better clinical outcome 57,58. This result may suggest 

that the high proliferative ALL cells of children at diagnosis (and thus having a larger 

proliferative history) are more efficiently killed by high intensive chemotherapy regimens59, 

which cannot be administrated in elderly patients such as in the case of CLL and MCL.

DNA methylation has also been used as a clock to predict the chronological age of healthy 

donors47–49. The epiCMIT and aging clocks such as that developed by Horvath50 seem to 

reflect broadly different layers of epigenetic information imprinted onto the DNA. This 

notion is supported by multiple perspectives, including the similar levels of epiCMIT in the 

same normal B-cell subpopulations regardless of donor’s age, the differential (epi)genomic 

and transcriptomic features between Horvath and epiCMIT clocks, and the independent 

prognostic value of epiCMIT and age in B-cell tumors. In spite of this overall independence 

of mitotic and aging clocks, we did observe a remarkable association between the epiCMIT 

and the epigenetic age predicted by the Horvath clock in B-cell tumors. This finding 

suggests that the accelerated epigenetic age reported in human cancer50 may actually reflect 

the mitotic activity of cancer cells. This concept is further supported by previous results 

indicating that the predicted age of a sample increases with in vitro cell passages50.

Finally, we found that epiCMIT is enhanced by the presence of some mutations with positive 

selection (i.e. driver genes) and not by random mutations, as driverless CLL patients show 

an overall lower epiCMIT compared with patients with abundant genetic driver alterations. 

We identified 23 driver genetic alterations particularly associated with higher epiCMIT 
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levels or methylation evolution60, which may represent genetic alterations conferring a 

higher proliferative capacity to CLL cells. They were distributed throughout the main altered 

signaling pathways in CLL and were manifested differently in distinct CLL subgroups based 

on their cellular origin (Fig. 7b). This finding suggests that specific alterations may 

predispose to a higher proliferative advantage depending on the maturation stage and 

(epi)genetic makeup of the CLL cellular origin.

In summary, our comprehensive epigenetic evaluation of normal and neoplastic B cells 

spanning the entire human B-cell lineage uncovers multiple insights into the biological roles 

of DNA methylation in cancer, an analytic approach that may also benefit our understanding 

of other cancers. From a clinical perspective, DNA methylation may provide a holistic 

diagnostic and prognostic approach to B-cell neoplasms. Particularly, we defined an accurate 

and easy-to-implement pan-B-cell tumor diagnostic tool and generated a mitotic clock 

reflecting the proliferative history of the neoplastic cells of each patient to estimate their 

clinical risk, which shall represent a valuable asset in the precision medicine era.

METHODS

Quality control, normalization, filtering and annotation of DNA methylation data

We collected 450k DNA methylation array data from 913 ALL 6,7, 82 MCL 8,9, 491 CLL17, 

and 104 MM 13 (Supplementary Table 1). We collected also normal B cell subpopulations 5 

totaling 67 samples as well as normal microenvironmental cells including 6 granulocytes, 5 

CD8+ and 5 CD4+ T cells, 6 monocytes, 6 NK cells 6 whole blood samples and 6 peripheral 

blood mononuclear cells 61, 6 macrophages 62 and 16 endothelial cells 63. These 

microenvironmental cells were used to infer B-cell tumor purities through DNA methylation 

data. In addition, we generated genome-wide DNA methylation profiles following 

manufacturer’s instructions for DLBCL patients with 450k and EPIC BeadChips (Illumina) 

of 80 and 12 DLBCL patients, respectively, with partially available genomic data18. The 

analysis of these DLBCL samples was approved by the Institutional Review Board of 

Hospital Clinic (Barcelona, Spain), and informed consent was obtained from all patients in 

accordance with the Declaration of Helsinki. In total, 1,799 samples were profiled with the 

450k DNA methylation microarrays. We used a custom pipeline to analyze DNA 

methylation data using R (version 3.6.3) packages and core Bioconductor (version 3.10) 

packages, with special use of minfi package (version 1.32) exclusively devoted to analyze 

DNA methylation data64. From the total of 485,512 probes present in the 450k array, we 

sequentially removed probes using the next steps: we initially removed 3,091 non-CpGs 

probes, 17,534 CpGs representing SNPs, 7,715 CpGs with individual-specific methylation 5, 

and 4,493 CpGs present in sexual chromosomes. All the remaining 452,679 CpGs had a 

detection p-value ≤0.01 in more than 10% of the samples. We then removed samples with 

bad intensity signal and/or bad probe conversions as well as those with a tumor percentage 

below 60% (See next section). In total, we removed 104 ALL samples, 8 MCL samples, 1 

CLL sample, 25 DLBCL samples and 4 MM samples. We also removed microenvironmental 

cells to perform all the analyses in normal and neoplastic B cells. After all filtering criteria, 

we retained 1,595 samples (Supplementary Table 1 and Fig. 1a) with DNA methylation 

values for 452,679 CpGs, which were normalized using SWAN algorithm 65. Some CpGs 
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showed missing values in some samples and were removed from all the subsequent analyses 

(with the exception of biomarker discovery, Fig. 3) and finally 437,182 CpGs were used. We 

used lluminaHumanMethylation450kanno.lmn12.hg19 (version 0.6) and 

IlluminaHumanMethylationEPICanno.ilm10b4.hg19 (version 0.6) R package to annotate all 

CpGs. B-cell related and B-cell independent CpGs classification was used from our previous 

study to separate CpGs that are significantly modulated or not during B cell differentiation, 

respectively5. The same pipeline was used to curate and normalize the data from the 

previously published 42 in vitro model of B-cell differentiation shown in Extended Data Fig. 

5b and all the DNA methylation data for validation series used for the pan-B-cell tumor 

classifier as well as clinical associations. These include our newly generated EPIC DNA 

methylation data for the 12 DLBCL patients as well as other EPIC and 450K DNA 

methylation data previously published. In particular, we collected EPIC DNA methylation 

profiles for 70 MCL patients 9 and 450K and EPIC data for 380 CLL from external 

collaborators. Finally, to validate results in ALL, we used 183 samples included in the initial 

analysis (Fig. 1, 2)7 but not used to construct any classifier, and we also downloaded DNA 

methylation data from GSE7658566 and GSE6922967.

Inferring tumor purity through DNA methylation data

DNA methylation has been shown to represent an appropriate biological layer to infer the 

proportions of blood cell types in peripheral blood 68. We have previously implemented 

successfully this statistical framework to infer tumor purity in MCL patient samples 8. We 

have extended this strategy to all B-cell tumors using additional cell types to deconvolute 

DNA methylation data into cellular proportions including tumor cell content. We validated 

this approach using flow cytometry (FCM) and genetic data in MCL and CLL samples 

(Extended Data Fig. 1b). Briefly, we assume that B-cell tumors retain a B cell signature 

from its cell of origin and also have negligible proportion of normal B cells. Thus, the 

percentage of neoplastic B cells in a sample can be inferred by the presence of a DNA 

methylation signature of B cells. This B cell methylation signature was identified by two 

sequential steps: 1) we selected CpGs with shared methylation values during the entire B-

cell maturation process (from early committed B cells to terminally-differentiated bone 

marrow plasma cells), and 2) from those CpGs selected above, we performed a differential 

DNA methylation analysis to identify CpGs whose methylation level was significantly 

different between B cells and the major non-neoplastic cells accompanying B cell tumors 69, 

namely granulocytes, T cells, monocytes, macrophages and endothelial cells. Then, with this 

set of CpGs representative of all major cell types present in tumor samples, we apply a linear 

constrained projection 68, also known as reference-based approach 70, to find the proportions 

of each cell type.

As a final filtering step, we retained patient samples showing at least 60% tumor cell content 

according to DNA methylation-based predictions in ALL, MCL and CLL samples, to FCM 

in MM and to genetic data in DLBCL samples.

Purity estimation from mutational and copy number variation data in DLBCL

The 80 samples included in this study were previously analyzed by whole-genome copy 

number (CN) arrays (Cytoscan HD, Affymetrix) and gene mutations by targeted next 
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generation sequencing of 106 genes.18. The Allele-Specific Copy Number Analysis of 

Tumors (ASCAT) algorithm available at Nexus Copy Number (BioDiscovery, version 7) was 

used to infer the tumor purity directly from the Cytoscan HD array. The percentage of cells 

(or cancer cell fraction, CCF) carrying each somatic mutation found in loci not affected by a 

copy number alterations was calculated as CCF = 2xVAF, where VAF is the variant allele 

frequency of the mutation. Out of all the mutations, the highest CCF was considered as the 

best estimate of tumor purity of the samples based on gene mutations. As a final step, the 

maximum tumor purity detected by ASCAT or gene mutations was considered as the 

estimated tumor cell purity.

Gene expression data

Gene expression profiles using hgu219 array for normal B cells was obtained from 5 (3 

hematopoietic precursor cells, 7 pre-B cells, 10 naïve B cells, 11 germinal center B cells, 5 

tonsillar plasma cells, 5 memory B cells and 1 bone marrow plasma cell). Additionally, we 

downloaded gene expression data for 56 ALL samples profiled with 133 plus 2 array from 6, 

including several ALL subtypes, namely 18 HeH, 5 11q23/MLL, 16 t(12;21), 6 t(1;19), 5 

t(9;22) and 6 dic(9;20). We also used 15 MCL samples profiled with 133 plus 2 arrays 71 

including 10 C1 and 5 C2 MCLs. We also used previously generated gene expression data 

with hgu219 array for 455 CLL samples 17. For DLBCL samples, we generated gene 

expression data using 133 plus 2 arrays following the manufacturer’s instructions for 43 

DLBCL samples, including 17 GCB, 15 ABC, and 11 unclassified. Finally, we downloaded 

gene expression data for 328 MM samples from 72 analyzed with the 133 plus 2 array 

platform. We normalized all the data using rma function available in affy (version 1.64) R 

package. As gene expression data come from different studies and different array platforms, 

we transformed all normalized gene expression values per sample to gene expression 

percentiles to minimize batch effects. Also, we generally used expression data to strengthen 

the interpretation of previous results and not for primary and discovery analyses.

Shared DNA methylation dynamics in normal and neoplastic B cells

To define CpGs whose methylation values do not change in normal and neoplastic B cells, 

we obtained CpGs showing differences of less than 0.25 across all normal and neoplastic B 

cells. Then, we classified them into hyper, partial and hypomethylated CpGs calculating the 

median of each CpGs for all the samples.

ChIP-seq data collection, analysis and integration

We downloaded and processed ChIP-seq data available from Blueprint73 and from a 

previous study in ALL74. Particularly, we used Blueprint ChIP-seq data of six histone marks, 

i.e.H3K4me1, H3K4me3, H3K27ac, H3K36me3, H3K27me3 and H3K9me3 available for 

15 normal B cells (6 NBC, 3 GC, 3MBC and 3tPC), 5 MCLs, 7 CLLs and 4 MMs, as well as 

two DLBCL cell lines, i.e. KARPAS-422 and SUDHL-5 DLBCL. We next integrated these 

ChIP-seq data using chromHMM software75 as previously described76. Briefly, we 

generated a B-cell specific chromatin state model with 12 emission states using the 15 

normal B cells, corrected for their corresponding input. These 12 chromatin states were 

ActProm (active promoter, with H3K27ac and H3K4me3 marks), WkProm (weak promoter, 

with H3K4me1 and H3K4me3 marks), PoisProm (poised promoter, with H3K27me3, 
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H3K4me1 and H3K4me3 marks), StrEnh1 (strong enhancer 1, with H3K27ac, H3K4me1 

and H3K4me3 marks), StrEnh2 (strong enhancer 2, with H3K27ac and H3K4me1 marks), 

WkEnh (weak enhancer, with H3K4me1 mark), TxnTrans (transcription transition, with 

H3K36me3, H3K27ac and H3K4me1 marks), TxnElong (transcription elongation, with 

H3K36me3 mark), WkTxn (weak transcription, with low H3K36me3 mark), H3K9me3 

(H3K9me3-repressed heterochromatin), H3K27me3 (H3K27me3-repressed 

heterochromatin) and Het;Low;Sign (low signal heterochromatin, with the absence of all the 

six histone marks).Next, this model was used to assign the chromatin states in the remaining 

primary B-cell tumors, namely 5 MCL, 7 CLL, 5 MM, and the 2 DLBCL cell lines. In the 

case of ALL, we downloaded H3K27ac ChIP-seq data (generated with the ChIP-grade 

ab4729 from Abcam) from the NALM6 ALL cell line74. We followed the Blueprint pipeline 

to find H3K27ac peaks http://dcc.blueprint-epigenome.eu/#/md/chip_seq_grch37. To define 

regulatory regions in MCL, CLL, MM and DLBCL, we used the CHMM genome 

segmentation. Particularly, we used chromatin states containing H3K27ac, namely ActProm, 

StrEnh1, StrEnh2 and TxnTrans chromatin states. For ALL, regulatory regions were defined 

as regions showing H3K27ac peaks. These active regulatory regions were not merged but 

used in a disease-specific manner in the manuscript. To calculate CHMM enrichments of 

CpGs sets, we used the CpGs present in the 450k Illumina DNA methylation array as a 

background. To calculate CpG enrichments in regulatory regions in Fig 2c and Extended 

Data Fig. 2c, the number of CpGs falling in regulatory regions were compared with the same 

number of de novo CpGs 10,000 times randomly chosen from the DNA methylome fraction 

with potential tumor-specific signatures falling in regulatory regions. To select genes 

associated with regulatory regions (Fig. 2), we obtained gene annotation for all CpGs within 

regulatory regions using the lluminaHumanMethylation450kanno.lmn12.hg19 R package.

Gene Ontology Analysis

Gene ontology analyses were performed using the “gometh” function within the missMethyl 
R package available at Bioconductor, which takes into account the differing number of 

probes per gene present on the 450k array.

Tumor specific DNA methylation signatures

We performed Truncated Principal Component Analysis (PCA) using irlba package 

available at CRAN. Next, to find specific DNA methylation signatures in each B cell tumor, 

we filtered out all CpGs showing extensive modulation in B cell differentiation 5. 

Afterwards, we used the limma package to perform pair-wise comparisons between each B 

cell tumor entity. For each B cell neoplasia as compared to other B cell tumors, we retained 

CpGs that showed at least ≥0.25 methylation difference and FDR<0.05 in the same direction 

in all comparisons. We next classified the identified CpGs as hyper- or hypomethylated 

considering the methylation status of normal B cells.

Transcription factor binding analysis

We used the PWMEnrich package available at Bioconductor. We focused on CpGs showing 

specific hypomethylation in each B-cell tumor entity overlapping with regions showing 

H3K27ac in primary samples of MCL, CLL or MM, and cell lines in the case of ALL 

(NALM6) and DLBCL (KARPAS-422 and SUDHL-5) (Fig. 2c). We next extended the DNA 
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sequence 100bps (50bps to each side) for each CpG using Bsgenome.Hsapiens.UCSC.hg19 
annotation package available at Bioconductor. As a background sequences, we used 100,000 

random B-cell independent CpGs. We then calculated the frequency of A, T, C and G bases 

in the background sequences. Next, we obtained the 537 CORE JASPAR 2018 TFs for 

Homo sapiens and transformed motifs to Position Weight Matrices (PWM) using previously 

calculated frequencies of each base to account for biases in the 450k array. We then 

calculated a lognormal background distribution with tiles of 100 bps to finally perform TFs 

binding predictions. We retrieved enrichments per group of sequences and the frequency of 

each TF that belongs to the Top 5% enrichment TFs, i.e. how often a TF is among the top 

5% enriched TFs in all the interrogated sequences. We considered TF as relevant when being 

within the top 5% TFs in at least 10% of the sequences, showing an FDR ≤0.025 and 

consistently expressed in each respective B-cell tumor.

Construction of the classifier algorithm for B cell tumor subtypes

DNA methylation data for 1,345 samples of B-cell neoplasms was used to build a two-step 

classifier for the classification of the 5 main B-cell tumor entities (first step) followed by the 

classification B-cell tumor subtypes (second step, out of the 1,345, 1,013 samples with 

subtype diagnosis were available). We used the DNA methylation values of 452,679 CpGs 

including B-cell related and B-cell independent CpGs 5. Of note, to build the classifier we 

only used CpGs present in both methylation array platforms (450k and EPIC arrays).CpGs 

with minimal variation (interquartile range below 0.07) were removed in the training series 

of each one of the five predictors.

The following strategy was used to build the predictor for the main B-cell tumor entities as 

well as for ALL, MCL and DLBCL tumor subtypes (predictors 1, 2, 3 and 5). In the case of 

CLL, we used another strategy, which is subsequently described.

1. For every class k,

i. Rank the CpGs according to the Mann-Whitney U test p-value resulting 

from the comparison of samples of class k against the samples of all 

other classes.

ii. Define the signature of class k as the mean of the methylation values of 

the top Mk CpGs (or one minus the value for hypomethylated CpGs in 

class k). In case of ties in the p-value ranking, prioritize the CpG with 

higher mean DNA methylation change.

2. Train a support vector machine model with the signatures of the k classes, using 

a linear kernel and optimizing the cost C by cross-validation. In the case of only 

two classes (such as MCL or DLBCL, e.g. C1 vs C2, and ABC vs GCB 

subtypes), the two signatures are redundant and only one is retained.

The number of CpGs included in the signature of each class in 1) ii, vector M = {MALL, …, 

MGCB}, was chosen by 10-fold stratified cross-validation. Specifically, the above algorithm 

was repeated at each fold where all combinations of possible Mk values were tested and the 

values that maximized the balanced accuracy were selected. The tested values ranged from 1 
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to a different quantity depending on the predictor (4 for the main entities, 5 for the ALL 

subtypes, 20 for MCL and 20 for DLBCL).

For the classification of the three CLL subtypes (m-CLL, i-CLL, n-CLL), the described 5-

CpG classifier10,51 could not be applied as one CpG (cg09637172) is not present in the EPIC 

array, and therefore, we reanalyzed the data to obtain a new predictor, using the following 

steps:

1. Select the 50 CpGs with the lowest Mann-Whitney U test p-value for each 

pairwise comparison between the three subtypes.

2. Apply the SVM-RFE algorithm 77 to the subset of CpGs selected in step 1.

3. Train a support vector machine model with the top MCLL CpGs of step 2, cost C, 

and a linear kernel.

A similar cross-validation strategy as the previous algorithm was used to optimize the MCLL 

and C parameters. The tested values were MCLL = {1, 2, …, 20} CpGs and C = 

10{−3, −2, …, 3} cost. Extended Data Fig. 3d shows the balanced accuracy and sensitivities of 

the best performing cost for each number of CpGs.

Finally, we used two strategies to estimate the accuracy of the five predictors: (1) with 

nested cross-validation in the training series and (2) with a validation series. For the training 

series, we used 10-fold stratified cross-validation, where the optimization of the M and C 
parameters was independently performed at each fold using an inner stratified cross-

validation step. For the validation series, we used the following data:

For ALL , we used 183 samples already included in the initial analysis (Fig. 1, 2)7 but not 

used to construct any classifier nor in any of the other analyses of the manuscript. 

Additionally, we downloaded the following DNA methylation data: GSE7658566 and 

GSE6922967. For MCL validations, we used DNA methylation data from 58 non-

overlapping MCL cases9 (accession code EGAS00001004165). For CLL validation, we 

collected 450k methylation data for 109 CLL samples from a previous study 
11(EGAD00010000871), and 145 CLL with 450k data and 126 CLL with EPIC data kindly 

provided by Dr. Thorsten Zenz and partially deposited in 78 (EGAD00010000948). Finally, 

for DLBCL validation we generated DNA profiles with EPIC arrays.

To more accurately represent indetermination in newly obtained samples, not all cross-

validated training samples nor validation samples were assigned to an entity/subtype. 

Specifically, we used the svm function of the e1071 R package to obtain a probability for 

each entity/subtype in each one of the samples. Next, samples where the maximum 

probability was below 50% or multiple entities/subtypes (including the true entity) had a 

probability above 35% were considered unclassified.

In the case of MCL, the classification of the training series into C1 and C2 subtypes was 

performed using a strategy that mirrored the previously described approach8. Specifically, 

we first created a PCA space using all of the unfiltered methylation information in the 

training samples, and identified that the two first components contained most of the 

information related to the subtype. Then, these two components were used to fit a quadratic 
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discriminant analysis (QDA) model that distinguished the two cell-of-origin subtypes in this 

new space. Finally, the validation samples were projected into the training PCA space and 

the fitted QDA model was applied to them. Only samples with either C1 or C2 probability 

≥85% were assigned to one of the subtypes. This strategy allowed us to define a cell-of-

origin subtype for the validation series using the methylation information as a whole.

Inter-patient DNA methylation heterogeneity

To analyze the variability of DNA methylation data among patients, we identify CpGs with 

differential methylation in each patient individually. To do this, we compared data from each 

single patient with the mean in HPC samples, and considered a DNA methylation change for 

a given CpG when a difference ≥0.25 was reached. Next, to define all the DNA methylation 

changes occurring in patients diagnosed with a specific B-cell tumor subtype, we selected all 

CpGs meeting these two criteria; 1) in at least one patient of a specific B cell tumor subtype 

showing an absolute methylation difference ≥0.25 as compared to HPC, and 2) all other 

patients in the B cell tumor subtype show the same trend, i.e. towards hypomethylation or 

hypermethylation.

Construction of the epiCMIT score (epigenetically-determined Cumulative MIToses)

To create the epiCMIT score, we selected all CpGs from 450k array of our entire DNA 

methylation matrix of normal and neoplastic B-cells (n=1,595) located in inactive regions, 

particularly in poised promoters (PoisProm, with H3K27me3, H3K4me1 and H3M4me3 

marks), in H3K27me3 regions, in H3K9me3 regions, and in low signal heterochromatin 

(Het;LowSign, absence of any of the six marks analyzed). We divided this set of CpGs into 

two distinct sets, CpGs located in H3K27me3-repressed regions or PoisProm, and CpGs 

located in H3K9me3-repressed regions or Het;Low;Sign heterochromatin. We next 

performed differential DNA methylation analysis between normal B-cells with the lowest 

and the high proliferative histories, namely HPC and bmPC (step 3, Extended Data Fig. 5a) 

and we retained CpGs gaining DNA methylation in bmPC in H3K27me3 regions or 

PoisProm, and CpGs losing DNA methylation in bmPC in H3K9me3 and Het;Low;Sign 

heterochromatin. In addition, we imposed two key restrictions to these two sets of CpGs. 

First, CpGs gaining and losing methylation during cell division must respectively show a 

very low (<=0.1) and very high (>=0.9) methylation levels in in lowly divided cells, i.e. 

HPCS. Second, we retained only those CpGs showing extensive modulation between the 

lowly divided HPC and highly divided bmPC cells. This second condition was imposed to 

maximize the differences in the DNA methylation values upon cell division. With all these 

restrictions, we ended with 184 CpGs hypermethylated CpGs that were used to build the 

epiCMIT-hyper score. Conversely, we retained hypomethylated 1,164 CpGs to construct the 

epiCMIT-hypo mitotic score. These scores were generated using the following formulas:

epiCMIT − ℎyper =
∑1

184DNA metℎyaltion epiCMIT − ℎyper CpGs
184
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epiCMIT − ℎypo = 1 −
∑1

1164DNA metℎylation epiCMIT − ℎypo CpGs
1164

Finally, to construct the epiCMIT score, we evaluated per sample both epiCMIT-hyper and 

epiCMIT-hypo scores, and selected the higher of the two:

epiCMIT = max epiCMIT − ℎyper, epiCMIT − ℎypo per sample

As the epiCMIT score was built with 450k array data, there are 84 CpGs that are not present 

in the currently available EPIC array from Illumina (10 epiCMIT-hyper and 74 epiCMIT-

hypo). Nonetheless, we showed high correlations between epiCMIT scores calculated with 

all the original CpGs with those exclusively present in both 450K and EPIC arrays (data not 

shown).

Determination of epiTOC, MiAge, CIMP and PMDsoloWCGW mitotic clocks and the Horvath 
chronological clock

To determine epiTOC37, MiAge39, CIMP79, PMDsoloWCGW38 and Horvath50 DNA 

methylation clocks we used their underlying CpGs overlapping with those present in our 

curated DNA methylation matrix. Specifically, the number of CpGs were the following: 377 

out of the 385 epiTOC CpGs, 261 out of the 268 MiAge CpGs, 88 out of the 89 pan-cancer 

CIMP CpGs79, 5,595 out of the 6,214 PMDsoloWCGW CpGs and 351 out of the 353 

Horvath CpGs. For the epiTOC and MiAge scores, we calculated them as previously 

indicated 37,39. For CIMP score, we used a set of previously proposed CpGs79 and used the 

same strategy than the epiCMIT-hyper. In the case of the PMDsoloWCGW mitotic clocks, 

we applied the same strategy that we used for the epiCMIT-hypo score (explained in the 

previous section). Finally, we used Horvath to predict age using R as previously reported 50.

Somatic mutations and mutational signature analysis in CLL

The somatic mutations found in the CLL samples used in this study were reported elsewhere 
17. We considered driver alterations those reported as such in Puente et. al 2015 and Landau 

et. al 2015 17,52. In addition to this, a new recurrent driver mutation has been recently added 

to CLL, namely the U1 spliceosomal RNA 53. We obtained the U1 mutational status for 318 

CLL patients already published. For the remaining 172 CLL patients from our analyses, we 

evaluated the U1 mutational status using rhAmp SNP Assay (Integrated DNA Technology) 

as previously described53. Next, the mutational signature analysis was performed following 

a similar framework as the one described in Alexandrov et al43,80. Briefly, de novo signature 

extraction was performed using a hierarchical Dirichlet process (hdp R package, https://

github.com/nicolaroberts/hdp), and extracted signatures were matched to the recently 

described list of mutational signatures 43 based on cosine similarity and the biological 

knowledge of each mutational process. Signatures identified through this approach were 

signature SBS1, SBS5, SBS8, SBS9, SBS17b, and SBS18. Finally, the contribution of each 

of the previously identified signatures for each sample was measured using a fitting 

approach (MutationalPatterns R package). To avoid signature bleeding between samples, we 
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iteratively removed one signature after another and the least contributing signature was 

censored if removal reduced the cosine similarity <0.005, with the exception of signature 

SBS1 and SBS5, which were always included based on their reported presence in all normal 

and tumor samples.

Gene Set Enrichments Analysis (GSEA)

In order to perform GSEA analysis in CLLs with different epiCMIT score, we took CLLs 

samples separated by their cellular origin10,51 (epigenetic groups) above 85% percentile and 

below 15% percentile of epiCMIT. I-CLL were excluded due to smaller sample size. We 

performed differential gene expression analysis using limma. We then used fgsea package to 

perform GSEA analyses using log FC as summary statistic to rank genes. We downloaded 

5,501 curated (C2) gene signatures from Molecular Signatures Database v7.0 https://

www.gsea-msigdb.org/gsea/index.jsp. We performed GSEA analysis with all these pathways 

filtering those with less than 5 genes and more than 5,000. We used 10,000 permutations to 

obtain p-values. We next selected 118 gene expression signatures related to cell proliferation 

and MYC in an unbiased way. These 118 expression signatures were found in R by regular 

expression matching with grep() R function using the following expression : 

grep(“CELL_CYCLE|prolifer|divi|mitotic|_CYCLING|M_PHASE|_MYC_”, 

names(gene_expression_signatures_names)).

epiCMIT clinical associations

We performed univariate analysis of epiCMIT score for relapse-free survival (RFS), overall 

survival (OS), and OS after relapse in ALL; OS and Time to First Treatment (TTT) for CLL 

and OS for MCL using Kaplan Meyer curves with maxstat statistics to define groups with 

high and low epiCMIT. The hazard ratios and their corresponding p-values are shown when 

epiCMIT categorization was performed. Finally, epiCMIT was assessed in OS together with 

ABC and GCB DLBCL transcriptomic subtypes 29. The epiCMIT prognostic value was 

assessed in presence of other well-established prognostic factors in all diseases with 

multivariate cox regression models. In ALL, this includes including Hyperdiploid ALLs 

(HeH), Others (including non-recurrent, undefined, <45chr,>67chr and iAMP21), t(1;19), 

t(12,21), dic(9;20), t(9;22) and 11q23/MLL. In MCL, we performed the multivariate Cox 

regression model for OS with epiCMIT together with epigenetic groups C1 and C2 and with 

age. Finally, in CLL we performed multivariate Cox regression models for TTT and OS with 

epiCMIT together with age at sampling, epigenetic groups and the total number of driver 

alterations considering mutations in both studies 17,52. We scaled all mitotic clocks when 

comparing the prognostic value among them.

Finding CLL driver alterations associated with increased epiCMIT

We analyzed the association of each genetic alteration with epiCMIT in all CLL patients, 

and in CLL patients belonging to each epigenetic subgroup separately. When evaluating all 

CLLs together, we modelled epiCMIT score with each genetic alteration using linear 

regression correcting by epigenetic subgroups. We used t-tests between the levels of 

epiCMIT in mutated and unmutated patients for each genetic alteration within each 

epigenetic subgroup. We derived point estimates and 95% confident intervals in both the 

global analysis for all CLLs and within each epigenetic subgroup for all the tests performed 
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(p-values were corrected using FDR). We finally grouped genetic alterations most 

significantly associated with epiCMIT with pathways implicated in the pathogenesis of 

CLL. Treated and untreated patients at the time of sampling were used to perform these 

analyses.

Statistics and Reproducibility

Sample size and data exclusion criterion is extensively explained at section Quality control, 
normalization, filtering and annotation of DNA methylation data. The experiments were not 

randomized. The Investigators were not blinded to allocation during experiments and 

outcome assessment.

Data availability

DNA methylation and gene expression data that support the findings of this study have been 

deposited at the European Genome-phenome Archive (EGA) under accession number 

EGAS00001004640. Previously published DNA methylation data re-analyzed in this study 

can be found under accession codes: B cells, EGAS00001001196; ALL, GSE16368, 

GSE47051, GSE7658515, GSE6922916; MCL, EGAS00001001637, EGAS00001004165; 

CLL, EGAD00010000871, EGAD00010000948; MM, EGAS00001000841; In vitro B-cell 

differentiation model of naïve B cells from human primary samples, GSE72498. Normalized 

DNA methylation matrices used for all the analyses in this study are available at: http://

resources.idibaps.org/paper/the-proliferative-history-shapes-the-DNA-methylome-of-B-cell-

tumors-and-predicts-clinical-outcome. Published gene expression datasets can be found 

under the accession codes: B cells, EGAS00001001197; ALL, GSE47051; MCL, 

GSE36000; CLL, EGAS00000000092, EGAD00010000254; MM, GSE19784; In vitro B-

cell differentiation model of naïve B cells from human primary samples, GSE72498. ChIP-

seq datasets that were re-analyzed here can be found under the accession codes: GSE109377 

(NALM6 ALL cell line, n=1) and EGAS00001000326 (15 normal B cells donors, and 5 

MCL, 7 CLL and 4 MM patients) available from Blueprint https://www.blueprint-

epigenome.eu/. Source data is available for this study. All other data supporting the findings 

of this study are available from the corresponding author on reasonable request.

Code availability

The source code for the DNA methylation classifier of B-cell tumors entities and subtypes 

and for the calculation of the epiCMIT mitotic clock can be found at https://github.com/

Duran-FerrerM/Pan-B-cell-methylome. All other source code supporting the findings of this 

study are available from the corresponding author on reasonable request.
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Extended Data

Extended Data Fig. 1. Analyses related to sample selection and annotation of stably-methylated 
CpGs
a, Principal component analysis and hierarchical clustering of synchronic unpurified/purified 

DNA methylation profiles obtained with EPIC array from MCL and CLL patients. Colors 

represent the same sample, with FCM-based purities highlighted in each sample. MCL, 

mantle cell lymphoma. CLL, chronic lymphocytic leukemia.
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b, Correlations and Passing Bablock regression fits of gold-standard methods for tumor 

purity prediction (FCM and genetic-based) against DNA methylation-based tumor purity 

prediction for MCL and CLL patients in initial and validation series. Samples sizes are: 

MCL initial series, n=32; MCL validation series, n=56; CLL cohort 1, n=109 and CLL 

cohort 2, n=178 patients. Shaded area represents 95% confidence intervals. Pearson 

correlation and derived p-values are also shown.

c, Pearson correlations and Passing Bablock regression fits for gold-standard methods for 

tumor purity predictions (FCM and genetic-based) against DNA methylation-based tumor 

purity predictions in MM and DLBCL patients. Sample sizes are: MM, n=100 and DLBCL, 

n=55 patients and are the same as in panel d. Shaded area represents 95% confidence 

intervals. Pearson correlation and derived p-values are also shown.

d, Pan-B cell DNA methylation signature used to deconvolute DNA methylation data and 

obtain B-cell tumor purities in B-cell tumors. The DNA methylation levels for the Pan-B-

cell DNA methylation signature is shown for microenvironmental cells as well as MM and 

DLBCL. Bar plots representing DNA-methylation based predictions as well as gold 

standard-based predictions for MM and DLBCL are represented on the top of the heatmaps.

e, Chromatin state genome segmentation with the CHMM software using the 6 histone 

marks used in the whole study for normal B cells, MCL, CLL and MM primary cases as 

well as for KARPAS-422 and SUDHL-5 DLBCL cells lines.

f, Genomic distribution of stably methylated and unmethylated CpGs in normal and 

neoplastic B cell. Barplots represent single data values.

g, Example gene showing stably unmethylated CpGs at promoters and stably methylated 

CpGs at gene body in normal and neoplastic B cells. A total of 98 CpGs are shown.

h, Gene ontology analysis of genes showing both stably methylated and stably unmethylated 

CpGs in normal and neoplastic B cells.
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Extended Data Fig. 2. Characterization of tumor-specific DNA methylation signatures
a, First 9 components of a Principal Component Analysis for normal and neoplastic B cells. 

Samples sizes are the same as in Fig. 1a. The same sample size applies also for panel b, c 
and d. Center line, box limits, whiskers and points represent the median, 25th and 75th 

percentiles, 1.5× interquartile range and individual samples, respectively.

b, Percentages of de novo DNA methylation signatures over the total DNA methylome. All 

de novo hyper- and hypomethylation from the five B-cell tumors analyzed are considered 

together to derive each respective percentage.

c, Heatmap showing B-cell tumor-specific hypermethylation and the number of CpGs 

located at active regulatory regions (marked by H3K27ac). To calculate CpG enrichments in 
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regulatory regions, the number of CpGs falling in regulatory regions were compared with 

the same number of de novo CpGs 10,100 times randomly chosen from the DNA methylome 

fraction with potential tumor-specific signatures falling in regulatory regions.

d, Distribution of mean methylation levels of CpGs from de novo B-cell tumor-specific 

DNA methylation signatures across all normal and neoplastic B cell samples subtypes. The 

number of samples used to calculate the means is shown in Fig. 1a and the number of CpGs 

analyzed are those from Fig. 2b.

e, Genomic distribution for de novo DNA methylation changes in B-cell tumors. Barplots 

represent single data values.

f, Gene expression percentile of TFs showing the most significant p-values and frequencies 

for TFs binding site predictions (Methods) in de novo hypomethylation signatures in each B-

cell tumor from Fig. 2d. Sample sizes for gene expression analyses in tumor samples are the 

same than in Fig. 4e.
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Extended Data Fig. 3. DNA methylation levels and analysis of the sensitivity of the epigenetic 
classifier of B cell neoplasms.
a, DNA methylation levels of all CpGs from the pan-B-cell diagnostic algorithm in normal 

and neoplastic B cells. Sample sizes are the training samples shown in Fig. 3b.

b, Estimated sensitivity according to the number of CpGs used in the pan-B-cell diagnostic 

algorithm for the classification of an unknown B-cell tumor into ALL, MCL, CLL, DLBCL 

or MM (first step of Fig. 3a, predictor 1). The number of CpGs selected for the predictor was 

chosen by maximizing the highest balanced accuracy and is indicated with a red circle. This 
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strategy was applied also in the remaining 4 predictors to classify B-cell tumor subtypes in 

panels c, d, e, and f, (second step of Fig. 3a). Each B-cell tumor is represented with different 

shapes and colors.

c, Estimated sensitivity according to the number of CpGs used in the pan-B-cell diagnostic 

algorithm (predictor 2 of Fig. 3a) for the classification of ALL into the subtypes HeH, 

11q23/MLL, t(12;21), t(1;19), t(9;22) and dic(9;20) while incrementing the number of CpGs 

(predictor 2 in Fig. 3a).

d, Estimated sensitivity according to the number of CpGs used in the pan-B-cell diagnostic 

algorithm (predictor 3 of Fig. 3a) for the classification of MCL into the subtypes C1 or C2 

while incrementing the number of CpGs (predictor 3 in Fig. 3a).

e, Estimated sensitivity according to the number of CpGs used in the pan-B-cell diagnostic 

algorithm for the classification of CLL into the subtypes n-CLL, i-CLL or m-CLL while 

incrementing the number of CpGs (predictor 4 in Fig. 3a).

f, Estimated sensitivity according to the number of CpGs used in the pan-B-cell diagnostic 

algorithm for the classification of DLBCL into the subtypes ABC and GCB while 

incrementing the number of CpGs (predictor 5 in Fig. 3a).
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Extended Data Fig. 4. Further characterization of patient-specific DNA methylation changes
a, Variability of DNA methylation changes measured by the interquartile range (IQR) in 

normal and neoplastic B cells against the median number of DNA methylation changes per 

each subtype. R and p-values were derived from linear modelling. Shaded area represents 

95% confidence interval.

b, Correlations in all B cell tumors between B-cell independent DNA methylation changes 

and B-cell related changes for hypermethylation (top) and hypomethylation (bottom) 

changes. R and p-values were derived from linear models.
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c, Number of B-cell related or B-cell independent hyperor hypomethylation in B-cell tumors 

showing consistent patterns (Methods).

d, B-cell independent CpGs losing DNA methylation in B-cell tumors and the percentages 

of each chromatin state in normal and neoplastic B-cells. The mean of percentages per 

sample type is shown. The sample sizes are the same as in Fig. 4c and also apply for panel g.

e , The mean of 2,000 representative CpGs per each sample subtype from panel d is 

represented.

f, Gene density distributed along the expression percentiles of genes associated with B-cell 

independent CpGs losing DNA methylation at low signal heterochromatin in B-cell tumors. 

Expressed genes (H3K36me3) are displayed at right as control. Means within each B-cell 

subpopulation as well as B-cell tumors are represented.

g, B-cell independent CpGs gaining DNA methylation in B-cell tumors and the percentages 

in each chromatin state in normal and neoplastic B-cells.

h , The mean of 2,000 representative CpGs per each sample subtype from panel g is 

represented.

i, Gene density distributed along the expression percentiles of genes associated with B-cell 

independent CpGs gaining DNA methylation at H3K27me3 regions in B-cell tumors. 

Expressed genes (H3K36me3) are displayed at right as control. Means within each B-cell 

subpopulation as well as B-cell tumors are represented. Sample size for DNA methylation 

analyzes in panels a, b, c, e and h are the same as in Fig. 4a. Samples sizes for gene 

expression analyses in panels f and i are the same as in Fig. 4e.
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Extended Data Fig. 5. Additional analyses performed to validate the epiCMIT
a, Illustrative scheme showing DNA methylation changes upon cell division and how they 

relate to epiCMIT scores.

b, In vitro B-cell differentiation model used to experimentally validate the epiCMIT score. 

Primary naïve B cells are differentiated into plasma cells in 6 days. At day 0, primary human 

B cells are incubated with Carboxyfluorescein succinimidyl ester (CFSE) and harvested with 

activation and proliferation cocktails necessary for plasma cell differentiation. The epiCMIT 
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was calculated at day 0, day 4 and day 6 in B cells with different proliferative histories based 

on CFSE dilution.

c, The epiCMIT is correlated with total number of mutations detected by WGS in each CLL 

epigenetic subtype. R and p-values are derived from linear modelling. 138 CLL patient 

samples with WGS and DNA methylation data are shown (66 n-CLL, 18 i-CLL and 54 m-

CLL). The same sample size applies for panel e, f and g.

d, The epiCMIT is correlated with CLL genomic complexity measured by the total number 

of driver alterations and thus with mutations with positive selection. Fitted linear regression 

models and derived R and p-values are shown for each group. The sample size for each 

number of driver alterations are: 0 drivers: n-CLL, n=2, i-CLL, n=5, m-CLL, n=44; 1 driver: 

n-CLL, n=14, i-CLL, n=19, m-CLL, n=119; 2 drivers: n-CLL, n=37, i-CLL, n=25, m-CLL, 

n= 55; 3 drivers: n-CLL, n=38, i-CLL, n= 12, m-CLL, n=28; 4 drivers: n-CLL, n=27, i-CLL, 

n=4, m-CLL, n=12; 5 drivers: n-CLL, n=23, i-CLL, n=2, m-CLL, n=2; 6 drivers: n-CLL, 

n=10, i-CLL, n=0, m-CLL, n=0; 7 drivers: n-CLL, n=7, i-CLL, n=2, m-CLL, n=0; 8 drivers: 

n-CLL, n=1; 9 drivers: n-CLL, n=1; 10 drivers: n-CLL, n=1. For the box plots, center line, 

box limits, whiskers and points represent the median, 25th and 75th percentiles, 1.5× 

interquartile range and individual samples, respectively.

e, Mutational signatures found in CLL with available WGS. CLL subtypes are shown 

separately.

f, The epiCMIT is correlated with the mitotic-like mutational signature SBS1. CLL samples 

are divided in CLL epigenetic subgroups. R and p-values are derived from linear models.

g, The epiCMIT is correlated with the mitotic-like mutational signatures SBS9. CLL 

samples are separated with the classical IGHV mutational status (98%). R and p-values are 

shown for each respective linear model.

h, epiCMIT-hyper CpGs and epiCMIT-hypo mitotic clocks are compared with other hyper- 

or hypomethylation based mitotic clocks as well as the total number of hyper- (rightmost 

top) or hypomethylation (rightmost bottom) changes per sample since HPC stage. R from 

linear models are shown. Samples sizes are the same as in Fig. 4a.

i, Overlap among the CpG used to build each mitotic clock. Barplots represent single data 

values.

j, Performance of all mitotic clocks in the in vitro B-cell differentiation model from panel c. 

The fraction of epiCMIT which gain methylation (epiCMIT-hyper) and the fraction that lose 

DNA methylation (epiCMIT-hypo) were analyzed together with hyper- and 

hypomethylation-based mitotic clocks, respectively. Biological independent sample sizes are 

the same as in Fig. 5e. P-values are derived from two-sided t-tests and from biological 

independent experiments. On the right, expression of genes containing any CpG of each 

respective mitotic clock as well as genes containing CpGs in H3K36me3 regions are 

depicted (n=14,598). The number of genes analyzed per each mitotic clock are: epiCMIT-

hyper, n=155; epiTOC, n=412; MiAge, n=298; CIMP, n=102; epiCMIT-hypo, n1,123; 

PMDsoloWCGW, n=4053. For the box plot, center line, box limits, whiskers and points 

represent the median, 25th and 75th percentiles, 1.5x interquartile range and individual 

samples, respectively.
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Extended Data Fig. 6. Comparison between the epiCMIT mitotic clock and the Horvath aging 
clock
a, Correlations among epiCMIT, age and Horvath-predicted age in normal and neoplastic B 

cells. Samples sizes are: NBC, n=10 and MBC, n=9 donors; C1 MCL, n=40; C2 MCL, 

n=17; n-CLL, n=159; i-CLL, n=69; m-CLL, n=260; GCB DLBCL, n=20 and ABC DLBCL, 

n=28 patients. R and p-value are derived from linear models. Shaded areas represent 95% 

confidence intervals.

b, epiCMIT and Horvath clocks do not have any CpG in common. CpGs of the Horvath 

model are divided into positively associated with age (gain of methylation) and negatively 
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associated with age (loss of methylation). In addition, they are further classified into B-cell 

related or B-cell independent if they are extensively modulated or not during normal B-cell 

differentiation. Barplots represent single data values.

c, The CpGs used to build the epiCMIT and Horvath clock show distinct genomic locations. 

Barplots represent single data values.

d, DNA methylation levels of the CpGs from the epiCMIT and Horvath clocks in normal 

and neoplastic B cells. Sample sizes are the same as in Fig. 4a.

e, The CpGs associated with the epiCMIT and Horvath clocks are located in markedly 

different chromatin states. Sample sizes are the same as in Fig. 4c.

f, Genes associated with epiCMIT and Horvath CpGs show distinct transcriptional states in 

normal and neoplastic B cells. Gene probes shared across all normalized matrices from 

normal and neoplastic B cells were retained and were the following: epiCMIT-hyper, n=60; 

epiCMIT-hypo, n=327; Age positive B-cell related, n=44; Age positive B-cell independent, 

n=118; Age negative B-cell related, n=49; Age negative B-cell independent, n=101. For the 

box plot, center line, box limits, whiskers and points represent the median, 25th and 75th 

percentiles, 1.5x interquartile range and individual samples, respectively. Sample size are the 

same as in Fig. 4e.
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Extended Data Fig. 7. Additional characterization of the clinical impact of the epiCMIT in B cell 
tumors
a, Kaplan-Meier curves for relapse-free survival in ALL patients with low or high epiCMIT 

according to the maxstat rank statistics-based cutoff. Hazard ratio and p-value for the 

univariate Cox regression model are shown. A multivariate Cox regression model with 

epiCMIT as continuous variable and ALL cytogenetic groups is shown on the right. Hazard 

ratio for epiCMIT correspond to 0.1 increments.

b, epiCMIT preserves its prognostic value in multivariate Cox regressions for time to first 

treatment in CLL patients whose samples were acquired at maximum 30 months after 

diagnosis both in initial and validation series.
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c, epiCMIT shows independent prognostic value from major prognostic variables in CLL 

including IGHV mutational status and TP53 alterations (deletions and mutations) in 

multivariate Cox regressions for time to first treatment (TTT).

d, Multivariate cox regression models in initial and validation CLL series for overall survival 

with epiCMIT and important prognostic variables.

e, Kaplan-Meier curves for overall survival in GCB and ABC DLBCL patients with low or 

high epiCMIT according to the maxstat rank statistics-based cutoff. A multivariate Cox 

regression model with epiCMIT as continuous variable, the DLBCL subtype and age is 

shown on the right. Hazard ratio for epiCMIT correspond to 0.1 increments. On the right, 

univariate cox regression model for all mitotic clocks.
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Extended Data Fig. 8. Clinical impact of the epiCMIT as compared to other mitotic clocks
a, On the left, epiCMIT and hypermethylation-based mitotic clocks are highly correlated in 

ALL, creating a collinearity phenomenon in multivariate cox regression models with 

multiple mitotic clocks. On the right, multivariate Cox regression models with epiCMIT and 

PMDsoloWCGW mitotic clocks and ALL cytogenetic subgroups for overall survival, 

relapse-free survival and overall survival after relapse.

b, In CLL, epiCMIT shows superior prognostic value in multivariate cox models for time to 

first treatment than all the other mitotic clocks in both initial and validation series.
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c, In MCL, epiCMIT shows an overall superior prognostic value in multivariate cox models 

for overall survival in both initial series (with C1 and C2 MCL subtypes) and in the 

validation series, which only contain C1 MCL subtypes. In the initial series, MCL subtypes 

with different cellular origin were not introduced in multivariate Cox regression models due 

to few events, and thus the epiCMIT of each MCL patient was centered according to its 

cellular origin (C1 or C2) to account for normal B-cell development epiCMIT (Fig. 6a).

Extended Data Fig. 9. Additional data regarding the link between the epiCMIT and genetic 
changes in CLL
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a, Oncoprint showing all genetic driver alterations considered in the whole CLL initial series 

composed by 490 CLL patient samples grouped by epigenetic subtypes and ordered 

according to increasing levels of epiCMIT (from left to right within each epigenetic 

subgroup). Other clinico-biological features including MBL or CLL, IGHV status, Age, 

Binet stage, epiCMIT subgroups based on maxstat rank statistic, need for treatment and 

patient status are shown. Distinct genetic driver alterations are depicted with different colors 

and shapes. The percentage of mutated patients and number of mutated patients for each 

alteration is shown at right.

b, Driver genetic alterations without clear associations with epiCMIT. Analyses were done 

in the whole cohort as well as within each epigenetic subgroup. Point estimates with 95% 

confidence intervals were derived in the whole cohort using linear modelling between 

epiCMIT and alterations adjusted for CLL subtypes, and with two-sided t-tests within CLL 

subtypes. Point estimates then represent the coefficient of each respective alteration in each 

corresponding linear model (whole cohort analysis) or the difference between means (CLL 

subtypes analysis). Point estimates are color-coded according to FDR correction. Treated 

and untreated patients at the moment of sampling were considered for these analyses.
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Fig. 1 |. Experimental design and characterization of stably methylated regions.
a, Experimental design, including normal B cell subpopulations, B cell tumors under study, 

source of the samples and number of patient samples included in the study with tumor cell 

content greater than 60%. HPC, hematopoietic precursor cells; pre-B, precursor B-cell and 

immature B cells; NBC, naïve B cells; GC, germinal center B cells; MBC, memory B cells; 

tPC, tonsillar plasma cells; bmPC, bone-marrow plasma cells; ALL, acute lymphoblastic 

leukemia; MCL, mantle cell lymphoma; CLL, chronic lymphocytic leukemia; DLBCL, 

Diffuse large B cell lymphoma; MM, multiple myeloma; BM, bone marrow; PB, peripheral 

blood; LN, lymph node.

b, Different levels of DNA methylation variability addressed in the study.

c, Percentage of CpGs whose methylation is stable in normal and neoplastic B cells, or 

modulated in normal B cells. Percentages are calculated over the total number of CpGs 

analyzed.

d, Heatmaps showing stably methylated CpGs (top) and stably demethylated CpGs (bottom) 

in normal and neoplastic B cell.

e, Chromatin state enrichments for stably un/methylated CpGs in normal and neoplastic B 

cells. All CpGs analyzed were used as background. ActProm, Active promoter; WkProm, 

Weak promoter; StrEnh1, Strong enhancer 1 (promoter-related); StrEnh2, Strong enhancer 

2; WkEnh, Weak enhancer; TxnTrans, Transcription transition; TxnElong, Transcription 

elongation; WkTxn, Weak transcription; PoisProm, Poised promoter; H3K27me3, 

Polycomb-repressed region; H3K9me3, H3K9me3 heterochromatin; Het;LowSign, 

Het;LowSign heterochtomatin.

f, Overlap between the target genes of the stably methylated and unmethylated CpGs.

g, Gene expression percentiles in normal and neoplastic B cells of genes showing stable 

hyper- and hypomethylation.
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Fig. 2 |. Disease-specific DNA methylation signatures.
a, Principal component analysis of normal and neoplastic B-cells. Sample sizes are the same 

as in Fig. 1a.

b, Number of de novo DNA methylation changes in each B-cell tumor entity. Percentages 

are calculated over the total of 437,182 CpG analyzed. Barplots represent single data values.

c, Heatmap showing de novo B-cell tumor-specific hypomethylation and the number of 

CpGs falling at active regulatory regions marked by H3K27ac.

d, Enrichment of binding sites of transcription factors expressed in B-cell tumors and in 

regions with de novo hypomethylated CpGs located in active regulatory elements from c.

e, Differential gene expression percentiles for genes showing B-cell tumor-specific 

hypomethylation in active regulatory regions.
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Fig. 3 |. Development and validation of a DNA methylation-based diagnostic classifier of different 
subtypes of B cell neoplasms.
a Heatmap showing DNA methylation values of the CpGs used for the two-step pan B-cell 

cancer classifier. The training samples from b are represented.

b, Accuracy for the pan-B-cell cancer diagnostic classifier composed by the 5 predictors in 

panel a in both training and validation series. Sensitivity is represented as black circles or 

triangles for training or validation series, respectively. The percentage of cases without a 
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clear prediction (unclassified) is represented in grey. The total number of samples used for 

both training and validation is shown at bottom.
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Fig. 4 |. Identification and characterization of patient-specific DNA methylation changes.
a, Number of DNA methylation changes in individual patients for normal and neoplastic B 

cells as compared to the hematopoietic precursor cell stage. Total number of DNA 

methylation changes, hypomethylation changes and hypermethylation changes are depicted 

at outer, middle and inner tracks, respectively. Changes are further classified and color-

coded as B-cell related or B-cell independent. Sample sizes are: HPC, n=6; pre-B cells, n= 

16; NBC, n=15; GC, n=9; tPC, n=8; MBC, n=10 and bmPC, n=3 donors; HeH ALL, n=168; 

11q23/MLL ALL, n=26; t(12;21) ALL, n=152; t(1;19) ALL, n=22; t(9;22) ALL, n=18; 

dic(9;20) ALL, n=17; C1 MCL, n=56; C2 MCL, n=18; n-CLL, n=161; i-CLL, n=69; m-

CLL, n=260; GCB DLBCL, n=19; ABC DLBCL, n= 27; UC DLBCL, n=5 and MM, n=100 

patients. The same sample size is applied to panels b, d and g.

b, Correlation between B-cell related changes and B-cell independent changes in normal and 

neoplastic B-cells. R derived from linear models are shown.
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c, B-cell related CpGs losing DNA methylation in B-cell tumors and the percentages in each 

chromatin state in normal and neoplastic B-cells. The mean of percentages per sample type 

is shown. Sample sizes are: NBC, n=6; GC, n=3; MBC, n=3 and tPC, n=3 donors; MCL, 

n=5; CLL, n=7 and MM, n=4 patients. The same sample size applies for panel f.
d, The mean of 2,000 representative CpGs per each sample subtype from panel c is 

represented.

e, Gene density distributed along the expression percentiles of genes associated with B-cell 

related CpGs losing DNA methylation in B-cell tumors at low signal heterochromatin. 

Expressed genes showing the H3K36me3 mark are displayed at right as a positive control. 

The mean for each sample type is represented. Lines represent 0, 25, 50, 75 and 100% 

percentiles.

f, B-cell related CpGs gaining DNA methylation in B-cell tumors and the percentages in 

each chromatin state in normal and neoplastic B-cells. The mean of percentages per sample 

type is shown.

g, The mean of 2,000 representative CpGs per each sample subtype from panel f is 

represented.

h, Gene density distributed along the expression percentiles of genes associated with B-cell 

related CpGs gaining DNA methylation in B-cell tumors in regions containing the 

H3K27me3 mark. Expressed genes with the H3K36me3 mark are displayed at right as a 

positive control. Means within each B-cell subpopulation as well as B-cell tumors are 

represented. Sample subtypes from panels d, e, g and h are color-coded as in panel b. 

Sample sizes for gene expression analyses in panels e and h are: HPC, n=3; pre-B cells, n=7; 

NBC, n=10; GC, n=11 tPC, n=5 donors; MBC, n=5 and bmPC, n=1 donors; HeH ALL, 

n=18; 11q23/MLL ALL, n=5, t(12;21) ALL, n=16, t(1;19) ALL, n=6, t(9;22) ALL, n=5, 

dic(9;20) ALL, n=6; C1 MCL, n=10; C2 MCL, n=5; n-CLL, n=142, i-CLL, n=64; m-CLL, 

n=249; GCB DLBCL, n=17, UC DLBCL, n=11, ABC DLBCL, n=15 and MM=328 

patients.
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Fig. 5 |. Development and validation of the epiCMIT.
a, Steps to construct the epiCMIT-hyper, epiCMIT-hypo and epiCMIT mitotic clocks. 

epiCMIT, epigenetically-determined Cumulative MIToses.

b, CpGs constituting the epiCMIT-hyper (184 CpGs) and epiCMIT-hypo (1,164 CpGs) 

mitotic clocks.

c, Correlation between the epiCMIT-hyper and the epiCMIT-hypo in normal and neoplastic 

B cells. R and p-values are derived from linear models.
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d, Box plot showing the distribution of epiCMIT values in normal and neoplastic B cells. 

Center line, box limits, whiskers and points represent the median, 25th and 75th percentiles, 

1.5x interquartile range and individual samples, respectively.

e, Experimental validation of epiCMIT score with an in vitro B-cell differentiation model of 

primary human naïve B cells into plasma cells. The epiCMIT was calculated at day 0, day 4 

and day 6 in B cells with distinct proliferative histories based on CFSE dilution. Sample 

sizes are: NBC-PB, n=5; CFSE-high at day 4, n=6; CFSE-low at day 4, n=3; P3 cells at day 

6, n=3; P2 cells at day 6, n=3 and P1 cells at day 6, n=8. Each dot within each category is 

derived from a different donor, and thus represent biologically independent samples. P-

values are derived from two-sided t-tests. On the right, gene expression of genes containing 

CpGs belonging to epiCMIT. The number of genes containing epiCMIT genes analyzed is 

n=1,278, and genes with CpGs mapping at H3K36me3 are n=14,598. For the box plots, 

center line, box limits, whiskers and points represent the median, 25th and 75th percentiles, 

1.5x interquartile range and individual samples, respectively.

f, piCMIT correlates with the mitotic-like mutational signature SBS5 in CLL. R and p-

values are derived from linear models. 138 CLL patients with WGS and DNA methylation 

data are shown. Sample sizes for CLL subtypes are: n-CLL, n=66; i-CLL, n=18 and m-CLL, 

n=54 patients.

g, epiCMIT is associated with high Ki67 staining in C1 MCL cases. Number of cases are 

n=8 and n=12 for high and intermediate Ki67 values. Two-sided t-test was used to assess 

statistical significance. For the box plot, center line, box limits, whiskers and points 

represent the median, 25th and 75th percentiles, 1.5x interquartile range and individual 

samples, respectively.

h, Gene set enrichment analysis (GSEA) showing that epiCMIT is associated with gene 

expression signatures related to cell proliferation and MYC activity in CLL. 142 n-CLL 

were analyzed, and 22 n-CLL samples with low and high epiCMIT are shown (15 and 85% 

percentiles, respectively). At top, z-score for each gene is represented. At bottom, some 

representative gene expression signatures enrichments are shown.

i, Correlation between the epiCMIT and previously reported mitotic clocks, including 

epiTOC, MiAge and PMDsoloWCGW, the pan-cancer CIMP, and the total number of DNA 

methylation changes accumulated since HPC stage in each patient. R’s correspond to linear 

regression models. The same sample for panels b, c, d and i are the same than in Fig. 4a.
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Fig. 6 |. Clinical impact of the epiCMIT is B-cell tumors.
a, The epiCMIT in neoplastic B cells include the proliferative history associated with normal 

B-cell development and with malignant transformation and progression (blue and red 

components of the epiCMIT bar, respectively). B-cell tumors derive from different 

maturation stages, and thus they contain different normal B-cell baseline epiCMIT. Most of 

the B-cell related DNA methylation changes occurring in B-cell tumors relate to cell 

division.
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b, epiCMIT evolves during disease progression. epiCMIT is lower in precursor conditions 

such as MGUS (n=13 patients) and MBL (n=53 patients) as compared to their respective 

cancer conditions CLL (n=437 patients) and MM (n=100 patients), as well as in paired CLL 

samples from diagnosis to progression (n=9 patients), and trios of ALL patients at diagnosis 

and first relapse (n=23 patients) and second relapse (n=5 patients). P-values were obtained 

from two-sided t-test, and paired t-test in the case of paired samples. For the box plots, 

center line, box limits, whiskers and points represent the median, 25th and 75th percentiles, 

1.5x interquartile range and individual samples, respectively.

c, d Kaplan-Meier curves for c overall survival (OS) and d OS after relapse in ALL patients 

with low or high epiCMIT according to the maxstat rank statistics-based cutoff. Hazard ratio 

and p-value for the univariate Cox regression models are shown on the left panels. 

Multivariate Cox regression models with epiCMIT as continuous variable and ALL 

cytogenetic groups are shown on the right. Hazard ratio for epiCMIT correspond to 0.1 

increments, and also in panels e, f g and h.

e,, Kaplan-Meier curves for CLL epigenetic groups based on different cellular origin divided 

in low and high epiCMIT according to the maxstat rank statistics-based cutoff. A 

multivariate Cox regression model for time to first treatment with epiCMIT as continue 

variable together with age, number of driver alterations and epigenetic groups based on 

different cellular origin is shown on the right. The results obtained with the independent 

validation series is shown in panel f.
g, Kaplan-Meier curves for MCL epigenetic groups based on different cellular origin divided 

in low and high epiCMIT according to the maxstat rank statistics-based cutoff. A 

multivariate Cox regression model for OS with epiCMIT as continuous variable together 

with epigenetic groups and age is shown on the right. Validation series for C1 MCL is shown 

in panel h.
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Fig. 7 |. Association between the epiCMIT and genetic driver alterations in CLL.
a, Illustrative scheme to represent which potential genetic driver alterations may confer a 

higher proliferative capacity to CLL cells.

b, Analysis of the association between the epiCMIT levels and the presence of specific 

driver genes grouped by signaling pathways. Point estimates with 95% confidence intervals 

were derived in the whole cohort using linear modelling between epiCMIT and alterations 

adjusted for CLL subtypes, and with two-sided t-tests within CLL subtypes. Point estimates 

represent the coefficient of each respective alteration in each corresponding linear model in 

whole cohort analysis, and the difference between the mean of CLL patients with and 

without each corresponding alteration for the analysis within each CLL subtypes. Point 

estimates are color-coded according to FDR correction. The Oncoprint shows genetic driver 

alterations significantly associated with higher epiCMIT with CLL epigenetic groups shown 

separately. Other clinicobiological features including MBL or CLL, IGHV status, Age, Binet 

stage, epiCMIT subgroups based on maxstat rank statistic cutoff, need for treatment and 

patient status are shown. Cases are ordered within each CLL subgroup from lower to higher 

epiCMIT values. Genetic driver alterations are depicted with different colors and shapes 

depending of the alteration type. Number of mutated patients as well as their percentage 

over the whole cohort is shown on the right. The whole CLL initial series was used for these 

analyses and is represented (n=490 patients).
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