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Abstract
Motivation: A fundamental step in many analyses of high-dimensional data is dimension reduction. Two basic approaches are introduction of 
new synthetic coordinates and selection of extant features. Advantages of the latter include interpretability, simplicity, transferability, and modu
larity. A common criterion for unsupervized feature selection is variance or dynamic range. However, in practice, it can occur that high-variance 
features are noisy, that important features have low variance, or that variances are simply not comparable across features because they are 
measured in unrelated numeric scales or physical units. Moreover, users may want to include measures of signal-to-noise ratio and non- 
redundancy into feature selection.
Results: Here, we introduce the RNR algorithm, which selects features based on (i) the reproducibility of their signal across replicates and 
(ii) their non-redundancy, measured by linear dependence. It takes as input a typically large set of features measured on a collection of objects 
with two or more replicates per object. It returns an ordered list of features, i1; i2; . . . ; ik , where feature i1 is the one with the highest reproduc
ibility across replicates, i2 that with the highest reproducibility across replicates after projecting out the dimension spanned by i1, and so on. 
Applications to microscopy-based imaging of cells and proteomics highlight benefits of the approach.
Availability and implementation: The RNR method is available via Bioconductor (Huber W, Carey VJ, Gentleman R et al. (Orchestrating high- 
throughput genomic analysis with bioconductor. Nat Methods 2015;12:115–21.) in the R package FeatSeekR. Its source code is also available 
at https://github.com/tcapraz/FeatSeekR under the GPL-3 open source license.

1 Introduction
Many biological datasets can be represented as a numeric ma
trix whose rows correspond to measured features and col
umns to objects of interest (e.g. cells, biological specimens). 
Here, we consider settings where for each object, we have 
two or more replicate measurements. Examples include 
RNA-Seq transcriptomics, mass spectrometry proteomics, 
and microscopy-based cell morphology, where the features 
are levels of transcripts or proteins, or morphological descrip
tors of shape and texture of cells or cell compartments. The 
number of features can be in the thousands, but typically not 
all of them are informative (some are dominated by noise), 
and some are redundant of each other (they measure essen
tially the same underlying, relevant variable, in different 
ways). In this case, it can be desirable to reduce the dimen
sionality of the data.

Dimensionality reduction can be considered in supervised 
and unsupervised settings. Here, we focus on the latter. There 
are two basic, not necessarily mutually exclusive, approaches: 
one is to introduce a smaller number of new variables that 
are linear or non-linear functions of the original variables; 
the other is feature selection. Examples for the first approach 
employ singular value decomposition, principal component 
analyis (Jolliffe 1986), and numerous versions of (non-linear) 
multi-dimensional scaling. As the new variables are smooth 
functions of the original features, random noise can cancel 

out. Sometimes they are meaningful “latent” variables. Here, 
however, we focus on feature selection, which can facilitate 
interpretation and integration of multiple datasets, and is at
tractively simple.

1.1 Related work
Unsupervised feature selection can be broadly categorized 
into embedded and filter methods. Embedded methods incor
porate feature selection into the model-fitting process and 
can be both supervised and unsupervised. An example for an 
unsupervised embedded method is sparse clustering where a 
penalization term is added to the clustering objective function 
(Witten and Tibshirani 2010). Feature selection based on fil
tering uses properties of the data to prioritize features. 
Typically, features are ranked according to a summary statis
tic; the user chooses a number n and selects the top n features. 
Different summary statistics are commonly used. These in
clude mutual information and variance (Guyon and Elisseeff 
2003, Ferreira and Figueiredo 2012), entropy (Varshavsky 
et al. 2006), or methods that minimize reconstruction error 
(Wang et al. 2015). Here, we introduce FeatSeekR, an unsu
pervised filter method that uses replicate reproducibility as 
selection criterion. We were motivated for this work by 
Fischer et al. (2015), who devised a special case of our cur
rent method to use it on microscopy data, but only cursorily 
mentioned it in the supplement of their paper, without self- 
contained description, validation, or software.
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2 Approach
We posit that features carrying scientifically important infor
mation should be correlated between replicates. The algo
rithm iteratively selects features with the highest 
reproducibility across replicates, after projecting out those 
dimensions from the data that are linearly spanned by the 
previously selected features. Thus, each newly selected fea
ture has a high degree of uniqueness.

3 Methods
The method pursues two aims. First, it selects features with 
high correlation between replicates, and second, it aims to se
lect features that are non-redundant between each other. We 
propose the following iterative, greedy forward procedure.

3.1 The FeatSeekR algorithm
Let X 2 Rp×n be a p×n data matrix with n observations each 
for p real-valued features. The columns of X represent re
peated measurements on k<n biological conditions and/or 
objects. The replication structure is encoded by the n-vector 
r 2 f1; . . . ;kgn, such that fjjrj ¼ cg are the indices of those 
columns in X that contain measurements for the c-th condi
tion. For instance, if each condition was measured twice and 
replicates are next to each other in X, then 
r¼ ð1;1;2;2;3;3; . . .Þ. We assume that most conditions have 
two or more replicates, but conditions with only one replicate 
are permitted. X may contain a small fraction of observations 
missing at random.

We label the iterations of the algorithm by the index t ¼
0;1;2;3; . . . and denote by St the set of features selected up 
until iteration t. Thus, the elements of St are integers from 1 
to p. Its complement �St ¼ f1; . . . ;pg n St is the set of features 
not selected up until iteration t. The algorithm is greedy for
ward, so St � Stþ1. The initial selection S0 is either the empty 
set ;, or a set of features already pre-selected by the user 
based on criteria of their choice.

In iteration step t, we fit a linear model for each not previ
ously selected feature i 2 �St as a function of the se
lected features: 

Xi� ¼ XSt � βiþ yi; (1) 

where Xi� is the i-th row of X, containing the observations of 
feature i, and XSt � is the jStj×n matrix obtained by subsetting 
from X the rows corresponding to St. XSt� contains the al
ready selected features. βi 2 RjSt j is the vector of coefficients 
for the regression of feature i on XSt �, and yi 2 R

n the vector 
of residuals. We fit the free parameters on the right hand side 
of Equation (1) by linear regression, i.e. by minimizing the 
L2-norm of yi.

We then use the residuals ŷi to represent the current (i.e. at 
step t) non-redundant information contributed by feature i. 
To measure replicate reproducibility of this non-redundant 
information, we use the F-statistic: 

Fi ¼
Wbetween;i

Wwithin;i
: (2) 

To compute Fi, first define the overall mean �yi and the 
mean �yi;c across replicates within condition c of ŷi: 

�yi ¼
1
n

Xn

j¼1

ŷij; (3) 

�yi;c ¼
1
nc

X

fjjrj¼cg

ŷij; (4) 

where nc ¼ jfjjrj ¼ cgj is the number of replicates for condi
tion c, and we have hidden the dependence of these quantities 
on t in Equations (1–6) to unclutter the notation. Numerator 
and denominator of the F-statistic (2) are then: 

Wbetween;i ¼
1

k − 1

Xk

c¼1

ncð�yi;c − �yiÞ
2
; (5) 

Wwithin;i ¼
1

n − k

Xk

c¼1

X

fjjrj¼cg

ðŷij − �yi;cÞ
2
: (6) 

At the end of iteration step t, we select the feature i� with 
highest Fi and proceed to the next iteration with Stþ1 ¼

St [ fi�g until the user defined maximum number of se
lected features.

This procedure provides us with a list of features ranked by 
reproducibility and non-redundancy. A pseudocode represen
tation is given in Algorithm 1.

3.2 Evaluation selected of feature subsets by 
fraction of explained variance
Optionally, to inform data-adaptive stopping in lieu of a pre
determined value for the number of selected features, we can 
consider the fraction of variance of the dataset that is 
explained by the currently selected feature subset. We first 
model each feature Xi� of the original dataset X as a function 
of the selected features XSt analogous to Equation (1). We 
then get the fraction of explained variance R2

i of each feature 
Xi� by calculating: 

Algorithm 1. FeatSeekR algorithm

Input: X, max_features, S0 (default: S0 ¼ ;)
Output: St � f1; . . . ;pg

Initialize:
t 0
while t≤max features do

�St  
�St nSt

# Multivariate linear regression of each feature not
# in the selection St on those in St

P XSt ðX
T
St

XSt Þ
− 1XT

St

for i 2 �S do
X̂ i�  PXi�

ŷ i  Xi �− X̂ i�

Xi�  ŷ i

end for
# Add feature with highest F-statistic
# between residuals to St and remove from �St .
i�  argmaxi Fi with i 2 �St

Stþ1 St [ fi�g
t tþ1

end while
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R2
i ¼ 1 −

Pn
j¼1 ŷij

Pn
j¼1ðXij − �XiÞ

(7) 

where �Xi is the mean of feature i. We finally get the fraction 
of variance explained of the whole dataset by averaging R2 

over all features.

4 Results
4.1 Simulations
To demonstrate the algorithm, we generated two synthetic 
datasets. The first dataset was characterized by a small num
ber of underlying, “latent” variables that were noisily mea
sured each by several observed features. In the second case, 
we simulated data for a two-class clustering problem and 
compared our method to variance-based feature selection.

4.1.1 Selecting non-redundant features
We generated an l× ðn=3Þ matrix M by drawing each element 
Mij independently from the standard normal distribution; l ¼
5 represents the number of groups and n=3¼ 500 the number 
of objects. We applied the Gram–Schmidt process to ortho
normalize the rows of M, resulting in an orthonormal ma
trix Q.

Next, for each group i (i 2 f1 . . . lg), we generated redun
dant features by scaling Qi� by each of 10 random numbers 
αij �Nð0;1Þ (j 2 f1 . . .10g) drawn independently from the 
standard normal distribution, i.e.: X10ði − 1Þþ j;� ¼ αijQi�. This 
process yielded a 50×500 matrix we denote as Q0.

Finally, we created three replicates of Q0 by adding random 
numbers from the standard normal distribution element-wise 
to Q0, three times. The three replicates were concatenated, 
resulting in a final 50×1500 matrix X.

Figure 1 shows the correlation matrices of X and of the 
first five features selected by FeatSeekR. This result indicates 
that the algorithm is able to identify non-redundant features 
in this synthetic setting.

4.1.2 Finding informative features in two-class data
We generated a p×n data matrix X 2 Rp×n, where n=2¼
500 observations were divided into two classes and p¼ 50 
features exhibit distinct signal-to-noise ratios. The mean 

values were assigned as follows: μ1; . . . ;μn=2 ¼ 1 for observa
tions in Class 1 and μn=2þ1; . . . ;μn ¼ 2 for observations in 
Class 2. To add correlation between features, we generated a 
covariance matrix Σ with a Toeplitz structure, where the first 
row was a sequence from 0 to 0.08 and the remaining rows 
were generated by shifting the first row by one element to the 
right, and we set Σ¼ ΣTΣ. To increase the signal-to-noise ra
tio of the features, we linearly increased the diagonal of Σij 
with i¼ j as a function of i from 0.1 to 4. We then simulated 
the data matrix by sampling X�Nðμ;ΣÞ. In this simulation 
setting, the two classes serve as replicates.

We ranked the features using two methods: FeatSeekR and 
based on their variance. We evaluated the feature selection 
via the performance of subsequent k-means clustering with 
k¼ 2 in recovering the two classes. For this, we calculated 
the adjusted Rand index (Morey and Agresti 1984) between 
the clustering result and the known class labels.

Figure 2 shows the adjusted Rand index as a function of 
number of selected features. As might be expected, in each 
case, the performance improves with increasing number of 
features, as that increasingly allows the noise to cancel itself 
out. However, selection by FeatSeekR achieves the same with 
a smaller number of selected features than the variance based 
selection. This result shows that feature selection based on to
tal variance is not always an optimal criterion, as it conflates 
signal and noise, whereas FeatSeekR can disentangle these 
(see also Fig. S1).

4.2 Applications to biological datasets
4.2.1 Microscopy based image data from combinatorial 
knockout screens
Generic feature sets for microscopy-based cytometry sets try 
to cover a wide range of information, ranging from general 
features such as intensity quantiles, object shapes (Pau et al. 
2010, McQuin et al. 2018), or more abstract textural features 
introduced by Haralick et al. (1973). As the produced fea
tures are designed to cover as much general information as 
possible, redundancy can be high. Additionally, not all fea
tures capture relevant information in every type of experi
ment. Consequently, some features are dominated by 
fluctuations that are irrelevant for the assay at hand, and not 
reproducible between repeated measurements. Here, we used 

Figure 1. Left: correlation matrix of simulated data. Right: correlation matrix of first five selected features
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FeatSeekR to identify unique features with reproducible sig
nal between measurements in two biological image datasets.

We used data from (Laufer et al. 2013), who performed 
combinatorial gene knock-downs in human cells using 
siRNA, followed by imaging, segmentation, and feature ex
traction using the R package EBImage (Pau et al. 2010). A 
summary of datasets we used is shown in Table 1.

Analogous to our idealized example in Fig. 1, the extracted 
features formed groups of high correlation within and lower 
correlation between (Fig. S2). The grouping was partially in
terpretable as some groups broadly corresponded to different 
color channels (fluorescent labels) or cellular compartments. 
This supports the idea that the effective dimension of the data 
matrix is substantially lower than the number of features p¼
202 and that feature selection is a plausible approach to these 
data. We used FeatSeekR to select a set of features that 
explained more than 70% of the variance of the original 
dataset. The selection comprised of five features, a substantial 
reduction (Fig. 3A). The overall low correlation between the 
selected features confirmed their low redundancy. We note 
that selected feature sets are dependent on the starting set of 
features. For instance, the features ‘Cell actin majoraxis’ and 
‘Cell actin eccentricity’ are highly correlated, and when call
ing FeatSeekR with preselection of ‘Cell actin eccentricity’, 
‘Cell actin majoraxis’ was not selected. This illustrates that 
multiple selections are equally admissible and can be influ
enced by a user-defined preselected set of features.

4.2.2 Mass spectrometry-based proteomics data
Next, we applied FeatSeekR to spectral features of a proteo
mics dataset from (Collins et al. 2017), where the authors in
vestigated the reproducibility of a mass spectrometry-based 
proteomics measurement across multiple international sites. 
In this type of experiment, proteins are usually first digested 
to peptides, separated via liquid chromatography-mass spec
trometry, and their mass spectra are subsequently recorded. 
To identify individual peptides, mass spectra are either 
matched to a database or to a library of spectra of known 
peptides (Aebersold and Mann 2016). Beforehand, features 
such as retention time, intensities, and mass accuracies are 
extracted. The matching to the reference is then done based 
on these extracted features (R€ost et al. 2014). We used meas
urements of four sites as replicates, leading to 99 340 peptide 

assays (observations), 37 features, and 4 replicates 
(see Table 1).

We observed that not all of these automatically extracted 
spectral features are equally reproducible and informative 
across sites. Furthermore, the dataset consists of several cor
related redundant feature clusters. For example, peak fea
tures related to retention time, distance to the reference 
library, or P-value related features form very distinct clusters 
(Fig. S3). We used FeatSeekR to select the most reproducible 
features that explained at least 70% of the total variance.  
Fig. 3B shows that we identified the most reproducible fea
tures of the redundant and correlated feature clusters. The se
lected features cover both peptide retention time, as well as 
information related to their mass spectra.

5 Discussion
We present a framework for feature selection that selects fea
tures based on their reproducibility between replicates while 
keeping redundancy low. In contrast to existing filtering-based 
feature selection methods, we make use of replicated measure
ments and are able to effectively separate biological signal from 
noise. Additionally, FeatSeekR is capable of performing feature 
selection on ragged data, where not all conditions or observed 
objects have the same number of replicate observations. We 
show on synthetic data that FeatSeekR is able to find exactly 
one feature per underlying latent factor. We highlighted its util
ity as a preprocessing step for clustering, by selecting more in
formative features and removing more noisy ones. Furthermore, 
we show the application of our method to biological data, de
rived from microscopy-based imaging of cells and proteomics 
experiments. Our algorithm finds feature sets of biological data
sets that achieve a good trade-off between captured information 
and redundancy.

In practice, feature selection can serve different purposes, 
such as reduction of storage space and computation time, or 
better performance of downstream machine learning meth
ods. If FeatSeekR is used to improve performance in a ma
chine learning context, feature selection should be 
incorporated in the cross validation procedure (Ambroise 
and McLachlan 2002). In such cases, parameters of the fea
ture selection, in particular, the number of selected features, 
can also be considered (hyper)parameters that can be tuned 
in the cross-validation.

To guide the selection process, we provide diagnostic tools 
to analyze and visualize information content in biological 
datasets, within the FeatSeekR package.

The objective that motivates feature selection with 
FeatSeekR does not lead to a unique optimal selection. 
Conceptually, it is compatible with multiple selections that 
are, for practical purposes, equally admissible. Thus, even if 
the implementation by FeatSeekR returns a single selection, 
this should be viewed as a representative proposal, not as a 
unique solution. FeatSeekR uses a greedy forward algorithm 
and is not based on a global optimality criterion. 

Figure 2. Performance of feature subsets selected by FeatSeekR and 
based on variance

Table 1. Summary of the used biological datasets.

Dataset Observations Features Replicates

Laufer et al. 2013 11 640 202 2
Collins et al. 2017 99 340 37 4
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Formulating such a global optimality criterion and associated 
algorithms remains a direction for future research.

Supplementary data
Supplementary data are available at Bioinformatics online.
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