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High-throughput biology presents unique opportunities and challenges for dermatological research. Drawing
on a small handful of exemplary studies, we review some of the major lessons of these new technologies. We
caution against several common errors and introduce helpful statistical concepts that may be unfamiliar to
researchers without experience in bioinformatics. We recommend specific software tools that can aid der-
matologists at varying levels of computational literacy, including platforms with command line and graphical
user interfaces. The future of dermatology lies in integrative research, in which clinicians, laboratory scientists,
and data analysts come together to plan, execute, and publish their work in open forums that promote critical
discussion and reproducibility. In this article, we offer guidelines that we hope will steer researchers toward
best practices for this new and dynamic era of data intensive dermatology.
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� Describe how these techniques can be utilized and their
limitations.

� Describe the potential impact of these techniques.
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INTRODUCTION
Modern dermatology has been revolutionized by the
many so-called ‘omic’ profiling platforms enabled by
high-throughput sequencing (HTS, also referred to as next-
,

generation sequencing). Plunging data generation costs
have enabled dermatology researchers to generate genome
scale data relating to genome sequence variation (Scott et al.,
2013), epigenomes (Zhou et al., 2016), and transcriptomes
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ADVANTAGES
� Bioinformatics methods allow efficient and
powerful analysis of multi-omic data in a way that
could not be achieved using simpler methods.

� Bioinformatics software are customizable to all
ranges of computational ability; however, some
informatics tasks are difficult and require
experience.

� Involving bioinformatician colleagues from
project conception should improve project
design, maximizing the opportunity to detect
relevant association.

� Sharing data, metadata, and code, and
propagating the culture of bioinformaticians,
will fuel best practices in dermatology research,
promoting open research and reproducibility.

LIMITATIONS
� Some statistical analysis methods require an
understanding of underlying assumptions—
erroneous assumptions can lead to false results.

� The use of some analytical pipelines requires
access to high-performance computing facilities:
this may be achieved by access to omic core
facilities that provide researchers with
compressed datasets that are amenable to
computer-based analysis.
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(Li et al., 2014; Swindell et al., 2016), and these de-
velopments have increased the dermatology-relevant data
openly available in repositories (Table 1).

Bioinformatics refers to the tools used to collect, classify,
and analyze such datasets, collectively enabling the field of
computational biology. Bioinformatics techniques have been
developed to make sense of the output of omic platforms,
including HTS, microarrays, liquid chromatography-mass
spectrometry, and others (Kimball et al., 2012).
Table 1. High-throughput sequencing repositories
Repository Website Curator

Europe
European Nucleotide
Archive (ENA)

http://www.ebi.
ac.uk/ena

European Bioinformatics
Institute

ArrayExpress http://www.ebi.
ac.uk/arrayexpress

European Bioinformatics
Institute

European Genome-
phenome Archive (EGA)

https://www.ebi.
ac.uk/ega/home

European Bioinformatics
Institute

United States
dbGAP https://www.ncbi.

nlm.nih.gov/gap
The National Center for

Biotechnology Information
Gene Expression
Omnibus (GEO)

https://www.ncbi.
nlm.nih.gov/geo

The National Center for
Biotechnology Information

Short Read Archive (SRA) https://www.ncbi.
nlm.nih.gov/sra

The National Center for
Biotechnology Information
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Physicians are key instigators of research data collection
requiring computational biology. Structured and validated
analysis pipelines for most omic data have been implemented
for researchers at various levels of complexity. Software has
been designed for all ranges of computational ability, from
simple “point and click” graphic user interfaces to highly
customizable command line interfaces, with the latter
approach offering superior flexibility and analytical
complexity. Although programming may seem like a daunting
challenge for those without backgrounds in math, computer
science, or statistics, with practice, computational methods
for exploratory and inferential analytics can become a
familiar part of the research toolkit. Of course, there is no
substitute for expertise, and we advise all research teams
working with omic data to consult a bioinformatician early
and often. Here we highlight several points of special rele-
vance to the dermatologist and dermatology researcher,
based on the first-hand experience of a junior clinician.

CONSIDERATIONS BEFORE DATA COLLECTION
Experimental Design
Researchers in dermatology use a wide variety of HTS tech-
niques, many of which have been discussed previously in the
Research Techniques Made Simple series. These include
transcriptome analysis with RNA sequencing (RNA-seq)
(Antonini et al., 2017; Whitley et al., 2016), immunose-
quencing (Matos et al., 2017), genome-wide epigenetics
(Capell and Berger, 2013), proteomics, metabolomics, meta-
genomics, and assessment of the microbiome (Jo et al., 2016).
Additionally, the Molecular Revolution in Cutaneous Biology
series provided an overview of HTS techniques (Anbunathan
and Bowcock, 2017; Botchkareva, 2017; Johnston et al.,
2017; Kong and Segre, 2017; Sarig et al., 2017), as did
Grada and Weinbrecht (2013) in an earlier Research Tech-
niques Made Simple publication. However, researchers often
do not reach out to data analysts until a study is practically
complete. At that point, they may look for a mathematically
inclined colleague to fill in the blanks of a statistical model
and provide a friendly P-value suitable for publication. This
order of events is all wrong. As Ronald Fisher famously put it
back in 1938, “To consult the statistician after an experiment
is finished is often merely to ask him to conduct a post-
mortem examination. He can perhaps say what the experi-
ment died of” (Fisher, 1938).

The data analysis strategy, including the choice of statistical
approaches, should be integral to planning any research
study. Hypothesis testing, regression, and other statistical
methods rely on rigorous collection and quality of the data,
and any lapses here usually cannot be fixed retrospectively.
How many samples are required to adequately power your
experiment? If samples cannot be processed all at once, does
it matter how they are grouped into separate batches? If the
data do not corroborate your hypothesis, can a modified
research question generate interesting results? Failure to
consider these questions before data collection may doom a
study before it even begins. Statistical expertise is required to
answer these questions, which is why we urge researchers
to team up with a data analyst who can help guide them
through these tricky issues. This will typically either be a
statistician, with a background in math and statistics, or a
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Table 2. Principles of hypothesis testing from Li et al.
(2014)
Step in Hypothesis Testing Example

Ask a clinically relevant, testable
question

Is there a significant difference
between this set of genes expressed
in subjects with psoriasis versus

those without?
Choose an experimental design
and statistical framework

Gene expression is modeled as a
linear function of disease condition

Set up a null hypothesis, that is,
a testable claim that becomes the
target of statistical analysis

There is no significant difference
between the average expression of
gene g in subjects with and without

psoriasis
Fix a rejection region, that is, the
degree of evidence against the
null hypothesis at which it may
be rejected

Genes whose t-statistics correspond
to false discovery rates � 5% are
declared differentially expressed

Conduct the experiment: collect
data, compute the test statistics

Expression levels for each gene gi
are regressed onto one or several
clinical predictors, generating a

vector of t-statistics
Report results: all and only those
genes that fall within the rejection
region are declared differentially
expressed

A number of genes were
significantly differentially expressed

in plaques of psoriasis when
compared with control samples
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bioinformatician, more likely with a background in computer
science and machine learning. Although there is considerable
overlap in their respective areas of expertise, statisticians and
bioinformaticians may offer differing (and sometimes com-
plementary) perspectives on a given biological question.

One of the most fundamental tools in statistical analysis is
hypothesis testing. The principles of hypothesis testing are
illustrated in Table 2, which highlights the work of Li et al.
(2014) as an exemplar study in the field (see Supplementary
Slides online). In this exploratory study, RNA-seq was used
to evaluate the transcriptomes of lesional psoriatic and
normal skin (from a large cohort of 174 individuals). A subset
of these samples has been studied previously using micro-
arrays, allowing for comparison of the methodologies; RNA-
seq identified many more differentially expressed transcripts
enriched in immune system processes.

Detailed discussion of requirements for testing a hypothesis
will facilitate better downstream clinical data collection, ul-
timately maximizing the opportunity to detect a clinically
relevant association. Several key themes tend to dominate
experimental design considerations, including selection of
appropriate numbers of biological replicates (Schurch et al.,
2016), minimization of batch effects (Leek et al., 2010), and
appropriate correction for multiple testing (Allison et al.,
2006). For a general overview of issues related to HTS study
design, we recommend other excellent reviews (Allison et al.,
2006; Conesa et al., 2016).

The steps outlined in Table 1 apply to most forms of omic
data. Methods for computing test statistics vary depending on
the data and underlying statistical assumptions. Common
data types and test statistics used in dermatological research
are discussed elsewhere (Silverberg, 2015).

Batch Effects
Often a study’s sample size exceeds the maximum number of
samples that can be simultaneously processed by the available
equipment. In such cases, it is common to process the samples
in multiple batches. This inevitably introduces batch effects, in
which technical artifacts become significant, perhaps even
dominant drivers of variation in a dataset. There are several
methods for batch adjustment (Oytam et al., 2016).

Each method has its merits, but none can overcome
poor study design. If a batch is confounded with a clinical
covariate—say, all disease samples were processed in Batch A,
and all healthy samples were processed in Batch B—then there
is no way to disentangle the technical from the biological
variation. Ideally, each batch would represent a microcosm of
Figure 1. Common methodology for
processing of short reads.
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Figure 2. Example bioinformatic pipeline used by Li et al. (2014).

Table 3. Open source programming languages and
resources for bioinformatics analysis of omic data
Open Source Resource URL

Analysis code repositories
Bioconductor bioconductor.org
CRAN www.cran.org
Bioperl bioperl.org
Biopython biopython.github.io
GitHub github.com
BioJulia github.com/BioJulia

Workflow tools
Galaxy usegalaxy.org

Visualization
ShinyR Shiny.rstudio.com
Plotly plot.ly
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the experiment itself, with proportionate numbers of samples
from all relevant groups. Although this cannot always be done
in practice, the closer researchers come to attaining this goal,
the more accurate their results will be.

CONSIDERATIONS AFTER DATA COLLECTION
Software and Workflows for Omic Analysis
As a rule of thumb, processing of raw HTS data, including
genome alignment and assembly, is likely to require access to
one or several devoted computers that can execute jobs in
parallel. However, once the initial data processing is complete,
in most cases the biological downstream analysis can be per-
formed using a laptop. The analysis of omic data, including
HTS, is supported by a range of widely used software packages
that can be arranged into analysis workflows. Many packages
have been made freely available by their authors with an open
source license, and in this field there is very little correlation
between the price of software and its usefulness. A workflow is
a software pipeline that takes raw data as input, transforms and
summarizes the data, conducts exploratory and/or inferential
analytics, and exports results ready for biological interpreta-
tion. Command line genomic analysis tools can be scaled to
use available computing resources and are highly custom-
izable to meet the requirements of an experiment. Many stan-
dard analysis tools can also be accessed remotely using the
Galaxy workflow environment (https://usegalaxy.org). Galaxy
offers users a simple but highly customizable graphic user
interface environment to perform many bioinformatics tasks.
Galaxy is also well documented and serves as an excellent
introduction to HTS analysis pipelines.

Processing HTS Data
The short read is the common currency of HTSmethods, but the
way the read is processed is highly dependent on the analysis
objective (Figure 1). In most cases processing commences with
alignment to a reference genome using a tool, such as Burrows-
Wheeler Aligner or bowtie2, producing binary alignment map
files. The alignment files can serve as the input to many other
processes; in genetics they are used for variant calling, in epi-
genomics for peak calling, and in transcriptomics to estimate
transcript abundance. A recent revolution in transcriptomics is
alignment-free mapping methods, such as Kallisto (Bray et al.,
2016) and Salmon (Patro et al., 2017). These tools circumvent
the cumbersome alignment step and directly estimate transcript
abundance; they are several orders of magnitude faster than
Journal of Investigative Dermatology (2017), Volume 137
alignment-based methods and so computationally efficient that
they can be run on a laptop computer. The workflow used by Li
et al. (2014) is illustrated in Figure 2.

Programming Environments
Although many programming environments are used in bio-
informatics, the most popular choices tend to be R (R Core
Team, 2014) and Python (Python Software Foundation,
2013). Software packages for these languages are often
released under open source licenses, which means the tools
are free to use and the code is publicly accessible. Large user
communities have developed around these languages, and R
in particular has become a lingua franca for bio-
informaticians. This has been aided in no small part by the
Bioconductor project (Huber et al., 2015), a major repository
for biostatistical software based primarily on R. The site also
hosts discussion forums, encouraging active user engagement
and collaborative learning.

Several programming environments are widely used in
bioinformatics, including R, Matlab (Mathworks, 2012), and
Java (see Table 3). These are open source and freely available,
enabling statistical and graphical data manipulation within
large, active user communities.

Hypothesis Testing in the Age of Big Data
Hypothesis tests and P-values are the workhorses of medical
research, but some additional complexities enter the scene
when we do not perform only one or a few tests, but thousands
or millions. Interpreting P-values is quite different in omic
contexts than in more traditional low-throughput research. Say
you test 10,000 genes in search of biomarkers to distinguish
between case and control samples. You find 500 with P-values
below 0.05, not to mention 10 with p-values below 0.001.
Not bad, right? Wrong! Because P-values are uniformly
distributed under the null hypothesis, we should expect 5% of
all tests to reach the nominal significance level of 0.05 by
chance alone. That’s a manageable problem when testing one
or two hypotheses, but in omic experiments we typically test
something on the order of thousands to millions of hypotheses.

Some early articles attempted to mitigate the issue by
controlling the family-wise error rate, defined as the proba-
bility of finding at least one false positive in a series of hy-
pothesis tests. For example, the Bonferroni correction used by
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Figure 3. Reproducibility: Creating a virtuous circle.

MULTIPLE CHOICE QUESTIONS
1. Which is an accurate description of batch effect?

A. Technical source of variation added to
samples during handling

B. An uncommon problem in HTS experiments

C. Where proportionate samples are
analyzed in each experiment

D. A problem that is not possible to adjust
for using bioinformatic techniques

2. The relevant significance measure in
omic data is

A. the P-value.

B. the false discovery rate.

C. the false positive rate.

D. the family-wise error rate.

3. Which of the following is an analysis
code repository?

A. GEO

B. R

C. Galaxy

D. GitHub

4. Which of the following statements is
true regarding sharing of analysis code?

A. This allows reproducibility of an analysis.

B. Sharing of analysis code is
technically challenging.

C. Analysis code is required alongside
submission of data and metadata for
submission of original articles to
major journals.

D. There is no code sharing repository.

5. Which of the following is a major repository
for biostatistical software?

A. ShinyR

B. Plotly

C. Ggvis

D. Bioconductor
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Li et al. (2014) strongly controls the family-wise error rate by
setting the significance threshold as the quotient of the type I
error a and the total number of hypothesis tests m, so that all
and only tests with P � a/m are declared significant. Although
the Bonferroni correction is guaranteed to control the family-
wise error rate, it is an overly conservative method that is
likely to lead to many false negatives as m grows.

Current practice is to control not the false positive rate (i.e.,
the proportion of truly null features that are nominally sig-
nificant) but the false discovery rate (i.e., the proportion of
nominally significant features that are truly null). This latter
value is typically estimated using the Benjamini-Hochberg
algorithm (Hochberg and Benjamini, 1990) or some variant
thereof. This method takes a list of P-values as input and
returns a matched list of adjusted P-values, also known as Q-
values. Applying a 5% false discovery rate threshold means
that 1 in 20 genes in the hit list will be a false positive. Given
10,000 uniformly distributed P-values, as hypothesized
earlier, minimum Q-values are typically greater than 0.5.

VISUALIZATION
The communication of results is key for data exploration,
summarization, and ultimately publication. Readers can more
readily absorb a well-made graphic than any table of
numbers. Visualizing HTS results can be challenging because
of the data’s high dimensionality, but projection techniques
like principal component analysis (Pearson, 1901), multi-
dimensional scaling (Torgerson, 1952), and t-distributed sto-
chastic neighbor embedding (van der Maaten et al., 2008)
can render large matrices as easily digestible two-dimensional
or three-dimensional scatterplots. Matos et al. (2017) show
how these methods can give powerful insights for dermato-
logical research. More recent interactive tools such as plotly
(https://plot.ly/), shiny (https://shiny.rstudio.com/), and ggvis
(http://ggvis.rstudio.com/) can also aid in data exploration or
even create widgets for HTML publication.

CODE SHARING AND REPRODUCIBILITY
A number of studies have found an alarming lack of repro-
ducibility in modern omic and clinical research (Open
Science Collaboration, 2015). Many factors contribute to
this problem, including the widespread failure to publish
analysis code (Baker, 2016). Although some inroads have
been made toward establishing best practices in molecular
biology (Brazma et al., 2001), script sharing remains rare
overall. Results may vary greatly depending on subtle, un-
stated analytic choices that are invisible without access to
both raw data and the complete analysis script. Code sharing
is a critical ingredient for open science; this will be apparent
to researchers who have tried to reuse data in repositories,
where code is absent and subject data are often incomplete,
making reproduction challenging at best. Excellent platforms
exist for publishing code. Taking advantage of sites like
GitHub (https://github.com) can assist during peer review,
enabling precise debate on the merits of particular methods.
Set-up can be technically challenging, but user-friendly
guides exist (http://happygitwithr.com). Researchers should
ensure that they or their bioinformatician colleagues docu-
ment and archive code, analogous to the use of a laboratory
book as a record of research. This will ensure that bio-
informatician turnover will not prevent ongoing analysis,
because code will be clear, maintained, and transferable.
www.jidonline.org e167
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SUMMARY AND FUTURE DIRECTIONS
Embedding biostatisticians and computational biologists
within clinical and academic research teams, as well as
promoting better data and code sharing practices, will allow
dermatologists to better document and communicate their
research. The days of assembly line research—in which cli-
nicians recruit patients, laboratory scientists process samples,
and analysts crunch numbers—are coming to an end. The age
of big data demands a rigorous, integrated approach.
Appropriate statistical design and analysis methods should be
discussed and decided on up front to meet most research
objectives. By incorporating good experimental design and
analytical work practice early, research quality and repro-
ducibility will improve, and peer review by journals and grant
awarding bodies is likely to be more favorable (Figure 3).
Patients will be the ultimate beneficiaries of dermatology’s
drive to the forefront of life science research.
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