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Metabolomic and proteomic analyses of human plasma and serum samples

harbor the power to advance our understanding of disease biology. Pre-

analytical factors may contribute to variability and bias in the detection of

analytes, especially whenmultiple labs are involved, caused by sample handling,

processing time, and differing operating procedures. To better understand the

impact of pre-analytical factors that are relevant to implementing a unified

proteomic and metabolomic approach in a clinical setting, we assessed the

influence of temperature, sitting times, and centrifugation speed on the plasma

and serum metabolomes and proteomes from six healthy volunteers. We used

targeted metabolic profiling (497 metabolites) and data-independent

acquisition (DIA) proteomics (572 proteins) on the same samples generated

with well-defined pre-analytical conditions to evaluate criteria for pre-

analytical SOPs for plasma and serum samples. Time and temperature

showed the strongest influence on the integrity of plasma and serum

proteome and metabolome. While rapid handling and low temperatures

(4°C) are imperative for metabolic profiling, the analyzed proteomics data set

showed variability when exposed to temperatures of 4°C for more than 2 h,

highlighting the need for compromises in a combined analysis. We formalized a

quality control scoring system to objectively rate sample stability and tested this

score using external data sets from other pre-analytical studies. Stringent and

harmonized standard operating procedures (SOPs) are required for pre-

analytical sample handling when combining proteomics and metabolomics

of clinical samples to yield robust and interpretable data on a longitudinal scale
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and across different clinics. To ensure an adequate level of practicability in a

clinical routine for metabolomics and proteomics studies, we suggest keeping

blood samples up to 2 h on ice (4°C) prior to snap-freezing as a compromise

between stability and operability. Finally, we provide the methodology as an

open-source R package allowing the systematic scoring of proteomics and

metabolomics data sets to assess the stability of plasma and serum samples.
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Introduction

Mass spectrometry-based metabolomics and proteomics are

emerging technologies that are increasingly used in laboratory and

clinical settings to refine our understanding of disease biology,

vulnerabilities, and resistance mechanisms. Liquid biopsies, such as

blood, provide the opportunity to collect information on a patient’s

metabolome and proteome status on a longitudinal scale to track

disease progression or response to a treatment (Tsonaka et al., 2020;

Gummesson et al., 2021). For instance, longitudinal metabolomic

profiling of plasma collected from patients suffering from COVID-19

was linked to disease progression, including a panel of metabolites

collected at the onset of the disease that may predict the disease

severity (Sindelar et al., 2021). Similarly, proteomic analysis of

COVID-19 patients revealed protein signatures associated with

survival, tissue-specific inflammation, and disease severity (Filbin

et al., 2021). The independent analysis of such complex diseases

yields promising findings, highlighting that the present technologies

are not the limiting factors for the broader use of mass spectrometry

(MS) in clinical workflows.

MS-based technologies have matured over the past years,

allowing the investigation of analytically challenging but highly

informative samples such as blood plasma and serum. Technical

advances comprise but are not limited to 1) increased

reproducibility and automation in sample preparation; 2)

faster, more sensitive, and robust MS instruments; and 3)

improved data analysis algorithms, multi-omics, and

integrative workflows. While these developments reduce

technical noise in the data sets and improve the detection of

true biological variability, their efficacy may be compromised if

the quality of the starting material is not strictly controlled and

standardized.

Although standard operating procedures (SOPs) for blood

collection are often in place to suit clinical routine, they may not

be harmonized between clinics, and they usually are not

optimized to preserve proteins and metabolites for subsequent

omics analyses. In particular, differences in sample handling (e.g.,

temperature, sitting time, and use of anticoagulants) may alter

the observable protein and metabolite patterns. In biomarker

discovery studies, these pre-analytical factors are crucial and have

to be considered by clinicians and analysts (Lippi et al., 2020).

Previous studies have highlighted the effects of such pre-analytical

factors and often recommend best practices for metabolomic analyses

(Yin et al., 2015) or proteomic analyses (Hassis et al., 2015)

independently. While either technique already produced a set of

potential quality markers related to blood samples, to our

knowledge, few studies analyzed the effect sizes of varying pre-

analytical parameters in a combined proteomic and metabolomic

analysis on the same samples to harmonize the requirements for both

techniqueswith such a comprehensive set of features (Cao et al., 2019).

Critically, sample collection and handling requirements differ between

metabolomics and proteomics and need to be adjusted accordingly for

a combined clinical SOP.

Here, we assess how pre-analytical factors impact metabolite

and protein levels in plasma and serum samples caused by

differences in sitting time, temperature regimes (4°C and

room temperature (RT), only RT for serum), and centrifugal

acceleration levels. Using targeted metabolic profiling and a

single-shot, data-independent acquisition (DIA) proteomics

approach, we determine that keeping blood samples on ice

(4°C) for up to 2 h prior to snap-freezing are the optimal

conditions to preserve metabolites and proteins for a

combined metabolomics/proteomics workflow. We introduce

an open-source scoring system to assess the quality of plasma

and serum samples (Figure 1B).

Results

To assess how sample handling and treatment affect the stability

of protein andmetabolite levels in human plasma and serum samples,

we selected four time points between centrifugation and snap-freezing

to quench samples as follows: 0 h as the baseline of metabolite and

protein levels immediately after sampling, 2 h as the clinically feasible

time point to quench samples, 4 h as a middle point, and 8 h

(quenching at the end of a typical working day) (Figure 1A).

Furthermore, samples were kept at different temperatures during

these sitting times (on ice/4°C and at RT) to investigate their influence

on altering themetabolome and proteome composition. Additionally,

we included two centrifugation schemes for plasma samples

(2,000 and 4,000 × g). However, we could not attribute any

significant changes in the plasma metabolome and proteome
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between different centrifugation conditions and therefore only applied

2,000 × g in the following sections.

Identifying metabolites and proteins
affected by temperature and sitting time

Analysis of plasma and serum samples by targeted metabolic

profiling and a single-shot, data-independent acquisition (DIA)

proteomics approach yielded quantitative information for a total of

497 metabolites (Supplementary Datasheet S1) and 572 proteins

(Supplementary Datasheet S2). An initial LIMMA analysis

(Table 1) showed a high number of features that differed

between individual blood donors (α < 0.05, after FDR correction

using the Benjamini–Hochberg (BH) method). In addition, PCA

(Supplementary Figure S1A) of the proteomic and metabolomic

data sets indicated individual effects, a finding that was further

supported by t-SNE and UMAP analyses (Supplementary Figure

S2) and multi-omics factor analysis on both data modalities

(MOFA, Supplementary Figure S1A). Especially for the

FIGURE 1
Experimental setup and analyses to assess the effects of sample handling or treatment on metabolite and protein levels. (A) Plasma and serum
samples from six healthy individuals (all male, in fasting condition; blood collected at the same time of the day in the earlymorning) were subjected to
different sample treatment and handling conditions: sitting times of 0, 2, 4, and 8 h; incubation temperatures of 4°C and 24°C (RT); and two different
centrifugal levels (2,000 and 4,000 × g) for the plasma samples. Due to quality considerations, themetabolomics data set only consisted of data
from five individuals (see Methods). (B) Following the factorial outline, metabolite and protein levels were obtained by mass spectrometry. Next,
proteomic and metabolomic data were analyzed using linear models. The significant features were extracted and used to build scores to assess
sample quality. Several figures were created with BioRender.com.
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metabolomics data set, there was a clear separation between

individuals, while for the proteomics data set, we found less

pronounced effects (Supplementary Figure S2D). This analysis

suggests that there are dominating individual effects that are

reflected in the metabolomics data set and to a lesser extent in

the proteome. To gain further insight into this, we next

performed classification by partial least square-discriminant

analysis (PLS-DA) and sparse PLS-DA (sPLS-DA) to

discriminate the individuals based on the metabolite and

proteomics profiles. Indeed, it was possible to classify the

individuals using the metabolite and protein levels with a

low classification error (Supplementary Figure S1C),

suggesting that there are features in the metabolomics and

proteomics data where individual effects are prevalent. The

metabolites and proteins in Supplementary Table S1 were

selected by sPLS-DA to explain the variance using the

individual as the class vector (Supplementary Figure S1B).

We also performed PLS-DA to discriminate for time and the

combination of time and temperature (Supplementary Figure

S4). Both binary classification problems yielded models with

higher classification rate errors and lower values for the explained

variance for both the proteomics and metabolomics data sets

(Supplementary Figure S4A, C) compared to individual as the

class vector (Supplementary Figure S1). The sPLS-DA analysis

yielded a list of features that were used to explain the class vectors

of the data and could be regarded as features that change along

the time and time/temperature axes (Supplementary Figures S4B,

D). We included this list in Supplementary Tables 2, 3, 4.

In the next step, we looked into the changes in metabolite and

protein levels when considering inter-individual differences.

Motivated by the results of the previous analyses (the initial

LIMMA analysis, dimension reduction analysis, PLS-DA, and

MOFA), which showed that metabolome and proteome variation

is influenced by inter-individual differences, we decided to use

mixed linear models to determine the features that will change

according to sitting time, temperature, or a combination of time

and temperature. We modeled as fixed effects time, temperature,

and the interaction terms time/temperature (plasma) and time

(serum). The information on the blood donor (individual) was

included for both groups as a random effect (Figure 2A). An

overview of the absolute change of the significant metabolites and

proteins can be found in Figure 2B (see also Figure 2C for

exemplary metabolites and proteins). We provide the

metabolite- and protein-associated p-values for plasma and

serum samples in Supplementary Information.

Looking at metabolomics- and proteomics-specific

differences, the analysis revealed that metabolite

concentrations were less stable at RT, while protein

abundances were less stable at 4°C (Figure 2 and

Supplementary Figure S5). For the affected features, the

absolute change was, in most cases, more prominent after 8 h

than after 2 h, yet they were not significant (Supplementary

Figure S5).

Scoring plasma and serum sample quality
using proteomic and metabolomic
signatures

We next investigated whether patterns of potential protein

and metabolite deregulation (with respect to time and

temperature) could be used as a quality metric for samples

obtained under the tested conditions. We selected the top

20 proteins and metabolites ranked by p-value to generate

signatures under the following handling conditions: plasma

kept on ice (4°C) or RT for 8 h and serum at RT for 8 h

(Supplementary Figure S6). While it may be difficult to draw

conclusions regarding the significance of individual metabolites

or proteins due to the limited sample size, their combined signal

may hold enough information to score the relative quality of

samples with respect to sitting time and temperature. Thus, to

confirm that these signatures could yield sensible insight into

sample integrity, we computed an average normalized

enrichment score (NES; see Methods) for each signature

under the respective sample pre-analytical conditions. If the

signatures are indeed informative, we should expect to observe

a steady increase in the enrichment of the respective signature for

each condition. Coherently, each signature showed higher scores

for samples that matched the respective conditions from which

they were derived (Figure 3A). This notably showed that the

plasma protein signature at RT over time already scored highly in

samples stored at RT for 4 h, as opposed to the signature of

plasma/4°C/8 h which only scored highly in the samples obtained

at low temperature and after 8 h, as expected. This pattern was

inverted for the metabolic signatures of plasma samples. This

indicates that the changes are more pronounced at the

metabolomic level when samples are stored at 4°C than those

at RT, while changes are more pronounced at the proteomic level

for plasma samples kept at RT.

Finally, while the NES can take both positive and negative

values, here, we focused only on the positive values to simplify the

interpretation of the results. Since the data were normalized in a way

that each measurement is scaled relative to other samples of the

cohort, the scores will be drawn from a distribution where anNES of

0 represents samples that have average levels of degradation

compared to the overall cohort, and any value above that

TABLE 1 Number of features with a significant effect from the factor
individual. Shown is the number of significant features after FDR correction
(α < 0.05) for the factor individual by LIMMA analysis (see Methods for
further details). The total number of features is 497 (metabolites) and 572
(proteins).

Plasma Serum

Metabolites 470 435

Proteins 221 151
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FIGURE 2
Stability of metabolites and proteins along the sitting time and temperature axes. (A)Number of significant metabolites or proteins that show changes
according to pre-analytical factors time, temperature, and the interaction time/temperature (raw p-values and p-values after FDR correction, α < 0.05). (B)
Absolute change of transformed concentrations/intensities of significantmetabolites and proteins along the time axis (after FDR correction). The changes to
the time points 2, 4, and 8 h are displayed as the mean changes of the individuals (intensity at time point 0 h is 0). For plasma, the features that are
significant for the pre-analytical factors time, temperature, or the interaction time/temperature (α < 0.05, FDR correction) are included. For serum, the
features that are significant to the pre-analytical factor time (α < 0.05, FDR correction) are included. For the proteomics data set and serum, no features were
significant to thepre-analytical factor time, and thepanel is omitted. (C)Examplesofmetabolites andproteins that showa significant associationwith thepre-
analytical factor time (hypoxanthine, lactate, CA2, HBB, and HBA1) or interaction time/temperature (lactate and arginine) (α < 0.05, after FDR correction).
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represents samples that show higher degradation than the rest of the

cohort. It is worth noting that this scoring can only score samples in

a manner relative to the rest of the cohort and cannot provide

absolute quantification of sample degradation. In order to get the

most out of such amethod, it is advised to always include at least one

reference sample of known quality.

To validate this approach, we used the signatures to score

metabolomic results from an external study (Heiling et al., 2021),

where plasma and serum samples were kept at RT for 2 h

(Figure 3B). The plasma/RT/8 h metabolic signatures got a

higher score (NES = 5.1) than plasma/4°C/8 h (NES = 2.6)

and serum/RT/8 h (NES = 2.9) signatures. However, the

serum/RT/8 h signature score was similar to the plasma/RT/

8 h signature score (NES = 6.1 and NES = 6.4, respectively). Thus,

the serum RT/8 h and plasma/RT/8 h metabolic signatures

appear less discriminant than the plasma/4°C/8 h metabolic

signature. Nevertheless, the best scores overall matched the

actual experimental conditions that were used, indicating that

the scoring system holds up beyond the data set that was used for

training.

In order to further characterize the changes that we observed

in the plasma and serum samples over time, we investigated if

proteomic signatures could be associated with contamination by

proteins originating from specific blood cells. We obtained

proteomic markers of coagulation, erythrocyte, and platelet

contamination from Geyer et al. (2019). Plasma samples kept

on ice (4°C) for 4 h and 8 h showed the highest enrichment of

erythrocyte contamination markers (Figure 3C), mainly driven

by CAT, CA2, BLVRB, PRDX2, and ALDOA (Supplementary

Figures S6A, B). Interestingly, the plasma/4°C/8 h signature

seems to also be specifically driven by a lower abundance of

the VWF protein, a blood glycoprotein involved in platelet

adhesion (Supplementary Figure S6C). The contamination

scores were lower in plasma samples than those that were

kept at RT, although they still showed a progressive increase

over time. On the other hand, serum samples exhibited no

FIGURE 3
Systematic evaluation of sample quality and contamination with proteomic and metabolomic signatures. (A) Proteomic/metabolic pre-
analytical condition signature scores for each sample group (as averaged from individual samples). Signature scores are normalized enrichment
scores, representing the number of standard deviations away from the mean of an empirical null distribution of scores. A high score means that the
sample displays an enrichment of markers of the corresponding signature compared to other samples. While the scores generated can be both
positive and negative, we focus exclusively on positive scores in this figure. (B) Metabolic pre-analytical signature applied to score samples from an
external study (Heiling et al., 2021). (C) Coagulation, erythrocyte, and platelet signatures were used to score the contamination of proteomic plasma
and serum samples. Signatures were taken from Geyer et al. (2019).
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significant increase in erythrocyte contamination score, instead

showing a consistently high (albeit slightly decreasing) score for

coagulation markers over time, as expected. This signature was

mainly driven by increased PPBP and THBS1 and decreased

F13A1 (Supplementary Figures S6A, D). In a similar fashion, we

displayed the main drivers of the metabolomic-derived

signatures such as hypoxanthine, lactate, ornithine, and

aspartate (Supplementary Figures 6A, E, F, G). Taken

together, these results show that scoring provides a

quantitative metric for the quality control for proteomic and

metabolomic data of plasma and serum samples. This should be

a helpful tool to exclude low-scoring samples for further

analysis.

Discussion

The progress of MS-based technologies over the past years

has enabled the characterization and quantification of

analytically challenging but clinically accessible samples such

as blood plasma and serum. Although SOPs for individual

metabolic and proteomic analyses have been developed

(Pasella et al., 2013; Yin et al., 2015; Tuck et al., 2019; Lippi

et al., 2020), there is no consensus on their combined application

for the molecular characterization of blood samples in a clinical

setting.

Here, we performed a comprehensive analysis on the stability

of 497 and 572 metabolites and proteins in blood plasma and

serum to scrutinize the effects of various treatment regimens

(sitting time and incubation at different temperatures) to

simulate different sample handling scenarios. Notably, our

experiment aimed to define an SOP trade-off regarding the

different requirements for metabolomics and proteomics to

effectively apply both approaches to the same blood samples.

In addition, we aimed to implement objective quality scoring as a

metric for sample quality and potential contamination. Although

this study was performed on a small cohort of healthy volunteers,

the findings have implications for the sampling procedure of

clinical blood collection and the bioinformatics analysis for

quality control.

Measuring the change of the metabolome
and proteome

Through our statistical analyses, we detected changes in

numerous features that may affect the biological interpretation

of clinical metabolomics and proteomics data sets. Some

metabolites (e.g., hypoxanthine, xanthine, lactate, arginine,

ornithine, and cystine) and proteins (e.g., CA1, CA2, HBB,

HBD, and HBA1) showed a profound dependency on sitting

time and temperature (or a combination thereof) (Figure 2 and

Figure 4A).

Metabolite classes such as amino acids, purines, and

carbohydrates vary in abundance and are therefore usually

investigated to answer biological questions. Also, these well-

known metabolites affected by the conditions represent only

10% of our data set, and we have increased the panel of

temperature- and time-sensitive metabolites due to the broad

metabolite coverage. In fact, lipids are the largest observed class

of metabolites, most of which were stable across the tested

conditions (Supplementary Material S1).

Temperature and time are well known to affect metabolite

and protein levels (Kamlage et al., 2014; Cao et al., 2019; Daniels

et al., 2019; Stevens et al., 2019). Elevated levels of hypoxanthine

and amino acids over time (Ferreira et al., 2019) and the

deregulation of cholesterol metabolism were also previously

documented (Ryu et al., 2016). The association of these and

other metabolites to a pathological condition, therefore, needs to

be evaluated with caution to exclude the possibility that they

emerge inadvertently by sample handling or technical bias. Strict

pre-analytical measures help to gain confidence in the

subsequent biological and clinical interpretation based on the

measured features.

For most of the features in our data sets, we only foundminor

changes under the experimental conditions applied (Figure 2).

Then, 90% of metabolites and 97% of proteins only varied slightly

over time. Other metabolome studies reported similar

proportions where 91% of the metabolite remained stable over

several pre-analytical conditions (Ferreira et al., 2019). This

implies that in clinical research studies where large effect sizes

from biological differences are known or expected and large

cohorts are used, the contribution to feature-level variation

stemming from sample handling might be partially alleviated.

The integration of several data sets, that is, proteomic and

metabolomic, from the same sample may also mitigate bias.

Rapid handling and cold storage for up to
2h as SOP

Although the increased stability of the metabolome at 4°C

was expected, we observed a contrary effect for proteins, showing

higher variance at low temperature (Figures 2, 3A), suggesting

that proteomics and metabolomics require different pre-

analytical conditions to obtain optimal results. Therefore, we

propose that keeping plasma and serum samples on ice for up to

2 h is an acceptable trade-off to maintain adequate stability of

both the proteome and metabolome (Figure 2 and

Supplementary Figure S5). In addition, this should be a

condition that can be met in clinical practice (Figure 4B).

Similarly, considerations may be made regarding the storage

time of samples in biological repositories such as biobanks. Previous

studies showed that long-term storage at −80°C over 7 years only

introduces minimal variation and that significant changes occur

upon longer storage times (Wagner-Golbs et al., 2019). This
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highlights the potential to address clinical questions using

metabolomics and proteomics from biological repositories under

the prerequisite that the sampling collection is comparable. While

biobank samples are an essential resource for discovery studies,

prospective samples enable the enforcement of SOPs during

collection that are more suitable for metabolomic analyses, e.g.,

by storing samples at 4°C for under 2 h and then quenching by snap-

freezing in liquid nitrogen.

Quality control signatures to score plasma
and serum samples

Designing formal criteria for data curation and analysis is crucial

to ensuring data robustness. To this end, we devised a scoring system

using the significantly altered proteins and metabolites as signatures

to evaluate the impact of pre-analytical conditions on the proteome

and metabolome integrity of a given sample. Provided as an R

package (https://github.com/saezlab/plasmaContamination), this

tool can be used for quality control after pre-analytical handling,

and in addition, the proteome signatures enable to distinguish the

severity and the source of contamination, that is, from platelets,

erythrocytes, or resulting from coagulation (Figures 3C, 4C). We

showed that the changes in protein abundance in samples stored on

ice were mainly related to protein markers of erythrocytes in plasma

samples, likely resulting from hemolysis occurring under this

condition (Figure 4C). As expected, coagulation signatures scored

exclusively high in serum samples.

Both the scores formetabolite and protein contamination enable

the quality assessment of plasma and serum samples of unknown

origin. Notably, the erythrocyte, platelet, and coagulation signatures

were obtained from a large external cohort of samples

FIGURE 4
Considerations for the joint proteomic and metabolomic analysis of plasma and serum samples. (A) Most influential factors on the proteome
and proteome in our data. (B) Recommendations for clinical blood sampling. (C) Change over time in blood plasma and serum samples and the
resulting quality and contamination scores. Several figures were created with BioRender.com.
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(>70 samples), while the signatures derived from our own samples

were estimated from a comparatively small number of samples (n =

6). Although this may affect their discriminative power, the derived

signatures and bioinformatics tools are publicly accessible and can

therefore be updated and expanded easily when more data become

available. The high similarity of the scores for the plasma/4°C/8 h

and erythrocyte signatures strongly suggests that the number of

samples used in this study (n = 6) already allows to generate

signatures that are comparable to those generated with a much

larger number of samples (>70). While the study could benefit from

a larger sample size to generate signatures, important pre-analytical

factors can already be scored in a consistent manner with those

signatures. Thus, those signatures yielded coherent scores when they

were tested with our own samples and validated with samples from

an external study. The expansion of such signatures to other pre-

analytical factors, such as storage conditions, enables the

development of further quality control metrics. This may be

achieved through similarly structured experimental set-ups with

small sample sizes or the analysis of bigger cohorts with the inclusion

of metadata. We anticipate that a quality score for proteome and

metabolome integrity can have great practical utility by enabling the

exclusion of low-scoring samples for further analysis. This will be

particularly important if clinical decisions are to be made based on

metabolic or proteomic data from such samples. At this point, it is

premature to suggest a cut-off score here, since the number of

samples in our study is low and since the choice for such a cut-off

may depend on the setting of the analysis (e.g., biomarker discovery

and clinical decision). Finally, although a quality score is helpful, it

cannot replace rigorous SOPs. In addition, this must be evaluated in

the context of other available metadata that should be applied in

combinationwith other quality control strategies (Naake andHuber,

2022).

Summary

In this study, we assessed the influence of controllable pre-

analytical parameters on protein and metabolite levels in plasma

and serum samples to define or improve SOPs for concerted

metabolomic and proteomic analyses. While only a subset of

metabolites and proteins changed, the ability to identify features

that are prone to alteration increases the confidence in such

broadly acquired data sets. We propose to store blood samples for

a maximum of 2 h on ice (4°C) before quenching the samples, as a

compromise between stability and practical operability.

Additionally, the metabolomic and proteomic signatures can

be routinely applied in bioinformatics workflows to review

and evaluate the sample quality of plasma and serum samples.

Due to their accessibility, such signatures may be expanded over

time to improve the assessment of qualitative differences between

blood samples. Lastly, bigger sample sizes and additional

metadata of volunteers and/or available metadata from clinics

may extend these scores to include signatures capturing other

sources of variability that are important to clinical studies, such

as storage, medication, or lifestyle.

Methods

Sampling and sample treatment/design

Peripheral blood samples were collected from six healthy

male volunteers (aged 22–37 years, median age was 29.83 years)

with written informed consent in accordance with the

Declaration of Helsinki and approved by the Ethics

Committee of the Medical Faculty of the University of

Heidelberg (S-254/2016). All samples were taken in the early

morning in a fasting condition using serum and EDTA

S-Monovette tubes (Sarstedt AG, Nümbrecht, Germany).

Serum samples were allowed to coagulate for 30 min after

collection, kept at RT for the indicated time points, and

centrifuged at 400 x g for 10 min. Plasma samples were kept

at RT or at 4°C/on ice for the indicated time points, followed by

centrifugation for 10 min at 2,000 x g and 4,000 x g, respectively.

Subsequently, samples were divided into single-use aliquots,

snap-frozen in liquid nitrogen, and stored at −80°C until

analysis. Thus, metabolomic and proteomic analyses were

performed from the same original samples.

Metabolomics

For the metabolomics analysis of up to 630 metabolites, the

Biocrates MxP® Quant 500 kit (Biocrates, Austria) was used

following the manufacturer’s protocol. Briefly, 10 µl of plasma or

serum was semi-automatically pipetted onto a 96-well plate

containing internal standards using a pipetting robot

(epMotion 5057, Eppendorf, Germany) and subsequently

dried under a nitrogen stream using a positive pressure

manifold (Waters, Germany). Afterward, 50 µl of 5% phenyl

isothiocyanate (PITC) was added to each well to derivatize amino

acids and biogenic amines. After 1 h of incubation at RT, the

plate was dried again. To resolve all extracted metabolites, 300 µl

of 5 mM ammonium acetate in methanol were pipetted to each

filter and incubated for 30 min. The extract was eluted into a new

96-well plate using positive pressure. For the LC-MS/MS

analyses, 150 µl of the extract was diluted with an equal

volume of water. Similarly, for the FIA-MS/MS analyses, 10 µl

of the extract was diluted with 490 µl of FIA solvent (provided by

Biocrates). After dilution, LC-MS/MS and FIA-MS/MS

measurements were performed in the positive and negative

modes on subsequent days. For chromatographic separation,

an UPLC I-Class PLUS (Waters, Germany) system was used,

coupled with a QTRAP 6500+ mass spectrometry system (Sciex,

Germany) in an electrospray ionization (ESI) mode. Data were

recorded using the Analyst Software suite (version 1.7.2, Sciex,
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Germany) and transferred to MetIDQ software (version Oxygen-

DB110-3005, Biocrates, Austria), which was used for further data

processing, that is, technical validation, quantification, and data

export.

Low-abundant metabolites that were not measured in more

than 66% of the samples at 10 times the levels over the limit of

detection (LOD) or above the lower limit of quantification

(LLOQ) (both according to MetIDQ software) were removed

from the subsequent analysis. Using the MatrixQCvis package

(Naake and Huber, 2022; version 1.1.0), low-quality samples

were removed, leading to the exclusion of all samples belonging

to individual 1 from the further analysis. To prepare the data sets

for statistical analysis, the raw intensity values were transformed

via vsn (vsn2 function from the vsn package, version 3.59.1),

which yields a matrix with feature values being approximately

homoskedastic (features have constant variance along the range

of mean values). Missing values were imputed via the

impute.MinDet function (imputeLCMD package, version 2.0).

While for MOFA analysis, the transformed data set was used, for

all other analyses (dimension reduction, PLS-DA, LIMMA

analyses, and mixed linear models), the imputed data set

was used.

Proteomics

Sample preparation: Plasma and serum aliquots were

diluted 1:10 in ddH2O to perform a bicinchoninic acid assay

(BCA, Pierce–Thermo Scientific) for protein quantification.

Subsequently, 10 μg protein per sample was further

processed in a 1 μg/μl concentration and 100 mM

ammonium bicarbonate (ABC, Sigma-Aldrich) using a

Covaris LE220-plus focused-ultrasonicator for AFA-based

ultrasonication in a 96-well format. The plate was

transferred to a Bravo pipetting system (Agilent

Technologies, United States) for autoSP3 processing as

described elsewhere (Müller et al., 2020). In brief, 10 mM

TCEP, 40 mM chloroacetamide (CAA), 100 mM ABC, and

1x protease inhibitor cocktail (PIC, complete, Sigma-Aldrich)

were added to each sample, followed by incubation at 95°C for

5 min. Protein binding to Sera-Mag SpeedBeads (Fisher

Scientific, Germany) was induced by increasing the buffer

composition to 50% acetonitrile (ACN, Pierce–Thermo

Scientific). The bead stock was prepared as follows: 20 μl of

Sera-Mag SpeedBeads A and 20 μl of Sera-Mag SpeedBeads B

were combined and rinsed with 1 × 160 μL ddH2O and 2x with

200 μl ddH2O and re-suspended in 20 μl ddH2O for a final

working stock. The bead stock was prepared for all samples. The

autoSP3 protein clean-up was performed with 2x ethanol

(EtOH, VWR International GmbH, Germany) and 2x ACN

washes. Reduced and alkylated proteins were digested on beads

and overnight at 37°C in a lid-heated PCR cycler (CHB-T2-D

ThermoQ, Hangzhou BIOER Technologies, China) in 100 mM

ABC with sequencing-grade modified trypsin (Promega,

United States). Upon overnight protein digestion, each

sample was acidified to a final concentration of 1%

trifluoroacetic acid (TFA, Biosolve Chimie). MS injection-

ready samples were stored at −20°C.

Data acquisition: Peptide samples were measured using a

timsTOF Pro mass spectrometer (Bruker Daltonics, Germany)

coupled with a nanoElute liquid chromatography system (Bruker

Daltonics, Germany). Peptides were separated using an analytical

column (Aurora Series Emitter Column with CSI fitting, C18, 1.6,

75 μm × 25 cm) (Ion Optics, Australia). The outlet of the

analytical column with a captive spray fitting was directly

coupled to the mass spectrometer using a captive spray

source. Solvent A was ddH2O (Biosolve Chimie), 0.1% (v/v)

FA (Biosolve Chimie), and 2% acetonitrile (ACN) (Pierce,

Thermo Scientific), and solvent B was 100% ACN in ddH2O

and 0.1% (v/v) FA. The samples were loaded at a constant

maximum pressure of 900 bar. Peptides were eluted via the

analytical column at a constant flow rate of 0.4 μL per minute

at 50°C. During the elution, the percentage of solvent B was

increased in a linear fashion from 2 to 17% in 22.5 min, from

17 to 25% in 11.25 min, from 25 to 37% in a further 3.75 min, and

then to 80% in 3.75 min. Finally, the gradient was finished after

3.75 min at 80% solvent B. Peptides were introduced into the

mass spectrometer via the standard Bruker captive spray source

at default settings. The glass capillary was operated at 3,500 V

with a 500-V end plate offset and 3 L/min dry gas at 180°C. Data

were acquired in a data-independent acquisition (DIA) mode

using full-scan MS spectra with a mass range m/z of 100–1,700,

and a 1/k0 range of 0.6–1.6 V*s/cm2 with 100 ms ramp time were

acquired with a rolling average switched on (10x). The duty cycle

was locked at 100%, and the TIMS mode was enabled. All

timsTOF Pro and nanoElute methods were considered

defaults provided by Bruker. Data were acquired in data-

independent acquisition (DIA) mode.

DIA method details: For the DIA scans, resolution was set to

30,000 FWHM, with an automatic gain control (AGC) target of

3 × 106 ions, a fixed first mass of 200 m/z, a stepped collision

energy of 27, and a loop count of 34 with an isolation window of

24.3 m/z.

Data processing: Raw files were processed in Biognosys

Spectronaut version 14.11. The search parameters were set to

default as specified by the developer of the software. In brief, the

enzyme was set to trypsin/P with up to two missed cleavages.

Carbamidomethylation (C) was selected as a fixed modification;

oxidation (M) and acetylation (protein N-term) were set as

variable modifications.

Data quality was checked by the MatrixQCvis package

(Naake and Huber, 2022, version 1.1.0), leading to the

exclusion of several low-quality samples. Further data

processing was carried out according to the metabolomics

data set using the vsn transformation and imputation of

missing values by the impute.MinDet function.
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LIMMA analysis to test for individual
effects

For the metabolomics and proteomics data sets, the

transformed intensities were taken. Separately for the plasma

and serum samples, a linear model was fitted to the data (using

lmFit from limma, version 3.50.0). For plasma samples,

information on the individual, time, temperature, and the

interaction between time and temperature were included as

terms in the model. For serum samples, information on the

individual and time were included as terms in the model.

t-statistics and moderated F-statistics were computed by

empirical Bayes moderation of the standard errors toward a

global value (using eBayes from limma). The corresponding

p-values to the effects for all individuals were adjusted via the

FDR using the Benjamini–Hochberg method (α < 0.05). The

code for the analysis can be found here: https://github.com/

tnaake/SMARTCARE_preanalytical_processing/tree/main/LIMMA.

Multi-omics factor analysis (MOFA) of the
combined metabolomics and proteomics
data sets

The vsn-transformed data sets (no imputed missing values)

were used for running MOFA. For the proteomics data set, the

mean intensities between duplicates were calculated.

Subsequently, only the overlapping samples (intersection) of

the metabolomics and proteomics data sets were retained

(40 plasma samples and 14 serum samples). MOFA (using the

MOFA2 package, version 1.1.21) was run using the

metabolomics and proteomics data sets as views and plasma

and serum as groups. The data options were set to default values

(scale_views = FALSE, scale_groups = FALSE, center_groups =

TRUE, and use_float32 = FALSE), the model options were set to

default (Gaussian likelihood for views, maximum number of

factors = 15, spikeslab_factors = FALSE, spikeslab_weights =

TRUE, ard_factors = TRUE, and ard_weights = TRUE), and the

training options were set to default (maximum of iterations =

10,000, convergence mode = “slow,” drop_factor_threshold =

0.01, startELBO = 1, freqELBO = 5, stochastic = FALSE, gpu_

mode = FALSE, seed = 42, and weight_views = FALSE). The code

for the analysis can be found here: https://github.com/tnaake/

SMARTCARE_preanalytical_processing/tree/main/MOFA/.

Dimension reduction analysis

The dimensions of the metabolomics and proteomics data

sets were reduced to two/three dimensions using principal

component analysis (PCA), t-distributed stochastic neighbor

embedding (t-SNE), and Uniform Manifold Approximation

and Projection (UMAP). Prior to performing PCA, the

transformed and imputed intensity values were feature-wise

scaled and centred before calculating PCs using prcomp (from

the stats package, version 4.1.0). t-SNE was run using the Rtsne

function with the following parameters: initial dimensions = 10,

maximum number of iterations = 100, final dimensions = 3, and

perplexity = 3 (Rtsne package, version 0.15). UMAP was run

using the umap function with the following parameters:

minimum distance = 0.1, number of neighbors = 15, and

spread = 1 (umap package, version 0.2.7.0).

Partial least square-discriminant analysis

To discriminate the samples based on the class vector Y,

partial least square-discriminant analysis was performed. Here,

Y is a vector of length n that indicates the class of each sample,

that is, a vector containing information on the time,

temperature, time/temperature, or the individual identifier. X

is an n x p matrix containing the normalized + transformed +

imputed intensities. To find the optimal number of

components, plsda from the mixOmics package (version

6.15.45) was run with a maximum of 20 components

(ncomp = 20), followed by the evaluation of the

performance of the fitted PLS using the perf function

(validation = “Mfold,” folds = 3, and nrepeat = 30). The

overall classification error rate was taken as a measure to

select the number of components, and the number of

components and distance method were selected by the

maximum of the determined component number of the

distances “centroids.dist,” “Mahalanobis.dist,” and

“max.dist.” In the next step, the optimal number of variables

was determined using a grid-based search ranging from 5 to

100 variables by the tune.splsda function (number of

components, ncomp, and distance method, dist, as

previously determined by the perf function, validation =

“Mfold,” folds = 3, nrepeat = 30, and measure = “BER”).

The final model, using the optimal number of components

based on t-tests on the error rate and the corresponding

number of selected variables, was selected using the splsda

function (scale = TRUE). All functions were taken from the

mixOmics package (version 6.15.45). The code for the analysis

can be found here: https://github.com/tnaake/SMARTCARE_

preanalytical_processing/tree/main/MLM/metabolomics.

Stability analysis using mixed linear
models

For the mixed linear model, for plasma samples, the time,

temperature, and the interaction between time and temperature

were included as fixed effects and individual as a random effect

into the model. For serum samples, time was included as a fixed

effect and individual as a random effect. When fitting the actual
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model, the lmer function from the lmerTest package (version

3.1–3) was used. If the mixed linear model was singular, an

analysis of variance model was fitted with the same terms as for

the mixed linear model except for the random effects. The

corresponding p-values to the fixed effects (time, temperature,

and interaction between time and temperature) and the intercept

were adjusted via the FDR using the Benjamini–Hochberg

method (α < 0.05). The code for the analysis can be found

here: https://github.com/tnaake/SMARTCARE_preanalytical_

processing/tree/main/MLM/metabolomics and https://github.

com/tnaake/SMARTCARE_preanalytical_processing/tree/main/

MLM/proteomics.

Pathway analysis of proteomic data

Pathway sets were obtained from the hallmark pathway set

collection of the Molecular Signatures Database (MSigDB) of the

Broad Institute, along with gene symbol identifiers. Pathway

enrichment analysis was performed using the FGSEA R package

(version: fgsea_1.18.0), using the proteomic t-values (from “stability”

analysis using mixed linear models part) as input statistics. We set the

number of permutations to 10,000 and only considered pathway sets

with at least 10 proteinmembers. All codes for this part are available at:

https://github.com/saezlab/SMARTCARE_pilot_serum_prot_metab.

Proteomic and metabolomic signatures of
plasma and serum samples

The pre-analytical quality signatures were made by selecting the

top 20 p-values from the LIMMA differential analysis output for

serumandplasma samples stored for 8 h compared to 0 h on ice (4°C)

or at RT. The contamination signatures were taken from Geyer et al.

(2019). In order to estimate the normalized enrichment score, we used

the weighted mean method from the decoupleR R package. The

weights were either the t-values of the limma differential analysis for

the storage quality signatures or the −1*t-value differences for the

coagulation signature from Geyer et al. (2019) or the one otherwise

(for erythrocyte and platelet contamination since no continuous

weights were available). The signatures and method to estimate

scores for plasma and serum samples are provided in the form of

an open-source R package that can be downloaded here: https://

github.com/saezlab/plasmaContamination. The code for the analysis

of the sample and computing the scores can be found here: https://

github.com/saezlab/SMARTCARE_pilot_serum_prot_metab.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Materials; further

inquiries can be directed to the corresponding author.

Ethics statement

This study was approved by the Ethics Committee of the

Medical Faculty of the University of Heidelberg (S-254/2016).

The patients/participants provided their written informed

consent to participate in this study.

Author contributions

FC and HG designed the experiment. FC, HG, and NK-R

performed the experiment. HG, GK, and TM measured the

metabolites and proteins. TN and AD analyzed and interpreted

the data set. AD,HG, TM, and TNwrote themanuscript. EJ and CH

suggested methods and experiments and provided feedback on the

manuscript. BH, UK, CM-T, SD, JS-R, WH, RH, GP, and JK

provided feedback on the manuscript.

Funding

This work was supported by the German Ministry of

Education and Research (BMBF), as part of the National

Research Node “Mass Spectrometry in Systems Medicine”

(MSCoreSys), under the funding code 161L0212..

Conflict of interest

JS-R reports funding from GSK and Sanofi and fees from

Travere Therapeutics and Astex Therapeutics.

The remaining authors declare that the research was

conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict of

interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors, and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fmolb.

2022.961448/full#supplementary-material

Frontiers in Molecular Biosciences frontiersin.org12

Gegner et al. 10.3389/fmolb.2022.961448

https://github.com/tnaake/SMARTCARE_preanalytical_processing/tree/main/MLM/metabolomics
https://github.com/tnaake/SMARTCARE_preanalytical_processing/tree/main/MLM/metabolomics
https://github.com/tnaake/SMARTCARE_preanalytical_processing/tree/main/MLM/proteomics
https://github.com/tnaake/SMARTCARE_preanalytical_processing/tree/main/MLM/proteomics
https://github.com/tnaake/SMARTCARE_preanalytical_processing/tree/main/MLM/proteomics
https://github.com/saezlab/SMARTCARE_pilot_serum_prot_metab
https://github.com/saezlab/plasmaContamination
https://github.com/saezlab/plasmaContamination
https://github.com/saezlab/SMARTCARE_pilot_serum_prot_metab
https://github.com/saezlab/SMARTCARE_pilot_serum_prot_metab
https://www.frontiersin.org/articles/10.3389/fmolb.2022.961448/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmolb.2022.961448/full#supplementary-material
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.961448


References

Argelaguet, R., Velten, B., Arnol, D., Dietrich, S., Zenz, T., Marioni, J. C.,
et al. (2018). Multi-omics factor analysis—a framework for unsupervised
integration of multi-omics data sets. Mol. Syst. Biol. 14, e8124. doi:10.
15252/msb.20178124

Cao, Z., Kamlage, B., Wagner-Golbs, A., Maisha, M., Sun, J., Schnackenberg, L. K.,
et al. (2019). An integrated analysis of metabolites, peptides, and inflammation
biomarkers for assessment of preanalytical variability of human plasma. J. Proteome
Res. 18 (6), 2411–2421. doi:10.1021/acs.jproteome.8b00903

Daniels, J. R., Cao, Z., Maisha, M., Schnackenberg, L. K., Sun, J., Pence, L., et al.
(2019). Stability of the human plasma proteome to pre-analytical variability as
assessed by an aptamer-based approach. J. Proteome Res. 18 (10), 3661–3670.
doi:10.1021/acs.jproteome.9b00320

Ferreira, D. L. S., Maple, H. J., Goodwin, M., Brand, J. S., Yip, V., Min, J. L., et al.
(2019). The effect of pre-analytical conditions on blood metabolomics in
epidemiological studies. Metabolites 9 (4), 64. doi:10.3390/metabo9040064

Filbin, M. R., Mehta, A., Schneider, A. M., Kays, K. R., Guess, J. R., Gentili, M.,
et al. (2021). Longitudinal proteomic analysis of severe COVID-19 reveals survival-
associated signatures, tissue-specific cell death, and cell-cell interactions. Cell
Rep. Med. 2 (5), 100287. doi:10.1016/j.xcrm.2021.100287

Geyer, P. E., Voytik, E., Treit, P. V., Doll, S., Kleinhempel, A., Niu, L., et al.
(2019). Plasma Proteome Profiling to detect and avoid sample-related biases in
biomarker studies. EMBO Mol. Med. 11 (11), e10427. doi:10.15252/emmm.
201910427

Gummesson, A., Bjornson, E., Fagerberg, L., Zhong, W., Tebani, A., Edfors, F.,
et al. (2021). Longitudinal plasma protein profiling of newly diagnosed type
2 diabetes. EBioMedicine 63, 103147. doi:10.1016/j.ebiom.2020.103147

Hassis, M. E., Niles, R. K., Braten, M. N., Albertolle, M. E., Ewa Witkowska, H.,
Hubel, C. A., et al. (2015). Evaluating the effects of preanalytical variables on the
stability of the human plasma proteome. Anal. Biochem. 478, 14–22. doi:10.1016/j.
ab.2015.03.003

Heiling, S., Knutti, N., Scherr, F., Geiger, J., Weikert, J., Rose, M., et al. (2021).
Metabolite ratios as quality indicators for pre-analytical variation in serum and edta
plasma. Metabolites 11 (9), 638. doi:10.3390/metabo11090638

Kamlage, B., Maldonado, S. G., Bethan, B., Peter, E., Schmitz, O.,
Liebenberg, V., et al. (2014). Quality markers addressing preanalytical
variations of blood and plasma processing identified by broad and
targeted metabolite profiling. Clin. Chem. 60 (2), 399–412. doi:10.1373/
clinchem.2013.211979

Lippi, G., von Meyer, A., Cadamuro, J., and Simundic, A. M. (2020). PREDICT: A
checklist for preventing preanalytical diagnostic errors in clinical trials. Clin. Chem.
Lab. Med. 58 (4), 518–526. doi:10.1515/cclm-2019-1089

Müller, T., Kalxdorf, M., Longuespee, R., Kazdal, D. N., Stenzinger, A., and
Krijgsveld, J. (2020). Automated sample preparation with SP 3 for low-input clinical
proteomics. Mol. Syst. Biol. 16 (1), e9111. doi:10.15252/msb.20199111

Naake, T., and Huber, W. (2022). MatrixQCvis: shiny-based interactive data
quality exploration for omics data. Bioinformatics 38 (4), 1181–1182. doi:10.1093/
bioinformatics/btab748

Pasella, S., Baralla, A., Canu, E., Pinna, S., Vaupel, J., Deiana, M., et al. (2013). Pre-
analytical stability of the plasma proteomes based on the storage temperature.
Proteome Sci. 11 (1), 10. doi:10.1186/1477-5956-11-10

Ryu, H. M., Kim, Y. J., Oh, E. J., Oh, S. H., Choi, J. Y., Cho, J. H., et al. (2016).
Hypoxanthine induces cholesterol accumulation and incites atherosclerosis in
apolipoprotein E-deficient mice and cells. J. Cell. Mol. Med. 20 (11), 2160–2172.
doi:10.1111/jcmm.12916

Sindelar, M., Stancliffe, E., Schwaiger-Haber, M., Anbukumar, D. S., Adkins-
Travis, K., Goss, C. W., et al. (2021). Longitudinal metabolomics of human plasma
reveals prognostic markers of COVID-19 disease severity. Cell Rep. Med. 2 (8),
100369. doi:10.1016/j.xcrm.2021.100369

Stevens, V. L., Hoover, E., Wang, Y., and Zanetti, K. A. (2019). Pre-analytical
factors that affect metabolite stability in human urine, plasma, and serum: A review.
Metabolites 9, 156. doi:10.3390/metabo9080156

Tsonaka, R., Signorelli, M., Sabir, E., Seyer, A., Hettne, K., Aartsma-Rus, A., et al.
(2020). Longitudinal metabolomic analysis of plasma enables modeling disease
progression in Duchenne muscular dystrophy mouse models. Hum. Mol. Genet. 29
(5), 745–755. doi:10.1093/hmg/ddz309

Tuck, M., Turgeon, D. K., and Brenner, D. E. (2019). “Serum and plasma collection:
Preanalytical variables and standard operating procedures in biomarker research,” in
Proteomic and metabolomic approaches to biomarker discovery. 2nd edn. (Netherlands:
Elsevier). doi:10.1016/B978-0-12-818607-7.00005-0

Wagner-Golbs, A., Neuber, S., Kamlage, B., Christiansen, N., Bethan, B.,
Rennefahrt, U., et al. (2019). Effects of long-term storage at –80 °C on the
human plasma metabolome. Metabolites 9 (5), 99. doi:10.3390/metabo9050099

Yin, P., Lehmann, R., and Xu, G. (2015). Effects of pre-analytical processes on
blood samples used in metabolomics studies. Anal. Bioanal. Chem. 407, 4879–4892.
doi:10.1007/s00216-015-8565-x

Frontiers in Molecular Biosciences frontiersin.org13

Gegner et al. 10.3389/fmolb.2022.961448

https://doi.org/10.15252/msb.20178124
https://doi.org/10.15252/msb.20178124
https://doi.org/10.1021/acs.jproteome.8b00903
https://doi.org/10.1021/acs.jproteome.9b00320
https://doi.org/10.3390/metabo9040064
https://doi.org/10.1016/j.xcrm.2021.100287
https://doi.org/10.15252/emmm.201910427
https://doi.org/10.15252/emmm.201910427
https://doi.org/10.1016/j.ebiom.2020.103147
https://doi.org/10.1016/j.ab.2015.03.003
https://doi.org/10.1016/j.ab.2015.03.003
https://doi.org/10.3390/metabo11090638
https://doi.org/10.1373/clinchem.2013.211979
https://doi.org/10.1373/clinchem.2013.211979
https://doi.org/10.1515/cclm-2019-1089
https://doi.org/10.15252/msb.20199111
https://doi.org/10.1093/bioinformatics/btab748
https://doi.org/10.1093/bioinformatics/btab748
https://doi.org/10.1186/1477-5956-11-10
https://doi.org/10.1111/jcmm.12916
https://doi.org/10.1016/j.xcrm.2021.100369
https://doi.org/10.3390/metabo9080156
https://doi.org/10.1093/hmg/ddz309
https://doi.org/10.1016/B978-0-12-818607-7.00005-0
https://doi.org/10.3390/metabo9050099
https://doi.org/10.1007/s00216-015-8565-x
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.961448

	Pre-analytical processing of plasma and serum samples for combined proteome and metabolome analysis
	Introduction
	Results
	Identifying metabolites and proteins affected by temperature and sitting time
	Scoring plasma and serum sample quality using proteomic and metabolomic signatures

	Discussion
	Measuring the change of the metabolome and proteome
	Rapid handling and cold storage for up to 2 h as SOP
	Quality control signatures to score plasma and serum samples
	Summary

	Methods
	Sampling and sample treatment/design
	Metabolomics
	Proteomics
	LIMMA analysis to test for individual effects
	Multi-omics factor analysis (MOFA) of the combined metabolomics and proteomics data sets
	Dimension reduction analysis
	Partial least square-discriminant analysis
	Stability analysis using mixed linear models
	Pathway analysis of proteomic data
	Proteomic and metabolomic signatures of plasma and serum samples

	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


