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SUMMARY

Deciphering the impact of genetic variants on gene
regulation is fundamental to understanding human
disease. Although gene regulation often involves
long-range interactions, it is unknown to what extent
non-coding genetic variants influence distal molecu-
lar phenotypes. Here, we integrate chromatin profiling
for three histone marks in lymphoblastoid cell lines
(LCLs) from 75 sequenced individuals with LCL-spe-
cific Hi-C and ChlA-PET-based chromatin contact
maps to uncover one of the largest collections of local
and distal histone quantitative trait loci (hQTLs). Distal
QTLs are enriched within topologically associated
domains and exhibit largely concordant variation
of chromatin state coordinated by proximal and
distal non-coding genetic variants. Histone QTLs are
enriched for common variants associated with auto-
immune diseases and enable identification of putative
target genes of disease-associated variants from
genome-wide association studies. These analyses
provide insights into how genetic variation can affect
human disease phenotypes by coordinated changes
in chromatin at interacting regulatory elements.

INTRODUCTION

Deciphering the genetic and molecular basis of human traits and
disease is a fundamental problem in biology and personalized
medicine. Genome-wide association studies (GWAS) and deep
sequencing efforts have identified common and rare single nucle-
otide genetic variants, as well as structural variants associated
with diseases ranging from inflammatory bowel disease and Alz-
heimer’s disease to cancer (Hindorff et al., 2009; Lambert et al.,
2013; Rivas et al., 2011; Zuk et al., 2014). A majority of disease-
associated common variants lie in poorly annotated non-coding
genomic regions. Identifying target genes of these variants is
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complicated by the fact that many of these variants lie in distal en-
hancers (Harismendy et al., 2011; Maurano et al., 2012; Pomer-
antz et al., 2009; Schaub et al., 2012; Smemo et al., 2014), which
can regulate genes several megabases (Mbs) away through long-
range chromatin contacts (Kleinjan and van Heyningen, 2005;
Nobrega et al., 2003; Sanyal et al., 2012; Visel et al., 2009).

In this study, we integrated long-range chromatin contact maps
with genetic variation and multiple molecular phenotypes to eluci-
date a comprehensive regulatory network of local and distal-
acting regulatory and expression quantitative trait loci (QTLs).
We mapped inter-individual variation of three histone marks asso-
ciated with regulatory elements such as enhancers and promoters
in lymphoblastoid cell lines (LCLs) from a cohort of 75 individuals
and used these to identify histone QTLs (hQTLs). In addition, we
generated Hi-C and chromatin interaction analysis by paired-end
tag sequencing (ChIA-PET) chromatin contact maps (Fullwood
et al., 2009; Lieberman-Aiden et al., 2009) and used them to iden-
tify genetic variants that act over large genomic distances poten-
tially through long-range interactions. We identified hQTLs for
~10% of predicted regulatory elements in LCLs. Fifteen percent
of those were also associated with chromatin state changes at
distal elements. Our findings indicate that genetic variation in reg-
ulatory elements can act over large distances to affect concordant
changes in chromatin states and expression at distal sites often
through transcription factor (TF) motif disruptions. hQTLs in LCLs
were enriched in GWAS SNPs associated with immune-mediated
diseases allowing us to predict putative target regulatory elements
and genes of several disease-associated common variants. Over-
all, our study provides novel insights into how genetic variation
can affect human disease phenotypes by disrupting regulatory
networks mediated by long-range chromatin interactions.

RESULTS

Profiling Chromatin Variation in a Large Cohort of
Lymphoblastoid Lines Enables Comprehensive Mapping
of Local Histone QTLs

To study the relationship between genetic variation and chro-
matin activity, we generated chromatin immunoprecipitation
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sequencing (ChIP-seq) data for three histone marks (H3K4me3,
H3K4me1, and H3K27ac) in lymphoblastoid cell-lines (LCLs)
from 75 unrelated individuals of the Yoruba (YRI) population,
for whom high quality genotypes were available (1000 Genomes
Project). H3K4me3 is primarily associated with promoters,
H3K4me1 with active, bivalent, and weak enhancers, and
H3K27ac with active promoters and enhancers (Ernst et al.,
2011). We obtained ~25 million uniquely mapping paired-end
reads (2 x 101 bp) per experiment (Figures S1A and S1B; Table
S1; Supplemental Experimental Procedures). In addition, we
utilized DNase-l hypersensitivity (DHS) data, which assays
chromatin accessibility (for 68 YRI individuals) (Degner et al.,
2012) and RNA sequencing (RNA-seq) data to quantify gene
expression (for 54 YRI individuals) (Lappalainen et al., 2013).

To identify single nucleotide polymorphisms (SNPs) associ-
ated with chromatin variation, we performed quantitative trait
locus (QTL) mapping. We used the ChIP-seq and DHS data to
identify and quantify normalized signal at regions of enrichment
(peaks). We also quantified normalized expression levels for all
genes using the RNA-seq data (Figures S1C and S1D; Supple-
mental Experimental Procedures). All signal measurements
were corrected for confounding factors (Figures S1E and S1F;
Supplemental Experimental Procedures). To identify local
QTLs, we tested for associations of histone/DHS peaks/gene
expression and the most strongly associated SNP within
+ 2 kb of peak boundaries/promoters using a linear regression
framework (Degner et al., 2012), resulting in a total of 22,624,
14,142, and 9,575 local hQTLs (10% false discovery rate
[FDR]) linked to 10%-15% of H3K4mel, H3K27ac, and
H3K4me3 peaks respectively, as well as 2,450 DNase | sensi-
tivity quantitative trait loci (dsQTLs) and 933 expression quan-
titative trait loci (eQTLs) (Figures 1A, 1B, and S1G; Table S2;
Supplemental Experimental Procedures).

74% and 19% of all local QTLs were associated with enhancer
and promoter chromatin states, respectively (Supplemental
Experimental Procedures). QTLs often jointly influence multiple
molecular phenotypes within the same region (Figure S1H).
One example is shown in Figures 1C-1E where disruption
of a GABP TF binding site is associated with decreased signal
of three histone marks (hQTL), chromatin accessibility (dsQTL),
and RNA expression (eQTL) at the ZNF695 gene promoter (Fig-
ures 1C-1E). Globally, we find that 66% of local eQTLs are
also local hQTLs (3.5-fold-enriched, p value = 5.6e-72, Fisher’s

exact test; Figure 1F; Supplemental Experimental Procedures).
eQTLs that do not coincide with hQTLs may influence RNA
processing rather than steady-state gene expression (Lappalai-
nen et al., 2013), as over 30% of them reside in the 5’UTR
of at least one mRNA isoform (Supplemental Experimental
Procedures).

Long-Range Chromatin Contacts Are Associated with
Concordant Regulatory Variation across Distal Genomic
Elements
Long-range chromatin contacts are responsible for physical in-
teractions between distal regulatory and transcribed elements.
We hypothesized that genetic variants associated with local vari-
ation in chromatin state may also correlate with the activity of
physically linked distal elements. To address this, we generated
Hi-C data (1.4 billion reads) in a reference LCL (GM12878) to
obtain a chromatin contact matrix (resolution at single restriction
fragment length, median = 2,274 bp, mean = 3,697 bp). We used
a covariance measure as a robust proximity estimate to identify
putatively physically interacting elements (proximity score >0.4;
Figures S2A-S2E; Supplemental Experimental Procedures). We
tested whether a SNP is more likely to affect a coordinated gain
or loss of histone modification, DHS, or RNA signal at pairs of
local (<2 kb from SNP) and distal (>50 kb) elements if the pairs
showed evidence of physical interaction (Figure 2A). Consistent
with our hypothesis, pairs of physically interacting peaks, or
genes, showed more concordant associations of SNPs with
local and distal chromatin variation (Figures 2B, 2C, and S2F).
Since regions that are proximal in linear genomic distance are
also more likely to physically interact, Hi-C supported SNP-peak
pairs span shorter genomic distances than non-interacting pairs.
To account for this distance bias, we calculated the enrichment
of Hi-C interactions linking local-distal pairs that showed a
genetic association (p value < 107 for increasing distance
cut-offs (Supplemental Experimental Procedures). As distance
increases between a SNP and a distal element, Hi-C-linked pairs
are increasingly enriched for genetic associations (Figure 2D).
The effect is particularly strong for RNA expression (>10-fold
enrichment of genetic associations in Hi-C connected fragments
at distances >200 kb). Interestingly, physically interacting re-
gions involving distal DHS peaks are the exception to this obser-
vation (Figures 2C and S2F). This could be explained by the
largely local nature of DHS regulation in contrast to more distally

Figure 1. Local QTLs

(A) Number of local QTLs (10% FDR) for histone marks, RNA expression (Lappalainen et al., 2013), and DHS sites (Degner et al., 2012). Peaks are classified as
promoters (“TSS”), “enhancer (ENH),” and “other” based on previously defined chromatin states (Kasowski et al., 2013).

(B) Distribution of local QTLs on chromosome 1 for histone marks, DHSs, and RNA. The vertical red line marks the location of the local joint QTL described in
(C)-(E).

(C) Signal tracks for three histone marks and DHS in a 5 kb region around a joint local hQTL/dsQTL/eQTL coinciding with the ZNF695 promoter. The signal is
aggregated across individuals by their genotype at rs61373194. The position of the QTL SNP is indicated with a vertical dashed red line.

(D) Boxplots of aggregated signal for gene expression, histone marks, and DHS grouped by the genotype of the QTL SNP. The normalized signal corresponds to
the signal averaged across the entire peak region as indicated by black dashed lines in (C).

(E) Position weight matrix (PWM) for GABP (ETS_known9). The third position corresponds to the location of the motif altering SNP (rs61373194). The genotype
with the strongest signal corresponds to a better match to the consensus sequence. Note: the motif is on the (—) strand. Therefore the genotypes are shown for
the (—) strand to correspond to the PWM.

(F) Overlap between local eQTLs and hQTLs (calculated for promoters within 5 kb of a histone peak). The overlap is highly significant (Fisher’s exact test);
two-thirds of all eQTLs are also hQTLs. There are 8,239 promoters that coincide with non-QTL histone peaks.

See also Figure S1 and Tables S1 and S2.
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Figure 2. Evidence of Genetic Coordination among Distal Functional Elements

(A) Schematic of the four possibilities for genetic and physical coordination: the effect of a local QTL on a distal peak can be in the same (+/+ and —/—) or opposite
direction (+/— and —/+) and the local QTL can be physically interacting with distal peak or not (bottom versus top).

(B) The effect (B of the regression) of a local QTL onits local peak (y axis) and distal H3K27ac peak (x axis) grouped by Hi-C correlation score between both loci into
“interacting” (>0.4) and “non interacting” (< 0.4 ) (bottom versus top). The direction of the effect tends to be in the same direction for physically interacting pairs
but not for non-interacting pairs (see also Figure S2F for QTLs distal to the other marks, DHSs, and RNA).

(C) Enrichment of physical interaction among pairs of local QTLs and all distal genomic features (>50 kb) that covary in the same direction with respect to the local
QTL SNP. The enrichment is shown for all combinations of histone marks, RNA, and DHSs (Fisher’s exact test, red bars indicate significance with *p < 0.01 and
*p < 10710).

(D) Enrichment for genetic associations (p value < 10~6) in physically interacting regions as a function of the minimal distance between the SNP-distal peak pair.

Enrichments and 95% confidence intervals are calculated using Fisher’s exact test.

coordinated regulatory changes in histone marks, or alterna-
tively it could simply be due to the greater power of our deeply
sequenced histone data.

Long-Range Chromatin Contact Maps Increase Power
for Distal QTL Discovery

Given the support for genetically coordinated regulatory variation
through long-range chromatin contacts, we next sought to identify
local QTLs associated with physically interacting distal (>50 kb)
molecular phenotypes (“distal QTLs”). We paired SNPs that
were local h/ds/eQTLs with distal (within 2 Mb) histone/DHS peaks
and genes and grouped the pairs into whether or not they are
physically interacting based on Hi-C proximity scores. We then as-
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sessed the significance of the associations independently for both
groups, leveraging the Hi-C data as an orthogonal filter (Bourgon
et al., 2010). To ensure that our distal QTLs were independent
(i.e., not in linkage-disequilibrium (LD) with a local QTL for the
same peak) we (1) identified and kept the most significant SNP
(regardless of distance) for each peak; (2) removed all SNPs
in LD (2 > 0.2) with the SNP identified in the previous step;
repeated steps (1) and (2) until no SNPs were remaining (Fig-
ure S3D; Supplemental Experimental Procedures). From this set
of independent QTLs for each peak/gene, we defined distal
QTLs as being located >50 kb from the peak/gene (Table S2).
The resulting QTLs were compared to those obtained from a
standard QTL analysis. Using Hi-C as a filter, we identified
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20,950 distal QTLs across all tested molecular phenotypes as
compared to 8,305 using the standard approach (10% FDR) (Fig-
ures 3A and S3A; Supplemental Experimental Procedures). Hi-C
data increases power to detect distal QTLs irrespective of
genomic distance constraints with increased gains for larger
window sizes by focusing the association tests on SNP-peak
pairs that are more likely to be associated (Figure 3B; control
of permuted Hi-C links, Figures S3B and S3C; Supplemental
Experimental Procedures). Most distal QTLs were located within
200 kb from the associated functional element (Figure 3C). We
hypothesized that if QTLs can affect regulatory variation at
distal elements through transient chromatin contacts, it is likely
that a variant will have a weaker effect on a distal element
compared to a local element. Consistent with this hypothesis,
we find smaller effect sizes for distal QTLs compared to local
QTLs (p values < 10~%; Wilcoxon rank sum test) (Figure 3D).

Distal Chromatin QTLs Are Enriched within
Topologically Associated Domains

Distal QTLs for multiple molecular phenotypes were found to
often fall in regions with high density of physical interactions
(Figure 3E) that highly overlap with topologically-associated do-
mains (TADs) (Dixon et al., 2012; Rao et al., 2014) (Figure S2E).
Mirroring the real position of the SNP relative to the distal molec-
ular trait produced fewer pairs residing within TADs (Figure 3F),
suggesting that distal chromatin QTLs are likely to be enriched
within TADs. To explicitly test this hypothesis, we shuffled the lo-
cations of TADs and compared the number of distal QTLs falling
within the actual TADs versus numerous shuffled sets (Supple-
mental Experimental Procedures). We observed a significant
enrichment (p value < 1077 one-sided t test) of distal QTLs
involving all three histone marks (Figures 3G and S3E) and a cor-
responding lack of enrichment for distal associations across
TAD boundaries (Figure S3F). This result was confirmed in an

alternate analysis in which we examined the fraction of distal
QTLs falling within TADs compared to random sets of dis-
tance-matched SNP-peak pairs. Again, distal QTLs for all three
histone marks, but not RNA (p = 0.19) and DHS (p = 0.25),
were found to be enriched within TADs (p values < 0.01; Fisher’s
exact test). Similarly, the replication timing (Koren et al., 2012) of
pairs of regions connected by a distal QTL were more similar
compared to equidistant control regions showing no significant
genetic associations (Figures 3H and 3I).

hQTLs Form a Highly Connected Network of Diverse
Physically Interacting Regulatory and Transcribed
Elements

To further dissect the functional elements associated with
regulatory variants, we utilized combinatorial chromatin states
(Kasowski et al., 2013) and GENCODE v19 transcriptome anno-
tations (Harrow et al., 2012) to label peaks as putative enhancers
or promoters (Supplemental Experimental Procedures). The ma-
jority of local-distal QTLs (88%) capture associations between
and across enhancers and promoters (Figure 4A). QTLs involving
enhancer-enhancer pairs represent the largest and, for the
enhancer marks (H3K4me1, H3K27ac) a significantly higher
than expected, proportion (54%) of distal hQTLs (Figures 4A
and 4B). A total of 5.7% of QTLs involve pairs of local and distal
promoters (>2-fold more than expected for all marks and RNA;
Figure 4B) consistent with Pol Il ChlA-PET studies reporting
extensive promoter-promoter links (Li et al., 2012).

We systematically studied the properties of genetically coordi-
nated regulatory elements. For enhancer and promoter local
hQTLs, we computed the “out-degree,” i.e. the number of out-
going associations to distal enhancers and/or promoters (Fig-
ures 4C and 4D). For regulatory elements that are linked by at
least one distal QTL, we computed their number of associated
incoming distal hQTLs (“in-degree”; Figures S4A and S4B).

Figure 3. Distal QTLs

(A) Number of distal QTLs identified with and without Hi-C. To identify distal QTLs we used SNPs that are a local QTL for any of the histone marks or RNA, split the
set of SNP-peak pairs based on whether or not they are physically interacting (Hi-C correlation > 0.4), and calculated the FDR for each set individually (Figure S3A;
Supplemental Experimental Procedures).

(B) Q-Q plot for the different sets of SNP-peak pairs for H3K27ac. The expected p values were calculated by permuting sample labels (Supplemental Experimental
Procedures). Q-Q plots for the other marks as well as a control set using permuted Hi-C links is shown in Figures S3A and S3B.

(C) Distribution of distances between local-distal hQTL peak pairs identified using Hi-C interaction data or a standard hQTL approach. Most distal QTLs are
<200 kb apart from their targets.

(D) Distribution of absolute effect sizes of local and distal QTLs. Globally, local effects are stronger than distal effects.

(E) Heatmap of estimated Hi-C interaction counts for a region harboring multiple significant distal and local QTLs. The Hi-C interactions are based on a covariance
method (Supplemental Experimental Procedures). Hi-C fragments with a correlation score >0.4 were considered interacting. Local QTLs are indicated on the
diagonal; off-diagonal dots indicate distal QTLs (>50 kb). Black squares correspond to contact domain calls from Rao et al. (2014).

(F) The position of distal QTLs was mirrored (see schematic) to test whether local-distal QTL pairs are more likely to reside within the same TAD. The schematic
indicates how QTL SNPs were mirrored relative to the associated feature (histone peak, DHS, or RNA). Shown is the fraction of feature-QTL pairs that share the
same TAD (orange) compared to feature-mirrored QTL pairs (gray). Features more frequently share the same TAD with the true QTL than the mirrored QTL. To
avoid any bias we used the non-Hi-C aware set of QTLs for this analysis.

(G) Distribution of fractions of local-distal H3K4me1 QTLs sharing the same TAD for 100 sets of shuffled TADs. The fraction of QTL pairs sharing true TADs is
indicated by the red vertical line. For chromatin marks, the fraction of local-distal hQTLs that share the same TAD is significantly higher than for the shuffled TADs
(one-sided t test). To avoid any bias we used the non-Hi-C aware set of QTLs for this analysis. The same analysis for the other marks is shown in Figure S3E.
(H) Comparison of replication timing for local-distal QTL pairs. Shown are scatterplots of the replication timing for an H3K27ac peak region (y axis) and the region
of its distal QTL (x axis; right panel) or mirrored QTL (see schematic in Figure 3F) (x axis; left panel). The peak-real QTL pairs show higher correlation than the peak-
mirrored QTL pairs (Pearson correlation).

(I) The cumulative distribution of replication timing difference between peak and QTL regions (orange) and peak and mirrored QTL regions (gray) is shown. The
differences for the hQTL- real peak region pairs are significantly smaller than for the corresponding mirrored positions (Wilcoxon rank sum test).

See also Figure S3 and Table S2.
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(B) The log odds ratio of observed versus expected combinations of chromatin states for local and distal QTL pairs is shown for each chromatin mark, RNA, and
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(legend continued on next page)
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QTLs local to enhancers or promoters are frequently associated
with one or more distal enhancers (3,934) and promoters (1,384)
(Figures 4C and 4D). We identified 184 local enhancer hQTLs
with distal effects on gene expression, 12.5% of them associ-
ated with more than 1 gene (Figure 4E). Reciprocally, 26% of
the 151 genes with an eQTL are associated with SNPs at multiple
enhancers (Figure 4F). Interestingly, we identified 84 promoter
hQTLs that are eQTLs for a distal gene (Figure 4F). As expected,
these pairs of genes with a shared regulatory variant showed
significantly more correlated expression than distance-matched
random pairs of genes (Figure 4G; p value = 1.5e-6, Wilcoxon
rank sum test). Overall, these results suggest extensive overlap
of eQTLs and hQTLs, and a subset of joint hQTL-eQTLs involves
multiple regulatory elements or genes.

Looping Chromatin Contacts Connect Covarying Loci
that Are Enriched for Genetic Associations

To independently assess the extent of genetic associations be-
tween physically interacting loci, we generated ChlA-PET data
for the H3K4me3 promoter mark and RAD21 (a subunit of
the cohesin complex involved in mediating distal chromatin
contacts) in GM12878 cells (Figure 5A; Supplemental Experi-
mental Procedures). We identified 10,220 chromatin loops for
H3K4me3 and 41,532 for RAD21 (5% FDR), a large portion
(~80%) were found to overlap with loops uncovered in a previ-
ous study (Rao et al., 2014) indicating the good quality of our
data (Figure S5A). We characterized the loops by chromatin
state at interacting sites. As expected (Jin et al., 2013; Rao
et al., 2014), interactions between enhancers and promoters
were highly prevalent (9,147; 24% of all ChlA-PET links), often
involving multiple enhancers (2,085) linked to the same promoter
(Figure 5B; Supplemental Experimental Procedures). We also
find ~2,028 promoters (5% of ChIA-PET links) linked to a
different distal promoter and 470 promoters linked to multiple
distinct promoters (Figure 5B). H3K4me3 ChIA-PET was en-
riched for enhancer-promoter-interactions whereas the RAD21
ChIA-PET was enriched for promoter-promoter interactions
and “other” chromatin state classes including repressed and
CTCEF states (Figure 5C; Fisher’s exact test).

We further used our ChlA-PET data along with Hi-C data from
Rao et al. (2014) to test if physically interacting loci are enriched
for genetic associations (p value < 107%) between SNPs and
distal molecular phenotypes, as compared to random sets of
distance-matched SNP-peak pairs (EEP). We observed a sig-
nificant enrichment of both ChlA-PET and Hi-C loops in distal
associations between SNPs and all three histone marks (not
significant for H3K4me3 in Hi-C loops), as well as RNA expres-
sion levels (Figure 5D). This result was confirmed in an alternate
analysis in which we shuffled the location of the loops and
counted the number of associations involving SNP-peak pairs
located on opposite ends of chromatin loops relative to multiple
sets of shuffled loops (Supplemental Experimental Procedures).
The ChIA-PET and Hi-C loops were both enriched in associa-

tions between a SNP and the H3K4me3 mark (for ChlA-PET
also H3K27ac), DHS and RNA expression levels (Figure S5B),
with expression showing the strongest enrichment (~2.5-fold
and ~2.2-fold, in ChlA-PET and Hi-C loops, respectively).

To corroborate our observation that local-distal hQTLs tend to
physically interact, we tested whether pairs of regulatory ele-
ments linked by ChIA-PET interactions also exhibit concordant
variation of molecular phenotypes. Indeed, we observed signifi-
cant covariation of histone/DHS signal and expression levels
(Figures 5E and 5F; Wilcoxon rank sum test p < 1e-16) among
pairs of enhancers/promoters and genes linked by ChIA-PET
interactions.

hQTLs Potentially Affect Chromatin State at Regulatory
Elements by Disrupting Binding Sites of Transcription
Factors

To investigate the potential molecular basis of hQTLs, we used
ENCODE TF ChlP-seq data from GM12878 (Dunham et al.,
2012) to assess the enrichment of in vivo TF binding sites at reg-
ulatory elements associated with local hQTLs. For each TF, we
computed the enrichment of overlap between histone peaks
containing at least one TF peak and those associated with a local
hQTL (Fisher’s exact test). While hQTL-associated H3K27ac
peaks were enriched for key lymphoid TFs such as SPI1
(PU.1), BCL11A, and PAX5, hQTL-associated H3K4me3 peaks
were enriched for general regulatory factors such as POLR2A,
USF1, ELF1, and TAF1 (Figures 6A, 6B, S6A, and S6B). A com-
plementary, rank-enrichment approach (Figure 6C) (Supple-
mental Experimental Procedures) revealed similar results: the
highest scoring TFs by the Fisher’s exact test (e.g., SPI1) show
significant overlap enrichments across the entire spectrum of
histone ChIP-seq peaks; low scoring TFs (e.g., NRF1 and FOS)
exhibit a distinct lack of enrichment at peaks showing significant
QTL associations (Figure 6C).

We next tested whether disruption of TF binding motifs could
explain the observed variation of histone marks. For each TF, we
used one representative motif position weight matrix (PWM)
(Kheradpour and Kellis, 2014). After extensive filtering to avoid
false positive calls of motif matches across the genome (Supple-
mental Experimental Procedures), we computed the Spearman
correlation between the motif PWM score at the SNP and the
histone mark signal at the peak, across all individuals. For the
subset of peaks/genes with a QTL that passed filtering (13%
H3K4me1, 25.9% H3K4me3, 18.7% H3K27ac, 33.3% DHS,
and 32.4% RNA), we found significantly correlated motifs for
89%-95% of peaks (5% FDR; Figure 6D; see Table S3 for full
analysis results). For H3K27ac, TFs with the highest proportion
of positive correlations include activating enhancer-associated
TFs (e.g., NFKB, BCL, SPI1), whereas TFs with known repressive
roles (e.g., REST, ZBTB33, SRF) show a larger proportion of
negative correlations (Figure 6E; see Figures S6C-S6F for all his-
tone marks, DHS, and RNA). Similarly, we found a correlated
motif for the majority of tested distal QTL peaks (60%-73% for

(G) Pearson correlation of expression signal among pairs of distal promoters that are associated with the same hQTL (one local, one distal). The correlations are
compared to a set of distance matched permuted pairs (permuted genes) and a set of real links with permuted sample names (permuted individuals). Promoters
sharing an hQTL are more correlated than permuted data (Wilcoxon rank sum test, p = 2.8e-12).

See also Figure S4.
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Figure 5. Chromatin Loops and ChIA-PET

(A) Example locus showing a genetic variant (rs4405472; dashed vertical line) that is a local hQTL for H3K4me1 and H3K4me3 as well as a distal hQTL for
H3K4me3 at a promoter > 200 kb away, skipping several genes. The two loci are physically linked as indicated by significant ChIA-PET interaction calls (top) and
a Hi-C-based chromatin loop call (bottom) (Rao et al., 2014). The green line indicates a chromatin contact domain.

(B) ChlA-PET-links between one or more enhancers/promoters and distal genes based on combined interaction calls for H3K4me3 and RAD21.

(legend continued on next page)
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histone marks and DHS, 35% for RNA). Joint analysis of motif
correlations with local and distal peaks revealed largely concor-
dant effects (Figure S6G), consistent with co-variation of the
distally associated peaks (Figure 2B).

To further characterize the local chromatin environment
of motif-disrupting quantitative trait nucleotides (QTNs), we
extracted ChlP-seq signal for H3K27ac around each H3K27ac
QTN (+500 bp), averaged the signal across individuals at each
location, sorted the profiles into six groups using unsupervised
clustering, and aggregated the signal in each cluster by geno-
type (Figure 6F; Supplemental Experimental Procedures).
Consistent with TF binding being a major driver of chromatin
variation, we observe that the vast majority of QTNs lie in nucle-
osome-free regions, either between two peaks (clusters 1,2,3)
or at peak shoulders (cluster 5,6) with only a small subset
potentially coinciding with nucleosomes (cluster 4) (Figure 6F).
Grouping and aggregating the signal for other histone marks
and DHS of the same regions according to the H3K27ac clusters,
we found high concordance between histone marks and DHSs
(Figures 6F and S6H). Sequencing of micrococcal nuclease-
digested chromatin (MNase-seq) data from GM12878 (Kun-
daje et al., 2012) confirmed that the chromatin mark patterns
are consistent with overall nucleosome positioning (Figures 6F
and S6H).

hQTLs Are Enriched for Autoimmune Disease-
Associated Variants Enabling the Identification of
Putative Disease-Associated Target Genes and
Regulatory Networks

Enhancer elements active in disease-relevant cell types have
been previously shown to be enriched for disease-associated
variants from genome-wide association studies (GWAS) (Karc-
zewski et al., 2013; Maurano et al., 2012; Nicolae et al., 2010;
Schaub et al., 2012). Consistently, we found significantly more
GWAS SNPs in strong LD (* > 0.8) with hQTLs than SNPs
matched for MAF, distance to promoter/TSS, and LD (Figure 7A;
data from Table S4). When separating hQTLs into enhancers and
promoters, we found a significant enrichment of GWAS SNPs for
both categories in all three marks (Figures 7A and S7A). Histone
peaks with hQTLs show stronger enrichment in GWAS SNPs
than peaks without a hQTL (odds ratio [OR] = 1.22, p = 6.9e-8,
95% confidence interval [Cl] = [1.14,1.32] across all SNPs in
the NHGRI GWAS catalog).

Further, we found that hQTL SNPs for all histone marks
are significantly enriched (Fisher’s exact test) for SNPs associ-
ated (association p values < 1e-5) with autoimmune diseases
including multiple sclerosis, rheumatoid arthritis, Crohn’s dis-
ease and ulcerative colitis (Figure 7B). These findings were

corroborated using rank enrichment analysis for the subset of
diseases/traits for which complete summary statistics were
available (Table S4; Supplemental Experimental Procedures):
hQTLs were enriched in GWAS SNPs with moderate to strong
associations with autoimmune diseases (Figures 7C, 7D, and
S7B), but were not enriched for coronary artery disease (Fig-
ure S7B). Both methods also exhibit strong enrichment of LCL
hQTLs in Alzheimer’s disease (AD)-associated GWAS variants
(Figures 7B and 7D), consistent with recent findings indicating
that AD GWAS variants are strongly enriched in regulatory
elements active in CD19" primary B cells and CD14" primary
monocytes (Gjoneska et al., 2015).

To identify putative target genes of disease-associated
hQTLs, we intersected our local and distal (GWAS were
expanded using European LD, r? > = 0.8, QTLs were expanded
using Yoruban LD, r* > = 0.8) hQTLs and eQTLs with genome-
wide significant GWAS tag SNPs (Supplemental Experimental
Procedures) for each enriched disease (Figure S7C; Table S4).
Our analysis recapitulated several known target genes and pro-
vided other new candidates. For example, using Crohn’s disease
(CD) as a case study, we linked 115 of 425 genome-wide signif-
icant (p < 107°) tag SNPs to 184 regulatory elements and 33
genes (Figure 7E). We find distal hQTLs/dsQTLs for
SLC25A20, WDR6, APEH, RHOA, and TCTA as well as distal
eQTLs for RP11-387H17.4, ORMDL3, and ERAP2. eQTLs in
LD with CD GWAS SNPs have been previously reported for the
ERAP2 and ORMDL3 genes (Franke et al., 2010; Van Limbergen
et al., 2009).

DISCUSSION

We have integrated genetic, chromatin, and expression variation
data with chromatin contact maps in LCLs to characterize the ef-
fects of genetic variants on distal regulatory elements and gene
expression. We developed a novel approach using three-dimen-
sional chromatin contact maps from Hi-C data as a scaffold
for long-range association testing that significantly increases po-
wer to detect distal hQTLs by restricting hypothesis testing to
sites of physical proximity. Most importantly, our study provides
mechanistic insights into genetically coordinated variation
occurring through three-dimensional physical contacts of regu-
latory elements.

In utilizing three-dimensional proximity to discover QTLs, we
make a number of observations pertaining to the role of chro-
matin structure in regulatory variation. We found that local and
distal hQTLs are abundant, suggesting a strong genetic basis
for the extensive variation of chromatin state (Kasowski et al.,
2013; Kilpinen et al., 2013; McVicker et al., 2013). Consistent

(C) The log odds ratio of observed versus expected state combinations for ChlA-PET-linked peaks. Expected state combinations are calculated by exhaustively
counting all possible combinations of states present at ChlA-PET peaks (Fisher’s exact test, red = p < 0.01).

(D) Enrichment of chromatin interactions in genetic associations (p value < 10~°) for each histone mark and RNA. Chromatin interactions were determined by
RAD21-ChIA-PET and Hi-C chromatin loops as defined by Rao et al. (2014). The 95% confidence intervals are shown in black (*p < 0.01; Fisher’s exact test).
(E) Pairs of promoters that are physically linked (ChIA-PET) show correlation of signal for several features. All features except DHS show significantly higher
correlation than a control of permuted, distance-matched links or permuted sample labels (Wilcoxon rank sum test).

(F) Same as (E) but for enhancers linked by ChIA-PET. Interacting enhancers are more correlated than any of the permuted, distance-matched data

(p value < 10~'® for all histone marks and DHS; Wilcoxon rank sum test).
See also Figure S5.
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with the high frequency of physical interactions within topologi-
cally associated domains (TADs), we find that pairs of local-distal
hQTLs are enriched within these domains and at looping chro-
matin contacts. Our results further suggest that specific genetic
variants harbored within regulatory elements may concordantly
affect local and distal histone modifications through interacting
networks of elements. Such concordance could involve a variant
in one element influencing another element in physical proximity
by recruitment of transcriptional regulators. Alternatively, the
process of transcription itself could influence local chromatin
(e.g., either directly through polymerase-mediated recruitment
of chromatin modifying enzymes, or indirectly by affecting
recruitment of histone modifying enzymes by a long non-coding
RNA (IncRNA) whose expression is directly affected) or the
QTL may influence chromatin state by affecting transcription of
enhancer RNAs.

Our results hold special relevance for medical genomics. The
robust disease enrichments we observe suggest that long-range
histone QTL mapping in diverse cell types will help elucidate the
relevant cell type-specific functional elements that give rise to
GWAS signal. Furthermore, we propose that hQTL mapping is
an important tool for linking GWAS tag SNPs to putative target
genes, regulatory elements, and networks bypassing the need
to first identify the causal variant (Figure 7). Future investigations
of these regulatory networks anchored on GWAS variants may
help elucidate the genetic and molecular mechanism underlying
diseases and traits.

EXPERIMENTAL PROCEDURES

ChIP-Seq

Cells were cross-linked with formaldehyde at 1% final concentration for
10 min. Chromatin corresponding to 20 million cells was sheared and
subjected to immunoprecipitation with antibodies to H3K4me3, H3K4mef,
or H3K27ac, respectively. Enriched fragments were subjected to lllumina
TruSeq library preparation and paired-end sequencing.

ChIP-Seq, DHS, and RNA-Seq Data Processing
We aligned histone mark ChlP-seq data sets for H3K4me1, H3K4me3 and
H3K27ac to personal genomes and subsampled the aligned reads to ensure

consistent sequencing depth. We then called peaks on each individual using
MACS (Zhang et al., 2008), merged peaks across all individuals, and extracted
signal in each region for each individual. This was followed by quantile normal-
ization, standardization and batch effects removal using PEER (Stegle et al.,
2010). We used a similar strategy for the DNase data from (Degner et al.,
2012). For quantifying RNA levels from GEUVADIS (Lappalainen et al., 2013),
we used Sailfish (Patro et al., 2014), followed by the above normalization
scheme on TPM values.

Hi-C

Twenty-five million cells for GM12878 were cross-linked, nuclei-lysed, and
chromatin-digested with Hindlll. DNA overhangs were biotinylated and
proximity ligated under dilute conditions to favor ligation of fragments in
three-dimensional proximity. DNA was then sheared, and biotinylated
fragments were pulled down with streptavidin beads to enrich for physically
interacting sites. Libraries were prepared for lllumina paired-end sequencing
and data was processed with the HICUP pipeline (http://www.bioinformatics.
babraham.ac.uk/projects/hicup/) to obtain the interaction counts for each
pair of restriction fragments. Based on the assumption that two sites that
largely interact with the same set of sites are likely to also interact with
each other we calculate the proximity between two restriction fragments A
and B as the ratio between fragments that interact with both A and B and
the number of fragments interacting with only one of them. The threshold of
0.4 for calling an interaction significant was determined based on concor-
dance measures across pseudo replicates (Figure S2; Supplemental Experi-
mental Procedures).

ChIA-PET

Cells for GM12878 were cross-linked and chromatin was prepared for
immunoprecipitation with antibodies against RAD21 and H3K4me3,
respectively. Immunocomplexes were pulled down with protein-G Dyna-
beads, marked with biotinylated linkers and subsequently proximity ligated.
Biotinylated fragments were pulled down with streptavidin Dynabeads
and libraries prepared for lllumina paired-end sequencing. Physical inter-
actions have been called using the Mango pipeline that corrects for known
biases in ChlA-PET experiments, such as genomic distance (Phanstiel
et al., 2015).

Local hQTL Calling

For identifying the local histone QTLs, we searched for the best correlated SNP
within 2 kb of the peak boundaries. The FDR was estimated based on an
distribution of empirical p-values obtained from associations from 1,000 sets
of peak-wise independent permutations of the sample labels (Figure S1; Sup-
plemental Experimental Procedures).

Figure 6. Transcription Factor Binding Analysis at Local and Distal hQTLs

(A) Overlap enrichment of TF binding in H3K27ac peaks that have a hQTL. For each TF, we plotted enrichment of having an hQTL and being bound by the
respective TF. Bars represent the 95% confidence interval. In red are significant enrichments, in gray non-significant ones.

(B) Overlap enrichment of TF binding in histone mark peaks, focusing on peaks with a local hQTL (first three columns) or peaks affecting distal sites (last three
columns). The enrichment value is only plotted for TF-histone mark pairs for which the enrichment was significant. Rows are sorted by the fold enrichment for
peaks with a local H3K27ac QTL (displayed in A).

(C) Rank enrichment of TF binding in H3K27ac peaks. We plot the fold change enrichment of H3K27ac peaks in TF binding sites at increasing levels of significance
for called hQTL peaks (red). The background enrichment was obtained by permuting the p values between peaks (gray).

(D) Number of total peaks that show correlation between a TF motif score and the molecular phenotype. For each molecular phenotype, we computed the
correlation between signal and motif score and defined significant motif disruptions using permutations (5% FDR). The number of peaks with at least one
significantly correlated TF motif within 2 kb is shown. For each molecular phenotype, peaks were grouped by the number of motif-disrupting SNPs per peak.
(E) Fraction of H3K27ac hQTLs that are significantly correlated with TF motif disruptions. TF motifs show positive and negative correlation with the local histone
mark signal and are sorted by the difference between percent positive and negative correlations. The total number of tested SNP-peak pairs across all H3K27ac
peaks is annotated next to the TF name. Only TFs with N > = 50 are shown.

(F) The signal surrounding H3K27ac QTNs was extracted and grouped into six clusters (pam clustering, Supplemental Experimental Procedures). The aggregate
signals for the six clusters are shown for the high-, heterozygous- and low-genotypes (blue, purple, red) for H3K27ac, H3K4me3, H3K4me1, and DHS.
Nucleosome positioning is indicated by MNase signal extracted from the same regions for a single individual (left to right; signal heat maps are shown in Fig-
ure S6H). As expected, histone signal coincides with MNase signal/nucleosomes, whereas DNase hypersensitivity coincides with nucleosome-free regions.
QTNs show concordant effects on all three histone marks.

See also Figure S6 and Table S3.
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Figure 7. Effect of Regulatory Elements and hQTLs on Phenotypic Diversity

(A) hQTLs are significantly enriched in GWAS SNPs. Dashed lines indicate the value for GWAS SNPs, while the null distributions indicate values by matching on
GWAS SNPs for MAF, LD, and distance to TSS. Empirical p values were computed comparing the true to matched null distributions.

(B) Enrichment of hQTLs in GWAS SNPs for specific diseases. We plot the negative log10 adjusted p value by log2 odds ratio of the Fisher’s exact test.

(C and D) Rank enrichment of hQTLs in GWAS SNPs. At each tier of significance for GWAS variants we plot the fold change enrichment in overlap with hQTLs
compared to base overlap of all GWAS variants at any significance level (red). We permute the p-values between the GWAS variants to generate background
enrichments (gray). Shown here is one example of positive enrichment each for H3K27ac and K8K4me3, respectively.

(E) Regulatory network for Crohn’s disease derived from hQTLs and eQTLs intersected with GWAS SNPs. The network consists of (1) GWAS tag SNPs
(gray boxes) connected to QTL SNPs (white nodes) through edges representing LD (gray edges), and (2) QTL SNPs connected to affected regulatory elements
(orange triangles) or genes (green nodes) through edges representing either local QTLs (solid lines) or distal QTLs (dotted lines). An orange edge represents an
hQTL/dsQTL; a green edge represents an eQTL. Distal QTL edges are labeled with the distance between the QTL SNP and the midpoint of the regulatory element.

(legend continued on next page)

Cell 162, 1051-1065, August 27, 2015 ©2015 Elsevier Inc. 1063



Distal hQTL Calling

We only tested SNPs that were associated with a local peak above the 10%
FDR threshold for local associations. We then calculated associations for
all SNP-peak pairs within 2Mb. To correct for LD and obtain a set of indepen-
dently associated SNPs for each peak, we applied the following algorithm:
(1) identify and keep the most significant SNP (regardless of distance) for
each peak, (2) remove any SNP in LD (* > 0.2), repeat (1) and (2) until no
SNP was left (Figure S3D; Supplemental Experimental Procedures). We then
split the set of SNP-peak pairs into Hi-C-interacting and non-interacting pairs
and calculated the FDR independently for each set using the a permutation-
based empirical p value distribution (1,000 sets of per-peak independent
sample label permutations).

Enrichment in Topological Domains

To assess the enrichment of distal QTLs within TADs we (1) calculated the
overlap relative to a set of shuffled domains, and (2) compared the fraction
of same-domain QTL pairs to random sets of distance-matched SNP-peak
pairs (only SNPs with a local QTL were used in the construction of this control
set) (Figures 3F and 3G).

TF Motif Analysis

We tested enrichment of TF binding sites in the peaks that have QTL using
a Fisher's exact test. Then, we checked whether TF motif disruption
(computed as TF motif PWM scores computed at each SNP per individual)
correlates with the signal at histone marks and DHS, or with RNA expression,
using Spearman correlation. We assessed significance by permutation testing
with an FDR of 5%.

GWAS Analysis

We overlapped hQTL SNPs for H3K27ac, H3K4me, and H3K4me3 with GWAS
SNPs with p < 1e-5 for over 150 diseases. We compared the overlap to two
negative sets: the set of GWAS SNPs with p > 1e-5 and a set of SNPs matched
for MAF, LD, and distance to TSS. We assessed difference in enrichment with
a one-sided Fisher’s exact test. We first thinned GWAS SNPs to keep only the
most significant variant of those variants in EUR LD with r* > 0.8 and then
considered an overlap with any SNP in EUR LD r? > 0.8 with the remaining
GWAS SNPs.

ACCESSION NUMBERS

The accession number for the data sets reported in this paper is Gene Expres-
sion Omnibus (GEO): GSE62742. The data and analysis files are at http://
chromovar3d.stanford.edu/ and http://www.zaugg.embl.de/data-and-tools/
distal-chromatin-qtls/, code at https://github.com/kundajelab/chromovar3d.
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