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Large-scale single-cell RNA sequencing (scRNA-seq) data sets 
that are produced in different laboratories and at different 
times contain batch effects that may compromise the 
integration and interpretation of the data. Existing scRNA-seq 
analysis methods incorrectly assume that the composition of 
cell populations is either known or identical across batches.  
We present a strategy for batch correction based on the 
detection of mutual nearest neighbors (MNNs) in the  
high-dimensional expression space. Our approach does 
not rely on predefined or equal population compositions 
across batches; instead, it requires only that a subset of the 
population be shared between batches. We demonstrate the 
superiority of our approach compared with existing methods 
by using both simulated and real scRNA-seq data sets. Using 
multiple droplet-based scRNA-seq data sets, we demonstrate 
that our MNN batch-effect-correction method can be scaled to 
large numbers of cells.

The decreasing cost of scRNA-seq experiments1–4 has encouraged the 
establishment of large-scale projects such as the Human Cell Atlas, 
which profile the transcriptomes of thousands to millions of cells. 
For such large studies, logistical constraints inevitably dictate that 
data be generated separately i.e., at different times and with different 
operators. Data may also be generated in multiple laboratories using 
different cell dissociation and handling protocols, library-preparation 
technologies and/or sequencing platforms. All of these factors result 
in batch effects5,6, in which the expression of genes in one batch dif-
fers systematically from that in another batch. Such differences can 
mask underlying biology or introduce spurious structure in the data; 
thus, to avoid misleading conclusions, they must be corrected before 
further analysis.

Most existing methods for batch correction are based on linear 
regression. The limma package provides the removeBatchEffect func-
tion7, which fits a linear model containing a blocking term for the 
batch structure to the expression values for each gene. Subsequently, 

the coefficient for each blocking term is set to zero, and the expres-
sion values are computed from the remaining terms and residuals, 
thus yielding a new expression matrix without batch effects. The 
ComBat method8 uses a similar strategy but performs an additional 
step involving empirical Bayes shrinkage of the blocking coefficient 
estimates. This procedure stabilizes the estimates in the presence of 
limited replicates by sharing information across genes. Other meth-
ods, such as RUVseq9 and svaseq10, are also frequently used for batch 
correction, but their focus is primarily on identifying unknown fac-
tors of variation, for example, those due to unrecorded experimental 
differences in cell processing. After these factors are identified, their 
effects can be regressed out as described previously.

Existing batch-correction methods were specifically designed for 
bulk RNA-seq. Thus, their application to scRNA-seq data is based 
on the assumption that the composition of the cell population within 
each batch is identical. Any systematic differences in mean gene 
expression between batches are attributed to technical differences 
that can be regressed out. However, in practice, the population 
composition is usually not identical across batches in scRNA-seq 
studies. Even if the same cell types are present in each batch, the 
abundance of each cell type in the data set can change depending 
upon subtle differences in procedures such as cell culture or tissue 
extraction, dissociation and sorting. Consequently, the estimated 
coefficients for the batch blocking factors are not purely technical 
but contain a nonzero biological component because of differences 
in composition. Batch correction based on these coefficients would 
thus yield inaccurate representations of the cellular expression pro-
files, and the results might potentially be worse than if no correction  
were performed.

An alternative approach for data merging and comparison in the 
presence of batch effects uses a set of landmarks from a reference 
data set to project new data onto the reference11,12. The rationale for 
this approach is that a given cell type in the reference batch will be 
most similar to cells of its own type in the new batch. Such projection 
strategies can be applied by using several dimensionality-reduction 
methods, such as principal component analysis (PCA) or diffusion 
maps, or by using force-based methods such as t-distributed stochastic  
neighbor embedding (t-SNE). This strategy depends on the selec-
tion of landmark points in high-dimensional space picked from the 
reference data set, which cover all cell types that might appear in the 
later batches. However, if the new batches include cell types that fall 
outside the transcriptional space explored in the reference batch, these 
cell types will not be projected to an appropriate position in the space 
defined by the landmarks (Supplementary Note 1).
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Here, we propose a new method for removal of discrepancies 
between biologically related batches according to the presence of 
MNNs between batches, which are considered to define the most sim-
ilar cells of the same type across batches. The difference in expression 
values between cells in an MNN pair provides an estimate of the batch 
effect, which is made more precise by averaging across many such 
pairs. A correction vector is obtained from the estimated batch effect 
and applied to the expression values to perform batch correction. Our 
approach automatically identifies overlaps in population composition 
between batches and uses only the overlapping subsets for correction, 
thus avoiding the assumption of equal composition required by other 
methods. We demonstrate that our approach outperforms existing 
methods on a range of simulated and real scRNA-seq data sets involv-
ing different biological systems and technologies.

RESULTS
Matching mutual nearest neighbors for batch correction
Our approach identifies cells that have mutually similar expression 
profiles between different experimental batches or replicates. We infer 
that any differences between these cells in the high-dimensional gene 
expression space are driven by batch effects (i.e., technical differences 
induced by the operator or other experimental artifacts) and do not 
represent the underlying biology of interest. We note that our defi-
nition of a batch effect may also incorporate some signal driven by 
biological features that are not of interest (for example, intersample 
differences due to genotype). After correction, multiple batches can 
be ‘joined up’ into a single data set (Fig. 1).

The first step of our method involves global scaling of the data 
through a cosine normalization. More precisely, if Yx is the expression 
vector for cell x, we define the cosine normalization as:

Y Y
Yx

x
x

← ( )1

Subsequently, we compute the Euclidean distance between the cosine-
normalized expression profiles of pairs of cells. Calculating Euclidean 
distances on these normalized data is equivalent to using cosine dis-
tances on the original expression values (Supplementary Note 2). 
Cosine distances have been widely used for measuring cell similarities 
according to expression profiles11,13–15 and are appealing because they 
are scale independent15 and thus robust to technical differences in 
sequencing depth and capture efficiency between batches.

The next step involves identification of mutual nearest neighbors. 
Consider an scRNA-seq experiment consisting of two batches 1 and 2.  
For each cell i1 in batch 1, we find the k cells in batch 2 with the small-
est distances to i1, i.e., its k nearest neighbors in batch 2. We do the 
same for each cell in batch 2 to find its k nearest neighbors in batch 1.  
If a pair of cells from each batch is contained in each other’s set of 
nearest neighbors, those cells are considered to be mutual nearest 
neighbors (Fig. 1). We interpret these pairs as containing cells that 
belong to the same cell type or state despite being generated in dif-
ferent batches. Thus, any systematic differences in expression level 
between cells in MNN pairs should represent the batch effect.

Our use of MNN pairs involves three assumptions: (i) there is at 
least one cell population that is present in both batches, (ii) the batch 
effect is almost orthogonal to the biological subspace, and (iii) the 
batch-effect variation is much smaller than the biological-effect vari-
ation between different cell types (more detailed discussion of these 
assumptions in Supplementary Note 3). The biological subspace 
refers to a set of basis vectors that represent biological processes; the 
length of each vector is equal to the number of genes. For example, 
some of these vectors may represent the cell cycle; some vectors may 

(1)(1)

define expression profiles specific to each cell type; and other vectors 
may represent differentiation or activation states. The true expression 
profile of each cell can be expressed as the linear sum of these vectors. 
Meanwhile, the batch effect is represented by a vector of length equal 
to the number of genes, which is added to the expression profile for 
each cell in the same batch. Under our assumptions, it is straightfor-
ward to show that cells from the same population in different batches 
will form MNN pairs (Supplementary Note 4). This assumption can 
be more intuitively understood in that cells from the same population 
in different batches form parallel hyperplanes with respect to each 
other (Fig. 1). We also note that the orthogonality assumption is weak 
for a random one-dimensional batch-effect vector in high-dimen-
sional data, especially given that local biological subspaces usually 
have much lower intrinsic dimensionality than the total number of 
genes in the data set.

For each MNN pair, a pair-specific batch-correction vector is com-
puted as the vector difference between the expression profiles of the 
paired cells. Although a set of biologically relevant genes (for exam-
ple, highly variable genes) can facilitate identification of MNNs, the 
calculation of batch vectors does not need to be performed in the 
same space. Therefore, we can calculate the batch vectors for a dif-
ferent set of inquiry genes (Supplementary Note 5). A cell-specific 
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Figure 1  Schematics of batch-effect correction by MNN. (a) Batch 1 
and batch 2 in high dimensions with an almost orthogonal batch effect 
difference between them. (b) The algorithm identifies matching cell types 
by finding MNN pairs of cells (gray box). (c) Batch-correction vectors 
are calculated between the MNN pairs. (d) Batch 1 is regarded as the 
reference, and batch 2 is integrated into it by subtraction of correction 
vectors. (e) The integrated data are considered the reference, and the 
procedure is repeated for integration of any new batch.



nature biotechnology   VOLUME 36  NUMBER 5  MAY 2018	 423

a n a ly s i s

batch-correction vector is then calculated as a weighted average of 
these pair-specific vectors, as computed with a Gaussian kernel. This 
approach stabilizes the correction for each cell and ensures that it 
changes smoothly between adjacent cells in the high-dimensional 
expression space. This Gaussian smoothing of batch vectors enables 
a locally linear batch correction; i.e., each MNN-pair batch vector 
contributes to the batch effect for cells in the neighborhood of the 
corresponding pair within each batch. Such locally linear correction 
of batch effects results in an overall correction that can tolerate non-
constant batch effects (Supplementary Fig. 1). We emphasize that 
this correction is performed for all cells, regardless of whether they 
participate in a MNN pair. Thus, correction can be performed on all 
cells in each batch, even if they do not have a corresponding cell type 
in the other batches.

MNN correction outperforms existing methods on simulated 
data
We generated simulated data for a simple scenario with two batches 
of cells, each consisting of varying proportions of three cell types 
(Online Methods). We applied each of three batch-correction meth-
ods—our MNN-based correction method, limma and ComBat—to 
the simulated data, then evaluated the results by inspecting t-SNE 
plots16 (Online Methods). Proper removal of the batch effect should 
result in the formation of three clusters, one for each cell type, such 
that each cluster contains a mixture of cells from both batches. 
However, we observed this ideal result only after MNN correction 
(Fig. 2). Expression data that were uncorrected or corrected with the 
other methods exhibited at least one cluster containing cells from 
only a single batch, thus indicating that the batch effect was not fully 
removed. This result is fully attributable to the differences in popula-
tion composition, as discussed earlier. Repeating the simulation with 
identical proportions of all cell types in each batch yielded equivalent 
performance for all methods (Supplementary Fig. 2).

MNN correction outperforms existing methods on 
hematopoietic data
To demonstrate the applicability of our method to real data, we con-
sidered two hematopoietic data sets generated in different laboratories 
through two different scRNA-seq protocols. In the first data set12, the 
authors used the SMART-seq2 protocol17 to profile single cells from 
hematopoietic stem and progenitor cell populations in 12-week-old 
female mice. Using marker expression profiles from fluorescence-acti-
vated cell sorting (FACS), we retrospectively assigned known cell-type 
labels to cells (Online Methods). These labels included multipotent 
progenitors, lymphoid-primed multipotent progenitors, hematopoi-
etic stem and progenitor cells, hematopoietic stem cells, common 
myeloid progenitors (CMPs), granulocyte–monocyte progenitors 
(GMPs) and megakaryocyte–erythrocyte progenitors (MEPs). In the 
second data set18, the authors used the massively parallel single-cell 
RNA-sequencing (MARS-seq) protocol to assess single-cell hetero-
geneity in myeloid progenitors from 6-to 8-week-old female mice. 
Again, indexed FACS was used to assign a cell-type label (MEP, GMP 
or CMP) to each cell.

To assess performance, we performed t-SNE dimensionality reduc-
tion on the expression data for the highly variable genes, before and 
after correction with each of the three methods (MNN, limma and 
ComBat) (Fig. 3a–d and Online Methods). Only MNN correction 
correctly merged the cell types that were shared between batches, 
i.e., CMPs, MEPs and GMPs, while preserving the underlying dif-
ferentiation hierarchy12,18 (Fig. 3e). In contrast, the shared cell types 
still clustered by batch after correction with limma or ComBat, thus 

indicating that the batch effect had not been completely removed 
(coloring by batch in Supplementary Fig. 3). This result is attribut-
able to the differences in cell-type composition between batches and 
is consistent with the simulation results. To ensure that these results 
were not due to an idiosyncrasy of the t-SNE method, we repeated 
our analysis with an alternative dimensionality-reduction approach 
(PCA) using only the cell types in common between the two batches 
(Fig. 3f–i). Among the methods, MNN correction was still the most 
effective at removing the batch effect.

As a justification for the orthogonality of the batch effect to the 
biological hyperplane, we present a histogram of the angle between 
the batch vectors calculated by MNN and the first two singular value 
decomposition components of the reference batch used in MNN 
(i.e., the SMART-seq2 data set). Most angles are close to 90°, thus 
supporting the near-orthogonality assumption (Supplementary  
Fig. 3e). A diffusion map19 of the MNN-corrected data (Supplementary  
Fig. 3f–h) shows the same differentiation hierarchy of cell types as 
that in Figure 3e. Repeating the same analysis on a subset of randomly 
sampled genes (1,500 out of the total of 3,904 highly variable genes) 
yielded similar results, thus demonstrating the robustness of our 
analysis with respect to the input gene set (Supplementary Fig. 4).

MNN correction outperforms existing methods on a pancreas 
data set
We further tested the ability of our method to combine more complex 
data sets generated through a variety of methods. Here, we focused 
on the pancreas because it is a highly heterogeneous tissue with sev-
eral well-defined cell types. We combined scRNA-seq data on human 
pancreas cells from four different publicly available data sets20–23 
generated through two different scRNA-seq protocols (SMART-seq2 
and scRNA-seq by multiplexed linear amplification (CEL-seq)/CEL-
seq2). Cell-type labels were taken from the provided metadata or were 
derived according to the methodology described in the original pub-
lication (further details of data preprocessing in Online Methods).
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Figure 2  t-SNE plots of simulated scRNA-seq data containing two  
batches of different cell types (with each batch containing n = 1,000 
cells). (a–d) Data before correction (a) and after correction with our MNN 
method (b), limma (c) or ComBat (d). In this simulation, each batch 
(closed circle or open triangle) contained different numbers of cells in 
each of three cell types (specified by color).
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We applied MNN, limma and ComBat to the combined data set 
and examined the corrected data. All three batch-correction methods 
improved the grouping of cells by their cell-type labels (Fig. 4a,b, 
Online Methods and Supplementary Fig. 5a–d). This result is not 
surprising, because the discrepancy between cell-type composition 
in the four batches was modest (Supplementary Table 1). However, 
even a small difference in composition was sufficient to cause duc-
tal and acinar cells to be incorrectly separated after correction with 
limma or ComBat. By comparison, both cell types were coherently 
grouped across batches after MNN correction, in agreement with 
the simulation results. To determine the effect of correction on the 
quality of cell-type-based clustering, we assessed cluster separa-
tion by computing the average silhouette widths for each cell type 
(Supplementary Fig. 5 and Online Methods). The average silhou-
ette coefficient after MNN correction was significantly larger than 
those in the uncorrected and limma- and ComBat-corrected data 
(P < 0:05, two-sided Welch’s t-test). Thus, MNN correction is able to 
decrease the between-batch variance within each cell type while pre-
serving differences among cell types. We also computed the entropy 
of mixing (Online Methods) to quantify the extent of intermingling of 
cells from different batches. The data that were batch corrected with 
MNN showed higher entropy of mixing than did the uncorrected 
data and the data corrected with limma or ComBat (Supplementary 
Fig. 5). The improvement in the mixing of batches was observed in 

the reduced-dimension space obtained through either t-SNE or PCA 
(Supplementary Fig. 5e–l). We again supported our assumption that 
batch effects are adequately removed when they lie orthogonally to 
the biological subspace (Supplementary Fig. 5m–o). The observed 
structure in the pancreas data was robust to the size of the input gene 
set, as demonstrated by random subsampling of the total highly vari-
able gene set (Supplementary Fig. 6).

MNN correction improves differential expression analyses
After batch correction is performed, the corrected expression values 
can be used in routine downstream analyses such as clustering prior 
to differential gene expression identification. To provide a demonstra-
tion, we used the MNN-corrected expression matrix to simultaneously 
cluster cells from all four pancreas data sets. Our new cluster labels 
were in agreement with the previous cell-type assignments based on 
the individual batches, with an adjusted Rand index of 0.94 (a Rand 
index of 0 is equivalent to a random assignment, whereas a Rand 
index of 1 denotes a perfect match between previous and new assign-
ments). Importantly, we obtained clusters for all batches in a single 
clustering step. This procedure ensured that the cluster labels were 
directly comparable between cells in different batches. In contrast, if 
clustering had been performed separately in each batch, there would 
have been no guarantee that a (weakly separated) cluster detected in 
one batch would have had a direct counterpart in another batch.
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Figure 3  t-SNE plots of scRNA-seq count data for cells from the hematopoietic lineage, prepared in two batches by using different technologies 
(SMART-seq2 with n = 1,920 cells, closed circles; MARS-seq with n = 2,729 cells, open circles). (a–d) Plots generated before batch correction (a) and 
after batch correction with our MNN method (b), limma (c) or ComBat (d). Cells are colored according to their annotated cell type. (e) The expected 
hierarchy of hematopoietic cell types. (f–i) PCA plots of scRNA-seq count data for common cell types between the two batches of the hematopoietic 
lineage generated (SMART-seq2 with n = 791 cells; MARS-seq with n = 2,729 cells) before batch correction (f) and after batch correction through 
our MNN method (g), limma (h) or ComBat (i). MPP, multipotent progenitors; LMPP, lymphoid-primed multipotent progenitors; LTHSC, long-term 
hematopoietic stem cells; HSPC, hematopoietic stem and progenitor cells; PC, principal component.
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We used our new clusters to perform a differential expression 
analysis between the delta islet cluster and the gamma islet cluster. 
Using cells from all batches, we detected 76 differentially expressed 
(DE) genes at a false discovery rate (FDR) of 5% (Fig. 4c). This set 
included the marker genes for the cells included in the analysis (PPY 
and SST), genes involved in pancreatic islet cell development (PAX6) 
and genes recently implicated in delta islet function and the devel-
opment of type 2 diabetes (CD9 and HADH)22. For comparison, we 
repeated the differential expression analysis by using only cells from 
each batch in which both cell types were present20–22. The results 
yielded only 12, 49 and 51 genes, respectively, at an FDR of 5%, which 
encompassed 14.5–57.9% of those detected when all cells were used  
(Fig. 4d). Merging data sets is beneficial because it increases the 
number of cells without requiring additional experimental work, 
improves statistical power for downstream analyses such as differen-
tial gene expression and consequently provides additional biological 
insights. To this end, our MNN approach is critical because it ensures 
that merging is performed in a coherent manner.

MNN correction is applicable to droplet RNA-seq technology
The advent of droplet-based cell capture, lysis, RNA reverse transcrip-
tion and subsequent expression profiling by sequencing has allowed 
for single-cell expression experiments to be scaled up to tens and 
hundreds of thousands of cells2,3,24. These technologies are ideal for 
testing the scalability and applicability of our correction method to 
large scRNA-seq data sets. We specifically applied our MNN approach 
to two large data sets of droplet-based scRNA-seq derived from the 

commercial 10X Genomics Chromium platform24. We selected data 
sets comprising a mixture of cell identities and complexities, namely 
68,000 peripheral blood mononuclear cells (PBMCs) and 4,000 T cells 
derived from different donors. PBMCs contain a milieu of periph-
eral adaptive and innate immune white blood cells as they circulate 
through the human vasculature, whereas peripheral T cells contain a 
mixture of naive and antigen-exposed lymphocytes involved in active 
immune surveillance.

A naive merging of these two data sets without accounting for batch 
effects illustrated the separation of the T cells from their counterparts 
in the PBMC data (Fig. 5a,b). The combination of these two data sets 
by using MNNs demonstrated that the separate peripheral T cells 
mapped to the T cell subsets within the PBMC mixture (Fig. 5c,d). 
Importantly, other peripheral lymphocyte relationships were not dis-
torted by the correction applied, despite the absence of MNNs in the 
T cell data set (Fig. 5c). Specifically, 4,446/4,459 (99.7%) of individual 
T cells mapped onto their appropriate counterparts in the PBMC 
data set (Fig. 5). The remaining 13/4,459 (0.3%) mapped primarily 
to a small cluster of unknown ontogeny and to the edges of a large 
cluster of monocytes. In contrast, 14 non–T cells (0.3%; specifically 
monocytes) mapped to T cell clusters inappropriately.

As the size of single-cell expression data sets increases, there will 
be a growing need for computational methods that can scale up to 
meet these requirements. To demonstrate the scalability of our method, 
we sampled different proportions of cells from the 68K PBMC data 
set, then corrected the batch effect between each subsample and the 
4K T cell data. Within the range of 7,000 to 70,000 cells, we observed 

Uncorrected MNNa b c

d

20

10

–10

–20

–20

–20 –10 0 10 20 20100–10

–10

0

10

20

–20 –10 0

t-SNE 1

t-SNE 1

Cell type

Alpha
Gamma
Delta
Beta
Ductal
Acinar
Other

Batch
GSE81076
GSE86473
GSE85241
E-MTAB-5061

t-SNE 1

t-SNE 1

10 20 20
–10

0

25

50

75

100

PPY

RBP4

74433 32 45 4

11166

RGS2

TM4SF4
SCGB2A1

GC

HADH
SST

RBP4
LEPRARX

PPY

SST

GSE81076 Combined

–5 0

MNN DE
genes

MNN DE
genes

MNN DE
genes

GSE86473 DE
genes

GSE81076 DE
genes

GSE85241 DE
genes

log2 fold change

–l
og

10
 a

dj
us

te
d 
P

 v
al

ue

0

25

50

75

100

–l
og

10
 a

dj
us

te
d 
P

 v
al

ue

5 10 –10 –5 0
log2 fold change

5 10
100–10

–15

–10

–5

0

5

10

15

0

t-
S

N
E

 2
t-

S
N

E
 2

t-
S

N
E

 2

–15

–10

–5

0

5

10

15
t-

S
N

E
 2

Figure 4  Application of MNN batch correction to pancreas cells by using four data sets (GSE81076 with n = 1,007 cells, GSE86473 with n = 2,331 
cells, GSE85241 with n = 1,595 cells and E-MTAB-5061 with n = 2,163 cells) measured on two different platforms, CEL-seq2 and SMART-seq2.  
(a,b) t-SNE plots for uncorrected (raw) data (a) and data corrected with our MNN method (b). At top, the different batches are represented by four 
colors; at bottom, the different cell types are denoted by distinct colors. (c) Combining data sets through MNN correction increases the power to detect 
DE genes. Volcano plots of differential expression testing in a single data set (GSE81076; delta cells = 54, gamma cells = 19, left) and by using 
the new cell-type labels after MNN correction (combined; delta cells = 428, gamma cells = 425, right). The y axis represents the −log10 Benjamini–
Hochberg-adjusted P value (−log10P values >100 are censored at 100 for comparable scales), and the x axis is the log2 fold change of expression in 
gamma cells over delta cells. Individual gene symbols are labeled when |log2 fold change| > 3. More genes are consistently differentially expressed at an 
FDR of 5% in the combined data sets. (d) Venn diagrams representing the intersection of DE genes by using the cell-type labels after batch correction 
(blue circles) and using the original cell-type labels from each individual study (orange circles). Numbers in each segment are the total numbers of DE 
genes between delta and gamma islet cells in each batch. Each Venn diagram corresponds to a batch in which both cell types are present.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81076
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE86473
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE85241
https://www.ebi.ac.uk/arrayexpress/E-MTAB-5061
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81076


426	 VOLUME 36  NUMBER 5  MAY 2018   nature biotechnology

A n a ly s i s

an approximately linear time increase (Fig. 5e). Thus, our method 
is compatible with both the nature of droplet-technology-derived  
single-cell expression data and the scale of current and future data sets.

DISCUSSION
Proper removal of batch effects is critical for valid data analysis and 
interpretation of results. This removal is especially pertinent as the 
scale and scope of scRNA-seq experiments increase, exceeding the 
capacity of data generation within a single batch. To answer the rel-
evant biological questions, merging data from different batches—gen-
erated by different protocols, operators and/or platforms—is required. 
However, for biological systems that are highly heterogeneous, the 
composition of cell types and states is likely to differ across batches, 
owing to stochastic and uncontrollable biological variability.

Existing batch-correction methods do not account for differences 
in cell composition between batches and fail to fully remove the batch 
effect in such cases. This failure can lead to misleading conclusions 
wherein batch-specific clusters are incorrectly interpreted as distinct 
cell types. By using both simulated data and real scRNA-seq data 
sets, we demonstrated that our MNN method is able to successfully 
remove the batch effect in the presence of differences in composition. 
Moreover, we demonstrated the MNN method’s scalability on large 
droplet-based data sets.

One prerequisite for our MNN method is that each batch must 
contain at least one shared cell population with another batch. This 
requirement is necessary for the correct identification of MNN pairs 
between batches. Batches without any shared structure are inherently 
difficult to correct, because the batch effects are completely confounded 
by biological differences. Such cases provide a motivation for using a 
‘cell control’, i.e., an easily reproducible cell population of known com-
position (from a cell line, for example) that is spiked into each sample 
for the purpose of removing batch effects across samples.

A notable feature of our MNN correction method is that it adjusts 
for local variations in batch effects by using a Gaussian kernel. Our 
method is therefore able to accommodate differences in the size or 
direction of the batch effect between different cell subpopulations in 
high-dimensional space. Such differences are not easily handled by 
methods based on linear models (because they would require explicit 
modeling of predefined groupings of cells, which would defeat the 
purpose of using scRNA-seq to study population heterogeneity in the 
first place). Our results for the pancreas data set suggest that consid-
ering cell-type-specific batch effects (the default setting of MNN) 
rather than a globally constant batch effect for all cells improves 
batch-removal results (Supplementary Fig. 7). An important con-
sequence is that a single control population might not suffice for 
accurate estimation of local batch effects. Instead, using an appropri-
ately mixed population of cells to properly account for local variation 
may be necessary.

We demonstrated in simulations and real data sets that MNN suc-
cessfully combines cells with the same cell-type label, by bringing 
cells from different batches onto a common coordinate system that 
is defined by the first (reference) batch, such that all batches can be 
analyzed together. Therefore, MNN eliminates discrepancies between 
related batches without an analysis or interpretation of the origins and 
causes of batch effects (between each pair of batches). The study of 
the technical and biological origins of these discrepancies may also be 
interesting. For instance, one batch might contain cells from a gene-
knockout experiment, and the other batch might contain cells from 
a wild-type organism. In such cases, the correction vectors (provided 
as an output of the MNN algorithm) could potentially be examined 
to understand the differences between batches.

Batch correction plays a critical role in the interpretation of scRNA-
seq data from both small studies, in which logistical constraints 
preclude the generation of data in a single batch, and large studies 
involving international consortia such as the Human Cell Atlas, in 
which scRNA-seq data are generated for a variety of related tissues 
at different times and by multiple laboratories. Our MNN method 
provides a superior alternative to existing methods for batch correc-
tion in the presence of compositional differences between batches. 
We anticipate that this method will improve the rigor of scRNA-seq 
data analysis and thus the quality of the biological conclusions.

Methods
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Generation and analysis of simulated data. We considered a three-compo-
nent Gaussian mixture model in two dimensions (to represent the low-dimen-
sional biological subspace), in which each mixture component represents a 
different simulated cell type. Two data sets with n = 1,000 cells were drawn 
with different mixing coefficients (0.2, 0.3 and 0.5 for the first batch, and 0.05, 
0.65 and 0.3 for the second batch) for the three cell types. We then projected 
both data sets to G = 100 dimensions by using the same random Gaussian 
matrix, thus simulating high-dimensional gene expression. Batch effects were 
incorporated by generating a Gaussian random vector for each data set and 
adding it to the expression profiles for all cells in that data set.

Processing and analysis of the hematopoietic data sets. Gene expression 
counts generated by Nestorowa et al.12 on the SMART-seq2 platform (1,920 
cells in total) were downloaded from the NCBI Gene Expression Omnibus 
(GEO) database, accession number GSE81682. Expression counts generated 
by Paul et al.18 on the MARS-seq platform (10,368 cells in total) were obtained 
from NCBI GEO accession GSE72857. Using FACS, the authors identified 
2,729 myeloid progenitor cells (CMP, GMP and MEP) as lineage negative 
(Lin−) c-Kit+ Sca1− and gated the cells further on the basis of the levels of 
the FcgR and CD34 markers; those cells were used for the analysis in this 
manuscript. For batch correction, we identified a set of 3,937 highly vari-
able genes in common between the two data sets, by applying the method 
described by Brennecke et al.25 to each data set. For both data sets, we per-
formed library-size normalization before log-transforming the normalized 
expression values. Cell labels were assigned a priori to each cell on the basis 
of the original publications.

Processing and analysis of the pancreas data sets. Raw data were obtained 
from NCBI GEO accession numbers GSE81076 (ref. 20) (CEL-seq), GSE85241 
(ref. 21) (CEL-seq2) and GSE86473 (ref. 22) (SMART-seq2) and from 
ArrayExpress accession number E-MTAB-5061 (ref. 23) (SMART-seq2). 
Count matrices were used as provided by GEO or ArrayExpress, if available. 
For GSE86473, reads were aligned to the hg38 build of the human genome 
by using STAR version 2.4.2a26 with default parameters, and were assigned 
to Ensembl build 86 protein-coding genes with featureCounts version 1.4.6 
(ref. 27).

Quality control was performed on each data set independently to remove 
poor-quality cells (>20% of total counts from spike-in transcripts, <100,000 
reads, >40% total counts from ribosomal RNA genes). Sparse cells and genes 
(90% zero values) were also removed, thus leaving a total of 7,236 cells available 
across all four data sets. Normalization of cell-specific biases was performed 
for each data set through the deconvolution method of Lun et al.28. Counts 
were divided by size factors to obtain normalized expression values that were 
log transformed after addition of a pseudocount of 1. Highly variable genes 
were identified in each data set through the method of Brennecke at al25. We 
took the union of highly variable genes whose expression was common across 
all four data sets, thus resulting in 2,507 genes that were used for the MNN 
batch correction.

Cell-type labels for each data set were assigned on the basis of the provided 
metadata (GSE86473 and EMTAB-5061) or, if the labels were not provided, 
were inferred from the data through the method used in the original publica-
tion (GSE81076 and GSE85241).

To demonstrate the utility of our batch-correction method in downstream 
analyses, we applied dimensionality reduction (t-SNE) to the MNN-corrected 
expression matrix from the pooled pancreas data sets. We constructed a shared 
nearest neighbor (SNN) graph29 by using the combined cells and the union 
of the highly variable genes that were expressed across all data sets. To iden-
tify communities of cells, we applied the ‘Walktrap’ algorithm to the SNN 
graph30, with five steps. This procedure identified a total of 11 clusters. To 
assign specific cell-type labels to those clusters, we examined the expression 
of the marker genes that were used for cell-type assignment in the original 
publications. Specifically, GCG was used to mark alpha islets, INS was used 
to mark beta islets, SST was used to mark delta islets, PPY was used to mark 
gamma islets, PRSS1 was used to mark acinar cells, KRT19 was used to mark 
ductal cells, and COL1A1 was used to mark mesenchymal cells. Cells in the 
cluster with the highest expression of each marker gene were assigned to the 

corresponding cell type. All remaining cells were allocated into an additional 
‘unassigned/unknown’ cluster.

The differential expression analysis was performed by using methods from 
the limma package7. For the analysis on all cells, we parameterized the design 
matrix such that each batch–cluster combination formed a separate group in 
a one-way layout, by using the labels derived from the batch-corrected data 
(described above). We used this design to fit a linear model to the normalized 
uncorrected log expression values for each gene, then performed empirical Bayes 
shrinkage to stabilize the sample variances. A moderated t-test was applied to 
compare the delta and gamma islet clusters across all batches. Specifically, we 
tested whether the average expression of each cluster across all batches was equal 
between the two cell types. DE genes were defined as those detected at an FDR 
of 5%. For comparison, we repeated this analysis for each batch, using only cells 
from batches with both cell types present. Here, we used a design matrix with a 
one-way layout constructed from the original cell-type assignments. Delta and 
gamma islet cell types were directly compared within this batch.

Application of batch correction to droplet-based data. Single-cell gene 
expression measurements derived from the 10X Genomics droplet-based 
platform using Chromium v2 chemistry were downloaded from the com-
pany website (https://support.10xgenomics.com/single-cell-gene-expres-
sion/datasets/). Expression data from 4,459 human T cells (t_4k) and 68,580 
PBMCs (pbmc68k) from two separate donors were normalized separately 
by using size factors estimated by the deconvolution method as previously 
described28. Highly variable genes were defined within each data set as pre-
viously described25 (PBMCs, 1,409 genes; T cells, 1,219 genes). To define 
communities of transcriptionally similar cells, we constructed an SNN graph 
and assigned cells to specific communities by using the Walktrap algorithm. 
The identity of each community was assigned on the basis of visualization of 
expression of canonical marker genes in major leukocyte lineages (CD3, CD20, 
CD14, CD16, CD1C and CD56). Droplet data sets were combined through 
our MNN approach on the intersection of the two highly variable gene sets 
(270 genes). Low-dimensional representations of individual and combined 
data sets were produced with t-SNE.

MNN correction scalability. Scalability testing of our MNN correction 
method was performed by random sampling of cells between 10% and 100% 
of the total number of PBMCs, i.e., 100% = 68,000 cells. We combined each 
subset with the set of 4,459 T cells, then recorded the CPU time in the R 
environment (R Core Team 2017) by using the system.time function. For each 
combination of data, the R environment garbage collector was invoked before 
the time was recorded.

t-SNE plots. We generated the t-SNE plots by using the Rtsne package with 
identical parameter settings for the uncorrected data and the data that were 
batch corrected with MNN, limma and ComBat. In all plots, we used the 
distance matrix as the input for the Rtsne function (i.e., Rtsne parameter  
is_distance = TRUE). For the hematopoietic data, we accounted for the expected 
continuity of the data structure by choosing a large perplexity parameter (i.e., 
90). For all other data sets in which separate clusters were expected to exist, 
we used the default perplexity parameter (i.e., 30) and again used identical 
parameter settings across all batch-correction methods.

Silhouette coefficient. To assess the separation of the cell types for the pan-
creas data, we computed the silhouette coefficient by using the kBET package 
in R31. Here, each unique cell-type label defines a cluster of cells. Let a(i) be 
the average distance of cell i to all other cells within the same cluster as i, and 
let b(i) be the average distance of cell i to all cells assigned to the neighboring 
cluster, i.e., the cluster with the lowest average distance to the cluster of i. The 
silhouette coefficient for cell i is defined as:
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A larger s(i) suggests that the cluster assignment for cell i is appropriate; i.e., 
it is close to other cells in the same cluster yet distant from cells in other clus-
ters. Because dimensionality reduction by t-SNE facilitates more reasonable 
clustering results than does clustering in high dimensions, we calculated the 
silhouette coefficients by using distance matrices computed from the t-SNE 
coordinates of each cell in the batch-corrected and the uncorrected data.

Entropy of batch mixing. Entropy of mixing32 for c different batches is defined 
as:

E x xi i
i

c
=

=
∑ log( ) ( )3

1

where xi is the proportion of cells from batch i in a given region, such that  
Σi

c
ix= =1 1. We assessed the total entropy of batch mixing on the first two 

PCs of the batch-corrected and the uncorrected pancreas data sets, by using 
regional mixing entropies according to equation (3) at the location of 100 
randomly chosen cells from all batches. The regional proportion of cells from 
each batch was defined from the set of 100 nearest neighbors for each ran-
domly chosen cell. The total mixing entropy was then calculated as the sum 
of the regional entropies. We repeated this procedure for 100 iterations with 
different randomly chosen cells to generate box plots of the total entropy 
(Supplementary Figs. 5q and 6q).

Software availability. An open-source software implementation of our MNN 
method is available as the mnnCorrect function in version 1.6.2 of the scran 
package on Bioconductor (https://bioconductor.org/packages/scran/). All code 
for producing results and figures in this manuscript is available on Github 
(https://github.com/MarioniLab/MNN2017/).

(3)(3)

Reporting Summary. Further information on experimental design is available 
in the Nature Research Reporting Summary.

Data availability. The published data sets used in this manuscript are available 
through the following accession numbers: SMART-seq2 platform hematopoi-
etic data by Nestorowa et al.12, GEO GSE81682; MARS-seq platform hemat-
opoietic data by Paul et al.18, GEO GSE72857; CEL-seq platform pancreas data 
by Grün et al.20, GEO GSE81076; CEL-seq2 platform pancreas data by Muraro 
et al.21, GEO GSE85241; SMART-seq2 platform pancreas data by Lawlor et al.22,  
GEO GSE86473; and SMART-seq2 platform pancreas data by Segerstolpe  
et al.23, ArrayExpress E-MTAB-5061.
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    Experimental design
1.   Sample size

Describe how sample size was determined. All data used in our manuscript are already published data, sample size according 
to original publications, which is hundreds of cells for each data set. 

2.   Data exclusions

Describe any data exclusions. We occasionally excluded cells without FACs sorting labels (Paul 2015 data). 
Individual pancreatic cells were excluded if the sequencing depth was low. This is 
done in the procedure of cell's quality control performed by scran R package for 
single-cell data processing.  
Genes for which the name could not be matched across the data sets being 
merged were also excluded from our analysis. 

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

For demonstrating robustness of our analysis, we performed batch correction on 
each data set twice, once using all highly variable genes (3904 genes in the 
haematopoietic data and 2507 in the pancreas data) and once with a set of of 1500 
randomly chosen set from highly variable gene set.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

We used all samples in all of the data sets, therefore randomization is not relevant 
to our study.

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

We used all samples in all of the data sets, therefore blinding is not relevant to our 
study.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

R codes for the MNN batch correction method is available in package 
"scran" (version 1.6.6). All codes used for the analysis and generating of the results 
(including the call to required packages STAR, Rtsne, destiny, scran, kBET, limma, 
ComBat, etc) are deposited at: https://github.com/MarioniLab/MNN2017

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

We used published data. GEO accession numbers: GSE81682 and GSE72857 for 
haematopoietic ata sets. GSE81076, GSE85241, GSE86473 and the ArrayExpress 
accession number E-MTAB-5061 for the pancreas data sets. 10X (droplet) data is 
publicly available and were downloaded directly from the 10X website.

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies were used in this study.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used in this study.

b.  Describe the method of cell line authentication used. -

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

-

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

-
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    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

-No animals were used in this study.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

-No human research participants were used in this study.
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