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Batch effects in single-cell RNA-sequencing data are
corrected by matching mutual nearest neighbors

Laleh Haghverdi2, Aaron T L Lun3®, Michael D Morgan*

Large-scale single-cell RNA sequencing (scRNA-seq) data sets
that are produced in different laboratories and at different
times contain batch effects that may compromise the
integration and interpretation of the data. Existing scRNA-seq
analysis methods incorrectly assume that the composition of
cell populations is either known or identical across batches.
We present a strategy for batch correction based on the
detection of mutual nearest neighbors (MNNs) in the
high-dimensional expression space. Our approach does

not rely on predefined or equal population compositions
across batches; instead, it requires only that a subset of the
population be shared between batches. We demonstrate the
superiority of our approach compared with existing methods
by using both simulated and real scRNA-seq data sets. Using
multiple droplet-based scRNA-seq data sets, we demonstrate
that our MNN batch-effect-correction method can be scaled to
large numbers of cells.

The decreasing cost of scRNA-seq experiments!~# has encouraged the
establishment of large-scale projects such as the Human Cell Atlas,
which profile the transcriptomes of thousands to millions of cells.
For such large studies, logistical constraints inevitably dictate that
data be generated separately i.e., at different times and with different
operators. Data may also be generated in multiple laboratories using
different cell dissociation and handling protocols, library-preparation
technologies and/or sequencing platforms. All of these factors result
in batch effects>®, in which the expression of genes in one batch dif-
fers systematically from that in another batch. Such differences can
mask underlying biology or introduce spurious structure in the data;
thus, to avoid misleading conclusions, they must be corrected before
further analysis.

Most existing methods for batch correction are based on linear
regression. The limma package provides the removeBatchEffect func-
tion?, which fits a linear model containing a blocking term for the
batch structure to the expression values for each gene. Subsequently,
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the coefficient for each blocking term is set to zero, and the expres-
sion values are computed from the remaining terms and residuals,
thus yielding a new expression matrix without batch effects. The
ComBat method® uses a similar strategy but performs an additional
step involving empirical Bayes shrinkage of the blocking coefficient
estimates. This procedure stabilizes the estimates in the presence of
limited replicates by sharing information across genes. Other meth-
ods, such as RUVseq® and svaseq!?, are also frequently used for batch
correction, but their focus is primarily on identifying unknown fac-
tors of variation, for example, those due to unrecorded experimental
differences in cell processing. After these factors are identified, their
effects can be regressed out as described previously.

Existing batch-correction methods were specifically designed for
bulk RNA-seq. Thus, their application to scRNA-seq data is based
on the assumption that the composition of the cell population within
each batch is identical. Any systematic differences in mean gene
expression between batches are attributed to technical differences
that can be regressed out. However, in practice, the population
composition is usually not identical across batches in scRNA-seq
studies. Even if the same cell types are present in each batch, the
abundance of each cell type in the data set can change depending
upon subtle differences in procedures such as cell culture or tissue
extraction, dissociation and sorting. Consequently, the estimated
coefficients for the batch blocking factors are not purely technical
but contain a nonzero biological component because of differences
in composition. Batch correction based on these coefficients would
thus yield inaccurate representations of the cellular expression pro-
files, and the results might potentially be worse than if no correction
were performed.

An alternative approach for data merging and comparison in the
presence of batch effects uses a set of landmarks from a reference
data set to project new data onto the reference!!12. The rationale for
this approach is that a given cell type in the reference batch will be
most similar to cells of its own type in the new batch. Such projection
strategies can be applied by using several dimensionality-reduction
methods, such as principal component analysis (PCA) or diffusion
maps, or by using force-based methods such as ¢-distributed stochastic
neighbor embedding (t-SNE). This strategy depends on the selec-
tion of landmark points in high-dimensional space picked from the
reference data set, which cover all cell types that might appear in the
later batches. However, if the new batches include cell types that fall
outside the transcriptional space explored in the reference batch, these
cell types will not be projected to an appropriate position in the space
defined by the landmarks (Supplementary Note 1).
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Here, we propose a new method for removal of discrepancies
between biologically related batches according to the presence of
MNNs between batches, which are considered to define the most sim-
ilar cells of the same type across batches. The difference in expression
values between cells in an MNN pair provides an estimate of the batch
effect, which is made more precise by averaging across many such
pairs. A correction vector is obtained from the estimated batch effect
and applied to the expression values to perform batch correction. Our
approach automatically identifies overlaps in population composition
between batches and uses only the overlapping subsets for correction,
thus avoiding the assumption of equal composition required by other
methods. We demonstrate that our approach outperforms existing
methods on a range of simulated and real scRNA-seq data sets involv-
ing different biological systems and technologies.

RESULTS
Matching mutual nearest neighbors for batch correction
Our approach identifies cells that have mutually similar expression
profiles between different experimental batches or replicates. We infer
that any differences between these cells in the high-dimensional gene
expression space are driven by batch effects (i.e., technical differences
induced by the operator or other experimental artifacts) and do not
represent the underlying biology of interest. We note that our defi-
nition of a batch effect may also incorporate some signal driven by
biological features that are not of interest (for example, intersample
differences due to genotype). After correction, multiple batches can
be ‘joined up’ into a single data set (Fig. 1).

The first step of our method involves global scaling of the data
through a cosine normalization. More precisely, if Y, is the expression
vector for cell x, we define the cosine normalization as:

Y, 1)

o tx
Y|
Subsequently, we compute the Euclidean distance between the cosine-
normalized expression profiles of pairs of cells. Calculating Euclidean
distances on these normalized data is equivalent to using cosine dis-
tances on the original expression values (Supplementary Note 2).
Cosine distances have been widely used for measuring cell similarities
according to expression profiles!"13-15 and are appealing because they
are scale independent!® and thus robust to technical differences in
sequencing depth and capture efficiency between batches.

The next step involves identification of mutual nearest neighbors.
Consider an scRNA-seq experiment consisting of two batches 1 and 2.
For each cell i in batch 1, we find the k cells in batch 2 with the small-
est distances to iy, i.e., its k nearest neighbors in batch 2. We do the
same for each cell in batch 2 to find its k nearest neighbors in batch 1.
If a pair of cells from each batch is contained in each other’s set of
nearest neighbors, those cells are considered to be mutual nearest
neighbors (Fig. 1). We interpret these pairs as containing cells that
belong to the same cell type or state despite being generated in dif-
ferent batches. Thus, any systematic differences in expression level
between cells in MNN pairs should represent the batch effect.

Our use of MNN pairs involves three assumptions: (i) there is at
least one cell population that is present in both batches, (ii) the batch
effect is almost orthogonal to the biological subspace, and (iii) the
batch-effect variation is much smaller than the biological-effect vari-
ation between different cell types (more detailed discussion of these
assumptions in Supplementary Note 3). The biological subspace
refers to a set of basis vectors that represent biological processes; the
length of each vector is equal to the number of genes. For example,
some of these vectors may represent the cell cycle; some vectors may
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Figure 1 Schematics of batch-effect correction by MNN. (a) Batch 1

and batch 2 in high dimensions with an almost orthogonal batch effect
difference between them. (b) The algorithm identifies matching cell types
by finding MNN pairs of cells (gray box). (c) Batch-correction vectors

are calculated between the MNN pairs. (d) Batch 1 is regarded as the
reference, and batch 2 is integrated into it by subtraction of correction
vectors. (e) The integrated data are considered the reference, and the
procedure is repeated for integration of any new batch.

define expression profiles specific to each cell type; and other vectors
may represent differentiation or activation states. The true expression
profile of each cell can be expressed as the linear sum of these vectors.
Meanwhile, the batch effect is represented by a vector of length equal
to the number of genes, which is added to the expression profile for
each cell in the same batch. Under our assumptions, it is straightfor-
ward to show that cells from the same population in different batches
will form MNN pairs (Supplementary Note 4). This assumption can
be more intuitively understood in that cells from the same population
in different batches form parallel hyperplanes with respect to each
other (Fig. 1). We also note that the orthogonality assumption is weak
for a random one-dimensional batch-effect vector in high-dimen-
sional data, especially given that local biological subspaces usually
have much lower intrinsic dimensionality than the total number of
genes in the data set.

For each MNN pair, a pair-specific batch-correction vector is com-
puted as the vector difference between the expression profiles of the
paired cells. Although a set of biologically relevant genes (for exam-
ple, highly variable genes) can facilitate identification of MNNs, the
calculation of batch vectors does not need to be performed in the
same space. Therefore, we can calculate the batch vectors for a dif-
ferent set of inquiry genes (Supplementary Note 5). A cell-specific
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batch-correction vector is then calculated as a weighted average of
these pair-specific vectors, as computed with a Gaussian kernel. This
approach stabilizes the correction for each cell and ensures that it
changes smoothly between adjacent cells in the high-dimensional
expression space. This Gaussian smoothing of batch vectors enables
a locally linear batch correction; i.e., each MNN-pair batch vector
contributes to the batch effect for cells in the neighborhood of the
corresponding pair within each batch. Such locally linear correction
of batch effects results in an overall correction that can tolerate non-
constant batch effects (Supplementary Fig. 1). We emphasize that
this correction is performed for all cells, regardless of whether they
participate in a MNN pair. Thus, correction can be performed on all
cells in each batch, even if they do not have a corresponding cell type
in the other batches.

MNN correction outperforms existing methods on simulated
data

We generated simulated data for a simple scenario with two batches
of cells, each consisting of varying proportions of three cell types
(Online Methods). We applied each of three batch-correction meth-
ods—our MNN-based correction method, limma and ComBat—to
the simulated data, then evaluated the results by inspecting t-SNE
plots!® (Online Methods). Proper removal of the batch effect should
result in the formation of three clusters, one for each cell type, such
that each cluster contains a mixture of cells from both batches.
However, we observed this ideal result only after MNN correction
(Fig. 2). Expression data that were uncorrected or corrected with the
other methods exhibited at least one cluster containing cells from
only a single batch, thus indicating that the batch effect was not fully
removed. This result is fully attributable to the differences in popula-
tion composition, as discussed earlier. Repeating the simulation with
identical proportions of all cell types in each batch yielded equivalent
performance for all methods (Supplementary Fig. 2).

MNN correction outperforms existing methods on
hematopoietic data

To demonstrate the applicability of our method to real data, we con-
sidered two hematopoietic data sets generated in different laboratories
through two different scRNA-seq protocols. In the first data set!?, the
authors used the SMART-seq2 protocol!” to profile single cells from
hematopoietic stem and progenitor cell populations in 12-week-old
female mice. Using marker expression profiles from fluorescence-acti-
vated cell sorting (FACS), we retrospectively assigned known cell-type
labels to cells (Online Methods). These labels included multipotent
progenitors, lymphoid-primed multipotent progenitors, hematopoi-
etic stem and progenitor cells, hematopoietic stem cells, common
myeloid progenitors (CMPs), granulocyte-monocyte progenitors
(GMPs) and megakaryocyte-erythrocyte progenitors (MEPs). In the
second data set!8, the authors used the massively parallel single-cell
RNA-sequencing (MARS-seq) protocol to assess single-cell hetero-
geneity in myeloid progenitors from 6-to 8-week-old female mice.
Again, indexed FACS was used to assign a cell-type label (MEP, GMP
or CMP) to each cell.

To assess performance, we performed t-SNE dimensionality reduc-
tion on the expression data for the highly variable genes, before and
after correction with each of the three methods (MNN, limma and
ComBat) (Fig. 3a-d and Online Methods). Only MNN correction
correctly merged the cell types that were shared between batches,
i.e., CMPs, MEPs and GMPs, while preserving the underlying dif-
ferentiation hierarchy!?18 (Fig. 3e). In contrast, the shared cell types
still clustered by batch after correction with limma or ComBat, thus
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Figure 2 t-SNE plots of simulated scRNA-seq data containing two
batches of different cell types (with each batch containing n= 1,000
cells). (a-d) Data before correction (a) and after correction with our MNN
method (b), limma (c) or ComBat (d). In this simulation, each batch
(closed circle or open triangle) contained different numbers of cells in
each of three cell types (specified by color).

indicating that the batch effect had not been completely removed
(coloring by batch in Supplementary Fig. 3). This result is attribut-
able to the differences in cell-type composition between batches and
is consistent with the simulation results. To ensure that these results
were not due to an idiosyncrasy of the -SNE method, we repeated
our analysis with an alternative dimensionality-reduction approach
(PCA) using only the cell types in common between the two batches
(Fig. 3f-i). Among the methods, MNN correction was still the most
effective at removing the batch effect.

As a justification for the orthogonality of the batch effect to the
biological hyperplane, we present a histogram of the angle between
the batch vectors calculated by MNN and the first two singular value
decomposition components of the reference batch used in MNN
(i.e., the SMART-seq2 data set). Most angles are close to 90°, thus
supporting the near-orthogonality assumption (Supplementary
Fig. 3e). A diffusion map!® of the MNN-corrected data (Supplementary
Fig. 3f-h) shows the same differentiation hierarchy of cell types as
that in Figure 3e. Repeating the same analysis on a subset of randomly
sampled genes (1,500 out of the total of 3,904 highly variable genes)
yielded similar results, thus demonstrating the robustness of our
analysis with respect to the input gene set (Supplementary Fig. 4).

MNN correction outperforms existing methods on a pancreas
data set

We further tested the ability of our method to combine more complex
data sets generated through a variety of methods. Here, we focused
on the pancreas because it is a highly heterogeneous tissue with sev-
eral well-defined cell types. We combined scRNA-seq data on human
pancreas cells from four different publicly available data sets?0-23
generated through two different scRNA-seq protocols (SMART-seq2
and scRNA-seq by multiplexed linear amplification (CEL-seq)/CEL-
seq2). Cell-type labels were taken from the provided metadata or were
derived according to the methodology described in the original pub-
lication (further details of data preprocessing in Online Methods).
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Figure 3 t-SNE plots of scRNA-seq count data for cells from the hematopoietic lineage, prepared in two batches by using different technologies
(SMART-seq2 with n = 1,920 cells, closed circles; MARS-seq with n = 2,729 cells, open circles). (a—d) Plots generated before batch correction (a) and
after batch correction with our MNN method (b), limma (c) or ComBat (d). Cells are colored according to their annotated cell type. (e) The expected
hierarchy of hematopoietic cell types. (f-i) PCA plots of scRNA-seq count data for common cell types between the two batches of the hematopoietic
lineage generated (SMART-seq2 with n =791 cells; MARS-seq with n = 2,729 cells) before batch correction (f) and after batch correction through

our MNN method (g), limma (h) or ComBat (i). MPP, multipotent progenitors; LMPP, lymphoid-primed multipotent progenitors; LTHSC, long-term
hematopoietic stem cells; HSPC, hematopoietic stem and progenitor cells; PC, principal component.

We applied MNN, limma and ComBat to the combined data set
and examined the corrected data. All three batch-correction methods
improved the grouping of cells by their cell-type labels (Fig. 4a,b,
Online Methods and Supplementary Fig. 5a-d). This result is not
surprising, because the discrepancy between cell-type composition
in the four batches was modest (Supplementary Table 1). However,
even a small difference in composition was sufficient to cause duc-
tal and acinar cells to be incorrectly separated after correction with
limma or ComBat. By comparison, both cell types were coherently
grouped across batches after MNN correction, in agreement with
the simulation results. To determine the effect of correction on the
quality of cell-type-based clustering, we assessed cluster separa-
tion by computing the average silhouette widths for each cell type
(Supplementary Fig. 5 and Online Methods). The average silhou-
ette coefficient after MNN correction was significantly larger than
those in the uncorrected and limma- and ComBat-corrected data
(P < 0:05, two-sided Welch’s t-test). Thus, MNN correction is able to
decrease the between-batch variance within each cell type while pre-
serving differences among cell types. We also computed the entropy
of mixing (Online Methods) to quantify the extent of intermingling of
cells from different batches. The data that were batch corrected with
MNN showed higher entropy of mixing than did the uncorrected
data and the data corrected with limma or ComBat (Supplementary
Fig. 5). The improvement in the mixing of batches was observed in
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the reduced-dimension space obtained through either t-SNE or PCA
(Supplementary Fig. 5e-1). We again supported our assumption that
batch effects are adequately removed when they lie orthogonally to
the biological subspace (Supplementary Fig. 5m-o0). The observed
structure in the pancreas data was robust to the size of the input gene
set, as demonstrated by random subsampling of the total highly vari-
able gene set (Supplementary Fig. 6).

MNN correction improves differential expression analyses
After batch correction is performed, the corrected expression values
can be used in routine downstream analyses such as clustering prior
to differential gene expression identification. To provide a demonstra-
tion, we used the MNN-corrected expression matrix to simultaneously
cluster cells from all four pancreas data sets. Our new cluster labels
were in agreement with the previous cell-type assignments based on
the individual batches, with an adjusted Rand index of 0.94 (a Rand
index of 0 is equivalent to a random assignment, whereas a Rand
index of 1 denotes a perfect match between previous and new assign-
ments). Importantly, we obtained clusters for all batches in a single
clustering step. This procedure ensured that the cluster labels were
directly comparable between cells in different batches. In contrast, if
clustering had been performed separately in each batch, there would
have been no guarantee that a (weakly separated) cluster detected in
one batch would have had a direct counterpart in another batch.
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Figure 4 Application of MNN batch correction to pancreas cells by using four data sets (GSE81076 with n= 1,007 cells, GSE86473 with n=2,331
cells, GSE85241 with n= 1,595 cells and E-MTAB-5061 with n= 2,163 cells) measured on two different platforms, CEL-seq2 and SMART-seq2.
(a,b) t-SNE plots for uncorrected (raw) data (a) and data corrected with our MNN method (b). At top, the different batches are represented by four
colors; at bottom, the different cell types are denoted by distinct colors. (c) Combining data sets through MNN correction increases the power to detect
DE genes. Volcano plots of differential expression testing in a single data set (GSE81076; delta cells = 54, gamma cells = 19, left) and by using

the new cell-type labels after MNN correction (combined; delta cells = 428, gamma cells = 425, right). The y axis represents the —log;o Benjamini—
Hochberg-adjusted P value (-log;oP values >100 are censored at 100 for comparable scales), and the x axis is the log, fold change of expression in
gamma cells over delta cells. Individual gene symbols are labeled when Ilog, fold changel > 3. More genes are consistently differentially expressed at an
FDR of 5% in the combined data sets. (d) Venn diagrams representing the intersection of DE genes by using the cell-type labels after batch correction
(blue circles) and using the original cell-type labels from each individual study (orange circles). Numbers in each segment are the total numbers of DE
genes between delta and gamma islet cells in each batch. Each Venn diagram corresponds to a batch in which both cell types are present.

We used our new clusters to perform a differential expression
analysis between the delta islet cluster and the gamma islet cluster.
Using cells from all batches, we detected 76 differentially expressed
(DE) genes at a false discovery rate (FDR) of 5% (Fig. 4c). This set
included the marker genes for the cells included in the analysis (PPY
and SST), genes involved in pancreatic islet cell development (PAX6)
and genes recently implicated in delta islet function and the devel-
opment of type 2 diabetes (CD9 and HADH)?2. For comparison, we
repeated the differential expression analysis by using only cells from
each batch in which both cell types were present?0-22. The results
yielded only 12, 49 and 51 genes, respectively, at an FDR of 5%, which
encompassed 14.5-57.9% of those detected when all cells were used
(Fig. 4d). Merging data sets is beneficial because it increases the
number of cells without requiring additional experimental work,
improves statistical power for downstream analyses such as differen-
tial gene expression and consequently provides additional biological
insights. To this end, our MNN approach is critical because it ensures
that merging is performed in a coherent manner.

MNN correction is applicable to droplet RNA-seq technology

The advent of droplet-based cell capture, lysis, RNA reverse transcrip-
tion and subsequent expression profiling by sequencing has allowed
for single-cell expression experiments to be scaled up to tens and
hundreds of thousands of cells>324. These technologies are ideal for
testing the scalability and applicability of our correction method to
large scRNA-seq data sets. We specifically applied our MNN approach
to two large data sets of droplet-based scRNA-seq derived from the
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commercial 10X Genomics Chromium platform?4. We selected data
sets comprising a mixture of cell identities and complexities, namely
68,000 peripheral blood mononuclear cells (PBMCs) and 4,000 T cells
derived from different donors. PBMCs contain a milieu of periph-
eral adaptive and innate immune white blood cells as they circulate
through the human vasculature, whereas peripheral T cells contain a
mixture of naive and antigen-exposed lymphocytes involved in active
immune surveillance.

A naive merging of these two data sets without accounting for batch
effects illustrated the separation of the T cells from their counterparts
in the PBMC data (Fig. 5a,b). The combination of these two data sets
by using MNNs demonstrated that the separate peripheral T cells
mapped to the T cell subsets within the PBMC mixture (Fig. 5¢,d).
Importantly, other peripheral lymphocyte relationships were not dis-
torted by the correction applied, despite the absence of MNNs in the
T cell data set (Fig. 5¢). Specifically, 4,446/4,459 (99.7%) of individual
T cells mapped onto their appropriate counterparts in the PBMC
data set (Fig. 5). The remaining 13/4,459 (0.3%) mapped primarily
to a small cluster of unknown ontogeny and to the edges of a large
cluster of monocytes. In contrast, 14 non-T cells (0.3%; specifically
monocytes) mapped to T cell clusters inappropriately.

As the size of single-cell expression data sets increases, there will
be a growing need for computational methods that can scale up to
meet these requirements. To demonstrate the scalability of our method,
we sampled different proportions of cells from the 68K PBMC data
set, then corrected the batch effect between each subsample and the
4K T cell data. Within the range of 7,000 to 70,000 cells, we observed
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Figure 5 MNN batch correction can be scaled to tens of thousands of
cells. (a—d) t-SNE plots of scRNA-seq data of human PBMCs and T cells
(n= 73,039 cells), before batch correction (a,c) and after MNN correction
(b,d). Individual points are colored according to their original cell-type
labels (c,d) and the study batch of origin (a,b). (e) Central processing

unit (CPU) time increases linearly with the number of cells input to

MNN correction. Points represent the number of subsampled cells; the
red dashed line represents the linear relationship between CPU time
(minutes) and number of cells.

an approximately linear time increase (Fig. 5e). Thus, our method
is compatible with both the nature of droplet-technology-derived
single-cell expression data and the scale of current and future data sets.

DISCUSSION
Proper removal of batch effects is critical for valid data analysis and
interpretation of results. This removal is especially pertinent as the
scale and scope of scRNA-seq experiments increase, exceeding the
capacity of data generation within a single batch. To answer the rel-
evant biological questions, merging data from different batches—gen-
erated by different protocols, operators and/or platforms—is required.
However, for biological systems that are highly heterogeneous, the
composition of cell types and states is likely to differ across batches,
owing to stochastic and uncontrollable biological variability.
Existing batch-correction methods do not account for differences
in cell composition between batches and fail to fully remove the batch
effect in such cases. This failure can lead to misleading conclusions
wherein batch-specific clusters are incorrectly interpreted as distinct
cell types. By using both simulated data and real scRNA-seq data
sets, we demonstrated that our MNN method is able to successfully
remove the batch effect in the presence of differences in composition.
Moreover, we demonstrated the MNN method’s scalability on large
droplet-based data sets.
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One prerequisite for our MNN method is that each batch must
contain at least one shared cell population with another batch. This
requirement is necessary for the correct identification of MNN pairs
between batches. Batches without any shared structure are inherently
difficult to correct, because the batch effects are completely confounded
by biological differences. Such cases provide a motivation for using a
‘cell control; i.e., an easily reproducible cell population of known com-
position (from a cell line, for example) that is spiked into each sample
for the purpose of removing batch effects across samples.

A notable feature of our MNN correction method is that it adjusts
for local variations in batch effects by using a Gaussian kernel. Our
method is therefore able to accommodate differences in the size or
direction of the batch effect between different cell subpopulations in
high-dimensional space. Such differences are not easily handled by
methods based on linear models (because they would require explicit
modeling of predefined groupings of cells, which would defeat the
purpose of using scRNA-seq to study population heterogeneity in the
first place). Our results for the pancreas data set suggest that consid-
ering cell-type-specific batch effects (the default setting of MNN)
rather than a globally constant batch effect for all cells improves
batch-removal results (Supplementary Fig. 7). An important con-
sequence is that a single control population might not suffice for
accurate estimation of local batch effects. Instead, using an appropri-
ately mixed population of cells to properly account for local variation
may be necessary.

We demonstrated in simulations and real data sets that MNN suc-
cessfully combines cells with the same cell-type label, by bringing
cells from different batches onto a common coordinate system that
is defined by the first (reference) batch, such that all batches can be
analyzed together. Therefore, MNN eliminates discrepancies between
related batches without an analysis or interpretation of the origins and
causes of batch effects (between each pair of batches). The study of
the technical and biological origins of these discrepancies may also be
interesting. For instance, one batch might contain cells from a gene-
knockout experiment, and the other batch might contain cells from
a wild-type organism. In such cases, the correction vectors (provided
as an output of the MNN algorithm) could potentially be examined
to understand the differences between batches.

Batch correction plays a critical role in the interpretation of scRNA-
seq data from both small studies, in which logistical constraints
preclude the generation of data in a single batch, and large studies
involving international consortia such as the Human Cell Atlas, in
which scRNA-seq data are generated for a variety of related tissues
at different times and by multiple laboratories. Our MNN method
provides a superior alternative to existing methods for batch correc-
tion in the presence of compositional differences between batches.
We anticipate that this method will improve the rigor of scRNA-seq
data analysis and thus the quality of the biological conclusions.

METHODS

Methods, including statements of data availability and any associated
accession codes and references, are available in the online version of
the paper.

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper.
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ONLINE METHODS

Generation and analysis of simulated data. We considered a three-compo-
nent Gaussian mixture model in two dimensions (to represent the low-dimen-
sional biological subspace), in which each mixture component represents a
different simulated cell type. Two data sets with n = 1,000 cells were drawn
with different mixing coefficients (0.2, 0.3 and 0.5 for the first batch, and 0.05,
0.65 and 0.3 for the second batch) for the three cell types. We then projected
both data sets to G = 100 dimensions by using the same random Gaussian
matrix, thus simulating high-dimensional gene expression. Batch effects were
incorporated by generating a Gaussian random vector for each data set and
adding it to the expression profiles for all cells in that data set.

Processing and analysis of the hematopoietic data sets. Gene expression
counts generated by Nestorowa et al.!? on the SMART-seq2 platform (1,920
cells in total) were downloaded from the NCBI Gene Expression Omnibus
(GEO) database, accession number GSE81682. Expression counts generated
by Paul et al.!8 on the MARS-seq platform (10,368 cells in total) were obtained
from NCBI GEO accession GSE72857. Using FACS, the authors identified
2,729 myeloid progenitor cells (CMP, GMP and MEP) as lineage negative
(Lin™) c-Kit* Scal~ and gated the cells further on the basis of the levels of
the FcgR and CD34 markers; those cells were used for the analysis in this
manuscript. For batch correction, we identified a set of 3,937 highly vari-
able genes in common between the two data sets, by applying the method
described by Brennecke et al.?> to each data set. For both data sets, we per-
formed library-size normalization before log-transforming the normalized
expression values. Cell labels were assigned a priori to each cell on the basis
of the original publications.

Processing and analysis of the pancreas data sets. Raw data were obtained
from NCBI GEO accession numbers GSE81076 (ref. 20) (CEL-seq), GSE85241
(ref. 21) (CEL-seq2) and GSE86473 (ref. 22) (SMART-seq2) and from
ArrayExpress accession number E-MTAB-5061 (ref. 23) (SMART-seq2).
Count matrices were used as provided by GEO or ArrayExpress, if available.
For GSE86473, reads were aligned to the hg38 build of the human genome
by using STAR version 2.4.2a¢ with default parameters, and were assigned
to Ensembl build 86 protein-coding genes with featureCounts version 1.4.6
(ref. 27).

Quality control was performed on each data set independently to remove
poor-quality cells (>20% of total counts from spike-in transcripts, <100,000
reads, >40% total counts from ribosomal RNA genes). Sparse cells and genes
(90% zero values) were also removed, thus leaving a total of 7,236 cells available
across all four data sets. Normalization of cell-specific biases was performed
for each data set through the deconvolution method of Lun et al.?8. Counts
were divided by size factors to obtain normalized expression values that were
log transformed after addition of a pseudocount of 1. Highly variable genes
were identified in each data set through the method of Brennecke at al>>. We
took the union of highly variable genes whose expression was common across
all four data sets, thus resulting in 2,507 genes that were used for the MNN
batch correction.

Cell-type labels for each data set were assigned on the basis of the provided
metadata (GSE86473 and EMTAB-5061) or, if the labels were not provided,
were inferred from the data through the method used in the original publica-
tion (GSE81076 and GSE85241).

To demonstrate the utility of our batch-correction method in downstream
analyses, we applied dimensionality reduction (t-SNE) to the MNN-corrected
expression matrix from the pooled pancreas data sets. We constructed a shared
nearest neighbor (SNN) graph?® by using the combined cells and the union
of the highly variable genes that were expressed across all data sets. To iden-
tify communities of cells, we applied the ‘Walktrap™ algorithm to the SNN
graph3, with five steps. This procedure identified a total of 11 clusters. To
assign specific cell-type labels to those clusters, we examined the expression
of the marker genes that were used for cell-type assignment in the original
publications. Specifically, GCG was used to mark alpha islets, INS was used
to mark beta islets, SST was used to mark delta islets, PPY was used to mark
gamma islets, PRSSI was used to mark acinar cells, KRT19 was used to mark
ductal cells, and COLI1AI was used to mark mesenchymal cells. Cells in the
cluster with the highest expression of each marker gene were assigned to the
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corresponding cell type. All remaining cells were allocated into an additional
‘unassigned/unknown’ cluster.

The differential expression analysis was performed by using methods from
the limma package’. For the analysis on all cells, we parameterized the design
matrix such that each batch-cluster combination formed a separate group in
a one-way layout, by using the labels derived from the batch-corrected data
(described above). We used this design to fit a linear model to the normalized
uncorrected log expression values for each gene, then performed empirical Bayes
shrinkage to stabilize the sample variances. A moderated ¢-test was applied to
compare the delta and gamma islet clusters across all batches. Specifically, we
tested whether the average expression of each cluster across all batches was equal
between the two cell types. DE genes were defined as those detected at an FDR
of 5%. For comparison, we repeated this analysis for each batch, using only cells
from batches with both cell types present. Here, we used a design matrix with a
one-way layout constructed from the original cell-type assignments. Delta and
gamma islet cell types were directly compared within this batch.

Application of batch correction to droplet-based data. Single-cell gene
expression measurements derived from the 10X Genomics droplet-based
platform using Chromium v2 chemistry were downloaded from the com-
pany website (https://support.10xgenomics.com/single-cell-gene-expres-
sion/datasets/). Expression data from 4,459 human T cells (t_4k) and 68,580
PBMCs (pbmc68k) from two separate donors were normalized separately
by using size factors estimated by the deconvolution method as previously
described?$. Highly variable genes were defined within each data set as pre-
viously described?> (PBMCs, 1,409 genes; T cells, 1,219 genes). To define
communities of transcriptionally similar cells, we constructed an SNN graph
and assigned cells to specific communities by using the Walktrap algorithm.
The identity of each community was assigned on the basis of visualization of
expression of canonical marker genes in major leukocyte lineages (CD3, CD20,
CD14, CD16, CD1C and CD56). Droplet data sets were combined through
our MNN approach on the intersection of the two highly variable gene sets
(270 genes). Low-dimensional representations of individual and combined
data sets were produced with ¢-SNE.

MNN correction scalability. Scalability testing of our MNN correction
method was performed by random sampling of cells between 10% and 100%
of the total number of PBMCs, i.e., 100% = 68,000 cells. We combined each
subset with the set of 4,459 T cells, then recorded the CPU time in the R
environment (R Core Team 2017) by using the system.time function. For each
combination of data, the R environment garbage collector was invoked before
the time was recorded.

t-SNE plots. We generated the t-SNE plots by using the Rtsne package with
identical parameter settings for the uncorrected data and the data that were
batch corrected with MNN, limma and ComBat. In all plots, we used the
distance matrix as the input for the Rtsne function (i.e., Rtsne parameter
is_distance = TRUE). For the hematopoietic data, we accounted for the expected
continuity of the data structure by choosing a large perplexity parameter (i.e.,
90). For all other data sets in which separate clusters were expected to exist,
we used the default perplexity parameter (i.e., 30) and again used identical
parameter settings across all batch-correction methods.

Silhouette coefficient. To assess the separation of the cell types for the pan-
creas data, we computed the silhouette coefficient by using the kBET package
in R3!. Here, each unique cell-type label defines a cluster of cells. Let a(i) be
the average distance of cell i to all other cells within the same cluster as i, and
let b(i) be the average distance of cell i to all cells assigned to the neighboring
cluster, i.e., the cluster with the lowest average distance to the cluster of i. The
silhouette coefficient for cell i is defined as:
1- il_) if a(i) < b(i)
b(i) @)
s(i) = 0 if a(i) = b(i)

@—1 if a(i) > b(i)

a(i)
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A larger s(i) suggests that the cluster assignment for cell i is appropriate; i.e.,
itis close to other cells in the same cluster yet distant from cells in other clus-
ters. Because dimensionality reduction by t-SNE facilitates more reasonable
clustering results than does clustering in high dimensions, we calculated the
silhouette coefficients by using distance matrices computed from the t-SNE
coordinates of each cell in the batch-corrected and the uncorrected data.

Entropy of batch mixing. Entropy of mixing?? for ¢ different batches is defined
as:

c
E=") x;log(x;) (3)

i=1

where x; is the proportion of cells from batch i in a given region, such that
T_1x; = 1. We assessed the total entropy of batch mixing on the first two
PCs of the batch-corrected and the uncorrected pancreas data sets, by using
regional mixing entropies according to equation (3) at the location of 100
randomly chosen cells from all batches. The regional proportion of cells from
each batch was defined from the set of 100 nearest neighbors for each ran-
domly chosen cell. The total mixing entropy was then calculated as the sum
of the regional entropies. We repeated this procedure for 100 iterations with
different randomly chosen cells to generate box plots of the total entropy
(Supplementary Figs. 5q and 6q).

Software availability. An open-source software implementation of our MNN
method is available as the mnnCorrect function in version 1.6.2 of the scran
package on Bioconductor (https://bioconductor.org/packages/scran/). All code
for producing results and figures in this manuscript is available on Github
(https://github.com/MarioniLab/MNN2017/).
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Reporting Summary. Further information on experimental design is available
in the Nature Research Reporting Summary.

Data availability. The published data sets used in this manuscript are available
through the following accession numbers: SMART-seq2 platform hematopoi-
etic data by Nestorowa et al.'2, GEO GSE81682; MARS-seq platform hemat-
opoietic data by Paul et al.'8, GEO GSE72857; CEL-seq platform pancreas data
by Griin ef al.?0, GEO GSE81076; CEL-seq2 platform pancreas data by Muraro
etal.?!, GEO GSE85241; SMART-seq?2 platform pancreas data by Lawlor et al.??,
GEO GSE86473; and SMART-seq2 platform pancreas data by Segerstolpe
et al.?3, ArrayExpress E-MTAB-5061.
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Describe any data exclusions. We occasionally excluded cells without FACs sorting labels (Paul 2015 data).
Individual pancreatic cells were excluded if the sequencing depth was low. This is
done in the procedure of cell's quality control performed by scran R package for
single-cell data processing.

Genes for which the name could not be matched across the data sets being
merged were also excluded from our analysis.

3. Replication
Describe whether the experimental findings were For demonstrating robustness of our analysis, we performed batch correction on
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|X| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)
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|X| A description of any assumptions or corrections, such as an adjustment for multiple comparisons
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Describe the software used to analyze the data in this R codes for the MNN batch correction method is available in package

study. "scran" (version 1.6.6). All codes used for the analysis and generating of the results
(including the call to required packages STAR, Rtsne, destiny, scran, kBET, limma,
ComBat, etc) are deposited at: https://github.com/MarioniLab/MNN2017

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for
providing algorithms and software for publication provides further information on this topic.
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Materials availability
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for distribution by a for-profit company. accession number E-MTAB-5061 for the pancreas data sets. 10X (droplet) data is
publicly available and were downloaded directly from the 10X website.
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