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ARISING FROM S. M. McKinney et al. Nature https://doi.org/10.1038/s41586-019-1799-6 (2020)

Breakthroughs in artificial intelligence (Al) hold enormous potential
as it can automate complex tasks and go even beyond human perfor-
mance. In their study, McKinney et al.' showed the high potential of Al
for breast cancer screening. However, the lack of details of the methods
and algorithm code undermines its scientific value. Here, we iden-
tify obstacles that hinder transparent and reproducible Al research
as faced by McKinney et al.!, and provide solutions to these obstacles
with implications for the broader field.

The work by McKinney et al.! demonstrates the potential of Al in
medical imaging, while highlighting the challenges of making such
workreproducible. The authors assert that their systemimproves the
speed and robustness of breast cancer screening, generalizes to popula-
tions beyond those used for training, and outperforms radiologists in
specific settings. Upon successful prospective clinical validation and
approval by regulatory bodies, this new system holds great poten-
tial for streamlining clinical workflows, reducing false positives, and
improving patient outcomes. However, the absence of sufficiently doc-
umented methods and computer code underlying the study effectively
undermines its scientific value. This shortcoming limits the evidence
required for others to prospectively validate and clinicallyimplement
such technologies. By identifying obstacles hindering transparent
and reproducible Al research as faced by McKinney et al.!, we provide
potential solutions with implications for the broader field.

Scientific progress depends on the ability ofindependent researchers
to scrutinize the results of a research study, to reproduce the study’s
main results using its materials, and to build on them in future stud-
ies (https://www.nature.com/nature-research/editorial-policies/

reporting-standards). Publication of insufficiently documented
research does not meet the core requirements underlying scientific
discovery*®. Merely textual descriptions of deep-learning models can
hide their high level of complexity. Nuancesin the computer code may
have marked effects on the training and evaluation of results*, poten-
tially leading to unintended consequences®. Therefore, transparency in
the form of the actual computer code used to trainamodel and arrive
atits final set of parameters is essential for research reproducibility.
McKinney et al.' stated that the code used for training the models has
“alarge number of dependencies on internal tooling, infrastructure
and hardware”, and claimed that the release of the code was there-
fore not possible. Computational reproducibility isindispensable for
high-quality Al applications®’; more complex methods demand greater
transparency®. In the absence of code, reproducibility falls back on
replicating methods fromtextual description. Although, McKinney and
colleagues' claim that all experiments and implementation details were
described in sufficient detail in the supplementary methods section of
their Article' to “support replication with non-proprietary libraries”, key
details about their analysis are lacking. Even with extensive description,
reproducing complex computational pipelines based purely ontextis
asubjective and challenging task®.

Inaddition to the reproducibility challengesinherent to purely tex-
tual descriptions of methods, the description by McKinney et al.' of the
model development as well as data processing and training pipelines
lacks crucial details. The definitions of several hyperparameters for
the model’s architecture (composed of three networks referred to
as the breast, lesion and case models) are missing (Table 1). In their
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Table 1| Essential hyperparameters for reproducing the
study for each of the three models

Table 2 | Frameworks to share code, software dependencies
and deep-learning models

Lesion Breast Case Resource URL
Learningrate  Missing 0.0001 Missing Code
Learningrate  Missing Stated Missing BitBucket https://bitbucket.org
schedule GitHub https://github.com
Optimizer Stochastiggradient Adam Missing GitLab https://about.gitlab.com
descent with momentum
Momentum Missing Not applicable Not applicable Software dependencies
Batch size 4 Unclear 2 Conda https://conda.io
Epochs Missing 120,000 Missing Code Ocean https://codeocean.com
Gigantum https://gigantum.com

publication, McKinney et al.' did not disclose the settings for the aug-
mentation pipeline; the transformations used are stochastic and can
considerably affect model performance'. Details of the training pipe-
line were also missing. Without this key information, independent
reproduction of the training pipeline is not possible.

Numerous frameworks and platforms exist to make artificial intel-
ligence research more transparent and reproducible (Table 2). For the
sharing of code, these include Bitbucket, GitHub and GitLab, among
others. The many software dependencies of large-scale machine learn-
ing applicationsrequire appropriate control of the software environ-
ment, which can be achieved through package managers including
Conda, as well as container and virtualization systems, including Code
Ocean, Gigantum, Colaboratory and Docker. If virtualization of the
McKinney et al.' internal tooling proved to be difficult, they could
have released the computer code and documentation. The authors
could havealso created small artificial examples or used small public
datasets" to show how new datamust be processed to train the model
and generate predictions. Sharing the fitted model (architecture along
with learned parameters) should be simple aside from privacy con-
cerns that the model may reveal sensitive information about the set
of patients used to train it. Nevertheless, techniques for achieving
differential privacy exist to alleviate such concerns. Many platforms
allow sharing of deep learning models, including TensorFlow Hub,
ModelHub.ai, ModelDepot and Model Zoo with support for several
frameworks such as PyTorch and Caffe, as well as the TensorFlow
library used by the authors. In addition to improving accessibility
and transparency, such resources can considerably accelerate model
development, validation and transition into production and clinical
implementation.

Another crucial aspect of ensuring reproducibility liesinaccess tothe
datathe models were derived from. In their study, McKinney et al.' used
two large datasets under license, properly disclosing this limitationin
their publication. The sharing of patient health information is highly
regulated owing to privacy concerns. Despite these challenges, the
sharing of raw datahas become more commoninbiomedical literature,
increasing from under 1% in the early 2000s to 20% today™. However,
if the data cannot be shared, the model predictions and data labels
themselves should be released, allowing further statistical analyses.
Above all, concerns about data privacy should not be used as away to
distract from the requirement to release code.

Although sharing of code and data are widely seen as a crucial part
of scientificresearch, the adoption varies across fields. In fields such
asgenomics, complex computational pipelines and sensitive datasets
have been shared for decades®. Guidelines related to genomic data
are clear, detailed and, most importantly, enforced. It is generally
accepted that all code and data are released alongside a publication.
In other fields of medicine and science as a whole, this is much less
common, and data and code are rarely made available. For scien-
tific efforts in which a clinical application is envisioned and human

Colaboratory https://colab.research.google.com

Deep-learning models

TensorFlow Hub https://www.tensorflow.org/hub

ModelHub http://modelhub.ai
ModelDepot https://modeldepot.io
Model Zoo https://modelzoo.co

Deep-learning frameworks

TensorFlow https://www.tensorflow.org/
Caffe https://caffe.berkeleyvision.org/
PyTorch https://pytorch.org/

lives would be at stake, we argue that the bar of transparency should
be set even higher. If a dataset cannot be shared with the entire sci-
entific community, because of licensing or other insurmountable
issues, ataminimum a mechanism should be set so that some highly-
trained, independent investigators can access the data and verify
the analyses.

Thelack of access to code and data in prominent scientific publica-
tions may lead to unwarranted and even potentially harmful clinical
trials™. These unfortunate lessons have not been lost on journal editors
and their readers. Journals have an obligation to hold authors to the
standards of reproducibility that benefit not only other researchers,
butalso theauthors themselves. Making one’s methods reproducible
may surface biases or shortcomings to authors before publication®.
Preventing external validation of amodel will likely reduce itsimpact,
asitalso prevents other researchers from using and building upon it
in future studies. The failure of McKinney et al. to share key materials
and information transforms their work from a scientific publication
open to verification and adoption by the scientific community into a
promotion of a closed technology.

We have high hopes for the utility of Almethods in medicine. Ensur-
ing that these methods meet their potential, however, requires that
these studies be scientifically reproducible. The recent advances in
computational virtualizationand Al frameworks are greatly facilitat-
ing theimplementations of complex deep neural networks ina more
structured, transparent, and reproducible way. Adoption of these
technologies willincrease theimpact of published deep-learning algo-
rithms and accelerate the translation of these methods into clinical
settings.

Reporting summary

Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability
No data have been generated as part of this manuscript.
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REPLYING TO B. Haibe-Kains et al. Nature https://doi.org/10.1038/s41586-020-2766-y (2020)

We thank the authors of the accompanying Comment' for their interest
inour work?and their thoughtful contribution. We agree that transpar-
ency and reproducibility are paramount for scientific progress. In keep-
ing with this principle, the largest data source used in our publication
isavailable to the academic community. Any researcher can apply for
access to the OPTIMAM database (https://medphys.royalsurrey.nhs.
uk/omidb/getting-access), which our institution helped fund. The
broad accessibility of the database was part of the reason we pursued
this collaboration. In fact, since our article came out, another group
has already published results on this very dataset®.

The other dataset, from the United States, was shared with our
research team after approval from the hospital system’s Institutional
Review Board (IRB). The IRB judged that the potential benefits of the
research outweighed the minimal privacy risks associated with sharing
de-identified data with a trusted party capable of and committed to
safeguarding these data. As the authors understand, we are not at lib-
erty toshare data that we do not own. More generally, widely releasing
dataconsiderably alters the risk-benefit calculus for patients, so insti-
tutions must be thoughtful about how and when they do this. Because
ofthese considerations, large medical image datasets with associated
breast cancer outcomes are rarely made openly available® 5. However,
asoursupport for the OPTIMAM database demonstrates, we endorse
such efforts where practical. Although there are some small, publicly
available mammography datasets®, restricting published research to
such datasets would provide an extremely limited picture of an algo-
rithm’s clinical applicability.

The commenters' asked for more information concerning the train-
ing of our deep learning models. We strove to document all relevant
machine learning methods while keeping the paper accessible to a
clinical and general scientific audience. We thank the authors for high-
lighting the omission of some hyperparameters. We have supplied the
requested methodological details and further elaborated on our data
augmentation strategies in an Addendum’ to our original Article?.

The authors of the Comment’ suggest open-sourcing all the code
associated with this project. Most of our work builds on open-source
implementations, such as ResNet (https://github.com/tensorflow/
models/blob/master/research/slim/nets/resnet_vl.py), MobileNet
(https://github.com/tensorflow/models/blob/master/research/slim/
nets/mobilenet/mobilenet_v2.py), multidimensionalimage augmenta-
tion (https://github.com/deepmind/multidim-image-augmentation),
and the Tensorflow Object Detection API (https://github.com/tensor-
flow/models/tree/master/research/object_detection), all of whichwere
released by our institution. Much of the remaining code concerns data
input-output and the orchestration of the training process across
internal compute clusters, both of which are of scant scientific value
and limited utility to researchers outside our organization. Given the

extensive textual descriptioninthe supplementary information of our
Article?, we believe that investigators proficientin deep learning should
be able to learn from and expand upon our approach.

The authors' further suggest releasing a containerized version of our
model for others to apply to new images. It is important to note that
regulators commonly classify technologies such as the one proposed
here as ‘medical device software’ or ‘software as a medical device’.
Unfortunately, the release of any medical device without appropriate
regulatory oversight could lead toits misuse. As such, doing so would
overlook material ethical concerns. Because liability issues surround-
ing artificial intelligence in healthcare remain unresolved®, providing
unrestricted access to such technologies may place patients, provid-
ers,and developers atrisk. In addition, the development of impactful
medical technologies must remain a sustainable venture to promote
avibrant ecosystemthat supports future innovation. Parallels to hard-
ware medical devices and pharmaceuticals may be useful to considerin
thisregard. Finally, increasing evidence suggests thatamodel’s learned
parameters may inadvertently expose properties of its training set to
attack; howto safeguard potentially susceptible modelsis the subject
of activeresearch®. As our training data are private or under restricted
access, sharing the model openly seems premature and may introduce
risks that are not well characterized. On the basis of these concerns,
we deliberately approach sharing artefacts derived from patient data
(evenif de-identified) with an abundance of caution.

No doubt the commenters’ are motivated by protecting future
patients as much as scientific principle. We share that sentiment. This
work serves as an initial proof of concept, and is by no means the end
of the story. We intend to subject our software to extensive testing
before its use in a clinical environment, working alongside patients,
providers and regulators to ensure efficacy and safety.

1. Haibe-Kains, B. et al. Transparency and reproducibility in artificial intelligence. Nature
https://doi.org/10.1038/s41586-020-2766-y (2020).

2. McKinney, S. M. et al. International evaluation of an Al system for breast cancer screening.
Nature 577, 89-94 (2020).

3. Kim, H.-E. et al. Changes in cancer detection and false-positive recall in mammography
using artificial intelligence: a retrospective, multireader study. Lancet Digital Health 2,
€138-e148 (2020).

4. Wu, N. et al. Deep neural networks improve radiologists’ performance in breast cancer
screening. IEEE Trans. Med. Imaging 39, 1184-1194 (2019).

5. Rodriguez-Ruiz, A. et al. Stand-alone artificial intelligence for breast cancer detection in
mammography: comparison with 101 radiologists. J. Natl. Cancer Inst. 111, 916-922
(2019).

6. Lee, R.S. etal. A curated mammography data set for use in computer-aided detection
and diagnosis research. Sci. Data 4, 170177 (2017).

7. McKinney, S. M. et al. Addendum: International evaluation of an Al system for breast
cancer screening. Nature https://doi.org/10.1038/s41586-020-2679-9 (2020).

8.  Price, W.N., Il, Gerke, S. & Cohen, I. G. Potential liability for physicians using artificial
intelligence. J. Am. Med. Assoc. 322, 1765-1766 (2019).

9.  Abadi, M. et al. Deep learning with differential privacy. In Proc. 2016 ACM SIGSAC
Conference Computer Communications Security CCS16 308-318 (2016).

'Google Health, Palo Alto, CA, USA. 2Google Health, London, UK. ®e-mail: scottmayer@google.com; sshetty@google.com

Nature | Vol 586 | 15 October 2020 | E17


https://doi.org/10.1038/s41586-020-2766-y
https://medphys.royalsurrey.nhs.uk/omidb/getting-access
https://medphys.royalsurrey.nhs.uk/omidb/getting-access
https://github.com/tensorflow/models/blob/master/research/slim/nets/resnet_v1.py
https://github.com/tensorflow/models/blob/master/research/slim/nets/resnet_v1.py
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v2.py
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v2.py
https://github.com/deepmind/multidim-image-augmentation
https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/tree/master/research/object_detection
https://doi.org/10.1038/s41586-020-2766-y
https://doi.org/10.1038/s41586-020-2679-9
https://doi.org/10.1038/s41586-020-2767-x
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-020-2767-x&domain=pdf
mailto:scottmayer@google.com
mailto:sshetty@google.com

Matters arising

Acknowledgements We thank A. Dai and E. Gabrilovich for comments.

Author contributions This Reply was prepared by a subset of the authors of the original Article
in addition to Y.L., all of whom have expertise related to this exchange. S.M.M., AK., DT., C.J.K,
Y.L., G.S.C. and S.S. wrote and revised this Reply.

Competing interests This study was funded by Google LLC. S.M.M., AK., DT, C.JK, Y.L., GS.C.
and S.S. are employees of Google and own stock as part of the standard compensation
package. The authors have no other competing interests to disclose.

E18 | Nature | Vol 586 | 15 October 2020

Additional information

Correspondence and requests for materials should be addressed to S.M.M. or S.S.
Reprints and permissions information is available at http://www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2020


http://www.nature.com/reprints

	Transparency and reproducibility in artificial intelligence

	Reporting summary

	Acknowledgements
	Table 1 Essential hyperparameters for reproducing the study for each of the three models.
	Table 2 Frameworks to share code, software dependencies and deep-learning models.

	2767.pdf
	Reply to: Transparency and reproducibility in artificial intelligence

	Acknowledgements





