ORIGINAL PAPER

Vol. 22 no. 16 2006, pages 1963-1970
doi: 10.1093/bioinformatics/btli289

Gene expression

Transcript mapping with high-density oligonucleotide

tiling arrays

Wolfgang Huber'*, Joern Toedling' and Lars M. Steinmetz?

"European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge CB10 1SD, UK and
2European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany

Received on April 3, 2006; accepted on May 24, 2006
Advance Access publication June 20, 2006
Associate Editor: Joaquin Dopazo

ABSTRACT

Motivation: High-density DNA tiling microarrays are a powerful tool
for the characterization of complete transcriptomes. The two major
analytical challenges are the segmentation of the hybridization signal
along genomic coordinates to accurately determine transcript bound-
aries and the adjustment of the sequence-dependent response of
the oligonucleotide probes to achieve quantitative comparability of
the signal between different probes.

Results: We describe a dynamic programming algorithm for finding
a globally optimal fit of a piecewise constant expression profile along
genomic coordinates. We developed a probe-specific background cor-
rection and scaling method that employs empirical probe response
parameters determined from reference hybridizations with no need
for paired mismatch probes. This combined analysis approach allows
the accurate determination of dynamical changes in transcription
architectures from hybridization data and will help to study the biolog-
ical significance of complex transcriptional phenomena in eukaryotic
genomes.

Availability: R package tilingArray at http://www.bioconductor.org.
Contact: huber@ebi.ac.uk

Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

High-density genomic tiling microarrays cover a complete genome
or alarge fraction of it with densely tiled oligonucleotide probes. The
major applications of these arrays are for transcriptome analysis,
DNA-protein-binding and chromatin modification assays (ChIP-
chip) and DNA variation detection (Bertone et al., 2004; Carroll
etal.,2005; David et al., 2006; Gendrel et al., 2005; Gresham et al.,
2006; Kampa et al., 2004; Kapranov et al., 2002; Mockler et al.,
2005; Royce et al., 2005; Samanta et al., 2006; Schadt et al., 2004;
Selinger et al., 2000; Shoemaker et al., 2001; Stolc et al., 2004; Sun
et al., 2003; Yamada et al., 2003).

The current highest-density tiling microarrays contain 6.5 million
distinct features on a single chip and are produced by the company
Affymetrix. Each feature measures 5 um X 5 um in size and typi-
cally contains olignucleotide probes 25 bases in length. In this
paper, we focus on the specific analytical challenges posed by
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the application of short oligonucleotide tiling arrays to transcrip-
tome analysis (Royce et al., 2005).

The first task is the detection of transcript boundaries, i.e.
transcript start and stop sites. The challenge is to obtain optimal
estimates of the genomic coordinates of transcript boundaries from
the tiling array data. The hybridization signal corresponds to the
sum of target molecules at each probe position. The maximal
precision is determined by the offset between the tiling features
and can be as fine as a few bases, however in practice, it is often
limited by noise and the transcriptional activity of the genomic
region surrounding the transcripts. In addition, we want to quantify
the relative level of transcript abundance and have a statistical
measure of uncertainty for each estimated transcript boundary.

Second, we would like to detect the presence of architectural
features within genes such as alternative transcription start and
stop sites, alternative splicing and alternative partial degradation.
For this, we need to compare the signal from probes that target
different parts of the same gene. To achieve this, we must address
the problem of differential probe response: different oligonucleotide
probes may report consistently different intensities even if the
abundance of their target molecules is the same. Such sequence
dependent variation can extend over several orders of magnitude.
If not accounted for, this variation leaves a great deal of apparent
noise in the data and will obstruct the reliable detection of transcript
boundaries, levels and architectures.

Here we describe a segmentation method that addresses the first
of the above challenges and a DNA reference normalization method
that addresses the second. These methods were successfully used
in David et al. (2006) and promise to advance the extraction of
biological meaning from tiling array data.

2 METHODS

2.1 Example data

We employed an Affymetrix oligonucleotide array that contains 6 553 600
probes and interrogates both strands of the complete genomic sequence
of Saccharomyces cerevisiae with 25mer probes tiled at intervals of 8 nt
on each strand (17 nt overlap) and a 4 nt offset of the tile between strands.
This design enables a 4 bp resolution for hybridization of double stranded
targets and an eight base resolution for strand-specific targets.

RNA was isolated from yeast cells during the exponential growth phase in
rich medium (YPD) and was doubly enriched for polyadenylated molecules.
First-strand cDNA was synthesized using random primers and labeled.

© 2006 The Author(s)

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commerical License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commerical use, distribution, and reproduction in any medium, provided the original work is properly cited.

0T0Z ‘g 1snBny uo Yauyolqig ‘a1bojoigrenysjo Jan) wnojeloge] saydsiedoing 1e B1o sfeuinolplojxo saewiouiold//:dny woiy papeojumoq


http://www.bioconductor.org
http://creativecommons.org/licenses/
http://bioinformatics.oxfordjournals.org

W.Huber et al.

Chr 1

31 E 3 7137 : REEARL % : : RS
ALO6' PEX22 YALOB4W-A T YALsTW ' (ALO31W-A YALO27W
GDH3 BDH GPB2 'ALOS3W  OAF1 YALO47W-A ERV46 CcDbC1o FUN12 ' 1 POPS SNE1 RT2 W- PSK1 TPD3 E
EC CDC24! 1 FUN30
wop0 w0 sop0 w0 7900 o0 sog0 109000 110900 20000 129000
, f f f f f }
YALOS6C-A
YALOS9C-A ACS1

T

DRS2
MYO4 YALO26C-A IAK16  LTE1

T T 1
YALDiEC-A
PMT2 CCR4 ATS1 YALO{BC YALO{6C-B NTG!
S¥Ns

EMT|| VALOS YALG37C-A FONfo
YALO49C |' YALO42C-A CYG3  YALOS7C-B YALOGICB | PRP45GIP4
YALO4GC. PTAT R

Fig. 1. Visualization of yeast tiling array intensities along 100 kb of chromosome 1, corresponding to ~1% of the genome. The plot shows the normalized log,
hybridization intensities (y-axis) along genomic coordinates (x-axis in bp). Each dot corresponds to a unique probe, Watson (+) strand in green and Crick (—)
strand in blue. Annotated open reading frames (ORFs) are shown as blue boxes, dubious ORFs as light blue boxes, transcription factor binding sites as grey bars.
Vertical lines are segment boundaries. The use of the data to map the boundaries and levels of all transcripts, including the untranslated regions (UTRs) of
protein-coding genes, antisense transcripts, and currently uncharacterized non-coding RNAs was described by David et al. (2006). A browsable on-line database
of such plots for the whole yeast genome is available at http://www.ebi.ac.uk/huber-srv/queryGene. A colour version of this figure is available as part of the
supplementary data.
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Fig. 2. Detailed views on segmentation results. The 95%-confidence intervals are shown by vertical dashed lines. Note that the confidence intervals are
calculated in terms of data sampling points, not genomic coordinates. Hence, in cases where the data are unequivocal, the interval boundaries coincide with
the change-point estimate itself, e.g. see the 5’ end of SER33 in panel (c). (a) Spliced transcripts RPS16A and RPL13B. (b) Complex transcript architecture of
MET7. (¢) Transcript antisense to SPO22. CDS refers to coding sequence; TF, transcription factor. A colour version of this figure is available as part of the

supplementary data.

Genomic DNA was isolated from the same yeast strain. RNA and DNA
samples were hybridized in three replicates each. The data are available at
ArrayExpress (accession number E-TABM-14) and in the Bioconductor data
package davidTiling. The biological findings from this study are described
in David et al. (2006).

2.2 Structural change model segmentation

Transcript boundaries can be identified from sudden changes of the hybrid-
ization signal plotted along a linear genomic coordinate axis (Fig. 1).
The signal is affected by noise, which suggests that smoothing or proba-
bilistic modeling of the signal is beneficial. The signal could be either the
hybridization intensities from a single RNA sample or it could be a per-probe
summary statistic for the comparison of multiple conditions or time points.

Perhaps the most obvious approach is to move a sliding window along
the coordinate axis and to measure the evidence for the presence of

transcripts by computing a scan statistic at each window step. As we discuss
in Section 3.1, such approaches are not well-suited to precisely determine the
boundaries of transcripts. An improvement is provided by hidden Markov
models. Discrete state hidden Markov models are powerful and popular
tools in biological sequence analysis, and there are efficient and elegant
dynamic programming algorithms for fitting them to data (Durbin et al.,
2002; Rabiner, 1989).

Tjaden et al. (2002) applied a two-state hidden Markov model to the
detection of untranslated region (UTR) boundaries, where the two states
corresponded to presence or absence of transcription. However, transcript
abundance is a continuous-valued quantity, and there are biological
effects such as alternative transcription start and end sites and partial
transcript degradation that result in complex signal patterns (Fig. 2).
These patterns are richer than can be detected by a simple ‘on/off’
model. We propose a continuous-state model whose hidden state can be
any real number.
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2.2.1 The model The SCM model is well known in econometrics (Bai
and Perron, 2003; Zeileis et al., 2002) for the modeling of sudden jumps in
financial time series and has been applied to the segmentation of array-CGH
data (Picard et al., 2005). It models the data as a piecewise constant function
of chromosomal coordinates,

Zi = Mg+ forty <k <toq, (1)

where k = 1,2,...,n indexes the probes in ascending order along the chro-
mosome, I indexes replicate experiments, z; is the signal from the k-th probe
in the i-th replicate, #, . .., fg parameterize the segment boundaries, #; = 1
and tg,; = n+ 1, S is the total number of segments, u, is the mean signal level
of the s-th segment, and &;; are the residuals. w1, . . ., ug can be any set of real
numbers. t,,. .., s are also called the change-points. Model (1) is applied
separately to each chromosome and, if the signal is strand-specific, to each
of its two strands.

2.2.2 Parameter estimation Fitting the model (1) can be accomp-
lished by minimizing the sum of squared residuals

S 1
G(f],...,[s) = Z Z
s=1 i=1

where S is the number of segments, / is the number of replicate arrays and
i is the arithmetic mean of the z;; in segment s.

There is a dynamic programming algorithm that allows the globally
optimal set of parameters t1,...,ts, for all values of S between 1 and Sy,x,
to be obtained in quadratic time O(n%). Recent presentations of the algorithm
include Bai and Perron (2003), Picard et al. (2005). If one bounds the
maximal length of individual segments to a fixed size (e.g. [ = 20 kb),
then the complexity of the algorithm can be reduced to O(nl). With this
approach, which we have taken, sequences of several hundred thousand
probes can be processed in a single run. We provide a C implementation
in the function segment in the tilingArray package of the Bioconductor
project (Gentleman et al., 2004).

Is+1—

1
(zri—it,)’ 2
k=,

2.2.3 Confidence intervals Bai and Perron (1998) present an asymp-
totic theory for inference on the SCM model (1), and in a companion paper
(Bai and Perron, 2003) they provide a comprehensive and detailed discussion
of the associated computational aspects. The calculation of the confidence
intervals on estimated change-points 7, involves the distribution of the arg-
max functional of a process composed of two independent Brownian
motions. The drift and scale parameters of these processes depend on the
difference between the segment means and on the standard deviation and
serial correlation of the residuals. Owing to the limitations of floating-point
arithmetic, the correct numerical evaluation of this distribution function is
not trivial. Zeileis and Kleiber (2005) point out some of the caveats. The
package tilingArray makes use of their implementation of the confidence
interval estimation in the R package strucchange (Zeileis et al., 2002, 2003).

224 Model selection The only user-defined parameter of the SCM
model (1) is the number of segments S (1 < S < Sy,.,)- In principle, it can be
chosen by a penalized likelihood approach (Picard et al., 2005), which we
now discuss. Assuming that the residuals &;; in Equation (1) are independent
and identically normal, the log-likelihood is

N 270G
logL= — > (14+1log™2
og 2<+0gN), (3)

where G is the sum of squared residuals from Equation (2), and N = nl is
the number of data points. Since the class of models with parameter § — 1 is
contained in that with parameter S, logL is a monotonically increasing
function of S.

To penalize model complexity, we can consider the Akaike informa-
tion criterion (AIC) and the Bayesian information criterion (BIC). They
are defined, e.g. in Hastie ef al. (2001), as AIC = —2 logL + 2p and
BIC = —2 logL + p logN, where p is the number of parameters of the
model. In our case, p = 28, since for a segmentation with S segments,

we estimate S — 1 change-points, S mean values and the standard deviation
of the &;;. Hence the penalized likelihood functions are

logLaic = logL — 28, (4)
logLgic = logL — SlogN. (5)

Since the probes on the array can overlap and some sources of noise are
correlated for successive probes (for example, cross-hybridization or random
fluctuations in the abundance of specific target fragments), the data will
usually be serially correlated. Serial correlation is not a substantial problem
for the point estimates Z; and fi,, and it is explicitly taken into account in
Bai’s and Perron’s confidence intervals. However, it needs to be considered
when making inference based on the log-likelihoods (3-5).

2.3 DNA reference normalization

2.3.1 The model The fluorescence intensity values obtained from an
oligonucleotide microarray hybridization do not directly correspond to
interpretable physical units. The same abundance of a target transcript
can result in systematically different values when measured with different
oligonucleotide probes. This is due to a variety of reasons, among them the
different thermodynamic properties of different polynucleotide sequences
and biases in labeling efficiency.

The fluorescence intensity response of a probe k to the abundance x;, of its
target molecule in the sample can be modeled as y; = B + o X, where y; is
the intensity of probe k, B is a term that represents unspecific (background)
intensity, and «; is a proportionality factor for the specific part of the signal
(Rocke and Durbin, 2001). The specific part of the signal is (to reasonable
approximation) proportional to the abundance x; of the target molecule,
while the unspecific part corresponds to the background fluorescence that
is observed even in the absence of the intended target. Here we are not
concerned with stochastic measurement error (‘noise’), for which we refer
to Huber et al. (2004). Furthermore, we assume that non-linear satura-
tion effects are negligible. «; and B, are not usually known, and they
can be different for each probe. This explains why even for x; = x;, in
general y, # y;. The goal of DNA reference normalization is to estimate
parameters a; and b, such that

;Y= b
Ve = a (6)
quantifies the target abundance in a way that is to sufficient approximation
independent of &, the probe identity.

2.3.2  Parameter estimation We estimate a; by the geometric mean
of the intensities from three replicate array hybridizations of genomic DNA.
This procedure is motivated by the fact that the abundance of the target is
the same for all probes that have a unique match to the genome. Note that we
are excluding probes with multiple matches to the genome. We are also
not considering probes without any perfect matches in the genome and in
particular, we are ignoring the so-called mismatch (MM) probes.

We have no direct way to obtain a detailed estimate of b, for every probe,
but we can assume that some of its probe to probe variability can be
explained through a functional dependence on @;,. We use as an estimate
by = f(ax) with a smooth function f, which we obtain as follows. Probes are
grouped into 10 strata corresponding to the 10, 20, . . ., 100% quantiles of a.
Within each stratum we calculate the midpoint of the shorth of the intensities
of those probes whose target sequence is not annotated to be within a
transcribed region on either strand. The shorth of a univariate distribution
is defined as the shortest interval that contains at least half of the data,
and its midpoint is a robust estimator of the location of the distribution.
An estimate of the function f can be obtained from these values by linear
interpolation or smoothing.

2.3.3 Between array normalization 1In order to deal with data from
multiple arrays, we need to adjust for systematic variations in the intensities
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between different arrays, which can be caused, for example, by varying
amounts of sample material. If we now denote y; from Equation (6) by
Vj;» with the index i counting the different arrays, then we are looking for
an affine transformation yj; = (y}; — d;)/c;, where d; is an array-specific
offset and c; a scaling factor. Microarray intensities are usually transformed
to a logarithmic scale in order to make the distributions of the stochastic
noise components in the data more symmetric and more homogeneous
(Dudoit et al., 2002; Durbin et al., 2002; Huber et al., 2002; Irizarry
et al., 2003). Because for probes with weakly or unexpressed targets y;
can be close to zero or even non-positive, we apply the so-called generalized
logarithmic ~ transformation  zy; = glog, (v};) = log, (v}, + \/¥i? + A?)/2.
This transformation depends on a parameter A which is related to the
size of the background noise.

The parameters ¢;, d;, A can be estimated from the data, and for this we use
the robustified maximum-likelihood method provided by the Bioconductor
package vsn (Huber et al., 2002).

2.3.4  Exclusion of non-responding probes We observed that a cer-
tain fraction of probes respond poorly to their target and are not informative.
We allow for the exclusion of such data. In particular, we discard the
probes whose estimated @ is smaller than a user-defined quantile of the
a,—distribution.

The DNA reference normalization method described in this section is
implemented in the function normalizeByReference of the tilingArray
package.

3 RESULTS AND DISCUSSION
3.1 SCM segmentation

The main results of this paper are visualized in Figures 1 and
2, which show the application of SCM segmentation and DNA
normalization to the yeast tiling array data. The segmentation
clearly picks up the major change-points in the data, many of
which correspond to the beginning or end of annotated genes. In
addition to the change-point estimates, Figure 2 also includes
95%-confidence intervals as described in Section 2.2.3.

3.1.1 Comparison to sliding windows Previous high-density
tiling array studies used sliding window methods in combination
with a thresholding criterion for the identification of transcripts
(Bertone et al., 2004; Kampa et al., 2004; Royce et al., 2005; Schadt
et al., 2004). In contrast to SCM, which optimizes a clearly defined
objective function, the sum of squares (Bai and Perron, 2003),
sliding window methods are defined algorithmically. One of the
main problems with sliding window approaches is shown in
Figure 3. Such methods tend to produce biased estimates of the
start and end points of transcribed regions, depending on the level of
signal above background (Hastie et al., 2001).

3.1.2 Model selection SCM segmentation has one parameter,
the number of segments S, which controls the model complexity.
The data can be fit better by increasing S, and this will decrease the
number of missed, real change-points (false negatives) for the cost
of increasing the number biologically irrelevant change-points
(false positives). In Section 2.2.4 we have described a standard
penalized likelihood approach. A potential method of choosing §
would be to use the value that maximizes a suitably penalized
likelihood function. Figure 4 shows a plot of the log-likelihood
as a function of the parameter S, together with two possible choices
of penalized log-likelihoods according to the AIC and the BIC.
While in particular iBIC works well on the simulated data, both
Laic and Lgic would choose substantially higher values for S than
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Fig. 3. Comparison between SCM segmentation and sliding average thresh-
olding (SAT). (a) The dots correspond to simulated data for a weakly
expressed transcript starting at position 13 and ending at 36. The vertical
solid red lines show the change-points found by SCM segmentation. The blue
line shows a sliding average (window width 11). The vertical dashed blue
lines show the change-points found by thresholding the sliding average at a
threshold of y = 1 (horizontal dotted line). The size of the transcript is
underestimated. (b) As in panel a, for a moderately expressed transcript.
The change-points from SCM segmentation and SAT coincide. (¢) As in
panel a, for a strongly expressed transcript. The size of the transcript is
overestimated by SAT. SCM segmentation produces unbiased estimates in
all cases. A colour version of this figure is available as part of the supple-
mentary data.

that which we decided upon for the analysis presented in David et al.
(2006) based on comparison of the segmentation with biological
expectations.

We hypothesize that this discrepancy may be the consequence of
the model of Equation (1) being too simple, in two ways. First, there
are biological phenomena that lead to more complex hybridization
profiles than the piecewise constant shape assumed by the model.
Second, the residuals &;; are in practice not independent, as dis-
cussed in Section 2.2.4. While the model is evidently useful to
estimate meaningful change-points and confidence intervals,
when § is given, it might not be powerful enough to also let us
infer S.

We recommend the following strategy. Since the algorithm pro-
duces not just the optimal segmentation for a given number S,.x
of segments, but also all optimal segmentations with S = 2,3,...,
Smax — 1, a practical approach is to do the computation with a choice
of Spax that is comfortably too large. The results can be visualized
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Fig. 4. Model selection. The plots show the log-likelihood (red) and penalized log-likelihoods according to the AIC (blue) and the Bayes information criterion
(BIC; green) as functions of the parameter S. (a) Simulated data according to model (1) with independent Normal &;; and S = 22. The vertical dashed green line is
at the maximum of logI:BIC and correctly identifies the true value of S. (b) Tiling array data from the Watson (+) strand of chromosome 1. The vertical dashed grey
line at § = 153 corresponds to the parameter value that was used for Figures 1 and 2. The vertical dashed green line at § = 235 is at the maximum of log Lgjc. A

colour version of this figure is available as part of the supplementary data.

for different values of S using the visualization tool provided in the
tilingArray package. This tool was also used to create Figures 1
and 2 and the online supplement of David et al. (2006) (http://
www.ebi.ac.uk/huber-srv/queryGene). By examining the results
in control regions where one has clear expectations about the
transcript structures, it is possible to identify an S that has a
desirable trade-off between sensitivity and specificity, and to gain
confidence in the algorithm’s results in lesser known regions of the
transcriptome. Often it is reasonable to expect that the segment length
distribution should be approximately the same on different chromo-
somes, hence the choice of S is equivalent to the choice of the average
segment length Lg, with S being the integer closest to L/Lg and L the
length of the region to be segmented, typically a chromosome. In
David et al. (2006), this procedure let us choose Lg = 1500 bases
uniformly for all chromosomes.

3.2 Normalization

3.2.1 Visual assessment Figure 5 shows scatterplots of different
types of signal along genomic coordinates. Each dot corresponds
to a microarray feature. The intensities from a hybridization of
genomic DNA are shown in Figure 5a. The y-axis is on the log-
arithmic scale to base 2. Ideally, all features should show the same
intensity, since the copy number of genomic DNA is the same
throughout. Some of the variation in Figure 5a can be explained
by stochastic noise, but the larger part of it is systematic and is due
to sequence-specific properties of either the probes or the target
DNA (Naef and Magnasco, 2003; Wu et al., 2004; Zhang et al.,
2003). The y-coordinate of each dot is also encoded using a
pseudo-color scheme. Red corresponds to features that have a
weak response, blue to those with the strongest response. The
same coloring for each feature is also used in panels 5b—f.
Figure 5b shows the intensites resulting from hybridization of
RNA, again on a logarithmic scale to base 2. One can clearly
distinguish between transcribed regions, corresponding to the

annotated genes RPN2 and SER33, and background intergenic
regions. However, the signal appears rather noisy, with many
individual features that map into the transcribed region showing
weak signal, and a large spread of values even in the background
region. Notably, this variation is not random, as can be seen from
the coloring of the dots: to a large part, it can be explained by the
probe response as encoded by the color. This motivates the use
of the DNA intensities for adjusting the probe sequence related
signal variation.

Figure 5c¢ shows the result of dividing the RNA-signal by the
DNA-signal, then taking the logarithm to base 2. Since the overall
scaling is arbitrary, we have shifted the data in panels 5c—f such
that the 5% quantile is at 0. While the distribution of the data within
the transcribed regions is now much tighter, there is still con-
siderable variability in the background region. Remarkably, this
background variability is not random, one can see a pattern that
correlates with the coloring of the dots. This motivates a probe
specific background correction that again employs the DNA inten-
sities from panel Sa.

Figure 5d shows the z;; values resulting from the DNA reference
normalization. While the spread of the data in the background
region is not substantially different compared to panel 5c, we
note two important aspects: the distribution of the noise in the
background is now more symmetric, and, more importantly, the
difference between the mean signal in the background regions
and the transcribed regions is increased. Background correction
does not reduce the variance, but it increases the dynamic range
and hence the sensitivity to detect weak signals (Irizarry et al.,
2003).

Figure 5e shows the same data as in panel 5d, but with the 5% of
features that had the weakest signal in the DNA hybridization
removed, as described in Section 2.3.4. This removes many of
the outliers at little cost of good data.

For comparison, Figure 5f shows the result of a normalization
that is similar to Figure 5e, with the only difference that for the
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estimation of the background parameters by, the intensity of the MM
probe that is paired with each perfect match (PM) probe is used
instead of the interpolated values from background-level PM
probes. Using paired MM probes for background correction can
increase the dynamic range of the signal, but one of the main
limitations of this approach is that it also greatly increases the
signal’s variance, which can lead to a net increase of mean squared
error.

3.2.2  Quantitative assessment In order to assess quantitatively
the results of the different procedures 5b—f, we consider a signal/
noise ratio. We look at a set of control regions, two positive control
regions within the ORFs of RPN2 and SER33 at coordinates

217860—220697 and 221078—222487 and two negative control
regions in the background at coordinates 216800—217700 and
222800—227000. The assumption is that the signal within a region
should be constant and deviations from that are noise, while the
difference between positive and negative controls should be large
and is counted as signal. Noise o is calculated as the average of
the differences between 97.5 and 2.5% quantiles of the data within
each of the control regions. The range between the 97.5 and 2.5%
quantiles contains 95% of the data.
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Table 1. Signal to noise ratio Au/o of different data processing methods b—f
as described in Section 3.2 and Figure 5

Method b c d e f

Aulo 3.22 3.47 4.04 4.58 4.36

Here, the symbol r counts over the different regions. The constant
in the denominator is the differences between 97.5 and 2.5%
quantiles for the standard normal distribution, hence o is equal
to 1 if the data come from the standard Normal distribution.

Signal A, is calculated as the difference between the averages
of positive and negative control regions, Au = > /|pos| —
S cneg H/Incgl.

The result is shown in Table 1. We have explored many variations
of this calculation, using different definitions of o, Au, and of
the control regions. The ranking of the methods was always the
same as shown in Table 1. The data and the code for the calcula-
tions that produce Figure 5 and Table 1 are available in the online
documentation of the package tilingArray.

repos M

4 CONCLUSION

The adjustment of probe sequence related signal variation is a
fundamental problem in the analysis of oligo-nucleotide microarray
data (Hubell, 2005; Irizarry et al., 2003; Li and Wong, 2001; Naef
and Magnasco, 2003; Wu et al., 2004; Zhang et al., 2003). Current
methods rely on pre-specified groupings of probes each matching
the same transcript, so-called probe sets, and their focus has been on
the accurate detection of differential expression between different
conditions rather than the detection of internal structure within the
probe set. The advent of high-density tiling arrays enables us to
observe transcript architecture, including transcription start and
stop sites, splicing and degradation and possibly their differential
regulation. A prerequisite is the quantitative comparability, at least
approximately, of microarray signals from different regions of
one transcript. The DNA reference normalization of Section 2.3
responds to this requirement.

Our method does not employ the data from the paired MM
probes. The manufacturer’s intention for these features is to serve
as controls for unspecific background hybridization. However, as
we have shown in Figure 5 and Table 1, a much smaller set of
control probes is sufficient and even produces slightly better results.
In particular, we show that the background component of a probe’s
signal can be estimated from a control population of similar probes
that may perfectly match to the genome, but whose target does not
appear to be transcribed. Since we use a robust estimation tech-
nique, it does not matter if this distribution contains a minority of
probes with specific, non-background signal. We can save half of
the real estate and about half of the cost of a chip at practically no
loss for the analysis.

For the estimation of the probe-specific scaling and background
parameters, we have opted to characterize each probe by a single
value empirically obtained from the DNA reference hybridization.
In addition, or indeed alternatively, one could try to use the probe
sequence information to build a regression model on sequence-
related variables for the background and scaling factor of each

probe (Johnson et al., 2006; Naef and Magnasco, 2003; Wu
et al., 2004; Zhang et al., 2003). Such a model can collect strength
by smoothing across probes that are similar in sequence space and
could also employ information on unspecific hybridization that is
provided by so-called ‘antigenomic’ probes on recent Affymetrix
GeneChip designs. Our attempts at such a model with the present
data have not produced results that were better than the DNA ref-
erence normalization described in Section 2.3, but clearly there is
room for more research.

We have described a simple structural change model (SCM) for
RNA hybridization profiles along the genome, namely a piecewise-
constant function. This model lends itself to an efficient dynamic
programming algorithm for optimally estimating the change-point
positions, which together with the segment levels are of primary
biological interest. In addition to the change-point positions,
the theory of SCMs also provides estimators for their confidence
intervals. Figure 2 shows how the calculated confidence intervals
adequately reflect the uncertainty in the change-point position
depending on the steepness and height of the change and the
noise level. The confidence intervals are useful for the ranking
and interpretation of the fitted change-points.

SCMs also allow the modeling of general linear relationships
between a possibly vector-valued regressor along a linear coor-
dinate and a possibly vector-valued dependent variable (Bai and
Perron, 2003; Zeileis et al., 2002, 2003). Among the uses for such
a generalized approach could be, for example, the modeling of
decaying flanks (Bourgon and Speed, 2006). Remember that a linear
decay on the logarithmic data scale corresponds to an exponential
decay on the fluorescence scale, which is often a good approxima-
tion for many naturally occurring length distributions.

The methods that we have presented here were successfully used
in David ez al. (2006) to identify the boundary, structure and level of
coding and non-coding transcripts of yeast. Apart from expected
transcripts, this study found operon-like transcripts, transcripts
from neighboring genes that are not separated by intergenic regions
and genes with complex transcriptional architecture. It mapped
the positions of 3’-and 5’-UTRs of coding genes and identified
hundreds of RNA transcripts both antisense to, and distinct from,
annotated genes. The methods presented here, DNA reference
normalization and SCM segmentation, were instrumental for the
analysis, by providing a clean normalized signal and accurate
transcript boundary identifications. We expect that the methods
will also be useful in the study of transcriptional complexity
under dynamic conditions and in other organisms. With suitable
adaption they should also be valuable for the application of tiling
arrays in the detection of genomic regions purified in chromatin-
immunoprecipitation experiments. Owing to their ability to inter-
rogate the entire genome we expect tiling microarrays soon to
become a widely used tool.
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