© 2015 Nature America, Inc. All rights reserved.

npg

PERSPECTIVE |

Orchestrating high-throughput genomic
analysis with Bioconductor

Wolfgang Huber!, Vincent] Carey??, Robert Gentleman?, Simon Anders!, Marc Carlson®,
Benilton S Carvalho®, Hector Corrada Bravo’, Sean Davis®, Laurent Gatto®, Thomas Girke!?,
Raphael Gottardo!!, Florian Hahne!?, Kasper D Hansen!3!4, Rafael A Irizarry>!>,
Michael Lawrence?, Michael I Love>!°, James MacDonald!®, Valerie Obenchain?,

Andrzej K Oles!, Hervé Pages®, Alejandro Reyes!, Paul Shannon®, Gordon K Smyth!713,
Dan Tenenbaum?, Levi Waldron!® & Martin Morgan®

Bioconductor is an open-source, open-development
software project for the analysis and comprehension
of high-throughput data in genomics and molecular
biology. The project aims to enable interdisciplinary
research, collaboration and rapid development

of scientific software. Based on the statistical
programming language R, Bioconductor comprises
934 interoperable packages contributed by a large,
diverse community of scientists. Packages cover a
range of bioinformatic and statistical applications.
They undergo formal initial review and continuous
automated testing. We present an overview for
prospective users and contributors.

Progress in biotechnology is continually leading to new
types of data, and the data sets are rapidly increasing in
volume, resolution and diversity. This promises unprec-
edented advances in our understanding of biological
systems and in medicine. However, the complexity and
volume of data also challenge scientists’ ability to ana-
lyze them. Meeting this challenge requires continuous
improvements in analysis tools and associated software
engineering.

Bioconductor! provides core data structures and
methods that enable genome-scale analysis of high-
throughput data in the context of the rich statistical

programming environment offered by the R project?. It
supports many types of high-throughput sequencing data
(including DNA, RNA, chromatin immunoprecipitation,
Hi-C, methylomes and ribosome profiling) and associ-
ated annotation resources; contains mature facilities for
microarray analysis®; and covers proteomic, metabolomic,
flow cytometry, quantitative imaging, cheminformatic
and other high-throughput data. Bioconductor enables
the rapid creation of workflows combining multiple data
types and tools for statistical inference, regression, net-
work analysis, machine learning and visualization at all
stages of a project from data generation to publication.

Bioconductor is also a flexible software engineering
environment in which to develop the tools needed, and
it offers users a framework for efficient learning and pro-
ductive work. The foundations of Bioconductor and its
rapid coevolution with experimental technologies are
based on two motivating principles.

The first is to provide a compelling user experience.
Bioconductor documentation comes at three levels:
workflows that document complete analyses spanning
multiple tools; package vignettes that provide a narrative
of the intended uses of a particular package, including
detailed executable code examples; and function manual
pages with precise descriptions of all inputs and outputs
together with working examples. In many cases, users

!European Molecular Biology Laboratory, Heidelberg, Germany. 2Channing Division of Network Medicine, Brigham and Women’s
Hospital and Harvard Medical School, Boston, Massachusetts, USA. *Harvard School of Public Health, Boston, Massachusetts, USA.
4Genentech, South San Francisco, California, USA. *Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle,
Washington, USA. ®Department of Medical Genetics, School of Medical Sciences, State University of Campinas, Campinas, Brazil. ’Center
for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA. #Center for Cancer Research,
National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA. °Department of Biochemistry, University of Cambridge,
Cambridge, UK. ¥Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California, USA. ' Vaccine and
Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA. ?Novartis Institutes for Biomedical
Research, Basel, Switzerland. 1*McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA.

4Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland, USA. '*Dana-Farber Cancer Institute, Boston, Massachusetts,
USA. 'Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA. 7Walter and
Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia. '®Department of Mathematics and Statistics, University of Melbourne,
Parkville, Victoria, Australia. °School of Urban Public Health at Hunter College, City University of New York, New York, New York, USA.
Correspondence should be addressed to W.H. (whuber@embl.de).

RECEIVED 30 JULY 2014; ACCEPTED 9 DECEMBER 2014; PUBLISHED ONLINE 29 JANUARY 2015; D0I:10.1038/NMETH.3252

NATURE METHODS | VOL.12 NO.2 | FEBRUARY 2015 | 115

mailto:whuber@embl.de
http://www.nature.com/doifinder/10.1038/nmeth.3252

© 2015 Nature America, Inc. All rights reserved.

npg

Table 1 | Usage and impact-related statistics

Metric Statistic

Unique IP addresses downloading Bioconductor 323,119 within the

packages last 12 months

Support site and/or mailing list contributors 1,331 within the last
12 months

Support site visitors >8,200 unique per
month

Developer mailing list subscribers 927

Full-text articles at PubMed Central mentioning 10,642

Bioconductor

PubMed-indexed articles citing Bioconductor 22,838

packages
TCGA Consortium papers using Bioconductor tools At least 12 of 15

Statistics are current as of December 2014. TCGA, The Cancer Genome Atlas.

ultimately become developers, making their own algorithms and
approaches available to others.

The second is to enable and support an active and open scientific
community developing and distributing algorithms and software
in bioinformatics and computational biology. The support includes
guidance and training on software development and documentation,
as well as the use of appropriate programming paradigms such as unit
testing and judicious optimization. A primary goal is the distributed
development of interoperable software components by scientific
domain experts. In part we achieve this by urging the use of com-
mon data structures that enable workflows integrating multiple data
types and disciplines. To facilitate research and innovation, we employ
a high-level programming language. This choice yields rapid proto-
typing, creativity, flexibility and reproducibility in a way that neither
point-and-click software nor a general-purpose programming lan-
guage can. We have embraced R for its scientific and statistical com-
puting capabilities, for its graphics facilities and for the convenience
of an interpreted language. R also interfaces with low-level languages
including C and C++ for computationally intensive operations, Java
for integration with enterprise software and JavaScript for interactive
web-based applications and reports.

The user perspective

The Bioconductor user community is large and international
(Table 1). Users benefit from the project in different ways. A typi-
cal encounter with Bioconductor (Box 1) starts with a specific sci-
entific need, for example, differential analysis of gene expression
from an RNA-seq experiment. The user identifies the appropriate
documented workflow, and because the workflow contains func-
tioning code, the user runs a simple command to install the required
packages and replicate the analysis locally. From there, she proceeds
to adapt the workflow to her particular problem. To this end, addi-
tional documentation is available in the form of package vignettes
and manual pages. She can load further packages with additional
functionality. When help is needed, the user can turn to the support
forum with questions on the software and the underlying science,
and she can attend training courses and conferences. Some users
move from using to developing software, and Bioconductor encour-
ages this transition.

Case study: high-throughput sequencing data analysis. Analysis of

large-scale RNA or DNA sequencing data often begins with aligning
reads to a reference genome, which is followed by interpretation of

116 | VOL.12 NO.2 | FEBRUARY 2015 | NATURE METHODS

the alignment patterns. Alignment is handled by a variety of tools,
whose output typically is delivered as a BAM file. The Bioconductor
packages Rsamtools and GenomicAlignments provide a flexible
interface for importing and manipulating the data in a BAM file,
for instance for quality assessment, visualization, event detection
and summarization.

The regions of interest in such analyses are genes, transcripts,
enhancers or many other types of sequence intervals that can be
identified by their genomic coordinates. Bioconductor supports
representation and analysis of genomic intervals with a “Ranges”
infrastructure that encompasses data structures, algorithms and
utilities including arithmetic functions, set operations and sum-
marization? (Fig. 1). It consists of several packages including
IRanges, GenomicRanges, GenomicAlignments, GenomicFeatures,
VariantAnnotation and rtracklayer. The packages are frequently
updated for functionality, performance and usability. The Ranges
infrastructure was designed to provide tools that are convenient
for end users analyzing data while retaining flexibility to serve as a
foundation for the development of more complex and specialized
software. We have formalized the data structures to the point that
they enable interoperability, but we have also made them adaptable
to specific use cases by allowing additional, less formalized user-
defined data components such as application-defined annotation.

Workflows can differ vastly depending on the specific goals
of the investigation, but a common pattern is reduction of the
data to a defined set of ranges in terms of quantitative and qualita-
tive summaries of the alignments at each of the sites. Examples

Gene model I

N

Unspliced I
transcripts

Gene region ‘

Disjoint bins| |

Promoter I:|

OITTT

Figure 1 | Example uses of the Ranges algebra. A GRanges object, g
(top), represents two transcript isoforms of a gene, each with two exons.
The coordinates of unspliced transcripts are identified with the function
range (g) . Calculating the gene region involves flattening the gene
model into its constituent exons and reducing these to nonoverlapping
ranges, reduce (unlist (g)). Ranges defining disjoint bins,
disjoin(unlist (g)), are useful in counting operations, e.g., in
RNA-seq analysis. Putative promoter ranges are found using strand-aware
range extension, flank (range (g) , width = 100). Elementary
operations can be composed to succinctly execute queries such as
psetdiff (range (g), g) for computing the intron ranges.

© 2015 Nature America, Inc. All rights reserved.

npg

include detecting coverage peaks or concentrations in chromatin
immunoprecipitation-sequencing, counting the number of cDNA
fragments that match each transcript or exon (RNA-seq) and call-
ing DNA sequence variants (DNA-seq). Such summaries can be
stored in an instance of the class GenomicRanges.

Coordinated analysis of multiple samples. To facilitate the analysis
of experiments and studies with multiple samples, Bioconductor
defines the SummarizedExperiment class. The computed summa-
ries for the ranges are compiled into a rectangular array whose rows
correspond to the ranges and whose columns correspond to the dif-
ferent samples (Fig. 2). For a typical experiment, there can be tens
of thousands to millions of ranges and from a handful to hundreds
of samples. The array elements do not need to be single numbers:
the summaries can be multivariate.

The SummarizedExperiment class also stores metadata on the
rows and columns. Metadata on the samples usually include experi-
mental or observational covariates as well as technical information
such as processing dates or batches, file paths, etc. Row metadata
comprise the start and end coordinates of each feature and the
identifier of the containing polymer, for example, the chromo-
some name. Further information can be inserted, such as gene or
exon identifiers, references to external databases, reagents, func-
tional classifications of the region (e.g., from efforts such as the
Encyclopedia of DNA Elements (ENCODE)®) or genetic associa-
tions (e.g., from genome-wide association studies, the study of rare
diseases, or cancer genetics). The row metadata aid integrative
analysis, for example, when matching two experiments according
to overlap of genomic regions of interest. Tight coupling of meta-
data with the data reduces opportunities for clerical errors during
reordering or subsetting operations.

Annotation packages and resources. Reference genomes, annota-
tions of genomic regions and associated gene products (transcripts
or proteins), and mappings between molecule identifiers are essen-
tial for placing statistical and bioinformatic results into biological
perspective. These needs are partly addressed by the Bioconductor
annotation data repository, which provides 894 prebuilt
standardized annotation packages for use with common model

BOX 1 GETTING STARTED

Install R and Bioconductor following the directions at
http://www.bioconductor.org/install. Optionally, choose an
Integrated Development Environment (IDE), for example,
RStudio (http://www.rstudio.com). Learn the basics of the R
language, for example, with http://tryr.codeschool.com.

Explore the Bioconductor help, http://www.bioconductor.
org/help—which includes material from training courses,
sample workflows, vignettes and manual pages—and the
online support forum (https://support.bioconductor.org).

Identify and install Bioconductor packages using
hierarchically organized “BiocViews” and text search (http://
www.bioconductor.org/packages/release/BiocViews.html) and
by exploring ‘landing pages’ for package descriptions and links
to vignettes, manual pages and usage statistics.

Get to work exploring sample data sets and adapting
established workflows for your own analysis!

PERSPECTIVE |

se <-SummarizedExperiment (
assays,
rowData,
colData,
exptData

colData (se)
colData (se) Stissue

seStissue

se %in% CNVs

Features (genes)

—
A
()
c
(9]
(2]

=
[
[
=
=

=
(]
(5]
T

rowData (se) assays (se) exptData (se)

rowData (se) $entrezId assays(se)$count exptData(se)SprojectId

Figure 2 | The integrative data container SummarizedExperiment. Its assays
component is one or several rectangular arrays of equivalent row and
column dimensions. Rows correspond to features, and columns to samples.
The component rowData stores metadata about the features, including
their genomic ranges. The colData component keeps track of sample-
level covariate data. The exptData component carries experiment-level
information, including MIAME (minimum information about a microarray
experiment)-structured metadata!. The R expressions exemplify how

to access components. For instance, provided that these metadata were
recorded, rowData (se) SentrezId returns the NCBI Entrez Gene
identifiers of the features, and seStissue returns the tissue descriptions
for the samples. Range-based operations, such as $in%, act on the rowData
to return a logical vector that selects the features lying within the regions
specified by the data object CNVs. Together with the bracket operator, such
expressions can be used to subset a SummarizedExperiment to a focused set
of genes and tissues for downstream analysis.

organisms as well as other organisms. Each of the packages presents
its data through a standard interface using defined Bioconductor
classes, including classes for whole-genome sequences (BSgenorme),
gene model or transcript databases (TxDb) derived from UCSC
(University of California, Santa Cruz) tracks or BioMart annota-
tions, and identifier cross-references from the US National Center
for Biotechnology Information, or NCBI (org). There are also facili-
ties for users to create their own annotation packages.

The AnnotationHub resource provides ready access to more
than 10,000 genome-scale assay and annotation data sets
obtained from Ensembl, ENCODE, dbSNP, UCSC and other
sources and delivered in an easy-to-access format (e.g., Ranges-
compatible, where appropriate). Bioconductor also supports
direct access to underlying file formats such as GTF, 2bit or
indexed FASTA.

Bioconductor also offers facilities for directly accessing online
resources through their application programming interfaces.
This can be valuable when a resource is not represented in an
annotation package or when the very latest version of the data
is required. The rtracklayer package accesses tables and tracks
underlying the UCSC Genome Browser, and the biomaRt package
supports fine-grained on-line harvesting of Ensembl, UniProt,
COSMIC (Catalogue Of Somatic Mutations In Cancer) and allied
resources. Many additional packages access web resources, for
example, KEGGREST, PSICQUIC and Uniprot.ws.

NATURE METHODS | VOL.12 NO.2 | FEBRUARY 2015 | 117

http://www.bioconductor.org/help
http://www.bioconductor.org/help

© 2015 Nature America, Inc. All rights reserved.

npg

| PERSPECTIVE

251 — _

o C ww T Cell fraction
2201 = e —HSC

% 454 (— [T — MPP1

c — [- == MPP2

2 10+ : ; — MPP3

w 5 == — MPP4

— T T

AN SBN
IS0

Disjoint
bins
-
i
= [= '
o el
c
o
e i 4 -

19,696,000 19,697,000 19,698,000 19,699,000

Figure 3 | Visualization along genomic coordinates with ggbio. The plot
shows the gene Apoe alongside RNA-seq data from mouse hematopoietic
stem cells (HSC) and four fractions of multipotent progenitor (MPP) cells?2.
The disjoint bins (center) were computed from the four transcript isoforms
shown in the bottom panel. The y axis of the top panel shows the relative
exon usage coefficients estimated with the DEXSeq method?3. Regions
detected as differentially used between the cell fractions are colored dark
red in the center panel.

Experiment data packaging and access. The Bioconductor experi-
ment data repository currently contains 224 packages. Experiment
data packages have important roles as example data sets on which
methods are demonstrated; some can be used for benchmarking
and comparing methods, and some are reproducible descriptions
of analyses reported in scientific papers (e.g., the data and vignette
of the package Hiiragi2013 reproduce a recently reported tran-
scriptome analysis of single cells in mouse embryos®). Archives of
published experiment data can be harvested using the GEOquery,
ArrayExpress and SRAdb packages.

Integrative analysis. High-throughput assays such as sequencing,
flow cytometry’ and mass spectrometry continue to decrease in
cost and increase in quality. Analyses comprising several assays on
the same set of samples are becoming more common. Integrative
analysis of multiple data types is perhaps the least standardiz-
able task in genomic data analysis, where the need for a flexible
working environment in a high-level language such as R is most
apparent.

Integrative analysis of multiple assays generally relies on linking
through genomic location or annotation. This includes associ-
ating genomic locations with transcripts and protein sequences,
proteins with other gene products that function in the same path-
way or process, and many other possible associations. The com-
bined computation on multiple linked data types and annotations
is the essence of integrative genomic analysis.

To perform such analyses, one must use compatible systems of
identifiers, reference genomes, gene models, coordinate systems,
and so on. For instance, the identification of RNA-editing sites
requires that the user have an accurate genotype for the individual
as well as RNA-seq reads aligned to that genotype, and variant
calls from a DNA-seq experiment should retain not only informa-
tion about the alignment software but also the precise version of
the genome that was used. Bioconductor software is intended to

118 | VOL.12 NO.2 | FEBRUARY 2015 | NATURE METHODS

make it easy and automatic to keep track of such issues. This also
helps other analysts to determine whether and how a particular
processed data set can be integrated with other data sets.

Visualization. Visualization is essential to genomic data analysis.
We distinguish among three main scenarios, each having different
requirements. The first is rapid interactive data exploration in “dis-
covery mode.” The second is the recording, reporting and discus-
sion of initial results among research collaborators, often done via
web pages with interlinked plots and tool-tips providing interactive
functionality. Scripts are often provided alongside to document what
was done. The third is graphics for scientific publications and pre-
sentations that show essential messages in intuitive and attractive
forms. The R environment offers powerful support for all these fla-
vors of visualization—using either the various R graphics devices or
HTML5-based visualization interfaces that offer more interactivity—
and Bioconductor fully exploits these facilities. Visualization in
practice often requires that users perform computations on the data,
for instance, data transformation and filtering, summarization and
dimension reduction, or fitting of a statistical model. The needed
expressivity is not always easy to achieve in a point-and-click inter-
face but is readily realized in a high-level programming language.
Moreover, many visualizations, such as heat maps or principal-
component analysis plots, are linked to mathematical and statistical
models—for which access to a scientific computing library is needed.

A genomics-specific visualization type is plots along genomic
coordinates. There are several packages that create attractive dis-
plays of along-genome data tracks, including Gviz and ggbio (Fig. 3).
These packages operate directly on common Bioconductor data
structures and thus integrate with available data manipulation and
modeling functionality. A basic operation underlying such visu-
alizations is computing with genomic regions, and the biovizBase
package provides a bridge between the Ranges infrastructure and
plotting packages. Direct communication between R and genome
browsers is implemented by the rtracklayer (for the UCSC Genome
Browser) and SRAdD (for the Integrative Genomics Viewer) pack-
ages. The epivizr package implements interactive visualization of
user data within a lightweight genome browser®.

Genomic data set sizes sometimes exceed what can be managed
with standard in-memory data models, and then tools from high-
performance computing come into play. An example is the use of
rhdf5—an interface to the HDFS5 large data management system
(http://www.hdfgroup.org/HDF5)—Dby the h5vc package to slice
large, genome-size data cubes into chunks that are amenable for
rapid interactive computation and visualization. Both ggbio and
Gviz issue range-restricted queries to file formats including BAM,
BGZIP/Tabix and BigWig via Rsamtools and rtracklayer to quickly
integrate data from multiple files over a specific genomic region.

Reproducible research. It can be surprisingly difficult to retrace
the computational steps performed in a genomics research proj-
ect. One of the goals of Bioconductor is to help scientists report
their analyses in a way that allows exact recreation by a third
party of all computations that transform the input data into the
results, including figures, tables and numbers®. The project’s
contributions comprise an emphasis on literate programming
vignettes, the BiocStyle and ReportingTools packages, the assembly
of experiment data and annotation packages, and the archiving
and availability of all previously released packages. A number of

http://www.hdfgroup.org/HDF5

© 2015 Nature America, Inc. All rights reserved.

npg

developments in the wider R community, including the knitr and
rmarkdown packages and the integrated development environ-
ment RStudio, make it easy to author attractive vignettes. In addi-
tion to the traditional delivery format as a PDF file, the newer
generation of tools allow use of HTMLS5 facilities for interactive
visualization, including ‘drill-down’ to expand the view on a spe-
cific detail, faceted filtering and comprehensive hyperlinking. Full
remote reproducibility remains a challenging problem, in particu-
lar for computations that require large computing resources or
access data through infrastructure that is potentially transient or
has restricted access (e.g., the cloud). Nevertheless, many exam-
ples of fully reproducible research reports have been produced
with Bioconductor®10-14,

Alternative and complementary tools. Using Bioconductor
requires a willingness to modify and eventually compose scripts
in a high-level computer language, to make informed choices
between different algorithms and software packages, and to learn
enough R to do the unavoidable data wrangling and troubleshoot-
ing. Alternative and complementary tools exist; in particular,
users may be ready to trade some loss of flexibility, automation or
functionality for simpler interaction with the software, such as by
running single-purpose tools or using a point-and-click interface.

Workflow and data management systems such as Galaxy!® and
Ilumina BaseSpace provide a way to assemble and deploy easy-to-
use analysis pipelines from components from different languages
and frameworks. The IPython notebook!® provides an attractive
interactive workbook environment. Although its origins are with
the Python programming language, it now supports many lan-
guages, including R. In practice, many users will find a combina-
tion of platforms most productive for them.

The developer perspective

The package ecosystem. All software distributed by Bioconductor
is in the form of R packages. This simplifies software delivery, use
and maintenance, but it puts a burden on the developers. They
need to learn how to write R packages, including documentation
and test cases (Box 2).

BOX 2 HOW TO CONTRIBUTE?

Developers are constantly updating their packages to extend capa-
bilities, improve performance, fix bugs and enhance documenta-
tion. These changes are introduced into the development branch of
Bioconductor and released to end users every 6 months; changes are
tracked using a central, publicly readable Subversion software repos-
itory, so details of all changes are fully accessible. Simultaneously,
R itself is continually changing, typically around performance
enhancements and increased functionality. Owing to this dynamic
environment, all packages undergo a daily testing procedure. Testing
is fully automated and ensures that all code examples in the pack-
age documentation, as well as further unit tests, run without error.
Successful completion of the testing will result in the package being
built and presented to the community.

Many Bioconductor packages have extensive code examples and
tests with which the authors can ensure that their software remains
functional even as components up- and downstream change. Of
equal importance is keeping the documentation synchronized with
changes in the code. Although the testing system places a substantial
load both on the central repository and on all developers, it pro-
vides a degree of software coherence and usability that is rare in soft-
ware projects with a diverse and distributed developer community.
Of course, limitations exist: the reach and stringency of the tests,
beyond the required minimum, vary depending on the package
authors. The quality of the repository was highlighted in an edito-
rial in Nature Genetics'”, which listed the Comprehensive R Archive
Network (CRAN) and Bioconductor as the only software reposito-
ries endorsed by that journal, across all programming languages.

Interoperability. Interoperability between software components
for different stages and types of analysis is essential to the success
of Bioconductor. Interoperability is established through the defini-
tion of common data structures that package authors are expected
to use!'8 (Table 2). Technically, Bioconductor’s common data struc-
tures are implemented as classes in the S4 object-oriented system
of the R language. In this manner, useful software concepts includ-
ing encapsulation, abstraction of interface from implementation,
polymorphism, inheritance and reflection are directly available. It
allows core tasks such as matching of sample data and metadata to

The first step to contributing is becoming familiar with the
existing software offerings and the underlying science. Often
this leads to the identification of needs for new methods or
new software tools. Prospective developers should familiarize
themselves with the “Developers” section of the project web
page and, if they have the opportunity, attend one of the
developer meetings. The project’s package guidelines include
those of reqular (CRAN) R packages, with additional emphasis
on usage-oriented documentation, sharing of common data
containers, and interoperability with other packages of the
project for tasks that lie up- or downstream.

Once a package is ready for contribution, developers submit
it to a package editor via the “Package Submission” web page.
Feedback is given in 1-3 weeks, often with recommendations
on improving the package’s code, user interface or
presentation. Once the package is accepted, it is added to
the build server and undergoes the daily checking procedure.

From then on, the package is available in the development
branch of the project, and it will become part of the next
release. Releases are made every 6 months, usually in April
and October.

Each package has a designated maintainer who must be
responsive to an email address registered with the package.
The maintainer is expected to react to errors and bugs
associated with the package and typically also answers users’
requests for help with its use. When an active maintainer of
a package cannot be identified, the package is orphaned and
will no longer be part of subsequent releases.

Package maintainers usually keep developing and enhancing
their package even after the initial submission. Some packages
have undergone impressive extensions and maturation over
the years. To make their updates, maintainers access the code
source via the project’s version control system (Subversion; a
git-bridge also exists).

NATURE METHODS | VOL.12 NO.2 | FEBRUARY 2015 | 119

© 2015 Nature America, Inc. All rights reserved.

npg

| PERSPECTIVE

Table 2 | Key data structures for experimental and annotation data in Bioconductor

Container (package) Data type

ExpressionSet Matrix-like data set, where quantitative values (e.g., gene expression) are measured for many features (e.g., genes or molecules;

(Biobase) the rows) in multiple samples (columns). This is a standard container for microarray expression data, and it is also used for
other data types, e.g., drug screens. The container also stores covariates that describe the experimental factors and technical
parameters associated with each feature or sample.

SummarizedExperiment ~ Analogous to ExpressionSet; in addition, the features (rows) are associated with genomic coordinates.

(GenomicRanges)

GRanges Genomic coordinates and associated categorical and quantitative information, e.g., gene symbol, coverage or P value.

(GenomicRanges)

VCF, VRanges
(VariantAnnotation)
BSgenome
(BSgenome)

Extensions of the SummarizedExperiment and GRanges classes to represent variant call format. Content includes reference and
alternate base content, phasing, base-call uncertainty and locus-, sample- and experiment-specific metadata?4.

Represents the genome sequence of an organism, tailored to efficient interactive manipulation with R. It can include information
on conventional or user-defined mask structures and allows injection of symbols encoding sequence polymorphisms.

be adopted across disciplines, and it provides a foundation on which
community development is based.

Itis instructive to compare such a representation to popular alter-
natives in bioinformatics: file-based data format conventions and
primitive data structures of a language such as matrices or spread-
sheet tables. With file-based formats, operations such as subset-
ting or data transformation can be tedious and error prone, and
the serialized nature of files discourages operations that require a
global view of the data. In either case, validity checking and reflec-
tion cannot rely on preformed or standardized support and need to
be programmed from scratch again for every convention—or are
missing altogether. As soon as the data for a project are distributed in
multiple tables or files, the alignment of data records or the consis-
tency of identifiers is precarious, and interoperability is hampered by
having to manipulate disperse, loosely coordinated data collections.

Shared infrastructure for distributed development. The analy-
sis of biological data relies on reference resources, such as genome
sequences, gene models, identifiers and annotation of genes and
other genomic features. Standardized R representations of these
resources are provided by the project to avoid redundancy of efforts
and enable data integration.

Developers also benefit from fundamental software library func-
tions that support the operations they want to carry out. For exam-
ple, the Ranges infrastructure is used directly or indirectly by 43%
of all Bioconductor packages, and nearly 60% depend on Biobase
and over 70% on BiocGenerics. By using shared infrastructures,
developers are relieved from the task of creating and maintaining
such components themselves, and they can focus on their unique
domain-specific contributions.

Merits of a high-level language

Functionality. Software engineering is a complex process. Common
expectations of scientific software include functionality, flexibil-
ity and robustness. At the early stages of developing a scientific
approach, these aims should take priority, and premature optimiza-
tion for speed or other hardware resources tends to be distracting.
Working in a high-level language such as R is therefore a rapid and
effective choice. There is plenty of time, once the right approach
has been settled on, to worry about whether the computation really
needs to be faster and where the bottleneck lies.

Extensibility. R provides a syntax for manipulating data. That syntax
can be readily mapped to other languages. Once an idea has been

120 | VOL.12 NO.2 | FEBRUARY 2015 | NATURE METHODS

vetted and tested, developers can resort to implementation of criti-
cal code sections in other languages, such as C, to improve perfor-
mance. For instance, the Ranges infrastructure has gone through
many iterations of this process. Alternatively, as we have done
with the Rsamtools package, R’s foreign language interfaces can be
exploited to access an established software library from within R.
This has allowed high-level code written in R to seamlessly use the
functionality of the SAMtools software!®.

Reuse. Reusing software by interfacing to an existing library is
one of the guiding principles of Bioconductor. Developing good
software is difficult and time consuming, and if a well-tested, well-
supported implementation with a suitable license already exists
for a task, we encourage developers to build upon it. Using R’s
foreign language interfaces, they can invoke third-party software
that is installed elsewhere on the system or they can include and
redistribute it with their own Bioconductor package. Within the
R ecosystem, the CRAN and Bioconductor repositories provide
developers with access to a multitude of packages. These support
rapid development because they are units that can be installed
and used with little effort, and they encapsulate know-how that is
often the concentrate of years of effort.

Performance and scalability. Effectively working with large data
requires programming practices that match memory and pro-
cessor use to available resources. R is efficient when operating
on vectors or arrays, so a pattern used by high-performing and
scalable algorithms is to split the data into manageable chunks
and to iterate over them. An example is the yieldSize argument
of functions that process BAM, FASTQ or VCF files?®. Chunks
can be evaluated in parallel to gain speed. The BiocParallel pack-
age helps developers employ parallel evaluation across different
computing environments while shielding users from having to
configure the technicalities. It connects to back ends for shared
memory and cluster configurations. The GenomicFiles package
ties parallelization to chunkwise operations across multiple files.
Bioconductor is available as a virtual machine image configured
for high-performance computing in Amazon’s Elastic Compute
Cloud (EC2).

A key aspect to the success of Bioconductor is the ability to reach
both users and developers. For users, there are packages and work-
flows for many common use cases, as well as facilities to effectively
communicate results through tables, visualization and reports.
Analysis scripts are easily shared, thus facilitating reproducible

© 2015 Nature America, Inc. All rights reserved.

npg

research. For developers wanting to create and disseminate novel
ideas, there is a well-maintained infrastructure for robust code
development. Our community strives to balance user needs while
simultaneously working on the leading edge of innovation in
genomic data science. We are driven by the strengths and dedica-
tion of our users and developers and are optimistic about the future
of the project.

ACKNOWLEDGMENTS

We thank all contributors to the Bioconductor and R projects. Bioconductor is
supported by the National Human Genome Research Institute of the US National
Institutes of Health (U41HG004059 to M.M.). Additional support is from the US
National Science Foundation (1247813 to M.M.) and the European Commission
FP7 project RADIANT (to W.H.). A. Bruce provided graphics support for Figure 2.

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.
nature.com/reprints/index.html.

1. Gentleman, R.C. et al. Bioconductor: open software development for
computational biology and bioinformatics. Genome Biol. 5, R80 (2004).

2. R Development Core Team. R: A Language and Environment for Statistical
Computing (R Foundation for Statistical Computing, 2014).

3. Hahne, F., Huber, W., Gentleman, R. & Falcon, S. Bioconductor Case Studies
(Springer, 2008).

4. Lawrence, M. et al. Software for computing and annotating genomic ranges.
PLoS Comput. Biol. 9, €1003118 (2013).

5. The ENCODE Project Consortium. An integrated encyclopedia of DNA elements
in the human genome. Nature 489, 57-74 (2012).

6. Ohnishi, Y. et al. Cell-to-cell expression variability followed by signal
reinforcement progressively segregates early mouse lineages. Nat. Cell Biol.
16, 27-37 (2014).

7. Finak, G. et al. OpenCyto: an open source infrastructure for scalable, robust,
reproducible, and automated, end-to-end flow cytometry data analysis. PLoS
Comput. Biol. 10, 1003806 (2014).

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

PERSPECTIVE |

Chelaru, F., Smith, L., Goldstein, N. & Corrada Bravo, H. Epiviz: interactive
visual analytics for functional genomics data. Nat. Methods 11, 938-940
(2014).

Gentleman, R. Reproducible research: a bioinformatics case study. Stat. Appl.
Genet. Mol. Biol. 4, Article2 (2005).

Anders, S. & Huber, W. Differential expression analysis for sequence count
data. Genome Biol. 11, R106 (2010).

Laufer, C., Fischer, B., Billmann, M., Huber, W. & Boutros, M. Mapping
genetic interactions in human cancer cells with RNAi and multiparametric
phenotyping. Nat. Methods 10, 427-431 (2013).

Waldron, L. et al. Comparative meta-analysis of prognostic gene signatures for
late-stage ovarian cancer. J. Natl. Cancer Inst. 106, dju049 (2014).

Riester, M. et al. Risk prediction for late-stage ovarian cancer by meta-
analysis of 1525 patient samples. J. Natl. Cancer Inst. 106, dju048 (2014).
McMurdie, P.J. & Holmes, S. Waste not, want not: why rarefying microbiome
data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).

Goecks, J., Nekrutenko, A., Taylor, J. & The Galaxy Team. Galaxy: a
comprehensive approach for supporting accessible, reproducible, and
transparent computational research in the life sciences. Genome Biol. 11, R86
(2010).

Pérez, F. & Granger, B.E. IPython: a system for interactive scientific
computing. Comput. Sci. Eng. 9, 21-29 (2007).

Anonymous. Credit for code. Nat. Genet. 46, 1 (2014).

Altschul, S. et al. The anatomy of successful computational biology software.
Nat. Biotechnol. 31, 894-897 (2013).

Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics
25, 2078-2079 (2009).

Lawrence, M. & Morgan, M. Scalable genomics with R and Bioconductor. Stat.
Sci. 29, 214-226 (2014).

Brazma, A. et al. Minimum information about a microarray experiment
(MIAME) - toward standards for microarray data. Nat. Genet. 29, 365-371
(2001).

. Cabezas-Wallscheid, N. et al. Identification of regulatory networks in HSCs and

their immediate progeny via integrated proteome, transcriptome, and DNA
methylome analysis. Cell Stem Cell 15, 507-522 (2014).

. Anders, S., Reyes, A. & Huber, W. Detecting differential usage of exons from

RNA-seq data. Genome Res. 22, 2008-2017 (2012).

. Obenchain, V. et al. VariantAnnotation: a Bioconductor package for

exploration and annotation of genetic variants. Bioinformatics 30, 2076
(2014).

NATURE METHODS | VOL.12 NO.2 | FEBRUARY 2015 | 121

http://www.nature.com/reprints/index.html
http://www.nature.com/reprints/index.html

