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Pi/wi (where wi is the weight of hypothesis i)6. This approach is 
known to control the FDR if the weights are prespecified and thus 
independent of the data. However, the optimal choice of weights 
is rarely known in practice, and a generally applicable data-driven 
method is desirable7–11.

We developed IHW as a multiple testing procedure that applies 
the weighted BH method6 using weights derived from the data 
(Online Methods and Supplementary Note 2). The input to IHW 
is a two-column table of P-values and covariates. The covariate 
can be any continuous or categorical variable that is thought to 
provide information on the statistical properties of the hypoth-
esis tests while remaining independent of the P-value under the  
null hypothesis9.

Such covariates exist in many applications and are often appar-
ent to domain experts (Table 1). The conditional independence 
property can be verified either mathematically9 or empirically12. 
Simple diagnostic plots of the data can help assess these assump-
tions. For example, a histogram of all P-values will typically show 
a mixture of a uniform distribution (corresponding to the true 
null hypotheses) and an enrichment of small P-values to the left 
(corresponding to the alternatives) (Fig. 1a). Splitting the hypoth-
eses into groups based on the values of a good covariate will alter 
the proportion and/or the shape of the alternative distribution 
between the groups (Fig. 1b–d). If all histograms look the same, 
the covariate is uninformative, and its use will not lead to an 
increase in power. If the tails are no longer uniform, independence 
under the null is violated, and application of IHW is not valid.

IHW is motivated by considering multiple testing as a resource 
allocation problem6: given a budget of acceptable FDR, how can it 
be distributed among the hypotheses in such a way as to obtain the 
best possible power overall? The first idea is to use the covariate to 
assign hypothesis weights. We approximate the covariate–weight 
relationship by a stepwise constant function. No further assump-
tions (e.g., monotonicity) are needed. The second idea is that 
the number of discoveries of the weighted BH procedure with 
given weights is an empirical indicator of the method’s power. 
Therefore, a good choice of the covariate–weight function should 
lead to a high number of discoveries.

The basic steps of IHW are as follows. First, we divide the tests 
into groups based on the covariate. Each group is associated with a 
weight so that all hypotheses within a group are assigned the same 
weight. For each possible choice of weights, we apply the weighted 
BH procedure at level α and calculate the total number of dis-
coveries. We choose the weights leading to the highest number 
of discoveries.

For many applications, this approach (‘naive IHW’) provides 
satisfactory results but it has two shortcomings: first, the underly-
ing optimization problem is difficult and does not easily scale to 
problems with millions of tests. Second, the naive IHW approach 
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hypothesis weighting improves the power of large-scale 
multiple testing. We describe independent hypothesis 
weighting (ihW), a method that assigns weights using 
covariates independent of the P-values under the null 
hypothesis but informative of each test’s power or prior 
probability of the null hypothesis (http://www.bioconductor.
org/packages/ihW). ihW increases power while controlling the 
false discovery rate and is a practical approach to discovering 
associations in genomics, high-throughput biology and other 
large data sets. 

Multiple hypothesis testing is an important part of many high-
throughput data analysis workflows. A common objective is 
to maximize the number of discoveries while controlling the 
expected fraction of false discoveries, known as the false dis-
covery rate (FDR). Commonly used procedures, such as that of 
Benjamini and Hochberg (BH)1, achieve this objective by working 
solely off the list of P-values for individual tests1–5. However, these 
approaches have suboptimal power when the individual tests dif-
fer in statistical properties such as sample size, true effect size, 
signal-to-noise ratio or prior probability of being false.

For example, in differential expression analysis of RNA-seq 
data, tests are performed on individual genes, which can differ 
greatly in the number of mapped reads and the corresponding  
signal-to-noise ratio. In genome-wide association studies 
(GWAS), the power to detect associations between genetic vari-
ants and traits is lower for rare polymorphisms (all else being 
equal). In expression quantitative trait loci (eQTL) mapping, cis 
effects are a priori more likely than associations between a gene 
product and a distant polymorphism.

To take into account such differences in the statistical prop-
erties of the tests, one can associate each test with a weight 
(Supplementary Note 1). Weights are non-negative and fulfill 
a budget criterion, commonly that they average to 1; hypotheses 
with higher weights are prioritized6. The procedure of Benjamini 
and Hochberg1 can be modified to allow weighting simply by 
replacing the original P-values Pi with their weighted versions 

European Molecular Biology Laboratory, Heidelberg, Germany. Correspondence should be addressed to W.H. (whuber@embl.de).
Received 2 decembeR 2015; accepted 3 may 2016; published online 30 may 2016; doi:10.1038/nmeth.3885

np
g

©
 2

01
6 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.
np

g
©

 2
01
6 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

www.bioconductor.org/packages/IHW
www.bioconductor.org/packages/IHW
http://dx.doi.org/10.1038/nmeth.3885


578  |  VOL.13  NO.7  |  JULY 2016  |  nature methods

brief communications

leads to loss of type I error control in certain situations for reasons 
analogous to overfitting in statistical learning. We use methods 
from statistical learning—convex relaxation, data splitting and 
regularization—to overcome these shortcomings in the full IHW 
algorithm (Online Methods and Supplementary Note 2).

IHW has a greater empirical detection power than the BH 
procedure, as we illustrate for three exemplary applications 
(Supplementary Note 3). The first is an RNA-seq data set used 
to detect differential gene expression between mouse strains13,14 
based on P-values calculated with DESeq2 (ref. 12). Here we used 
the mean of normalized counts for each gene, across samples, as 
the informative covariate, and we saw an increased number of 
discoveries compared with those of BH (Fig. 2a). The learned 
weight function prioritized genes with higher mean normalized 
counts (Supplementary Fig. 1a).

Second, we analyzed a quantitative mass-spectrometry (hyper-
plexed) experiment in which yeast cells treated with rapamycin 
were compared to yeast cells treated with dimethyl sulfoxide (2 × 6  
biological replicates)15. Differential abundance of 2,666 proteins 
was evaluated using Welch’s t-test15. As a covariate, we used the total 
number of peptides that was quantified across all samples for each 
protein. IHW again showed increased power compared with that 
of BH (Fig. 2b), and proteins with more quantified peptides were 
assigned higher weight, as expected (Supplementary Fig. 1b).

In a third example, we searched for associations between SNPs 
and histone modifications (H3K27ac) (ref. 16) on human chromo-
some 21. This yielded 180 million tests. As a covariate, we used the 
genomic distance between the SNP and the ChIP-seq signal. The 
power increase compared with that of BH was dramatic (Fig. 2c).  
IHW automatically assigned most weight to small distances (Fig. 2d).  
Thus, IHW acted similarly to the common practice in eQTL anal-
ysis of searching for associations only within a certain distance, a 
form of independent filtering. However, IHW had the advantage 
that no arbitrary choice of distance threshold was needed, and the 

weights were more nuanced than a hard distance threshold. IHW 
does not exclude distant SNP–phenotype pairs, which can still be 
detected given a sufficiently small P-value.

Naive IHW, as well as previous approaches to covariate adjusted 
multiple testing, do not maintain FDR control in situations where 
all hypotheses are true (Fig. 2e) or where there is insufficient 
power to detect the false hypotheses (Supplementary Fig. 2a). 
In addition, local true discovery rate (tdr) methods (Clfdr and 
FDRreg) often show strong deviations from the target FDR in 
a direction (conservative or anticonservative) that is not appar-
ent a priori (Fig. 2f,g). Thus, among all methods benchmarked 
across these scenarios, only BH, IHW (but not naive IHW) and 
LSL-GBH generally control the FDR (Fig. 2 and Supplementary  
Fig. 2; summarized in Supplementary Table 1; simulations 
described in Supplementary Note 4).

IHW can apply a size investing strategy. IHW already assigns 
low weight to covariate groups with low signal (such as in Fig. 1d),  
but a less intuitive effect can pertain to groups with very small  
P-values. Size investing17 is a strategy by which IHW can shift 
weight from these groups with small P-values toward groups with 
more intermediate P-values, since the former will be rejected even 
with a lower weight. Several other methods (Supplementary 
Table 1), including greedy independent filtering, stratified BH, 
LSL-GBH, TST-GBH and FDRreg, cannot apply size investing and 
can even lose power compared with the BH method in situations 
where size investing would be beneficial (Supplementary Fig. 2d,f  
and Supplementary Note 5).

It is instructive to consider the relation between IHW and the 
concept of tdr. P-values are a reduction of data into one number, 
which typically does not contain all the important information 
(Table 1; refs. 18 and 19). One might wonder whether there are 
other quantities that are better suited for selecting discoveries. 
The theoretically optimal candidate is the tdr (ref. 4), defined for 
the ith hypothesis as 

tdri i
i

i
p

f p

f p
( )

( )

( ),
,

= p1
1

where fi is the density of the distribution of the P-value Pi (see 
Fig. 3a for explanation, as well as Supplementary Figs. 3 and 4).  
fi is a mixture of two densities, fi = π 0,i  f0 + π1,i f1,i, where f0 and 
f1,i are conditional on the null or the alternative hypothesis being 
true, respectively, and π0,i and π1,i (which sum up to 1) are the cor-
responding prior probabilities. The null distribution of a properly 
calibrated test is uniform, therefore we can set f0(p) = 1 irrespective  
of p and i. We give examples of three hypotheses with different 
tdr curves (Fig. 3b–d).

It can now be shown that, to maximize power at a given FDR, 
one should reject the hypotheses with the highest tdr (refs. 20  
and 21). In other words, if we knew the functions in equation 
(1) and could use tdri (Pi) as our test statistics, then without any 
further effort we would have a method for FDR control with  
optimal power.

Similarly to the central idea of IHW, one might assume that 
the many different, unknown univariate functions tdri (p), one 
for each hypothesis i, can be approximated by a single bivariate 
function tdr(p, x), where x is the value of the covariate X. The joint 
density of P and X (Fig. 3e) gives rise to the joint density of tdr 
and X (Fig. 3f). In such a scenario, the decision boundary of the 

(1)(1)

table 1 | Examples of covariates

application covariate

Differential expression Sum of read counts per gene across all samples12

GWAS Minor allele frequency
eQTL, chromatin 
immunoprecipitation–QTL

Distance between genetic variant and locus of 
expression, or comembership in a topologically 
associated domain16

t-test Overall variance9

Two-sided tests Sign of the effect
Various applications Signal quality, sample size
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figure 1 | Histograms stratified by the covariate as a diagnostic plot.  
(a) The histogram of all P-values shows a mixture of a uniform 
distribution and an enrichment of small P-values to the left. Such a 
well-calibrated histogram is the starting point for most multiple testing 
methods. (b–d) Histograms after splitting the hypotheses into three 
groups based on the values of the covariate.
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BH method tends to be suboptimal as it is defined solely in terms 
of P-values (Fig. 3e) and thus differs from the optimal region, 
whose boundary is a vertical line of constant tdr (Fig. 3f).

In practice, however, we neither know the quantities in equa-
tion (1) nor the bivariate function tdr(p, x) and have to estimate 
them22. Unfortunately, this estimation problem is difficult, and 
even with the use of additional approximations, such as splines23 
or piecewise constant functions24, there does not seem to be a 
practical implementation.

An important feature of IHW is that it circumvents explicit esti-
mation of the bivariate tdr function and instead yields a powerful 
testing procedure by working directly on P-values and covari-
ates to assign data-driven hypothesis weights. In addition, the 
IHW method readily extends to other weighted multiple testing  
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figure 2 | Performance evaluation. (a–c) Number of discoveries as a function of the target FDR for (a) RNA-seq data13 with mean of normalized counts 
for each gene as the covariate. (b,c) Hyperplexed mass-spectrometry data15, with number of peptides quantified per protein as the covariate (b), and 
histone QTL (hQTL) data set16 for chromosome 21, with genomic distance between SNPs and ChIP-seq signals as the covariate (c). Independent filtering 
with different distance cutoffs was also applied. (d) Weight function learned by IHW at α = 0.1 for the hQTL data set. Curves represent the five folds in 
the data-splitting scheme. (e–h) Performance on simulated data (see supplementary table 1 for descriptions of methods). (e,f) Type I error control 
if all null hypotheses are true. (e) All methods shown make too many false discoveries. (f) BH, FDRreg, and IHW control the FDR. LSL-GBH and Clfdr 
are slightly anticonservative. (g,h) Implications of different effect sizes. The two-sample t-test was applied to Normal samples (n = 2 × 5, σ = 1) with 
either the same mean (nulls) or means differing by the effect size indicated on the x-axis (alternatives). The fraction of alternatives was 0.05. The 
pooled sample variance was used as the covariate. The nominal level was α = 0.1 (dotted line). (g) The y-axis shows the actual FDR (dotted line refers to 
nominal level). (h) Power analysis. All methods show improvement over BH.
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figure 3 | Local true discovery rate and informative covariates. (a) Schematic  
representation of the density fi, which is composed of the alternative 
density f1,i weighted by its prior probability π1,i and the uniform null 
density weighted by π0,i. (b–d) The tdr of individual tests can vary. In 
b, the test has high power, and π0,i is well below 1. In c, the test has 
equal power, but π0,i is higher, leading to a reduced tdr. In d, π0,i is as 
in b, but the test has little power, again leading to a reduced tdr. (e) If 
an informative covariate is associated with each test, the distribution 
of the P-values from multiple tests is different for different values of 
the covariate. The contours represent the joint density of P-values and 
covariate. The BH procedure accounts only for the P-values and not the 
covariates (dashed red line). In contrast, the decision boundary of IHW is 
a step function: each step corresponds to one group, i.e., to one weight.  
(f) According to equation (1), the density of the tdr also depends on the 
covariate. The decision boundary of the BH procedure (dashed red line) 
leads to a suboptimal set of discoveries, in this example with higher than 
optimal tdr for intermediate covariate values and lower than optimal tdr 
for other values. In contrast, IHW approximates a line of constant tdr, 
implying efficient use of the FDR budget.

np
g

©
 2

01
6 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.
np

g
©

 2
01
6 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



580  |  VOL.13  NO.7  |  JULY 2016  |  nature methods

brief communications

procedures6 including IHW–Bonferroni (Supplementary Note 6  
and Supplementary Fig. 5), a new, powerful method for con-
trolling the familywise error rate (FWER). In contrast, local tdr 
methods are specific to the FDR.

We have introduced a weighted multiple testing method that 
learns the weights from the data. Its appeal lies in its generic appli-
cability. It does not require assumptions about the relationship 
between the covariate and the power of the individual tests, such 
as monotonicity, which is necessary for independent filtering. 
It can apply size investing strategies, since it does not assume 
that the alternative distributions are the same across the different 
hypotheses. Furthermore, IHW is computationally robust and 
scales to millions of hypotheses.

The idea of using informative covariates for hypothesis 
weighting or for shaping optimal decision boundaries is not new 
(Supplementary Table 1; refs. 24–27). In this work, we provide 
a general and practical approach, available as an open-source  
software tool with documentation (http://www.bioconductor.org/
packages/IHW and Supplementary Software). Most importantly, 
we show how to establish type I error control and stability, thus 
overcoming two major limitations of previous approaches.

Building on our preliminary list of suitable covariates for 
applications (Table 1), further work could establish additional 
domain-specific covariates, formalize and automate the assess-
ment of diagnostic plots and extend IHW to higher-dimensional 
covariates.

Various approaches for increasing power compared with that 
of the BH method have focused on estimating the fraction of true 
nulls among all hypotheses instead of conservatively bounding it 
by 1 as the BH method does2. In practice, this tends to have limited 
impact, since in the most interesting situations the number of true 
alternatives is small compared with all tests, and no substantial 
power increase is gained. On the other hand, such an extension 
could be beneficial for IHW, since the groups that get assigned a 
high weight often also have a reduced proportion of true nulls.

The issue of dependence between hypotheses deserves atten-
tion. For example, the BH method proof was initially provided 
under the assumption of independent hypothesis tests and later 
extended to positive regression dependence28. Beyond that, BH 
has turned out to be remarkably robust to correlations encoun-
tered in analyses of real data. In our experience, IHW inherits 
this property of BH whenever the covariate is not involved in the 
joint dependence of the null P-values.

In our method we have explicitly avoided estimating the densi-
ties in equation (1). Nevertheless, the local tdr is an interesting 
quantity in its own right, since it provides a posterior probability 
for each individual hypothesis. Our weighted P-values do not 
provide this information. Thus, development of stable estimation 
procedures for the tdr that incorporate informative covariates is 
needed and would be complementary to our work19,22–24.

methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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online methods
Description of the IHW algorithm. Hypothesis tests in a mul-
tiple-testing scenario are divided into G different groups based 
on the covariate, typically of about equal size. Each group g is 
associated with weight wg. The following optimization problem 
is solved: find the weight vector w = (w1 , …, wG) that maxi-
mizes the number of rejections of the weighted BH method at 
level α. This method, naive IHW, is modified by the following 
three extensions.

E1. Instead of the above optimization task, we solve a convex 
relaxation of it. In statistical terms this corresponds to replacing 
the empirical cumulative distribution functions (ECDF) of the  
P-values with the Grenander estimators (least concave majorant 
of the ECDF). The resulting problem is convex and can be effi-
ciently solved even for large numbers of hypotheses.

E2. We randomly split the hypotheses into k folds. For each 
fold, we apply convex IHW to the other k − 1 folds and assign the 
learned weights to the remaining fold. Thus the weight assigned 
to a given hypothesis does not directly depend on its P-value, but 
only on its covariate.

E3. The performance of the algorithm can be further improved 
by ensuring that the weights learned with k − 1 folds general-
ize to the held-out fold. Therefore, we introduce a regularization  
parameter λ ≥ 0, and the optimization is done over a constrained 
subset of the weights. For an ordered covariate, we require that 

| |w wg g
g

G
− ≤−

=
∑ 1

2
l

i.e., weights of successive groups should not be too different. For 
an unordered covariate, we use instead the constraint 
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i.e., deviations from 1 are penalized. In the limit case λ = 0, all 
weights are the same, so IHW with λ = 0 is just the BH method. 
IHW with λ →  is the unconstrained version. Choice of λ is a 
model selection problem, so within each split in E2 we apply a 
second nested layer of cross-validation. E3 is optional; whether or 
not to apply it will depend on the data. It will be most beneficial if 
the number of hypotheses per group is relatively small.

A complete description of the algorithm, including an effi-
cient computational implementation of the optimization task, 
is provided in Supplementary Note 2. Supplementary Note 7 
describes its theoretical justification.

Code availability. The IHW package is available from 
Bioconductor at http://www.bioconductor.org/packages/IHW. 
It comes with detailed documentation and a vignette that show-
cases the application of IHW to a real data set. The vignette also 
provides guidance on the choice of informative covariates and 
suggests diagnostic plots so that users can determine whether 
their covariate satisfies the required conditions.

Executable documents (Rmarkdown) reproducing all analy-
ses shown here can be downloaded at http://bioconductor.org/ 
packages/IHWpaper.
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