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Metabolic balance in colorectal cancer is
maintained by optimal Wnt signaling levels
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Abstract

Wnt pathways are important for the modulation of tissue home-
ostasis, and their deregulation is linked to cancer development.
Canonical Wnt signaling is hyperactivated in many human colorec-
tal cancers due to genetic alterations of the negative Wnt regula-
tor APC. However, the expression levels of Wnt-dependent targets
vary between tumors, and the mechanisms of carcinogenesis con-
comitant with this Wnt signaling dosage have not been under-
stood. In this study, we integrate whole-genome CRISPR/Cas9
screens with large-scale multi-omic data to delineate functional
subtypes of cancer. We engineer APC loss-of-function mutations
and thereby hyperactivate Wnt signaling in cells with low endoge-
nous Wnt activity and find that the resulting engineered cells have
an unfavorable metabolic equilibrium compared with cells which
naturally acquired Wnt hyperactivation. We show that the dosage
level of oncogenic Wnt hyperactivation impacts the metabolic
equilibrium and the mitochondrial phenotype of a given cell type
in a context-dependent manner. These findings illustrate the
impact of context-dependent genetic interactions on cellular phe-
notypes of a central cancer driver mutation and expand our under-
standing of quantitative modulation of oncogenic signaling in
tumorigenesis.
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Introduction

Colorectal cancer (CRC) is among the most common types of cancer
worldwide, and the patients’ survival rates remain poor, especially
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for advanced stages (Bray et al, 2018). Major effort has been under-
taken to explore the heterogeneity of this disease to understand the
mechanisms of tumorigenesis and identify personalized treatment
strategies. The classification of tumors into consensus molecular
subtypes (CMS; Guinney et al, 2015; Dienstmann et al, 2017) has
been an important step toward this goal. The CMS classification is
based on transcriptome profiling and has been enabled by genome
and transcriptome profiling studies of large patient cohorts (Cancer
Genome Atlas Network, 2012). The four CMSs differ in their muta-
tional profile, their infiltration by immune and stromal cells, as well
as in their metabolic profile (Guinney et al, 2015; Dienstmann
et al, 2017; Rodriguez-Salas et al, 2017; Soldevilla et al, 2019).
Spatial and temporal modulation of Wnt signaling is important
for stem cell maintenance and tissue regeneration in the human
colon. As such, aberrant activation of the canonical Wnt pathway is
the initiating event of the classical model of Wnt-dependent colorec-
tal tumorigenesis (reviewed in Polakis, 2012). Oncogenic Wnt
hyperactivation is highly context-dependent and can be initiated by
different mechanisms including mutations in Wnt pathway compo-
nents, epigenetic modifications, or alteration of Wnt ligand secretion
(reviewed in Flanagan et al, 2019). According to the “just-right”
hypothesis, these oncogenic events select for an optimal dosage
level of Wnt signaling that is sufficient for cell transformation, but
not excessive or cytotoxic (Albuquerque et al, 2002). In human col-
orectal cancer, the most frequent genetic alteration leading to Wnt
hyperactivation is an allelic loss or a loss-of-function mutation in
the Wnt-regulator APC (> 50 percent of tumors; Cancer Genome
Atlas Network, 2012; Zhan et al, 2017). The truncations in the APC
protein occur most frequently before or within the first few repeats
that mediate binding to CTNNBI1, which is the key transcriptional
regulator of Wnt signaling (Polakis, 1995). The truncated APC pro-
teins have a reduced capacity to stabilize the CTNNB1 destruction
complex which results in higher CTNNBI1-mediated transcription.
The level of Wnt activation and subsequent transcriptional activa-
tion is dosage dependent on the number of CTNNB1 binding repeats
that remain in the truncated APC protein (Voloshanenko
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et al, 2013). The length distribution of truncated APC proteins in
CRC, where the total number of CTNNBI1 binding repeats remaining
in both APC alleles trends toward an optimum, is one of the stron-
gest indications for the “just-right” hypothesis (Albuquerque et al,
2002).

One of the hallmarks of cancer is the reprogramming of energy
metabolism (Hanahan & Weinberg, 2011). Tumors are frequently
subject to the Warburg effect (reviewed in Hsu & Sabatini, 2008),
which is the relative shift from mitochondrial respiration and oxida-
tive phosphorylation (OXPHOS) toward glycolysis as a source of
energy. Increasing evidence indicates an intricate interplay between
Wnt signaling, metabolism, and mitochondria in colorectal cancer
development. On the one hand, mitochondrial pyruvate metabolism
plays an essential role in controlling intestinal stem cell prolifera-
tion (Schell et al, 2017), and several studies report a direct role
of Wnt signaling in biogenesis, maintenance, and physiology of
mitochondria (Yoon et al, 2010; Brown et al, 2017; Bernkopf
et al, 2018). On the contrary, Wnt signaling maintains increased
glucose metabolism (Lee et al, 2012) and directly regulates the
transcription of important mediators of glycolysis and pyruvate
metabolism such as PDK1 and MCT1 (Pate et al, 2014). As such,
Wnt signaling is needed to maintain a beneficial metabolic equilib-
rium in tumors with Wnt hyperactivity (Pate et al, 2014; Yang et al,
2014). A recent study in mice showed that the loss of APC and the
resulting Wnt hyperactivation leads to an increased glucose uptake
not only in tumors, but also in intestinal tissue (Najumudeen
et al, 2021).

Different levels of Wnt hyperactivation and metabolic dysregula-
tion have been reported for the CMS of CRC (Guinney et al, 2015;
Fessler & Medema, 2016). However, the role of these different levels
of Wnt signaling activity during tumorigenesis and how they influ-
ence other CMS characteristics such as metabolism or immune infil-
tration remains unclear. In this study, we explored the role of Wnt
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signaling in the development of tumors of the different CMS classes.
We performed an integrative multi-omic analysis of transcriptomic,
proteomic, and large-scale genetic perturbation data from tumor tis-
sue and colorectal cancer cell lines to investigate functional hetero-
geneity of colorectal cancer. We showed that tumor development
that involves strong Wnt hyperactivation leads to a different meta-
bolic state than tumor development that only involves low Wnt
activity. To explore the context-dependent effects of Wnt signaling,
we introduced APC loss-of-function mutations in APC"" colorectal
cancer cells and performed whole-genome perturbation screens in
these genome-engineered model systems. We show that cells with
engineered Wnt hyperactivation have a different metabolomic state
than cells that naturally acquired Wnt hyperactivation. In summary,
our data indicate that the effect of Wnt signaling activation is depen-
dent on the baseline metabolic state of a cell and thereby exempli-
fies context-dependency in genetic networks.

Results
Distinct molecular features of Wnt-low and Wnt-high CRC

To gain a detailed understanding of the role of different levels of
classical Wnt signaling in CRC, we first explored the transcriptomic
and proteomic Wnt signatures in tumor and normal tissue samples
from the TCGA-COAD, TCGA-READ, and CPTAC-COAD cohorts
(Guinney et al, 2015; Vasaikar et al, 2019). The expression of clas-
sical CTNNB1-dependent transcriptional Wnt targets such as AXIN2
and NKDI was elevated in a large fraction of tumor samples com-
pared with normal tissue (Fig 1A-C). As expected, elevated AXIN2
expression levels correlated with elevated CTNNB1 protein levels,
indicating a stabilization of CTNNBI1 in agreement with hyperactiva-
tion of Wnt-dependent transcription (Fig 1C). In accordance with

Figure 1. Distinct molecular and clinical features of Wnt-low and Wnt-high colorectal cancers.

A Heatmap of the expression of CTNNB1 target genes (MsigDb pathway HALLMARK_WNT_BETA_CATENIN_SIGNALING) in the tumor and normal tissue samples from
TCGA-COAD and TCGA-READ cohorts (Guinney et al, 2015). Clustering into Wnt-low (light gray) and Wnt-high (dark gray) groups was performed using k-means
clustering. The bar entitled “class” indicates a normal tissue origin (black) or the result from CMS classification (tumor samples only, NA: no CMS could be assigned).
TCGA tumor samples were classified into different consensus molecular subtypes (CMS) using RNA sequencing data and the R package CMSclassifier (Guinney

et al, 2015).

B AXIN2 RNA expression in TCGA samples classified into the different CMS as well as normal colon tissue. Represented data correspond to TCGA-COAD and TCGA-
READ cohorts (Guinney et al, 2015). Individual data points and box plots are displayed. Box plots consist of the median (central line), the 250" and 75" percentiles
(box) and the highest/lowest value within 1.5 * interquartile range of the box (whiskers). Each data point corresponds to a different tumor or normal (tumor-

adjacent) tissue sample.

C Correlation between AXIN2 RNA expression and CTNNB1 protein level in samples from the 2019 CPTAC-COAD proteomics cohort (Vasaikar et al, 2019). CMS classifi-
cation is represented in color and is assigned according to the original publication. Protein level corresponds to fold change of tumor protein abundance versus

adjacent normal tissue protein abundance.

D, E Tumor samples in the different CMS were ranked according to their AXIN2 RNA expression. Panel D depicts the AXIN2 RNA expression as a function of the sample
rank. (E) Tile plot of TCGA tumor samples classified into the four CMS. Upper panel: presence of protein missense (blue) or truncating (black) mutation in different
tumor driver and suppressor genes: RNF43, KRAS, CTNNBI, BRAF, AXIN2, and APC. Lower panel: Anatomical origin (proximal or distal colon, color coded) of tumors
classified according to their DNA mismatch repair phenotype into microsatellite instability high (MSI-H), microsatellite instability low (MSI-L) or microsatellite
stable (MSS). Proximal colon: cecum, ascending colon, hepatic and splenic flexure, transverse colon. Distal colon: descending and sigmoid colon. NOS: no more pre-

cise origin specified.

F-I Frequency of cancer driver mutations in Wnt-low (n = 106 samples) and Wnt-high tumors (n = 432 samples) classified according to (A). P-values from Fisher’s
exact test for independence are indicated. (F) Relative frequency of tumors with O, 1 or more truncating APC mutations annotated in each of the tumor groups.
Allelic loss of APC was not considered here. (G) Relative frequency of BRAF V60OE (blue) or other BRAF missense mutations (black). (H) Relative frequency of mis-
sense mutations (gray), G659Vfs*41 (blue) and other truncating (black) mutations in the RNF43 protein. () Relative frequency of missense mutations at residues

G12 or G13 (blue) or other residues (black) of the KRAS protein.

J Frequency of tumor localization in Wnt-low (n = 106 samples) and Wnt-high tumors (n = 432 samples) classified according to (A). Colors as in (E), lower panel.

P-values from Fisher’s exact test for independence are indicated.
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Figure 1.

previous studies, the CMS1 subtype was enriched for tumors that
lack signs of Wnt hyperactivation (Fig 1A and B). However, the
CMS classification was not sufficient to predict Wnt activation, as
average AXINZ2 expression levels comparable with normal colon tis-
sue were also found in a subset of CMS4 and CMS3 tumors (Fig 1A

© 2022 The Authors

and B and Appendix Fig S1). We therefore classified the tumors into
Wnt-high or Wnt-low tumors based on their expression of classical
CTNNBI1 target genes (Fig 1A and D). This classification also
included tumor samples for which CMS assignment was ambiguous
(annotated as “NA” in Fig 1A-C).
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Different frequencies of well-described CRC-driver mutation
could be observed in the Wnt-high and Wnt-low tumors, indicating
a different sequence of events leading to tumor development in the
two groups. Around 80% of Wnt-high tumors carried one or more
truncating APC mutations, whereas this was only the case for
around 30% of Wnt-low tumors (Fig 1E and F). Wnt-low tumors
had a high prevalence (40%) of the characteristic BRAF VG600E
mutation, which was almost not observed in Wnt-high tumors
(Fig 1E and G). Similarly, mutations in the Wnt regulator RNF43
and in particular G659Vfs*41 mutations were enriched in Wnt-low
tumors (Fig 1E and H). The prevalence of KRAS missense muta-
tions, and specifically mutations in residues G12 and G13, was only
slightly reduced in Wnt-low tumors compared with Wnt-high
tumors (25 versus 40%, Fig 1E and I). Simultaneous existence of
BRAF missense mutation and an APC truncation was rarely
observed, which further supported the hypothesis that the most
important oncogenic driver events differed between Wnt-low and
Wnt-high tumor groups (Fig 1E). In summary, the high expression
level of Wnt-dependent targets in Wnt-high tumors seems to be
linked to alterations in APC, whereas the mutations in RNF43
observed in Wnt-low tumors do not lead to strong hyperactivation
of Wnt-dependent transcription.

Wnt-high and Wnt-low tumors also exhibited differences in
genetic stability and tumor localization. Wnt-low tumors accumu-
lated in the proximal part of the colon (Fig 1E and J) and frequently
harbored a deficiency in DNA mismatch repair (MSI, microsatellite
instability, Fig 1E). Wnt-high tumors in contrast rarely showed signs
of DNA mismatch repair deficiency and developed in both proximal
and distal parts of the colon (Fig 1E and J). In summary, our classi-
fication of tumors into Wnt-high and Wnt-low allowed us to delin-
eate two groups of tumors with distinct mutational and molecular
patterns. Differences in characteristic features such as tumor local-
ization and DNA mismatch repair deficiency adequately reflect the
idea of independent routes of tumorigenesis, also known as the ser-
rated pathway (~Wnt-low) and the canonical adenoma-carcinoma-
pathway (~Wnt-high; Nguyen et al, 2020).

Classification of CRC cell lines into Wnt-low and Wnt-high groups

We next confirmed that a similar classification into Wnt-high and
Wnt-low entities can be applied to CRC cell lines based on AXIN2
expression levels (Fig 2A). CMS classification is more difficult for
cell lines than for tumor tissues (Eide et al, 2017; Linnekamp
et al, 2018; Zhan et al, 2021), presumably due to lack of immune
and stromal infiltration in cell lines, which contribute to a certain
degree to the transcriptional signature of CMS in tumors. Neverthe-
less, cell lines with CMS1 annotation were mostly found in the Wnt-
low group, and cell lines with CMS2 annotation were exclusively
part of the Wnt-high group (Fig 2A). As expected, classical
CTNNBI1-dependent Wnt target genes had a tendency to be higher
expressed in the Wnt-high cell lines compared with Wnt-low cell
lines (Fig 2B). The genes most differentially expressed in the analy-
sis of cell lines were the same genes as the ones with strong expres-
sion differences between Wnt-high and Wnt-low tumor samples,
namely GNAI1, NKD1, and TCF7 (Figs 1A and 2B).

The patterns of cancer driver mutations in Wnt-low and Wnt-
high colorectal cancer cell lines were partially comparable with the
ones observed in the tumor tissue (Fig 2C-F). RNF43 mutations

4 of 18  Molecular Systems Biology ~18: €10874 | 2022

Katharina Imkeller et al

were more frequently observed in Wnt-low cell lines (Fig 2E). Wnt-
low colorectal cancer cell lines were more likely to manifest a MSI-
phenotype than Wnt-high cell lines, which was also in accordance
with our findings for the tumor tissue (Figs 2G and 1E). The differ-
ences in APC truncations, BRAF and KRAS missense mutations were
not significant (Fig 2C, D, and F).

Whnt activation in Wnt-low CRC cell lines using CRISPR-Cas9-
mediated APC truncation

We next engineered an additional cell line system to explore the
context-dependent effects of Wnt hyperactivation in CRC
(Appendix Fig S2A). We selected two cell lines with low endoge-
nous Wnt activation and without endogenous APC mutations
(HCT116 and RKO, APCWY?, Fig 2A). To study the effect of Wnt
hyperactivation in these cells, we genetically engineered a truncat-
ing mutation of the APC gene in both HCT116 and RKO cell lines.
For this, we used CRISPR/Cas9 in combination with an sgRNA tar-
geting a specific region of the APC gene that frequently harbors
protein-truncating somatic mutations in colorectal cancers (Fig 2H
and Appendix Fig S2A). The engineered truncation of APC in the
resulting isogenic cell lines HCT116-APC™"¢ and RKO-APC"™"° was
verified by amplicon sequencing (Fig 2H) and by Western blot analysis
(Appendix Fig S2B). The corresponding results regarding RKO-
APC™" cells were previously described by Zhan et al (2019), whereas
results for both cell lines are summarized in Appendix Fig S2.

As expected, HCT116-APC"™"° and RKO-APC""™ showed a
higher level of TCF4/Wnt-reporter activity than HCT116 and RKO
cells (Appendix Fig S2C and Zhan et al, 2019). In the same lines,
the expression of classical CTNNB1-dependent Wnt target genes
was elevated in RKO-APC"™ " compared with RKO cells (Fig 2I).
However, the Wnt target genes most upregulated upon engineered
Wnt hyperactivation in RKO cells (JAGI and RBPJ) were not the
same as the Wnt target genes with higher expression in cell lines
and tumors with endogenous Wnt hyperactivation (Figs 1A, and 2B
and I). These results highlight the context-dependent transcriptional
effects of Wnt hyperactivation. The overall molecular mechanisms
of Wnt-dependent transcription activation are comparable between
different cellular contexts, as indicated by the TCF4/Wnt-reporter
assay (Zhan et al, 2019; Appendix Fig S2C). The actual transcrip-
tional changes, however, differ due to the context-dependent genetic
interaction networks, where for example, the target genes of a given
transcription factor depend on the chromatin status in a specific
context. Indeed, our results show that the list of genes upregulated
upon endogenous Wnt hyperactivation during tumorigenesis was
partially distinct from the list of genes upregulated upon artificial
Wnt hyperactivation in cell lines without endogenous signaling
(Figs 1A, and 2B and I).

Differential genetic dependencies in natural and engineered APC
mutant cells

We next used functional genetic and gene dependency data derived
from whole-genome CRISPR/Cas9 viability screens to further
explore the context-dependent effects of Wnt hyperactivation on a
functional level. This analysis consisted of two different approaches
(Fig 3A). In the first approach, we performed four different whole-
genome CRISPR viability screens in the four isogenic cell lines

© 2022 The Authors
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Figure 2. CRC cell lines to model context-dependent Wnt signaling in Wnt-high and Wnt-low tumors.
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Colorectal cancer cell lines were ranked according to AXIN2 RNA expression and classified into Wnt-high and Wnt-low groups (Ghandi et al, 2019). Annotation of
CMS for cell lines according to Zhan et al (2021). The horizontal line indicates the threshold for classification into Wnt-low and Wnt-high groups.

Volcano plot summarizing the results from differential gene expression analysis comparing Wnt-low (n = 8 cell lines) versus Wnt-high (n = 39 cell lines) CRC cell
lines. Gene expression data from RNA sequencing (Ghandi et al, 2019). Genes with higher expression in Wnt-high cell lines have positive fold changes. The horizon-
tal line indicates an adjusted P-value threshold of 0.1, which was calculated as described in the Materials and Methods section. CTNNBL target genes (MsigDb
pathway HALLMARK_WNT_BETA_CATENIN_SIGNALING) are highlighted in blue. Gene set enrichment analysis for CTNNB1 target genes indicated a positive enrich-
ment score with an adjusted P-value < 0.01.

Frequency of cancer driver mutations in Wnt-low (n = 8) and Wnt-high (n = 39) CRC cell lines classified according to (A). The different cell lines represent indepen-
dent biological replicates. P-values from Fisher’s exact test for independence are indicated. (C) Relative frequency of cell lines with 0, 1 or more truncating APC
mutations in each of the groups. (D) Relative frequency of BRAF V600E (blue) or other BRAF missense mutations (black). (E) Relative frequency of missense muta-
tions (gray), G659Vfs*41 (blue) and other truncating (black) mutations in the RNF43 protein. (F) Relative frequency of missense mutations at residues G12 or G13
(blue) or other residues (black) of the KRAS protein.

Relative frequency of cell lines with a given microsatellite stability status in Wnt-low (n = 8) and Wnt-high (n = 39) CRC cell lines classified according to (A). The different
cell lines represent independent biological replicates. P-value from Fisher’s exact test for independence is indicated. MSI, microsatellite instable; MSI-H, microsatellite
instability high; MSI-L, microsatellite instability low; MSS, microsatellite stable. Assignment of microsatellite stability status according to Zhan et al (2021).

Introduction of APC truncations in RKO (Zhan et al, 2019) and HCT116 cells using CRISPR/Cas9. Correct gene editing and successful APC truncation in single-cell
clones RKO-APC'"™"“#5 and HCT116-APC'™"“#2 was confirmed by targeted amplicon sequencing of the edited gene locus.

Volcano plot summarizing the results from differential gene expression analysis comparing RKO-APC'™"“#5 versus RKO cell lines. Gene expression was assessed
using microarrays in two biological replicates per cell line. The horizontal line indicates an adjusted P-value threshold of 0.05, which was calculated as described in
the Materials and Methods section. Genes with higher expression in RKO-APC'™"“#5 cells have positive fold changes. Colors as in (B). Gene set enrichment analysis
for CTNNB1 target genes indicated a positive enrichment score with a P-value < 0.01 calculated.
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Molecular Systems Biology

HCT116, RKO, HCT116-APC"™"¢, and RKO-APC'"“"¢ (Fig 3A and
Appendix Fig S3A-C). We used the CRISPR library for screening,
which contains around 90,000 gRNAs targeting more than 17,000
genes. We calculated the differential viability effect of gene knock-
out in APC"™" versus APC"" cell lines in both RKO and HCT116
backgrounds (Appendix Fig S3D). We used a statistical model that
accounts for skewed fold change distributions for the comparison of
gRNA abundances, so that the results would not be affected by dif-
ferences in editing efficiencies or cellular growth rates (Imkeller
et al, 2020). This first approach allowed us to explore the genetic
rewiring in Wnt-low cancer cell lines upon Wnt hyperactivation. In
the second approach, we reanalyzed gene dependency data from the
DepMap CRISPR/Cas9 screening project to assess the functional dif-
ferences between colorectal cancer cells that did or did not undergo

Katharina Imkeller et al

natural Wnt hyperactivation during tumorigenesis. In this approach,
we also calculated the differential viability effect of gene knockout
in Wnt-high compared with Wnt-low colorectal cancer cell lines
(groups as defined in Fig 2A). The combination of both approaches
allowed us to compare the functional effects of endogenous Wnt
hyperactivation to those of engineered Wnt hyperactivation in Wnt-
low cell line models.

When analyzing the differential gene dependencies within the
DepMap project, we found that Wnt-high colorectal cancer cell lines
were more dependent on CTNNBI and other members of the Wnt
signaling pathway than Wnt-low colorectal cancer cell lines (Fig 3B
and C). In CRISPR screens in our engineered APC"™° system, how-
ever, the dependence on components of the Wnt signaling pathway
was comparable in APC"™"° and APCY' cells in both RKO and
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Figure 3. Hyperactivation of Wnt signaling in Wnt-low cells does not recapitulate Wnt dependency of Wnt-high cells.

A

(1) Schematic representation of whole-genome CRISPR screen to compare gene essentiality in APC"™" and APC™"T RKO and HCT116 cell lines. Differential gene
essentiality was assessed by comparing the gRNA abundances at T1 in APC'™" and APC'" cell pools in both RKO and HCT116 backgrounds. The screen was con-
ducted in two replicates per cell line. Doubling times for RKO-APC*'™: 23.8 h; RKO-APC™"*#5: 23.9 h; HCT116-APC*'": 21.0 h; HCT116-APC"™"“#2: 25.7 h. (2) DepMap
data was used to assess the differential gene essentially in Wnt-high (n = 24 cell lines) versus Wnt-low (n = 5 cell lines) CRC cell lines (classification as in Fig 2A).
Created with Biorender.com.

Differential gene essentiality in Wnt-high versus Wnt-low CRC cell lines displayed as logarithmic fold change (logFC). Negative logFC indicate genes that are more
essential in Wnt-high compared to Wnt-low cell lines. Genes involved in Wnt signaling are highlighted in black (MSigDB curated gene set WNT_SIGNALING; Liber-
zon et al, 2011). Gene set enrichment analysis using the permutation based statistical test implemented in the fgsea R package (preprint: Korotkevich et al, 2021)
and Benjamini—Hochberg correction for multiple testing indicated a positive enrichment score for absolute logarithmic fold changes (P-value < 0.01) for this path-
way. Selected genes of interest belonging to this pathway are highlighted and labeled in green.

Dependency on CTNNBI as a function of AXIN2 expression in Wnt-high (light gray) and Wnt-low (dark gray) CRC cell lines. The Wilcoxon-rank sum test indicated
that the dependence on CTNNBI is different in Wnt high compared to Wnt low cells with a P-value < 0.01.

Differential gene essentiality in APC'™" versus APC*"'T HCT116 (D) and RKO (E) cell lines displayed as logarithmic fold change (logFC). Negative logFC indicates
genes that are more essential in APC'™" compared with APC"T cells. Gene set enrichment analysis using the permutation based statistical test implemented in the
fgsea R package (preprint: Korotkevich et al, 2021) and Benjamini—Hochberg correction for multiple testing indicated no significant enrichment for absolute
logarithmic fold changes of genes involved in Wnt signaling. Gene set definition, color and labeling as in (B).

Viability effects of single gRNAs targeting CTNNBI1. Logarithmic fold changes of gRNA abundance in the screening endpoint compared to the plasmid library are
displayed for APC'™" (y-axis) and APC""T (x-axis) for HCT116 (left panel) and RKO (right panel) cells. Red and blue circles indicate results for replicates 1 and 2 of
the CRISPR screen. Mean fold changes of negative control gRNAs (targeting luciferase) are displayed as black circles. Mean fold changes of positive control gRNAs

(chromosome 10 promiscuous) are displayed as black triangles.

HCT116 backgrounds (Fig 3D-F), indicating that introducing an
APC truncation in Wnt-low colorectal cancer cell lines, and thereby
hyperactivating Wnt signaling, did not lead to a new dependency on
Whnt signaling in the resulting APC"™"" cell lines. Conversely, and in
contrast to the effect of naturally occurring Wnt hyperactivation
during tumorigenesis, APC truncation did not lead to an increase in
Whnt-dependency in HCT116-APC"™"¢ and RKO-APC™" cell lines
compared with HCT116 and RKO cell lines. Of note, the overall vul-
nerability toward knockout of CTNNBI was higher in the two
HCT116 cell line variants compared with the two RKO cell line vari-
ants, probably due to the fact that HCT116 have a low endogenous
Wnt activation resulting from a mutation in CTNNBI (Fig 3F).
Engineered APC'™"° cells acquire vulnerability toward metabolic
and mitochondrial perturbation

In a next step, we further explored the differences in genetic depen-
dencies in the three groups of cell lines, namely endogenously Wnt-
high, endogenously Wnt-low, and endogenously Wnt-low with engi-
neered APC truncation.

We first performed gene set enrichment analysis on the differen-
tial fitness effects in the DepMap project to compare endogenously
Wnt-high and endogenously Wnt-low cell lines. Cell lines with low
endogenous Wnt signaling were more dependent on metabolic path-
way genes and genes involved in mitochondrial function than Wnt-
high cell lines (Fig 4A-C and Appendix Fig S4). Among the genes
with highest differential viability effect, we found components of the
mitochondrial transcription machinery such as MTIF2 (mitochon-
drial translation initiation factor 2), mitochondrial ribosomal pro-
teins such as MRPL13, MRPS12, and mitochondrial tRNA synthetases
such as CARS2 (Fig 4B and C). These components are encoded in the
nucleus, translated in the cytoplasm, and then imported into the
mitochondrion, where they participate in the translation of mito-
chondrially encoded proteins essential for mitochondrial function
and oxidative phosphorylation (reviewed in Kummer & Ban, 2021).

We then used the results from our CRISPR viability screens and
performed gene set enrichment analysis on the differential gene

© 2022 The Authors

dependencies in APC"™"° compared with APCYT cells in both
HCT116 and RKO backgrounds. HCT116-APC"™""® and RKO-APC"™""®
cell lines were more dependent on metabolic pathway genes and
genes involved in mitochondrial function than HCT116 and RKO cell
lines (Fig 4A and Appendix Fig S4). When focusing on the mito-
chondrial translation and tRNA aminoacylation pathways and com-
paring the genes with highest differential dependency, we found
that they were the same genes in both RKO and HCT116 back-
grounds, namely MTIF2, MRPL13, CARS2, and another mitochon-
drial tRNA synthetase LARS2 (Fig 4D-F).

Taken together, these results indicate that engineered Wnt hyper-
activation in Wnt-low HCT116 and RKO cell lines did not recapitulate
the metabolic phenotype of cell lines that underwent natural Wnt
hyperactivation. In fact, the three groups of cell lines that we ana-
lyzed, namely endogenously Wnt-high, endogenously Wnt-low, and
endogenously Wnt-low with engineered APC truncation, represented
three different states of metabolic and mitochondrial dependence.
Wnt-high cell lines were least affected by mitochondrial perturbation.
Wnt-low cell lines in turn had an intermediate level of mitochondrial
dependence that became even more accentuated when Wnt signaling
was artificially hyperactivated after the introduction of an APC trun-
cation (Wnt-low cells with engineered APC truncation).

It is important to note that the knockout of genes involved in
mitochondrial function induced a measurable fitness defect in all
analyzed cell lines (Fig 4D-F). However, we were able to repro-
ducibly detect differential dependency in all analyses, as described
above, which indicates different cell lines can be more or less
dependent on essential pathways such as mitochondrial function.
The increased vulnerability toward mitochondrial perturbation was
not linked to increased cellular growth rate, as in both RKO and
HCT116 backgrounds, the APC"™""° cells grew either at similar speed
or at slower than the APCW7 cells (Fig 3A, figure legend).

trunc
C

Synthetic mitochondrial vulnerability in engineered AP cells

Among the genes involved in mitochondrial function, some had an
intermediate viability effect in all cell lines (Fig 4D and E), which
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Figure 4. Different metabolic dependencies of Wnt-high and Wnt-low CRC cell lines with or without Wnt hyperactivation.

A Selection of gene set enrichment analysis results for CRISPR screening results in our engineered cell lines as well as in the DepMap datasets. Gene sets for which
the enrichment analysis indicated adjusted P-values > 0.05 are depicted in gray. Negative enrichment scores in green indicate a higher essentiality of the respec-
tive gene sets in APC'™" compared with APC"" cell lines (HCT116 and RKO) or Wnt-high compared to Wnt-low (DepMap).

B, C Differential gene essentiality in Wnt-high versus Wnt-low cell lines (DepMap project) displayed as logarithmic fold change (logFC). Negative logFC indicates genes
that are more essential in Wnt-high cell lines compared with Wnt-low cell lines. Genes involved in mitochondrial translation (E) and mitochondrial tRNA aminoacy-
lation (F) are highlighted in black. Gene set enrichment analysis indicated a positive enrichment score for both pathways. Genes involved in mitochondrial transla-
tion (B, Reactome R-HSA-5368287) and mitochondrial tRNA aminoacylation (C, Reactome R-HSA-379726) are highlighted in black. Selected genes of interest
belonging to this pathway are highlighted and labeled in green.

D, E Correlation of differential gene essentialities in APC™" versus APC*YT HCT116 (x-axis) and RKO (y-axis) cell lines displayed as logarithmic fold change (logFC). Nega-
tive logFC indicates genes that are more essential in APC'™" compared to APC"'" cells. Gene set definition, color and labeling as in (B, C).

F Viability effects of single gRNAs targeting LARS2, MRPL13 and MTIF2. Logarithmic fold changes of gRNA abundance in the screening endpoint compared to the
plasmid library are displayed for APC'™ " (y-axis) and APC"T (x-axis) for HCT116 (left panel) and RKO (right panel) cells. Red and blue circles indicate results for
replicates 1 and 2 of the CRISPR screen. Mean fold changes of negative control gRNAs (targeting luciferase) are displayed as black circles. Mean fold changes of pos-
itive control gRNAs (chromosome 10 promiscuous) are displayed as black triangles.

We first used a fluorescence and flow cytometry-based competi-
tive cell growth assay to compare the growth rates of cells treated
with LARS2 targeting guide RNAs to those treated with guide RNAs
targeting the safe harbor locus AAVSI locus (negative control).

made them suitable for use in functional assays, where a minimum
of cell viability is necessary. We selected LARS2 as an exemplary
candidate gene to further explore the mechanisms of vulnerability
to mitochondrial perturbation.
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B Relative amount of LARS2 KO cells compared to AAVSI KO cells, normalized to the proportions at day 3 after pooling. Pools of APC™" cells are shown in blue, pools
of APC"T cells are shown in black. The complete assay was repeated three times. The dots represent results from the individual replicates, whereas the line

connects the mean values over all three replicates per time point.

C, D Basal respiration derived from Seahorse oxygen consumption rate measurement. LARS2 KO samples are highlighted in orange (C). Wnt3a treated samples are
highlighted in green (D). Box plots consist of the median (central line), the 25" and 75" percentiles (box) and the highest/lowest value within 1.5 * interquartile
range of the box (whiskers). Every dot represents one technical replicate, which were performed in at least two different experimental batches.

Data information: Statistical tests in all: paired t-test corrected for multiple testing, ****: P < 0.001, ***: P < 0.01, **: P < 0.05, *: P < 0.1.

Using sgRNA expression vectors with fluorescence markers, we
labeled LARS2 knockout cells in red and control cells in green. For
all four HCT116 and RKO cell line variants, the green and red cells
were pooled at equal proportions and the proportion of red (LARS2
knockout cells) monitored over the course of 2 weeks (Fig 5A). We
confirmed that APC"™"° cells were more vulnerable to the knockout
of LARS2 than APCYT cells in both RKO and HCT116 backgrounds
(Fig 5B). This result was reproducible using two different LARS2
targeting gRNAs (Fig 5B).

We next quantified the basal respiration in the cell lines using
oxygen consumption measurements. Knockout of the mitochondrial
tRNA synthetase LARSZ2 reduced the basal respiration in both
APCYT and APC™"¢ cells (Fig 5C), which was likely the cause of
decreased growth rate in all cell lines. Although the reduction in
growth rate upon LARSZ perturbation was significantly stronger in
APC"™ " than in APC"7 cell lines (Fig 5B), the basal respiration was
strongly reduced in both cell lines (Fig 5C). The APC"™" cell lines
thus seemed to have a reduced capacity to compensate for the loss
of mitochondrial function.

© 2022 The Authors

It has previously been reported that Wnt signaling is able to
induce metabolic changes in line with the Warburg effect in col-
orectal cancer cells (Pate et al, 2014). Indeed, we observed that
APC"™¢ cells had a slightly lower basal respiration than APCY'
cell lines in both RKO and HCT116 backgrounds. To investigate
whether this effect was directly dependent on Wnt signaling, we
measured basal respiration rates after external stimulation of
Wnt signaling. The addition of Wnt3a ligands into the growth
medium resulted in significant reduction in basal respiration in
both RKO cell lines (Fig 5D). For HCT116 cell lines, there was
no significant reduction in basal respiration upon Wnt3a treat-
ment, which could be due to the fact that HCT116 cells already
exhibit a low Wnt activation due to an activating mutation in
CTNNBI (Fig 5D).

Different metabolic equilibria in Wnt-low and Wnt-high tumors

Our results suggest that engineered APC"™" cells suffer from an
unfavorable metabolic equilibrium that is brought about by Wnt
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hyperactivation due to APC truncation. During Wnt-dependent
tumorigenesis, however, Wnt hyperactivation entails a fitness
advantage that results in the development of Wnt-high tumors. To
explain this context-dependency of the effect of Wnt signaling, we
used transcriptomics and proteomics data to characterize the

Katharina Imkeller et al

metabolic equilibria in the different tumor types. The analysis
included transcriptomic and proteomic data from primary tumor tis-
sue (TCGA and CPTAC data) as well as colorectal cancer cell lines
(DepMap data). The tumors and cell lines were classified into Wnt-
high and Wnt-low entities as described in Figs 1 and 2. The
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Figure 6. Transcriptomic and proteomic signatures of different metabolic equilibria in Wnt-low and Wnt-high tumors.

A Selection of gene set enrichment analysis results for transcriptomic (x-axis “RNA”) and proteomic (x-axis “protein”) differences between Wnt-high and Wnt-low col-
orectal cancer cell lines (depmap, 39 Wnt-high and 8 Wnt-low cell lines for transcriptomics and 16 Wnt-high and 6 Wnt-low for proteomic) and tumors (432 Wnt-
high and 108 Wnt-low for transcriptomics (TCGA), 31 Wnt-high and 75 Wnt-low samples for proteomic (CPTAC-COAD)). Positive enrichment scores in green indicate
a higher expression of the respective gene sets in Wnt-high compared to Wnt-low entities. Gene set annotation according to Reactome pathways and GO cellular

component, an adjusted P-value threshold of 0.05 was applied.

B Differential transcript (x-axis “RNA”) and protein (x-axis “protein”) abundance in colorectal cancer cell lines (depmap) and tumor tissues (TCGA and CPTAC-COAD).
Selected genes which play a role in amino acid metabolism, glycolysis, mitochondrial function and TCA cycle are displayed.

C, D Transcript expression (C) and protein expression (D) of HK1, MRPS31, PDHA1, and GOT2 (y-axis) compared to transcript expression of AXIN2 (x-axis in the dotplot).
Colors indicate CMS classification or normal colon tissue. Violin plots in the left panels illustrate candidate transcript and protein expression in the different CMS
and tissue groups. Each datapoint corresponds to an individual tumor. Number of tumors per CMS group for (C): CMS1 - 41, CMS2 - 88, CMS3 - 65, CMS4 - 111,

normal tissue - 51; for (D): CMS1 - 12, CMS2 - 29, CMS3 - 13, CMS4 - 21.

E, F Transcript expression (E) and protein expression (F) differences between tumor and normal colon tissue for Wnt-high (y-axis) and Wnt-low (x-axis) tumors. Colors
indicate to which functional pathway each gene belongs: purple - glycolysis, green - mitochondrial function, pink - TCA cycle and mitochondrial pyruvate

metabolism.

differential expression of transcripts and proteins between Wnt-low
and Wnt-high groups was quantified separately for tumors and
cell lines.

We first studied the phenotypic differences between Wnt-high
and Wnt-low cell lines and tumors by performing gene set enrich-
ment analysis on the results from differential transcription and pro-
tein expression analysis (Fig 6A and Appendix Fig S5). Genes and
proteins involved in mitochondrial function, respiration, and TCA
cycle were expressed at higher levels in Wnt-high compared with
Wnt-low cell lines and tumors (Fig 6A and Appendix Fig S5). In
addition, we found other metabolic pathways related to cholesterol
biosynthesis and metabolism of amino acids, which also partially
rely on mitochondrial processes, to be upregulated on transcrip-
tomic and in some instances also on proteomic level in Wnt-high
compared with Wnt-low cell lines and tumors (Fig 6A and
Appendix Fig S5). Differentially expressed genes showed a similar
pattern of either up-or downregulation in the two datasets (Fig 6B).
The fact that the gene and protein expression changes could not
only be seen in tumor tissue, but also in colorectal cancer cell lines
indicates that our findings were valid to describe the actual tumor
cells and were not artifacts resulting from tumor infiltration by stro-
mal or immune cells.

Previous studies have identified the genes and proteins whose
expression best correlates with metabolic activity of pathways such
as TCA cycle, glycolysis, and mitochondrial maintenance (Tanner
et al, 2018; Hartmann et al, 2021). We were able to confirm in our
data that important regulators of glycolytic flux (HK2, HK3, LDHA,
GAPDH, and G6PD) had lower transcript and protein levels in Wnt-
high compared with Wnt-low tumors (Fig 6B). Genes and proteins
regulating the TCA cycle (PDHA1, SUCLG2, SUCLGI, and IDHZ2) as
well as mitochondrial function (VDACI, MRPS31, LARS2, OPAl,
and MTIF2) showed higher transcripts and protein levels in Wnt-
high compared with Wnt-low tumor entities (Fig 6B). Components
of the amino acid metabolism such as SLCIAS5 and GOTZ2 showed a
similar behavior and were higher expressed in the Wnt-high tumor
entities (Fig 6B). Our classification into Wnt-high and Wnt-low
tumors was correlated with the expression of these metabolic genes
throughout different CMS subtypes (Fig 6C and D). The tumors that
were classified as CMS4 or CMS3 but belonged to the Wnt-low
tumor subgroup showed metabolic gene and protein expression
levels comparable with Wnt-low tumors classified as CMS1 (Fig 6C
and D).

© 2022 The Authors

The transcriptomic and proteomic profiles indicated a difference
in metabolic equilibrium between Wnt-low and Wnt-high tumors,
with a more pronounced Warburg-phenotype being observed in
Wnt-low tumors. To better understand these observations in the
context of metabolic rewiring during tumorigenesis, we next com-
pared the transcript and protein expression levels in Wnt-high and
Wnt-low tumor samples to those of normal colon tissue (Fig 6E and
F). The overall direction of expression changes was the same
between tumor and normal tissue for both tumor groups. This
means that despite the differences between Wnt-high and Wnt-low
groups described in the previous paragraph (Fig 6A-D), many genes
involved in glycolysis were upregulated in all tumor samples com-
pared with normal tissue (Fig 6E and F, purple). SLCI6A1 and
PDK1, two genes which were previously reported to be responsible
for increased glycolysis upon Wnt signaling, were expressed at
higher or equal levels in Wnt-low compared with Wnt-high tumors
(Appendix Fig S6). Genes and proteins involved in mitochondrial
pyruvate metabolism and TCA cycle were reduced in all tumor sam-
ples compared with normal tissue (Fig 6E and F, pink). Genes
involved in mitochondrial translation were upregulated on tran-
script level in both tumor groups, on protein level, however, they
appeared to be increased only in the Wnt-high tumor group and not
in the Wnt-low tumor group (Fig 6E and F, green). In summary, a
metabolic transcription and protein abundance switch in line with
the Warburg effect was observed in both tumor types, but it was
more pronounced in the Wnt-low tumors.

Our results indicate that both Wnt-high and Wnt-low tumors
undergo a metabolic switch in accordance with the Warburg effect
and tumor metabolic rewiring. However, the final metabolic equilib-
rium reached in both tumor types is different (Fig 7). Wnt-
dependent tumorigenesis involves a slight shift toward glycolysis,
which is probably directly induced by Wnt hyperactivation, in
accordance with previous studies reporting the transcriptional regu-
lation of Warburg effect by Wnt signaling (Pate et al, 2014). In
Whnt-independent tumorigenesis, the shift toward glycolysis is even
more pronounced. As a consequence, Wnt activation in Wnt-low
cancer cells, as modeled in our engineered APC""™ RKO and
HCT116 cells, leads to a metabolic imbalance because their meta-
bolic baseline does not allow for further induction of glycolysis
resulting from Wnt hyperactivation. These findings highlight that
the order of genetic alterations during oncogenic transformation
need to be tightly interwoven with metabolic rewiring.
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Figure 7. Model of metabolic balance and tumorigenesis leading to
Wnt-high and Wnt-low colorectal cancers.

The balance is a schematic representation of the levels of glycolysis (G) and
oxidative phosphorylation/respiration (R). Created with Biorender.com.

Discussion

We applied an integrative multi-omics analysis to transcriptomic,
proteomic, and functional genomic data to show that a classification
of colorectal cancers into Wnt-high and Wnt-low entities function-
ally distinguishes two types of tumors. The levels of Wnt hyperacti-
vation in each tumor type are balanced to maintain cellular fitness
and a favorable metabolic state. Increasing the level of Wnt signal-
ing, especially in those tumors that have low endogenous Wnt sig-
naling, raises the tumor cells to an unfavorable energetic state in
which their metabolic balance is perturbed. These findings show-
case the context-dependent and nonlinear effects of Wnt signaling
on cellular phenotype and function during tumorigenesis.

In this study, we examined the transcriptional and protein
expression differences in metabolic pathways that are essential for
cellular energy supply. We showed that Wnt-low tumors and cell
lines are characterized by higher levels of genes and proteins
involved in glycolysis. It has been shown in previous studies that
transcript quantification and protein abundance measurements can
be used to infer glycolysis pathway activity (Tanner et al, 2018;
Hartmann et al, 2021). As the pathway components associated with
differences in metabolic flux were higher expressed in Wnt-low
compared with Wnt-high tumors, we inferred that glycolytic flux
and lactate production is higher in Wnt-low tumors. Genes and pro-
teins involved in OXPHOS as well as mitochondrial function were
higher expressed in Wnt-high tumors than in Wnt-low tumors, indi-
cating a higher level of mitochondrial activity in Wnt-high tumors.
The overall lower expression of mitochondrial ribosomes and mito-
chondrial matrix components observed in our analyses could be due
to an overall lower content of mitochondria linked to lower mito-
chondrial activity in the Wnt-low tumor cell. In line with our inter-
pretation of the data, previous studies have demonstrated a
correlation between mitochondrial respiration and expression of
specific mitochondrial components such as OPAl or VDACI
(Akkaya et al, 2018; Hartmann et al, 2021). In addition, Wnt-high
tumors also showed higher levels of genes involved in glutamine
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metabolism, an alternative pathway for energy supply that involves
mitochondrial components (Altman et al, 2016). Taken together, these
results indicate that the metabolism of Wnt-high tumors in general
relies more on mitochondrial function than that of Wnt-low tumors.

Transcriptomic and proteomic differences in glycolysis and
OXPHOS pathways have been previously reported for MSI tumors in
comparison with MSS tumors (Vasaikar et al, 2019). As the Wnt-
low tumor group in our study is enriched for MSI-H tumors, our
results confirm these previous observations. Our study adds a new
perspective to this observation, as we provide a link between differ-
ent metabolic equilibria and dosage levels of Wnt hyperactivation
during tumorigenesis. As shown in Fig 6, our classification of
tumors according to their Wnt activation also allows us to predict
metabolic gene and protein expression beyond the CMS classifica-
tion scheme.

The metabolic phenotype of Wnt-low tumors correlated with a
higher vulnerability toward mitochondrial perturbation. Given the
statistical model that we used to compare the gRNA abundances
(Appendix Fig S3) as well as the successful validation using the
competitive cell growth assay (Fig 5B), we are confident that this
observation reflects the underlying biology and is not linked to tech-
nical artifacts that arise from differences in growth rate during the
vulnerability screen. The higher vulnerability toward mitochondrial
perturbation could potentially be explained by a saturation of
mitochondria-independent energy supply. As soon as mitochondria
are perturbed, respiratory capacity is lost and glycolysis is used as a
compensatory mechanism for energy supply. This compensatory
mechanism is less efficient in Wnt-low tumors that start with a
higher baseline level of glycolysis than Wnt-high tumors. A similar
principle could serve as an explanation for increased mitochondrial
vulnerability of Wnt-low cancer cells upon APC truncation. Wnt
hyperactivation in glycolysis-performing Wnt-low cells induced a
further shift away from mitochondrial respiration toward alternative
pathways as indicated by our oxygen consumption measurements.
This then leads to an even higher vulnerability toward mitochon-
drial perturbation due to lack of non-mitochondrial compensatory
potential (Fig 7). A similar induction of mitochondrial vulnerability
has been previously observed when introducing KRAS mutations
into colorectal cancer cell lines of both Wnt-low and Wnt-high
groups (Martin et al, 2017), indicating that Wnt signaling is not the
only pathway important for directing metabolic rewiring in cancer.
Indeed, both APC loss and KRAS mutation were shown to induce
metabolic changes and accentuate glycolysis in the mouse intestine
(Najumudeen et al, 2021).

It has been reported that Wnt signaling in Wnt-high tumors
induces Warburg effect by transcriptional activation of genes such
as MCT1 and PDKI, which are important regulators of glycolysis
and pyruvate metabolism (Pate et al, 2014). The data underlying
this conclusion stem from experiments conducted in Wnt-dependent
colorectal cancer cell lines under different levels of Wnt activation.
When we compared the expression level of MCTI and PDKI in our
tumor groups, we found that both genes and proteins were higher
or equally expressed in Wnt-low compared with Wnt-high tumors
(Appendix Fig S5). Moreover, the expression levels were also
higher in normal colon tissue compared with Wnt-high tumor tis-
sue. This does not contradict the previous findings, as the modula-
tion of Wnt signaling in Wnt-high colorectal cancer cell lines does
not necessarily reflect the effects of pathway activation during

© 2022 The Authors

85UB017 SUOLILLIOD) SISO 3|l jdde 8Ly Aq peusenob ake 9. VO ‘8sn J0 $9|NI J0) ARIq1T 8UIIUQ AB]1M UO (SUOTIPUOI-PUE-SWLBIALID™A8 | 1M Ake.q 1 uljuo//SAny) SUoNIpUOD pue swis | 81 8es *[£20z/70/cT] Uo Akeiqiauliuo 48| 1IN Aloteoge ] ABojoig fensjo N ueadons Aq ¥/80TTZ0 GSW/2SZST 0T/10p/Bio'ssaidoguie mma/sciy Woiy pspeojumod ‘g ‘220z ‘26eyi.T


https://Biorender.com

Katharina Imkeller et al

tumorigenesis. In fact, these data further highlight the importance of
taking into account context-dependent effects of Wnt signaling in
different cell types with different metabolic equilibria.

In our study, we describe the metabolic and functional differ-
ences between Wnt-low and Wnt-high tumors. Depending on the
cellular context and the endogenous levels of Wnt-signaling in the
initial tumor cell of origin, the sequence of oncogenic driver events
leading to tumor formation may differ. In line with the idea of the
serrated and the classical adenoma-carcinoma pathway as different
routes of tumorigenesis, our findings reflect that Wnt-high and Wnt-
low tumors originate through independent mechanisms of tumorige-
nesis that pass through distinct scenarios of metabolic rewiring.
This is indicated also by key driver mutations (APC, BRAF, and
RNF43) and other characteristics (DNA mismatch repair proficiency,
localization in the colon). Accumulation of several driver mutations
that affect components outside the Wnt pathway may actually be
necessary to drive Wnt-independent colorectal cancer development
(Han et al, 2020). Importantly, our experiments on APCYT and
APC'"™" HCT116 and RKO cell lines indicate that Wnt-low tumors
are unlikely to acquire Wnt hyperactivation, because this would
drive them into an unfavorable metabolic state. Our data challenge
previously formulated hypotheses about mechanisms of tumor eva-
sion, which were built on correlating oncogenic Wnt signaling levels
and immune infiltration (Luke et al, 2016). According to our data, if
Wnt hyperactivation was a mechanism of secondary immune eva-
sion, it would also involve substantial fitness penalties for the tumor
cells. In the same lines, our study highlights that results obtained by
manipulating Wnt signaling levels in cells need to be carefully eval-
uated when extrapolating them to general principles. The effects of
Wnt hyperactivation in a cancer cell line that is in its essence Wnt-
low are different from the effects of Wnt hyperactivation during
tumorigenesis leading to Wnt-high tumors.

The exact mechanisms behind Wnt-high as well as Wnt-low
induction of the metabolic switch will need further explorations.
Previous studies have shown that the modality of Ras pathway acti-
vation may play a role in regulating glycolytic flux levels (Tanner
et al, 2018). Depending on whether Ras activation is achieved by
KRAS or BRAF mutation, and likely also dependent on the cellular
context, the downstream effects of signaling may lead to different
metabolic phenotypes. A recent study indicates that BRAF mutant
tumors, which are enriched in our Wnt-low tumor group, elicit
lower levels of mitochondrial respiration than KRAS mutant or wild-
type tumors (Rebane-Klemm et al, 2020). This, however, does not
indicate whether the metabolic shift is a direct cause of BRAF
mutation-mediated Ras pathway activation. Along the same lines, a
previous study has used quantitative assessment of pathway activa-
tion to demonstrate fundamental cell-to-cell heterogeneity in the
modulation of Ras pathway activity after KRAS or BRAF mutation
(Brandt et al, 2019).

Finally, a possible explanation of why Wnt-low and Wnt-high
tumors reach different metabolic equilibria that do or do not tolerate
Wnt hyperactivation could be that the cells of origin of the two
tumor types are different. This cell-of-origin hypothesis is also con-
sistent with the fact that Wnt-low tumors accumulate in the proxi-
mal colon where tissue composition and development may be
different than in distal colon (Wang et al, 2020; Fawkner-Corbett
et al, 2021). Indeed, the expression of genes involved in metabolism
and mitochondrial function is subject to variation along the crypt-
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top axis of intestinal tissue (Yang et al, 2016; Moor et al, 2018). It
has been reported that the activation of Wnt signaling leads to rapid
tumor development in intestinal stem cells, but not in more differen-
tiated cells (Barker et al, 2009; Fessler & Medema, 2016). Differ-
ences in metabolic profile, including OXPHOS and glycolysis levels,
may even identify tumors and single cells with high tumor initiation
and cycling capacity (Zowada et al, 2021).

Our findings do not only expand our understanding of quantita-
tive modulation of Wnt signaling during tumorigenesis, but they
also showcase how large-scale genetic perturbation data from
genome-engineered model systems can be integrated with multi-
omic data to investigate tumor heterogeneity. In this study, the
detection of context-dependent effects of Wnt signaling on cellular
phenotype and function heavily relies on integrative analysis of
multiple layers of molecular data, highlighting the importance of
future studies addressing tumor heterogeneity at single-cell level
from a multi-omic point of view.

Materials and Methods

Datasets for multi-omic tumor profiling

The study of TCGA-COAD and TCGA-READ patient cohorts pub-
lished by Guinney et al includes > 500 tumor samples for which
transcriptome profiling data are available. The study by Vasaikar
et al (2019) (CPTAC-COAD) includes transcriptome and proteome
profiling data, but only covers ~80 tumor samples. In our analysis,
we thus combine the data from both studies.

Processing of TCGA data

Clinical data and metadata concerning the experimental protocol
and sequencing were accessed using the Bioconductor packages
TCGAbiolinks (Colaprico et al, 2016) and GenomicDataCommons
(preprint: Morgan & Davis, 2017). All available clinical and RNA
sequencing quantification data from the TCGA-COAD and the
TCGA-READ projects were downloaded. We used the mutation data
generated from the mutest pipeline.

The downloaded RNA sequencing quantification files were
assembled into one data object using the DESeqDataSetFromHTSeq-
Count function implemented in DESeq2 (Love et al, 2014). Genes
with a total read count sum lower than 10 were excluded and the
library size scaled counts were exported and saved for utilization in
downstream analyses. To avoid batch effects in the comparison with
transcriptomics data, we only used transcript quantification for sam-
ples where the sequencing was carried out at a read length of 48
base pairs (samples with 76 base pairs were excluded).

The previously generated table containing normalized sequenc-
ing counts was used as a basis for CMS classification using the origi-
nal random forest classification algorithm implemented in
CMSclassifier (Guinney et al, 2015) and default parameter settings.
We only included primary tumor samples in the classification and
removed normal tissue samples. In accordance with the input
requirements for CMSclassifier, the normalized read counts were
transformed to log2 after the addition of a pseudocount.

Wnt-high and Wnt-low groups were derived from k-means clus-
tering on RNA expression of CTNNBI1 target genes using the
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ComplexHeatmap package (Gu et al, 2016). Differential gene
expression between the two groups and normal tumor tissue was
performed using DESeq2 (Love et al, 2014) based on raw sequenc-
ing counts.

Processing of transcriptomic and proteomic data from 2019
cohort (Vasaikar et al, 2019; CPTAC-COAD)

We downloaded the RNA sequencing data (RNAseq data RSEM
upper-quartile normalized, Unit: Expression (RSEM-UQ, Log2
(Val +1))) as well as the proteomics data (Proteome data for
tumor-normal samples log-ratio normalized, Unit: Expression (TMT,
Log2ratio)) from http://linkedomics.org/cptac-colon/, which is the
link indicated in the original publication (Vasaikar et al, 2018,
2019). The metadata table and CMS assignment were downloaded
from the supplementary material of the original publication.

Samples from the CPTAC-COAD cohort were classified into Wnt-
low and Wnt-high groups based on their AXIN2 expression level.
Linear models were used to estimate differential gene expression
and differential protein abundance between the Wnt-low and Wnt-
high groups. The proteomics data correspond to tumor versus nor-
mal tissue protein abundance data (logarithmic scaling). Mean rela-
tive expression levels for every gene are used in Fig 6H.

Processing of DepMap data

Gene expression, mutation, proteomics, and gene dependency data
from the cancer Dependency Map (DepMap version 19Q3; Meyers
et al, 2017; Ghandi et al, 2019) was accessed using the depmap Bio-
conductor package (Gatto, 2020). The gene expression data corre-
spond to the CCLE project RNAseq transcripts per million (TPM) for
protein coding genes only (scaled as log2(TMP + 1)). Mutation data
correspond to merged mutation calls (coding region and germline
filtered) from the CCLE project. Proteomics data correspond to nor-
malized protein abundance from quantitative proteome profiling by
mass spectrometry (Nusinow et al, 2020). The gene dependency
data correspond to the batch corrected CERES inferred gene effects
that were derived from whole-genome CRISPR-Cas9 knockout via-
bility screens.

Wnt-high and -low groups identified by clustering of TCGA 2015
samples correlated well with the expression of AXIN2, this is why
we were able to use AXINZ expression to identify Wnt-high and
Wnt-low cell lines in the DepMap data. Linear models were used to
estimate differential gene expression, differential protein abundance
and differential gene dependence between the Wnt-low and Wnt-
high groups (Smyth, 2011).

Gene identifier conversion

The conversion of gene identifiers between ENSEMBL ids, ENTREZ ids
and gene symbols was performed using the bitr function of the Biocon-
ductor package clusterProfiler (Yu et al, 2012). Nonunique mapping
genes or genes without mapping were excluded from the analysis.

Gene set enrichment analysis

Gene set enrichment analysis was performed using gene lists
ordered according to the statistic provided by either DESeq2 or
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linear model. For Fig 2, gene set enrichment analysis was performed
for the MSigDB hallmark gene set HALLMARK_WNT_BETA_CATE-
NIN_SIGNALING (Subramanian et al, 2005; Liberzon et al, 2015).
For Figs 3, 4, and 6, gene set enrichment analysis was performed
for (i) Reactome pathway annotation (using the gsePathway() func-
tion of ReactomePA package; Yu & He, 2016) and (ii) MSigDB hall-
mark gene sets and GO term gene sets of the “Cellular component”
ontology (using msigdb package for gene set annotation and GSEA()
function from ClusterProfiler package (Yu et al, 2012) for testing).
The packages implement multiple-testing correction using the Ben-
jamini-Hochberg method. Adjusted P-value cutoffs (typically 0.05)
are indicated in the figure legends.

R package versions

R version 4.1.3, enrichplot_1.14.2, data.table_1.14.2, circlize_0.4.14,
ComplexHeatmap_2.10.0, gscreend_1.1.0, GenomicDataCom-
mons_1.18.0, magrittr_2.0.2, TCGAbiolinks_2.22.4, limma_3.50.1,
DESeq2_1.34.0, SummarizedExperiment_1.24.0, MatrixGenerics_
1.6.0, matrixStats_0.61.0, GenomicRanges_1.46.1, GenomelnfoDb_
1.30.1, ReactomePA_1.38.0, msigdbr_7.4.1, ggrepel 0.9.1, org.
Hs.eg.db_3.14.0, AnnotationDbi_1.56.2, IRanges_2.28.0, S4Vectors_
0.32.3, Biobase_2.54.0, BiocGenerics_0.40.0, clusterProfiler_4.2.2,
depmap_1.8.0, cowplot_1.1.1, pheatmap_1.0.12, ggplotify 0.1.0,
patchwork_1.1.1, forcats_0.5.1, stringr_1.4.0, dplyr_1.0.8, purrr_
0.3.4, readr_2.1.2, tidyr_1.2.0, tibble_3.1.6, ggplot2_3.3.5, tidy-
verse_1.3.1.

Cell lines and culture

HCT116 cells were cultured in McCoy’s medium (Life Technolo-
gies). RKO cells were cultured in DMEM medium (Life Technolo-
gies). All media were supplemented with 10% fetal calf serum
(PAA). Cell lines were obtained from ATCC and authentication of
genotypes was performed by SNP profiling (Multiplexion, Heidel-
berg). The absence of mycoplasma infection was confirmed by regu-
lar testing.

Generation and validation of RKO and HCT116 cell lines with
truncated APC

The generation of RKO and HCT116 cell lines with truncated APC is
the same approach as described in Zhan et al (2019). Cell line RKO
APC""#5 corresponds to the RKO APC truncated cell line clone #5
described in Zhan et al (2019).

The sgRNA targeting the APC gene was designed using the E-
CRISP sgRNA design tool (Heigwer et al, 2014). The sequenco of
the designed sgRNA was: sgAPC 5-TCTGCTGGATTTGGTTC
TAGGG - 3’ (bold letters indicate PAM sequence). Pairs of oligonu-
cleotides encoding the sgRNA were synthesized by Eurofins Inc.
Oligonucleotides were phosphorylated, annealed, and cloned into a
Bbs1 digested px459 plasmid (#62988, Addgene) using Quick Ligase
(NEB). To generate an APC truncation, RKO and HCT116 cells were
transiently transfected with 2 pg of px459 with sgAPC. After 48 h,
cells were selected with 1 pug/ml of puromycin for 48-72 h. Single
clones were generated by serial dilutions in 96-well plates. After
10-15 days, colonies derived from single clones were expanded for
further analyses. Targeted deep sequencing of PCR amplified APC
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genomic locus was performed to assess indel formation introduced
by the sgRNA. Genomic DNA of APC mutant single-cell clones was
isolated using DNeasy Blood and Tissue Kit (Qiagen). Primer pairs
were designed 100-150 bp up and downstream of the sgRNA target-
ing site and adapters were added during the second step of
the nested PCR. The PCR primers for the first PCR step were
5’-TCCCTACACGACGctcttecgatct TCAGACGACACAGGAAGC-3'  and
5’-AGTTCAGACGTGTGctcttccgatct ACATAGTGTTCAGGTGGACT-3'.
The resulting PCR products were purified with the PCR Clean-up Kit
(Machery-Nagel) and amplified with a second PCR step to introduce
unique indexes. The second PCR was purified using Agencourt
Ampure XP Beads (Beckman Coulter), and samples were sequenced
on a MiSeq (Illumina) by the Genomics and Proteomics Core Facility
of the DKFZ. The multiple sequence alignment tool ClustalOmega
(Sievers et al, 2011) was used to analyze indel formation. The two
single-cell clones used in this study were selected based on success-
ful APC truncation and Wnt/TCF4-reporter activity.

TCF4/Wnt-reporter assay

The luciferase-based dual Wnt reporter assay was performed as
described previously (Demir et al, 2013). In brief, cells were seeded
in a white, flat-bottom 384- or 96-well plates. Twenty-four hours
later, cells were transfected with a plasmid encoding tha firefly luci-
ferase under control of a promoter composed by repeats of the
TCF4-binding sites and with a control plasmid encoding renilla luci-
ferase under control of a CMV promoter. Dual-luciferase readout
was performed 48 h after transfection using Mitras LB940 plate
reader (Berthold Technologies). The firefly luciferase signal was
normalized to the renilla luciferase signal. For RKO three-
independent experiments were performed in total. For HCT116 four-
independent experiments confirmed these results.

Microarray analysis

We performed microarray-based gene expression analysis on RKO
wild-type and the isogenic APC"™"° clone (RKO APC"™""#5) to iden-
tify genes that are differentially expressed between the two cell
lines. Two independent replicates for both RKO APCYT and RKO
APC"™ "¢ were performed. RNA from cell pellets was extracted using
the Quiagen RNeasy kit and RNA quality assessed using the Bioana-
lyzer Eukaryote Total RNA Pico assay. For microarray measure-
ment, Affy Human U133Plus 2.0 chip was used in combination with
the iScan array scanner. Data analysis was performed according to
the Bioconductor workflow vignette for Affymetrix microarrays
(Klaus & Reisenauer, 2016).

CRISPR screening

The 90 k Toronto human Knockout pooled library (TKO) was a gift
from Dr. Jason Moffat (1000000069, Addgene; Hart et al, 2015).
The plasmid library was amplified using ElectroMAXTM Stbl4TM
cells (Invitrogen) and transfected into HEK293T cells (ATCC) with
TransIT-LT1 (Mirus Bio) transfection reagent along with psPAX2
(12260, Addgene) and pMD2.G (12259, Addgene) packaging plas-
mids for production of lentivirus.

HCT116, RKO, HCT116 APC"™"#2 and RKO APC™"#5 cells
stably expressing Cas9 (73310, Addgene) were transduced with the
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previously generated virus in the presence of 8 pug/ml polybrene
(Merck Millipore). The multiplicity of infection (MOI) was equal to
0.3 and each gRNA was present in 500 cells on average. The day
after, puromycin-containing medium was added and the cells cul-
tures for 48 h in this selection medium. The cells were then grown
in medium without puromycin for 12 doubling times and split every
3 days at a coverage of 500x (each gRNA was present in 500 cells
on average). The time needed for each cell line to accomplish 12
doublings was calculated based on doubling times previously esti-
mated from counting cells over a defined period of time. After 12
doubling times, time point T1 was collected by collecting and pellet-
ting the cell pool. Genomic DNA from collected cells was extracted
using QIAamp DNA Blood Maxi kit (Qiagen).

To amplify and quantify the gRNA sequences in the plasmid
library and at time point T1, many PCRs were performed, each
using 1 pg of genomic or plasmid library DNA, Q5 Hot Start HF
polymerase (NEB), and primers harboring the Illumina TruSeq
adapter sequences. The number of PCRs for each sample was such
that each gRNA in the library pool was represented on average 250
times in the total amount of DNA used for PCRs. PCR products were
purified using DNA Clean and Concentrator TM-100 (Zymo
Research) and MagSi-NGSprep Plus beads (Steinbrenner). DNA con-
centrations of the purified PCR products were measured using Qubit
HS DNA Assay (Thermo Fisher). The amplicon size in the PCR prod-
ucts was verified using DNA High Sensitivity Assay on a BioAna-
lyzer 2100 (Agilent). Finally, the libraries were sequenced on a
NextSeq (Illumina) sequencer with a 75 bp single-end protocol and
addition of 25% PhiX control v3 (Illumina).

Statistical analysis

gRNAs were counted from the raw sequencing files using the count
function with automatic sequence trimming provided by MAGeCK
(Li et al, 2014). The gRNA abundances were quantified in the plas-
mid library and in the four cell pools at time point T1.

Differential gene essentiality was calculated using the gscreend
package (Imkeller et al, 2020) and comparing normalized gRNA
abundances at time point T1 in the APCVT cell pool (cr1,wT) versus
APC"™" cell pool (c;.apc). Values indicated as differential gene
essentiality correspond to log2(cr; apc/cri,wr). Logarithmic fold
changes at gRNA level were calculated individually for every cell
line as log2(cri/Cpiasmia), Where cr; denotes the normalized gRNA
count at T1 and Cpiasmiq the normalized gRNA count in the plasmid
library (normalized counts correspond to counts scaled to the total
number of gRNA counts in the sequencing library).

Competitive cell growth assay with LARS2 knockout

gRNAs used for validation experiments around LARS2 knockout
were selected from the set of LARS2 targeting guide RNAs present in
the TKO library. The sequence of the two selected gRNAs was (bold
letters indicate PAM sequence):

LARS2_1: 5'- CGTTGGCAGACCTTCCAGAA -3°.

LARS2_2: 5'- CCCTATCCCAGCTGAAACAC -3'.

For fluorescent labeling of control knockout cells, we used a len-
tiviral vector (lentiCRISPRv2) encoding eGFP and an sgRNA targeting
AAVS1 (pLenti_HDIlib_sgRNANOonChip_Puromut_eGFP_AAVS1).
For fluorescent labeling of LARS2 knockout cells we used two
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lentiviral vectors encoding mScarlet and each one of the above
described sgRNA targeting LARS2 (pLenti_HCLib_NoC_mScar-
let_LARS2_1 and pLenti_HCLib_NoC_mScarlet_ LARS2_2).

The isolated lentiviral plasmids pLenti_HCLib_NoC_mScarlet_
LARS2_1, pLenti_HCLib_NoC_mScarlet_LARS2_2 and pLenti_
HDIib_sgRNANOonChip_Puromut_eGFP_AAVS1 were transfected
into HEK293T cells (ATCC) with TransIT-LT1 (Mirus Bio) transfec-
tion reagent along with psPAX2 (12260, Addgene) and pMD2.G
(12259, Addgene) packaging plasmids to produce lentivirus.
HCT116 and RKO cells (WT and APC truncated) were transduced
with the viruses. Puromycin was added after 24-h incubation to
select for transduced cells. The next day, the cell lines were pooled
in the following manner: HCT116-WT with stable knockout in
LARS2 and expression of mScarlet were mixed 1:1 with HCT116-
WT, in which AAVSI was targeted and eGFP expressed. The same
pooling was performed for HCT116-APC and both RKO lines.

The cell pools were grown for 2 weeks and the amount of eGFP
and mScarlet expressing cells in each pool was quantified using
FACS analysis at different time points (after 0, 3, 5, 7, 10, 12 and
15 days after pooling). FACS analysis was made with LSR Fortessa
(BD Biosciences) and FlowJo v10.1 software.

Measurement of basal respiration

For the respiration measurements, knockout of LARS2 was per-
formed using lentiviral vectors encoding each of the above-
described LARS2 targeting gRNAs (plcKO_Wu_LARS2_1 and
plcKO_Wu_LARS2_2). Generation of lentivirus and transduction of
cell lines was performed as described above. The basal respiration
rate was measured 5-7 days after transduction using Agilent Sea-
horse Instrument in combination with different drug treatment. A
day prior to the analysis, untreated HCT116 and RKO cells as well
as cells transduced with either LARS2 or AAVSI targeting sgRNAs
were seeded in provided 96-well plates. In the experiments involv-
ing Wnt3a treatment, 100 ng/ml recombinant Wnt3a was added to
the cell culture medium 24 h prior to Seahorse measurement. The
cell number was adjusted to 20,000 cells per well. Furthermore, Sea-
horse XF Calibrant was left for incubation at 37°C overnight without
CO, supply and the Agilent Seahorse XFe96 Sensor Cartridge was
hydrated as described in the protocol.

On the day of analysis, the sensor cartridge was transferred in
pre-warmed XF Calibrant. In addition, seeded cells were washed
two times with preprepared Seahorse XF DMEM Medium containing
1 mM pyruvate, 2 mM L-glutamine and 10 mM glucose. The plate
was then incubated at 37°C without CO, for 1 h prior to the analy-
sis. The analysis was performed by Seahorse Wave Desktop Soft-
ware (Agilent). The oxygen consumption measurements used in this
study are three measurements A before the addition of any drug
(basal respiration + non-mitochondrial oxygen consumption) and
three measurements B after the addition of 1 uM Rotenone and
1 uM Antimycin A (non-mitochondrial oxygen consumption). The
basal respiration rate was calculated as the difference between the
mean of measurements A minus the mean of measurements B. To
quantify protein content, the cells were finally lysed with 25 pl RIPA
lysis buffer containing appropriate amounts of protease inhibitor.
BCA assay Pierce™ BCA Protein Assay Kit was used to determine
protein content, which was subsequently used to normalize the oxy-
gen consumption data of the Mito Stress Test.
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Data availability

Raw gRNA counts of the CRISPR screen performed in the context of
this study can be downloaded from https://github.com/boutroslab/
Supp_Imkeller_2021/blob/main/external_data/CRISPR_screen_gRNA_
counts.csv.gz. All other public datasets used in the study can be
accessed as described in the Materials and Methods section and in
the corresponding rmarkdown files. All unique biological materials
are available from the authors upon request. The code used for anal-
ysis and visualization is deposited at github.com/boutroslab/Supp_
Imkeller_2021. The README file indicated which script is used for
which analysis step.

Expanded View for this article is available online.
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