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Microarrays have become a routine tool for biomedical research. Data quality assessment is an essential
part of the analysis, but it is still not easy to perform objectively or in an automated manner, and as a result
it is often neglected. Here, we compared two strategies of array-level quality control using five publicly
available microarray experiments: outlier removal and array weights. We also compared them against no
outlier removal and random array removal. We find that removing outlier arrays can improve the signal-to-
noise ratio and thus strengthen the power of detecting differentially expressed genes. Using array weights
is similarly effective, but its applicability is more limited. The quality metrics presented here are
implemented in the Bioconductor package arrayQualityMetrics.
ll rights reserved.
© 2010 Elsevier Inc. All rights reserved.
Introduction

Microarrays are widely used for applications such as molecular
profiling [1], identification of new drug targets [2], discovery of
biomarkers [3] or genome annotation [4]. The two major analysis
approaches for microarray data are testing for differentially expressed
genes between two or more conditions, and examining gene sets
enriched in regulated genes. Numerous statistical methods are
available for these tasks (e. g. [5–7]), and methods for controling
type I errors–for example, false discovery rates–are well established.
However there has been less attention on type II errors: how many
discoveries are missed? In particular, the importance of data quality
assessment and control for getting good sensitivity is sometimes
underappreciated.

The term quality is not easily defined; in the context of microarray
data, we use it to describe two potentially independent concepts: (i)
the suitability of the data to answer the experimenter's original
question and (ii) the usefulness of the data for subsequent, integrative
analyses. Great efforts have been made to provide tools to the
community [8–10] to assess the quality of a microarray experiment
and in particular, to identify outlier samples [11,12]. We recently
presented a software to calculate a comprehensive set of widely used
metrics that assesses data quality and helps identify apparent outlier
arrays [13]. We anticipate multiple use cases for this software: an
experimentalist can use it to assess and improve the experimental
protocols, choose a platform or decide when to repeat certain parts of
the experiment; a bioinformatician or statistical collaborator can use
it to decide whether and how to proceed with an analysis; a
microarray core facility can use it to decide whether their product is
fit for delivery to the customer. It may also be useful to integrative
biologists analysing public data, in helping them choose which
experiments and which arrays of an experiment to consider.

Quality problems can stem from many different sources [14]. For
instance, the hybridisation step can introduce uneven fluorescence on
the chip [15], whereas differences in RNA quality can cause variable
intensity distributions [16]. Quality problems can affect the data at
different levels. For example, inappropriate experimental design may
affect the dataset as a whole; poor probe design or probe mis-
annotation will affect all data from a particular probe; sample
mislabeling or inappropriate sample treatment may result in
individual outlier arrays. Often, diagnostic tools can help track down
these effects in the data.

Quality assessment can be performed before or after data
preprocessing to answer different questions. Before normalisation, it
helps the user choose the most appropriate preprocessing steps in
order to correct the most dominant effects. It can also serve to assess
alternative experimental protocols. After preprocessing, quality
assessment can help determine the effectiveness of the chosen
preprocessing steps andmore importantly the suitability and usability
of the data for the biological analysis.

Here, we focus on quality metrics aimed at identifying outlier
arrays. They can be divided into two categories: relative and absolute.
Relative quality metrics compare each array's intensities against those
of other arrays within the dataset. Absolute quality metrics make use
of internal controls, spike-in, or variability among replicate probes
and are in principle independent of the behaviour of other arrays.

In this paper, we review approaches to handling outlier arrays. We
analysed five publicly available datasets using the sameworkflow. The
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Table 2
Results fromdifferential gene expression analysis on: all arrays, after removing outlier arrays,
and using array weights (see Outlier detection for details). The second column lists the
identified outlier arrays as numbered in the quality assessment reports provided in
Supplementary material, as well as, in brackets, their weights. For comparison, the third
column gives the range of the weights for each dataset. The last three columns give the
number of differentially expressed genes identified by each method.

ArrayExpress
ID

Outlier arrays
(weight)

Weights
range

All
arrays

Number
of genes

Weights

Outlier(s)
removed

E-GEOD-3419 6 (0.5), 12 (0.3) 0.3–1.8 11 41 16
E-GEOD-7258 7 (0.1), 15( 0.3),

16 (0.2)
0.1–3.3 6 547 33

E-GEOD-10211 2 (0.1), 7 (0.4) 0.1–2.1 93 396 356
E-MEXP-774 4 (0.1), 17 (0.2) 0.1–2.2 1125 1694 1587
E-MEXP-170 6 (0.01) 0.01–4.9 262 4221 3268
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results demonstrate that carefully controlling the quality of a dataset
and removing or weighting outlier arrays improves the sensitivity–as
measured by the statistical power to detect differential expression at a
given level of type I error–and the biological sensitivity of the analysis.

Example datasets

We generated reports from the arrayQualityMetrics package on
five datasets from the ArrayExpress database [17]. These datasets met
two criteria: (i) a simple experimental design, with only two groups of
samples and (ii) the array platform used was Affymetrix GeneChip.
Table 1 lists these datasets.

Analysis

We compared four strategies of data analysis (details of Strategies
2 and 4 are explained in Section 4):

Strategy 1 No outlier removal
Strategy 2 Outlier removal guided by arrayQualityMetrics
Strategy 3 Removing random arrays (same number of arrays as in
Strategy 2)
Strategy 4 Array weights using the function arrayWeights [23]
from the limma Bioconductor package

For each of these strategies, the analysis pipeline was the
following: (i) the datasets were imported into Bioconductor using
the package ArrayExpress [24], (ii) the function rma (robust multi-
array average) from the package affy [25] was used for background
correction, quantile normalisation and probeset summarization and
(iii) differentially expressed genes were identified using the moder-
ated t-test from the limma package [5]. P-values were adjusted for
multiple testing with the Benjamini and Hochberg method for control
of the false discovery rate, and genes were called significant when the
adjusted P-value was b0.01. Additionally, for two of the five datasets,
in Strategies 1 and 2, we perform a KEGG pathway enrichment
analysis for two datasets using the function gseattperm from the
package GSEABase [26].

The full quality reports for each dataset before and after normal-
isation and the R code of the analysis of the first dataset are provided
in the Supplementary Material.

Outlier detection

Three visualisations are particularly helpful for assessing whether
an array differs substantially from other arrays in the same dataset.
These are the MA-plot, the boxplot of the log-ratios and the heatmap
plot of the distance between arrays, which are included in the ar-
rayQualityMetrics reports. In order to formalise and automate the
detection of unusual arrays–i. e., arrays that are highly different from
Table 1
The five datasets used in this review were obtained from the ArrayExpress database ae.
The array platform used was Affymetrix GeneChip, the experiments encompass two
species, different cell types and a range of array types.

ArrayExpress
ID

Ref Organism # Chips Study

E-GEOD-3419 [18] H. sapiens 16 Hair follicle bulge cells
enrichment in stem cells

E-GEOD-7258 [19] M. musculus 17 Urethane treatment in
bronchoalveolar lavage cells

E-GEOD-10211 [20] M. musculus 10 Epithelial cell response to
sendai virus infection

E-MEXP-774 [21] M. musculus 30 Dexamethasone treatment
of preadipocytes

E-MEXP-170 [22] H. sapiens 8 Sulforaphane treatment
of colon cells
the others–arrayQualityMetrics computes these summary metrics for
each array: the absolute value of M (log-ratio) to represent its MA-
plot, the mean and interquartile range (IQR) of M to represent its
boxplot, the mean of the L1-distances (mean absolute difference ofM)
to all other arrays to represent its position in the heatmap plot. Outlier
arrays, with respect to these metrics, are then identified by an outlier
detection algorithm borrowed from R's boxplot function. We classify
an array as an outlier if it is detected as such for two or more of the
metrics above. This is “Strategy 2” in Analysis.

The array weighting strategy implemented in limma–“Strategy 4” in
Analysis–is based on the empirical reproducibility of the gene expression
measures from replicate arrays. A heteroscedastic linear model is fit to
expression values, resulting in array level weights arrayweights.

The results of the outlier detection method are shown in Table 2.
Briefly, we identified one outlier for E-MEXP-170, two for E-MEXP-774,
E-GEOD-3419 and E-GEOD-10211, and three for E-GEOD-7258. The
outlier arrays are indicated in the second columnwith the identification
number given in the quality assessment report. The arrays detected as
outliers are also the ones getting the lowest weights using the limma
method as shown in the second and third columns of Table 2.

Differential expression results

The differential gene expression analysis showed that two of the
methods–arrayWeights from limma and outlier detection from ar-
rayQualityMetrics–resulted in a significant increase in the number of
differentially expressed genes for the type I error. The results are
summarized in Table 2 and Fig. 1. The effect was moderate in the case
of E-GEOD-3419 and strong for E-GEOD-10211. E-MEXP-170 caught
our attention as it is unlikely for over 4000 genes to be differentially
expressed between the two biological conditions. After further
inspection, we discovered that there is a confounding effect of
treatment or experiment date, which would need to be discounted in
order to make any biologically relevant interpretation of the data,
both with or without outlier removal.

For datasets E-GEOD-10211 and E-MEXP-774, the outlier removal
and weighting strategies output similar numbers of differentially
expressed genes. The numbers are more different for the other three
experiments; however with the exception of experiment E-GEOD-
3419 the outlier removal strategy identifies almost all genes detected
using the weighting method (Fig. 2).

Comparison against random array removal

We compared the outlier removal and array weighting strategies
with the arbitrary removal of arrays. We performed the differential
expression analysis on datasets where the same number of arrays was
removed randomly. The results are presented in Fig. 3. Comparedwith
using all arrays, removal of random arrays leads to a loss of power and



Fig. 1. Number of differentially expressed genes identified on the whole dataset (white
bars), after removing outliers identified by arrayQualityMetrics (black bars) and using
weights obtained by arrayWeights from limma (grey bars).
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hence fewer genes are detected. In contrast, outlier removal and array
weighting increased the numbers of differentially expressed genes.

Geneset enrichment analysis

Although the above strategies allowed us to identify more
differentially expressed genes, these additional genes may not
Fig. 2. Venn diagrams representing the number of differentially expressed genes identified by
3419, (b) E-GEOD-7258, (c) E-GEOD-10211, (d) E-MEXP-774, (e) E-MEXP-170.
necessarily be biologically relevant. To check whether removing
outliers results in better biological sensitivity, we performed an
analysis of the enrichment of KEGG pathways for the two example
datasets E-GEOD-3419 and E-GEOD-7258. For each experiment, five
of the most highly enriched pathways are listed in Table 3. In both
datasets, these pathways are relevant to the biological situation
studied. Their enrichment p-values are smaller after removing outlier
arrays, confirming that it improved the biological relevance of the
analysis.

Other approaches for outlier detection

Finally, we compared our outlier-detection approach with three
other methods: (i) generalized extreme studentized deviate (GESD)
[27], (ii) the method of Hampel in which the sample median is used
for location estimation, and the median absolute deviation is used for
scale [28] and (iii) Rousseeuw's rule, with themidpoint of the shortest
half sample used as location estimator, and the length of this shortest
half sample used as scale estimator [29].

For four out of the five datasets, we obtain similar results to the
GSEDmethod. GSED detected an additional outlier in dataset E-GEOD-
3419, which was significant in only one of the metrics we use. The
methods of Hampel and Rousseeuw gave the same outliers in 3 of 5
cases, whereas in two cases (E-GEOD-3419, E-GEOD-10211) only one
sample was detected as an outlier instead of two (see Table 4).

Discussion

Correct use of microarray analysis can lead to good adjusted p-
values, clustering, geneset enrichment results; however, many
important genes can be missed if poor quality arrays are included in
the dataset. Although using array weights might, in theory, be more
eachmethod: all arrays, after removing outlier arrays, using array weights. (a) E-GEOD-



Fig. 3. Boxplots representing the number of genes called differentially expressed in each experiment when removing arbitrary subsets of size K, the number of outlier arrays
identified by arrayQualityMetrics , from the N samples. When N over K (N!/(K!(N-K)!)) was less than 1000, all possible subsets were considered, otherwise 1000 subsets were
sampled randomly.
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efficient than simply removing outliers, we showed here–at least for
the datasets tested–that both methods perform equally well, and
provided an improvement compared to keeping all samples. The same
arrays spotted as outliers by arrayQualityMetrics were the ones
getting low weights with arrayWeights.

An outlier array can be interpreted as being of low quality, and this
is the reason why its presence would add noise and impair the
statistical and biological significance of the analysis. However, an
array can be detected as an outlier because of a real biological
property of the sample or an intentional protocol peculiarity. This
makes it difficult (and, in general, not advisable) to automate the
Table 3
KEGG pathway enrichment analysis. Five of the most enriched pathways according to
gene set enrichment analysis are listed for experiments E-GEOD-3419 and E-GEOD-
7258, with and without outlier removal. The pathways are related to the biology
studied in the experiments, and their enrichment is more significant after outlier
removal.

Pathway name Genes p-value when
removing
outliers

p-value
when all
arrays

E-GEOD-3419
Pyrimidine metabolism 37 b10−3 0.701
Base excision repair 17 0.001 0.542
DNA replication 19 0.003 0.451
Cell cycle 69 0.009 0.387
TGF-beta signaling pathway 48 0.009 0.558

E-GEOD-7258
Pentose phosphate pathway 13 0.003 0.588
Fructose and mannose metabolism 28 0.003 0.326
Biosynthesis of steroids 20 0.003 0.012
Oxidative phosphorylation 44 0.003 0.299
Starch and sucrose metabolism 16 0.003 0.317
removal of outliers, as depending on the context, some “outliers”
might be of great interest for the analysis. The comprehensive report
offered by arrayQualityMetrics–thanks to the visualizations it pro-
vides–will help the user understand why a particular array is
identified as an outlier. We recommend manual inspection to decide
whether or not an array should then be removed. Such inspection can
also provide useful feedback to improve experimental protocols.
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.ygeno.2010.01.003.
Table 4
Comparison of four outlier detection methods. The one currently implemented in
arrayQualityMetrics, based on the boxplot, the generalized extreme studentized
deviate (GESD), the method of Hampel using the median absolute deviation and the
one from Rousseeuw using the shorth. The results overlap mostly.

ArrayExpress
ID

arrayQuality
Metrics

GESD Hampel Rousseeuw

E-GEOD-3419 6, 12 3, 6, 12 12 12
E-GEOD-7258 7, 15, 16 7, 15, 16 7, 15, 16 7, 15, 16
E-GEOD-10211 2, 7 2, 7 2 2
E-MEXP-774 4, 17 4, 17 4, 17 4, 17
E-MEXP-170 6 6 6 6
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