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Protein quality control at the inner nuclear
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The nuclear envelope is a double membrane that separates the nuc-
leus from the cytoplasm. The inner nuclear membrane (INM) func-
tions in essential nuclear processes including chromatin organization
and regulation of gene expression1. The outer nuclear membrane is
continuous with the endoplasmic reticulum and is the site of mem-
brane protein synthesis. Protein homeostasis in this compartment
is ensured by endoplasmic-reticulum-associated protein degradation
(ERAD) pathways that in yeast involve the integral membrane E3
ubiquitin ligases Hrd1 and Doa10 operating with the E2 ubiquitin-
conjugating enzymes Ubc6 and Ubc7 (refs 2, 3). However, little is
known about protein quality control at the INM. Here we describe a
protein degradation pathway at the INM in yeast (Saccharomyces
cerevisiae) mediated by the Asi complex consisting of the RING domain
proteins Asi1 and Asi3 (ref. 4). We report that the Asi complex func-
tions together with the ubiquitin-conjugating enzymes Ubc6 and
Ubc7 to degrade soluble and integral membrane proteins. Genetic
evidence suggests that the Asi ubiquitin ligase defines a pathway
distinct from, but complementary to, ERAD. Using unbiased screen-
ing with a novel genome-wide yeast library based on a tandem fluor-
escent protein timer5, we identify more than 50 substrates of the Asi,
Hrd1 and Doa10 E3 ubiquitin ligases. We show that the Asi ubiqui-
tin ligase is involved in degradation of mislocalized integral mem-
brane proteins, thus acting to maintain and safeguard the identity
of the INM.

To identify components of INM quality control, we focused on the
ubiquitin-conjugating enzyme Ubc6. Ubc6 is an integral membrane
protein that localizes to the endoplasmic reticulum and the INM where
it targets for degradation soluble and integral membrane proteins together
with Ubc7 and Doa10 (refs 6, 7). We established a microscopy-based
bimolecular fluorescence complementation (BiFC) assay8 to screen for
new E3 ubiquitin ligases interacting with Ubc6 (Fig. 1a). In total, 10 out
of 54 known or putative E3s, including Doa10, interacted with Ubc6
at distinct subcellular locations (Fig. 1b and Extended Data Fig. 1a).
Among these, Asi1 and Asi3 displayed a BiFC signal restricted to the
nuclear rim (Fig. 1b). Despite their colocalization at the endoplasmic
reticulum, no interaction was detected between Ubc6 and Hrd1 (Ex-
tended Data Fig. 1a), suggesting a low rate of false-positive interactions
in our BiFC assay.

Asi1 and Asi3 are integral membrane RING domain proteins of the
INM and form the Asi complex4,9,10. Together with the INM protein
Asi2, the Asi complex functions in the Ssy1-Ptr3-Ssy5 (SPS) amino-
acid-sensing pathway, where it is involved in the degradation of Stp1
and Stp2 transcription factors11. We tested the interactions of Asi1 and
Asi3 with all E2 ubiquitin-conjugating enzymes using the BiFC assay.
In addition to Ubc6, Asi1 and Asi3 interacted with Ubc7 and weakly

with Ubc4 (Extended Data Fig. 1b–d). We validated these interactions
in microscale thermophoresis experiments12 with recombinant proteins
(Fig. 1c and Extended Data Fig. 1e). The Ubc7-binding region of Cue1
(Cue1U7BR)13, a protein that tethers Ubc7 to the endoplasmic reticu-
lum membrane14, was included in the assays. A carboxy-terminal frag-
ment of Hrd1 (Hrd1CT) expected to interact with Ubc7 but not Ubc6
served as control2,3. The RING domains of Asi1 and Asi3 (Asi1RING and
Asi3RING) interacted with Ubc7, provided it was bound to Cue1U7BR,
with affinities similar to Hrd1CT. Asi1RING and Asi3RING, but not Hrd1CT,
also interacted weakly with Ubc6 lacking its transmembrane domain
(Ubc6DTM) (Fig. 1c).

The Asi proteins maintain the SPS pathway in the ‘off state’ in the
absence of inducing amino acids, and do so by targeting for proteasomal
degradation the low levels of Stp1 and Stp2 that inadvertently misloca-
lize into the nucleus11. Consequently, asi mutants exhibit aberrant con-
stitutive Stp1/Stp2-dependent transcription9. We observed that ubc7D
and, to a lesser extent, ubc6D mutants exhibited increased expression
of Stp1/Stp2-regulated genes similar to the asi1D and asi3D mutants
(Fig. 1d and Extended Data Fig. 1f). These effects were not due to
inactivation of Hrd1 or Doa10 ubiquitin ligases (Extended Data Fig. 1f),
thus implicating Ubc6 and Ubc7 in the SPS pathway.

Next, we assayed the ubiquitylation of an artificial Asi substrate based
on the first 45 amino acids of Stp2 (Stp2N). This fragment of Stp2 contains
a degron that is recognized by the Asi complex11. Ubiquitylation of Stp2N

fused to the tandem affinity purification (TAP) tag was reduced in ubc6D
and severely impaired in asi3D and ubc7D mutants (Fig. 1e). In addi-
tion, ubiquitylation of Stp1 and Stp2 mutants with constitutive SPS-
independent nuclear localization was impaired in asi1D and asi3D
strains (Extended Data Fig. 1g). Together, these results establish the
Asi complex as an E3 ubiquitin ligase of the INM that functions with
Ubc6 and Ubc7.

Functionally related genes can be identified by similarity of genetic
interaction profiles15. We searched for novel functions of the Asi ubi-
quitin ligase by mining a genome-scale genetic interaction map16. In
this data set, the fitness of 5.4 million double-mutant combinations was
measured by colony size, generating genetic interaction profiles for
,75% of all S. cerevisiae genes. We calculated correlation coefficients
between genetic interaction profiles of ASI genes and the other 4,458
genes in the genetic interaction map. In this analysis, the genetic inter-
action profiles of ASI genes correlated with each other and, to a similar
extent, with HRD1, DOA10, UBC6, UBC7 and CUE1 among others (Fig. 2a
and Supplementary Table 1), suggesting that Asi and ERAD E3 ubi-
quitin ligases are functionally related. We sought to determine whether
they work in the same or parallel pathways. Strains lacking HRD1 and
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the unfolded protein response genes IRE1 or HAC1 show impaired growth
at increased temperature17. Additional deletion of ASI1 resulted in a
synthetic lethal phenotype under these conditions18 (Fig. 2b and Extended
Data Fig. 2), suggesting that Asi1 and Hrd1 function in parallel pathways.

We used a tandem fluorescent protein timer (tFT) approach5 to per-
form unbiased proteome-wide screens for substrates of the Asi, Hrd1
and Doa10 ubiquitin ligases. A tFT is a tag composed of two fluorescent
proteins (mCherry and superfolder green fluorescent protein (sfGFP))
with distinct fluorophore maturation rates. The mCherry/sfGFP inten-
sity ratio is a measure of protein degradation kinetics in steady state
(Fig. 3a), with a dynamic range and sensitivity that exceed conventional
cycloheximide chase experiments5 (Supplementary Note 1). We con-
structed a genome-wide library of yeast strains each expressing a differ-
ent tFT-tagged protein (Supplementary Methods). Library construction
relied on a seamless tagging strategy that minimizes the influence of the
tag on gene expression19 (Extended Data Fig. 3a). In total, 4,044 proteins
were successfully tagged to create a tFT library covering ,73% of verified
or uncharacterized open reading frames in the S. cerevisiae genome (Sup-
plementary Table 2). We introduced asi1D, asi3D, hrd1D, doa10D, ubc6D
and ubc7D deletion alleles into the tFT library using high-throughput
genetic crosses20. The effect of each gene deletion on the stability of each
protein in the library was examined with high-throughput fluorescence
measurements of colonies5 (Extended Data Fig. 3b) and quantified as a

z-score. More proteins were stabilized (positive z-score) than destabilized
in the six mutants (Extended Data Fig. 3c and Supplementary Table 3),
in agreement with the role of Asi, Hrd1 and Doa10 ubiquitin ligases in
protein degradation. Hierarchical clustering of top hits recapitulated
known E2–E3 interactions and revealed three clusters of 20, 30 and 9
potential substrates for the Asi, Hrd1 and Doa10 ubiquitin ligases, res-
pectively (Fig. 3b). Hrd1 substrates, including the known substrate Der1
(ref. 21), were stabilized only in the ubc7Dmutant, whereas Doa10 sub-
strates were stabilized in both ubc6D and ubc7D mutants. Most Asi
substrates, including the recently identified Erg11 (ref. 18), were sta-
bilized in the ubc7Dmutant with only weak effects of the ubc6Dmutant
(Fig. 3b). Stp1 and Stp2 were not identified as Asi substrates in the screen,
probably the consequence of their efficient targeting for degradation by
the E3 ubiquitin ligase SCFGrr1 in the cytoplasm11. The vast majority of
potential substrates in each set were integral membrane or secretory
proteins distributed along the endomembrane system and the Hrd1
and Asi substrates were enriched in endoplasmic reticulum and vacu-
olar proteins (Fig. 3c, d and Extended Data Fig. 3d, e). These findings
are consistent with the organization and functions of endoplasmic-
reticulum-associated ubiquitin ligases, thus establishing the tFT library
as a valuable resource for studies of protein degradation (Supplemen-
tary Note 2), and indicate that the Asi complex is involved in degra-
dation of a distinct set of integral membrane proteins.
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Figure 1 | The Asi complex is a Ubc6/Ubc7-dependent E3 ubiquitin ligase of
the INM. a, BiFC strategy used to assay E2–E3 interactions. E2 and E3 proteins
were endogenously tagged with carboxy- and amino-terminal fragments of
the Venus fluorescent protein (VC and VN, respectively). Interactions between
E2 and E3 proteins enable reconstitution of functional Venus that is detected
with fluorescence microscopy. Rpn7 fused to the red fluorescent protein
tDimer2 served as a nuclear marker. b, Quantification of BiFC signals in cells
co-expressing VC–Ubc6 and VN-tagged E3s. Fluorescence microscopy
examples representative of six fields of view (top). Scale bar, 5mm. BiFC signals
were measured in the cytoplasm and nucleus of individual cells (bottom, n as
shown). Whiskers extend from the tenth to ninetieth percentiles. c, Microscale
thermophoresis analysis of interactions between recombinant maltose
binding protein (MBP)–E3 fragments and the indicated E2s. Plots show the

fraction of MBP–E3 bound to the E2 at each tested E2 concentration
(mean 6 s.d., n as shown). Dissociation constants (Kd, mean 6 s.d.) were
derived from nonlinear fits with the law of mass action (solid lines). d, Activity
of b-galactosidase (b-gal) expressed from the AGP1 promoter in the indicated
strains (mean 6 s.d., n 5 3 clones). a.u., arbitrary units; WT, wild type.
e, Ubiquitylation of Stp2N–TAP in strains expressing 103histidine (His)-
tagged ubiquitin. Total cell extracts and ubiquitin conjugates eluted after
immobilized-metal affinity chromatography were separated by SDS–PAGE
followed by immunoblotting with antibodies against the TAP tag, Pgk1 and
ubiquitin. Representative immunoblots from three technical replicates.
*P , 1024 (b; one-way analysis of variance (ANOVA) with Bonferroni
correction for multiple testing) and *P , 0.05 (d; two-tailed t-test).
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We analysed this novel function of the Asi ubiquitin ligase with ten
tFT-tagged substrates. Genetic crosses with additional deletion mutants
revealed the involvement of Cue1 in Asi-dependent degradation (Extended
Data Fig. 4a), in agreement with our biochemical analysis (Fig. 1c).

Several Asi substrates that were reproducibly stabilized in asi1D and
asi3D mutants were not stabilized in strains lacking ASI2 (Extended
Data Fig. 4a), suggesting that Asi2 might function as a substrate-specific
recognition factor. The Asi2-independent nature of the interaction
between Asi3 and Ubc6 further supports this notion (Extended Data
Fig. 4b). With the exception of Aqy2, which was not expressed during
exponential growth in liquid medium, all tFT-tagged substrates loca-
lized to the endoplasmic reticulum in wild-type cells and eight of them
accumulated at the nuclear rim specifically in the asi1Dmutant (Fig. 3e
and Extended Data Fig. 4c). This result is consistent with protein sta-
bilization at the INM where the Asi proteins reside. Cycloheximide
chase experiments with haemagglutinin epitope (HA)-tagged variants
revealed substantial turnover of Vtc1, Erg11, Vcx1 and Vtc4 in wild-
type cells. All four proteins were stabilized specifically in the absence of
ASI1 (Fig. 3f and Extended Data Fig. 5), further validating our screen-
ing approach (Supplementary Note 1). Interestingly, Vtc1 and Vtc4
were previously shown to localize to the vacuolar membrane22. Both
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proteins mislocalize to the endoplasmic reticulum and nuclear rim
only on overexpression or C-terminal tagging (Extended Data Fig. 6).
Whether the Asi ubiquitin ligase recognizes such mislocalized proteins
through specific degrons, as is the case with Stp1 and Stp2 transcription
factors11, or other features such as compartment-specific properties of
transmembrane domains23 is an open question.

The nuclear pore complex establishes a barrier between the cyto-
plasm and the nucleoplasm. However, increasing evidence suggests that
not only small soluble proteins but also integral membrane proteins
with cytoplasmic domains of up to 60 kilodaltons (kDa) can passively
diffuse past the nuclear pore, the latter through a ,10 nm side chan-
nel6,24–28. We propose that the Asi ubiquitin ligase targets such mis-
localized and potentially harmful proteins for degradation. Although
the Asi proteins are not obviously conserved outside of yeast, the gen-
eral importance of membrane-associated protein degradation mechan-
isms and the large diversity of integral membrane RING domain proteins
in mammalian cells29 suggest that dedicated E3 ubiquitin ligases func-
tioning in INM-associated protein degradation exist also in metazoans.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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METHODS
Yeast methods and plasmids. Yeast genome manipulations (gene deletions and
tagging) were performed using PCR targeting, as described30. Yeast strains and
plasmids used in this study are listed in Supplementary Tables 4 and 5, respectively.
b-galactosidase activity assay. Cells were grown in synthetic minimal medium
and b-galactosidase activity was measured in N-lauroyl-sarcosine-permeabilized
cells as described31.
RNA isolation and qRT–PCR. Strains with auxotrophies complemented by plas-
mids pRS316 (URA3), pRS317 (LYS2) and pAB1 (HIS3, MET15 and LEU2) were
grown in synthetic minimal medium to 107 cells ml21 and collected by centrifugation.
RNA was isolated using the RiboPure Yeast Kit and treated with Turbo-DNase
(Ambion). The quality of RNA preparations was assessed by electrophoresis on a
1% agarose gel with 10 mM guanidine thiocyanate, and the lack of DNA contam-
ination was confirmed by PCR. One microgram of RNA was used for comple-
mentary DNA synthesis with oligo (dT)12-19 (Invitrogen) using SuperScript III
Reverse Transcriptase (Life Technologies). Quantitative reverse transcriptase PCR
(qRT–PCR) reactions were prepared using Kapa SybrFast qPCR Master Mix (Kapa-
Biosystems). cDNA mixtures were diluted 1:40 and 5ml were used in a reaction
volume of 20ml with the following primer pairs: AGP1fwd 59-CTGCCGTGCG
TAGGTTTT-39 and AGP1rev 59-AGAAGAAGGTGAGATAGCCGA-39; GNP1fwd
59-CACCACAAGAACAAGAACAGAAAC-39 and GNP1rev 59-ACCGACCAG
CAAACCAGTA-39; TAF10fwd 59-ATATTCCAGGATCAGGTCTTCCGTAGC-39

and TAF10rev 59-CAACAACAACATCAACAGAATGAGAAGACTAC-39.
The levels of gene expression in three biological replicates were determined in

two separate amplifications with triplicate technical replicates of each of the three
genes analysed using the comparativeDCT method (RotorGene 6000, Corbett Life
Science). Relative levels of AGP1 and GNP1 messenger RNA were normalized with
respect to the levels of the invariant reference gene TAF10; the levels of AGP1 and
GNP1 in strains carrying the indicated mutations were subsequently averaged and
normalized to the levels of expression in the corresponding isogenic wild-type
strains.
Purification of decahistidine–ubiquitin protein conjugates. Ubiquitylated pro-
teins were purified from 1 3 109 exponentially growing yeast cells expressing
103His-tagged ubiquitin using a protocol adapted from ref. 32. Cell pellets were
resuspended in 2 ml 20% trichloroacetic acid and lysed for 2 min using glass beads
in a Disrupter Genie homogenizer (Scientific Industries). After precipitation,
proteins were resuspended in 3 ml guanidium buffer (6 M guanidinium chloride,
100 mM Tris-HCl, pH 9, 300 mM NaCl, 10 mM imidazole, 0.2% Triton X-100 and
5 mM chloroacetamide), clarified at 30,000g and incubated for 1.5 h at room
temperature with TALON Metal Affinity Resin (Clontech). The beads were then
washed with wash buffer (8 M urea, 100 mM sodium phosphate, pH 7.0, 300 mM
NaCl, 5 mM imidazole, 0.2% Triton X-100 and 5 mM chloroacetamide) contain-
ing 0.2% SDS (twice) and lacking SDS (twice). 103His–ubiquitin conjugates were
finally eluted with 200 ml elution buffer (8 M urea, 100 mM sodium phosphate,
pH 7.0, 300 mM NaCl, 250 mM imidazole, 0.2% Triton X-100 and 5 mM chlor-
oacetamide). Total extracts (1% of the amount used for purification) and ubiquitin
conjugate eluates were analysed by SDS–PAGE and immunoblotting with anti-
bodies against the TAP tag (PAP, 1:1,000, Sigma). As controls, levels of ubiquitin
conjugates and Pgk1 were assessed with anti-ubiquitin (P4D1 horseradish peroxidase
(HRP) conjugate, 1:1,000, Santa Cruz) and anti-Pgk1 antibodies (clone 22C5D8,
1:10,000, Invitrogen), respectively. Immunogenic proteins were detected by chemi-
luminescence using SuperSignal West Femto Substrate (Thermo Scientific) and
recorded using autoradiographic films (CP-BU, Agfa) processed with a Curix 60
developing machine (Agfa).
Purification of hexahistidine–ubiquitin protein conjugates. Ubiquitylated pro-
teins were purified from 5 3 108 exponentially growing yeast cells expressing
63His-tagged ubiquitin as previously described33. 63His–ubiquitin conjugates
were retained on nickel-nitrilotriacetic acid Sepharose beads (Qiagen) and eluted
in the presence of 300 mM (Stp1–HA, Stp1-RI17–33–HA ) or 500 mM (Stp2–HA,
Stp2D2–13–HA) imidazole. Total extracts, flow-through and eluate fractions were
precipitated with 10% trichloroacetic acid, analysed by SDS–PAGE and immuno-
blotting with antibodies against the haemagglutinin tag (1:5,000, Roche) and the
signals were recorded using autoradiographic film (CL-Xposure, Thermo Scientific).
As controls, levels of ubiquitin conjugates and Pgk1 were assessed with anti-His5

(1:5,000, Qiagen) and anti-Pgk1 antibodies (1:10,000, InVitrogen), respectively,
and detected by chemiluminescence using SuperSignal West Dura Extended
Duration Substrate (Thermo Scientific) and a Molecular Imager ChemiDoc XRS1

with Image Lab v3 build 11 software (BioRad). Loaded total and flow-through
fractions correspond to 2% (Stp1–HA or Stp1-RI17–33–HA) and 0.7% (Stp2–HA or
Stp2D2–13–HA) of the amount used for purification of ubiquitin conjugates.
Bimolecular fluorescence complementation. BiFC interaction assays were per-
formed using E2 and E3 proteins tagged with the VC173 and VN155 fragments
(VC and VN) of the Venus fluorescent protein, respectively34. All E2 and E3 proteins

were tagged C-terminally, with the following exceptions that were N-terminally
tagged: Ubc6, because the C terminus of Ubc6 faces the endoplasmic reticulum
lumen35; Ubc7, to preserve its interaction with Cue1 (ref. 36); Ubc1, because the
growth of strains expressing Ubc1 endogenously tagged at the C terminus with VC
appears compromised; the E3 proteins Far1, Mot2, Nam7, Prp19, Ste5 and Tfb3, as
they all have their E2 binding domain at the N terminus. All fusions were expressed
from their endogenous chromosomal loci, with the exception of Rsp5–VN, which
was expressed from its endogenous promoter on the centromeric plasmid pGR703
(Supplementary Table 5).

Strains expressing VC-tagged E2 proteins were constructed in the scEB115
background. scEB115 carries markers for selection of haploid progeny in auto-
mated crosses (can1::STE2pr-spHIS5 and lyp1::STE3pr-HPH) and expresses the
proteasomal subunit Rpn7 fused to the red fluorescent protein tDimer2 as nuclear
marker (Supplementary Table 4). Strains expressing VN-tagged E3 proteins were
either obtained from a commercially available collection (Bioneer Corporation) or
constructed by homologous recombination in the BY4741 background. Expression
of VC- and TAP-tagged fusions was validated by immunoblotting with mouse
anti-GFP (clones 7.1 and 13.1, Roche) and peroxidase anti-peroxidase (Sigma)
antibodies to detect the VC and TAP tag, respectively, and mouse anti-actin (clone
c4, Merck Millipore) for loading controls.

Strains expressing individual E2 and E3 protein fusions were crossed to produce
an array of yeast strains each expressing Rpn7–tDimer2 and a unique combination
of tagged E2 and E3 proteins, as described20. The resulting strains were cultivated
overnight at 20 uC in YPD medium and diluted in low fluorescence medium37 3–4 h
before imaging. Imaging was performed in 8-well LabTek chambers or 96-well
plates (Imaging plates CG, Zell-Kontakt) using an inverted Leica SP8 confocal
microscope. Images of the BiFC signal were collected using a 514 nm laser and a
narrow band-pass filter (525–538 nm) around the emission peak of the Venus fluor-
escent protein to reduce the contribution of cellular autofluorescence. Rpn7–tDimer2
was imaged simultaneously using a 580–630 nm filter. Cellular autofluorescence
was imaged separately using the same band-pass filter as for BiFC images, but with
a 458 nm excitation. Rpn7 localizes to the nucleus throughout the cell cycle in
growing cells and relocalizes to cytoplasmic structures when cells enter quiescence38.
Rpn7–tDimer2 images were visually inspected before image processing to verify
that cells are not quiescent. Rpn7–tDimer2 and autofluorescence images were used
to segment the BiFC images into nuclear and cytoplasmic (whole cell minus nu-
cleus) regions and to unmix the BiFC signal. Image segmentation and single-cell
fluorescence measurements were performed using custom plugins in ImageJ39 (avail-
able on request). To enable comparison of data from different experiments, the
quantification results were rescaled so that BiFC signals of control cells had a mean
of zero and a standard deviation of one. Statistical analysis and graphical repres-
entation were performed with GraphPad Prism software. Statistically significant
differences from control cells were identified by one-way ANOVA followed by Bon-
ferroni post-hoc tests to correct for multiple comparisons. No statistical method
was used to predetermine sample size.
Recombinant protein expression and purification. Escherichia coli BL21(DE3)
were transformed with plasmids encoding MBP–Hrd1CT (Hrd1 residues 321–551),
MBP–Asi1RING (Asi1 residues 559–624), MBP–Asi3RING (Asi3 residues 613–676),
glutathione S-transferase (GST)–Ubc6DTM (Ubc6 residues 1–230), GST–Ubc7 or
Cue1U7BR (Cue1 residues 151–203) and were cultivated in LB medium. Cue1U7BR

was coexpressed with GST–Ubc7. Protein expression was induced by addition of
1 mM isopropyl-b-D-thiogalactoside (IPTG) during 4 h at 25 uC. Cells were pel-
leted, resuspended in PBS, and lysed by sonication. Lysates were rotated with
glutathione (GE Healthcare) or amylose beads (New England Biolab) for 1 h at
4 uC. Beads were washed with PBS containing 1 mM dithiothreitol (DTT). E2s
were cleaved from GST using thrombin (Stago). MBP–E3s were eluted using
10 mM amylose and dialysed against PBS plus 1 mM DTT. All recombinant pro-
teins were concentrated using spin filters (3 kDa, Amicon). Protein purity was
tested by Coomassie staining after SDS–PAGE. Protein concentration was esti-
mated by absorbance at 280 nm.
Microscale thermophoresis. Microscale thermophoresis analysis was performed
essentially as described12 using MBP–Asi1RING, MBP–Asi3RING or MBP–Hrd1CT

fluorescently labelled with the fluorescent dye NT-647 (labelling was performed
with the Monolith Protein Labelling Kit RED-NHS according to the instructions
of the supplier) and high precision standard treated capillaries. MBP–E3s were
diluted to 100 nM in PBS, 5% glycerol, 0.1% Tween 20, 1 mM DTT, 10mM ZnAc
and titrated with varying concentrations of unlabelled E2s before loading into
capillaries. The difference of the thermophoretic properties of MBP–E3s were
measured using a Monolith NT.115 instrument (NanoTemper Technologies GmbH)
and a laser power of 60%. A nonlinear fit with the law of mass action was used to
derive the dissociation constant (Kd) of the interaction as well as the theoretical
thermophoretic properties of the MBP–E3 in its fully bound and unbound states.
Those values were then used to normalize the measurements and calculate the
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fraction of E3 bound at each E2 concentration. Data were plotted and fitted with
the GraphPad Prism software.
tFT library construction. A total of 4,081 verified or uncharacterized S. cerevisiae
open reading frames were selected for tagging based on structural and functional
criteria (detailed in Supplementary Methods) to increase the probability that the
C-terminal tFT tag would not affect protein functionality, and to avoid exposing
the tag to an environment that could affect folding and maturation of the fluor-
escent proteins. Protocols for strain construction and validation are described in
the Supplementary Methods. In brief, strain manipulations were automated and
performed in 96-well format whenever possible. Using PCR targeting30 and lithium
acetate transformation of yeast40, the module for seamless protein tagging with the
mCherry-sfGFP timer (pMaM168 in Supplementary Table 5) was integrated into
each selected genomic locus in the strain yMaM330 (Supplementary Table 4), a
strain compatible with automated yeast genetics that carried a construct for con-
ditional expression of the I-SceI meganuclease from the GAL1 promoter integrated
into the leu2 locus. Correct integration of the tagging module into each locus and
expression of tFT protein fusions was verified by PCR and whole colony fluor-
escence measurements for 4,044 open reading frames, with two independent clones
validated for 3,952 open reading frames (Supplementary Table 2).
tFT library screening. Haploid array strains carrying deletions of individual com-
ponents of the ubiquitin–proteasome system were obtained from the genome-wide
heterozygous diploid yeast deletion library41 by sporulation and tetrad dissection.
Screens were conducted in 1536-colony format. Using pinning robots (BioMatrix,
S&P Robotics), tFT query strains (before marker excision) were mated with array
mutants. Selection of diploids, sporulation and selection of haploids carrying simul-
taneously a tFT protein fusion and a gene deletion were performed by sequential
pinning on appropriate selective media, as described20, followed by seamless marker
excision19. In each screen, a single tFT strain was crossed to a set of mutants in the
ubiquitin–proteasome pathway (including the asi1D, asi3D, hrd1D, doa10D, ubc6D
and ubc7D mutants) (A.K. et al., manuscript in preparation) with four technical
replicates of each cross. Technical replicates were arranged next to each other.
Fluorescence intensities of the final colonies were measured after 24 h of growth on
synthetic complete medium lacking histidine at 30 uC using Infinite M1000 or
Infinite M1000 Pro plate readers equipped with stackers for automated plate load-
ing (Tecan) and custom temperature control chambers. Measurements in mCherry
(587/10 nm excitation, 610/10 nm emission, optimal detector gain) and sfGFP
(488/10 nm excitation, 510/10 nm emission, optimal detector gain) channels were
performed at 400 Hz frequency of the flash lamp, with ten flashes averaged for each
measurement.

Measurements were filtered for potentially failed crosses based on colony size
after haploid selection. Fluorescence intensity measurements were log-transformed
and the data were normalized for spatial effects on plates by local regression. To
estimate the changes from normal protein stability, median effects for tFT and
deletion strains were subtracted from log-ratios of mCherry and sfGFP intensities.
To avoid variance-mean dependences, standard deviations were regressed against
the absolute fluorescence intensities. Changes in protein stability were divided by
the regressed standard deviations, yielding a measurement comparable to a z-score,
and tested against the hypothesis of zero change. A moderated t-test implemented
in the R/Bioconductor package limma42 was used to compute P values. P values
were adjusted for multiple testing by controlling the false discovery rate using the
method of Benjamini–Hochberg.

Crosses with additional mutants were performed with independently constructed
deletion strains using identical procedures on a RoToR pinning robot (Singer).
Whole colony fluorescence intensities were corrected for autofluorescence using
measurements of corresponding mutant colonies crossed to strain yMaM344-2
(Supplementary Table 4) expressing a truncated non-fluorescent mCherryDN pro-
tein. For each tFT fusion, mCherry/sfGFP intensity ratios in each mutant were
compared to a control cross with a wild-type strain carrying the kanMX selection
marker in the his3D locus.
Fluorescence microscopy. Strains were grown at 30 uC in low fluorescence med-
ium (synthetic complete medium prepared with yeast nitrogen base lacking folic
acid and riboflavin; CYN6501, ForMedium) to 0.4–1.23 107 cells ml21 and attached

to glass-bottom 96-well plates (MGB096-1-2-LG-L, Matrical) using Concanavalin
A (C7275, Sigma) as described43. Single plane images were acquired on a DeltaVision
Elite system (Applied Precision) consisting of an inverted epifluorescence micro-
scope (IX71; Olympus) equipped with an LED light engine (SpectraX, Lumencor),
475/28 and 575/25 nm excitation, and 525/50 and 624/40 nm emission filters (Sem-
rock), a dual-band beam splitter 89021 (Chroma Technology), using either a 1003

numerical aperture (NA) 1.4 UPlanSApo or a 603 NA 1.42 PlanApoN oil immer-
sion objective (Olympus), an sCMOS camera (pco.edge 4.2, PCO) and a motorized
stage contained in a temperature-controlled chamber. Image correction and quan-
tification were performed in ImageJ39. Dark signal and flat field corrections were
applied to all images as described43. Image deconvolution was performed with
Softworx software (Applied Precision) using the conservative ratio algorithm with
default parameter settings. Individual cell, perinuclear region and cytoplasm seg-
mentation masks were manually defined in deconvolved images and applied to
non-deconvolved images. Mean single-cell fluorescence measurements were cor-
rected for cellular autofluorescence. Mean perinuclear fluorescence measurements
were corrected for cytoplasmic fluorescence of each individual cell.

Strains expressing N- and C-terminally tagged Vtc1 and Vtc4 were imaged with
exposure setting adjusted to the expression levels: 3.3-fold longer exposure time
for C-terminally tagged fusions. Representative deconvolved images were scaled
identically.
Cycloheximide chases. Strains were grown at 30 uC in synthetic complete medium
to ,0.8 3 107 cells ml21 density before addition of cycloheximide to 100mg ml21

final concentration. One-millilitre samples taken at each time point were imme-
diately mixed with 150ml of 1.85 M NaOH and 10ml b-mercaptoethanol, and flash
frozen in liquid nitrogen. Whole-cell extracts were prepared as previously described40,
separated by SDS–PAGE followed by semi-dry blotting and probed sequentially
with mouse anti-HA (12CA5) and mouse anti-Pgk1 (22C5D8, Molecular Probes)
antibodies. A secondary goat anti-mouse antibody (IgG (H1L)-HRP, Dianova)
was used for detection on a LAS-4000 system (Fuji).

30. Janke, C. et al. A versatile toolbox for PCR-based tagging of yeast genes: new
fluorescent proteins, moremarkers andpromoter substitutioncassettes. Yeast 21,
947–962 (2004).
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Extended Data Figure 1 | Identification of Ubc6 and Ubc7 ubiquitin-
conjugating enzymes as functional interacting partners of Asi1 and Asi3.
a, Quantification of BiFC signals in cells expressing VC–Ubc6 and all tested E3
ubiquitin ligases. BiFC signals were measured in the cytoplasm and nucleus
of individual cells (n as shown). Whiskers extend from the tenth to the ninetieth
percentiles. The same representation is used in c and d. b, Immunoblot
showing expression levels of VC-tagged E2 ubiquitin-conjugating enzymes.
Ubc11–VC could not be detected in the growth condition of the BiFC assay.
c, Quantification of BiFC signals in cells co-expressing VC-tagged E2 ubiquitin-
conjugating enzymes and Asi1–VN or Asi3–VN (n as shown). d, Detection of a
significant BiFC signal between Asi1–VN and Ubc4–VC in cells lacking UBC6
(n as shown). e, Coomassie-stained gels of recombinant proteins used in
microscale thermophoresis experiments. f, mRNA levels of AGP1 and GNP1
measured with qRT–PCR in the indicated strains (mean 6 s.d., n 5 3 clones).

The signal was normalized to wild type (dashed line). g, Ubiquitylation of Stp1–
HA or Stp1-RI17–33–HA (Stp1 variant in which amino acid residues 2–64 were
replaced with Stp1 residues 17–33 flanked by minimal linker sequences) (left)
and Stp2–HA or Stp2D2–13–HA (Stp2 variant lacking amino acid residues
2–13) (right) in strains expressing 63His–ubiquitin. Stp1-RI17–33 and
Stp2D2–13 variants exhibit compromised cytoplasmic retention and enhanced
Asi-dependent degradation, whereas full-length Stp1 is degraded primarily
in the cytoplasm in a SCFGrr1-dependent manner11. Total cell extracts (T),
flow-through (F) and ubiquitin conjugates (E) eluted after immobilized-metal
affinity chromatography were separated by SDS–PAGE followed by
immunoblotting with antibodies against the HA-tag, Pgk1 and the His-tag.
Representative immunoblots from three technical replicates. *P , 1024

(a, c and d; one-way ANOVA with Bonferroni correction for multiple testing),
and *P , 0.05, **P , 0.1 (f; two-tailed t-test).
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Extended Data Figure 2 | Lack of genetic interaction between ASI1 and
HRD1 or DOA10 at 37 6C. Tenfold serial dilutions of strains grown on
synthetic complete medium for 2 days at 30 or 37 uC.
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Extended Data Figure 3 | tFT screens for substrates of Asi and ERAD E3
ubiquitin ligases. a, Tagging approach used to construct the tFT library in a
strain carrying the I-SceI meganuclease under an inducible promoter. First, a
module for seamless C-terminal protein tagging with the mCherry-sfGFP
timer is integrated into a genomic locus of interest using conventional PCR
targeting. Subsequent I-SceI expression leads to excision of the heterologous
terminator and the URA3 selection marker, followed by repair of the double-
strand break by homologous recombination between the mCherry and
mCherryDN sequences. A tFT fusion protein is expressed under control of
endogenous promoter and terminator in the final strain. b, Workflow of
screens for substrates of E3 ubiquitin ligases involved in protein degradation.
Each tFT query strain is crossed to an array of mutants carrying different gene

deletion alleles. The resulting strains are imaged with a fluorescence plate
reader to identify proteins with altered stability in each mutant. c, Volcano plots
of the screens for proteins with altered stability in the indicated mutants. Plots
show z-scores for changes in protein stability on the x axis and the negative
logarithm of P values adjusted for multiple testing on the y axis. The number of
proteins with increased (red) or decreased (blue) stability at 1% false discovery
rate is indicated. d, Fraction of proteins in the tFT library and in the three
clusters in Fig. 3b mapped to the full yeast slim set of component GO terms.
Note that the GO term cytoplasm contains all cellular contents except the
nucleus and the plasma membrane. e, The three clusters in Fig. 3b are enriched
for proteins in the indicated component GO terms. Bar plot shows 2log10-
transformed P values of significant enrichments.
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Extended Data Figure 4 | Analysis of integral membrane protein substrates
of the Asi E3 ubiquitin ligase. a, Differences in the log10 mCherry/sfGFP
intensity ratio between the indicated mutants and the wild type (mean 6 s.d.,
n 5 4) for tFT-tagged proteins from the Asi cluster in Fig. 3b. b, Quantification
of BiFC signals in strains co-expressing VC–Ubc6 and Asi3–VN (top). BiFC
signals were measured in the cytoplasm and nucleus of individual cells (n as
shown). Whiskers extend from tenth to ninetieth percentiles. A substantial
BiFC signal is retained in the asi2D mutant, despite reduced expression of Asi3

(immunoblot, bottom). c, Quantification of sfGFP signals in strains expressing
tFT-tagged proteins from the Asi cluster in Fig. 3b. Fluorescence microscopy
examples representative of five fields of view (top). Scale bar, 5mm. sfGFP
intensities were measured in individual cells (middle) and at the nuclear rim
(bottom). For each protein, measurements were normalized to the mean of the
respective wild type. Whiskers extend from minimum to maximum values.
*P , 0.05 (a and c; two-tailed t-test) and *P , 1024 (b; one-way ANOVA with
Bonferroni correction for multiple testing).
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Extended Data Figure 5 | Cycloheximide chase experiments with substrates
of the Asi E3 ubiquitin ligase. Degradation of 33HA-tagged proteins after
blocking translation with cycloheximide. Whole-cell extracts were separated by

SDS–PAGE followed by immunoblotting with antibodies against the HA tag
and Pgk1 as loading control. Representative immunoblots from two technical
replicates. Left, wild-type and asi1D immunoblots are reproduced in Fig. 3f.
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Extended Data Figure 6 | Influence of tagging and expression levels on
localization of Vtc1 and Vtc4. Fluorescence microscopy of strains expressing
Vtc1 or Vtc4 tagged endogenously with monomeric yeast codon-optimized
enhanced GFP (myeGFP) at the C terminus or tagged with sfGFP at the N

terminus and expressed under control of endogenous or TEF1 promoters.
Representative deconvolved images of five fields of view with ,100 cells each.
Arrowheads indicate nuclear rim localization. Scale bar, 5mm.
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