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Statistical relevance—relevant statistics,

part |

Bernd Klaus

tatistical analysis is an important

tool in experimental research and is

essential for the reliable interpreta-
tion of experimental results. It is essential
that statistical design should be considered
at the very beginning of a research
project, not merely as an afterthought. For
example if the sample size for an experi-
ment only allows for an underpowered
statistical analysis, then the interpretation
of the experiment will have to be limited.
An experiment cannot be reverse engi-
neered to become more statically signifi-
cant, although experiments can of course
be repeated independently to account for
biological variation (see section on techni-
cal versus biological replicates below).
Statistical methods are tools applied to
situations in which we encounter variabil-
ity, noise and uncertainty. They help
make more definitive scientific conclu-
sions, and to make better use of available
resources.

In this new EMBO Journal statistics
series, I will introduce key concepts and best
practices. The text will be short and concep-
tual in style, while the supplement will
provide examples demonstrating the intro-
duced concepts. I will use the free statistic
software R (R Core Team, 2015) to illustrate
examples, and readers can try the code on
their own data.

In this first part, I will give some guide-
lines for initial study design and analysis of
experiments. Subsequent columns will
discuss specific statistical topics in more
detail. Most of the issues touched upon in
this first column are further discussed in the
book of Ruxton and Colegrave (Ruxton &
Colegrave, 2010), which includes many
examples relevant to the analysis of
experiments for biological researchers.

Guidelines and terms for the design
and analysis of experiments

Experiment versus study

The terms experiment and study are some-
times used interchangeably, but they repre-
sent different concepts. In an experiment,
one uses highly controlled conditions to
look at a (model) system, performs specific
well-designed interventions at controlled
times and intensities, and has an efficient
assay to measure the effect of interest. You
control the “experimental units” (such as
cells, mice, and genotypes) and plan which
experiments to perform and when. This
allows for a stringent control over experi-
mental variables and to draw very specific
conclusions. However, this comes with the
inherent risk of exerting too tight control—
for example, the model system may not
be relevant and therefore not support
the hypothesis you are testing, or the
controlled conditions might not be exactly
the right ones.

On the other hand, the observations in
a study are made “in the wild”—for exam-
ple, on human subjects recruited to a
study according to certain inclusion and
exclusion criteria, but still taking into
account their individual history, genetic
makeup, and lifestyle. Likewise, an ecolo-
gist studying animals or plants encoun-
tered in the field does not have full control
over their environment or other potentially
important variables. Generally, a study
requires much bigger sample size than an
experiment and is more complicated to
analyze, usually requiring involvement of
a specially trained expert at some point. In
this series, I will mainly focus on the anal-
ysis of experiments.
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Hypothesis-driven research

Although there are various “hypothesis-free”
exploratory experiments, such as the
sequencing of a genome or the genome-wide
binding site mapping of a transcription
factor, it is important to remember that most
biological experiments are hypothesis-
driven. This means that an experiment
should be based on a scientific question or
hypothesis—although this may sound
obvious, it is a point that is sometimes
neglected.

As a general rule, do not plan your exper-
iments as an accumulation of conditions
(e.g. “Do cells treated with drug A for 20 or
40 min express protein X but not Y?”)—
instead start with clear, single research ques-
tions, one at a time like:

¢ [s drug A better than drug B in inducing a
given effect?

¢ Is there a genetic interaction between gene
X and gene Y?

* Are transfected cells behaving differently
than control cells?

Only then should one consider important
choices such as which model, which condi-
tions, which intervention, or which readout
to use?

Controls & replicates

Imagine you want to use proteomics to
study the effect of different doses of a cyto-
kine on the phosphorylation of cellular
downstream targets over time. Further
assume that the cells used are inexpensive
and easy to culture, but the proteomic analy-
sis is expensive and time-consuming. In this
scenario, there is a tradeoff between the
number of conditions and the temporal
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resolution you can achieve. Importantly, the
expected effect size should guide the design
of the experiment: The higher the expected
effect, the lower the number of biological
replicates that are needed—in this example,
to reliably detect protein phosphorylation. If
the cytokine is known to affect its target
proteins fairly quickly, then only a few time
points and few replicates per time point are
needed. If, on the other hand, the expected
differences between the conditions are more
subtle, then more replicates per condition
might be required. In cases where a high
temporal resolution is achievable, this can
serve as a legitimate internal control: A
higher number of time points can make up
for fewer replicates, since the measure-
ments are related due to their temporal prox-
imity.

Experimental units and control categories

The choice of experimental units is a subtle
point. Very often, experimental units will
simply be the biological units used, such as
mice, vyeast strains or cultured cells.
However, experimental units can also be
time periods, for example, if animals receive
a specific treatment for defined periods of
time—not the animal but rather the treat-
ment time would be the experimental unit
here.

Another important aspect when deciding
on experimental units is the choice of appro-
priate controls. The two major categories are
positive and negative controls: Positive
controls show that an experimental system
works in principle, while negative controls
represent a baseline (e.g. wild type)
condition.

For an example, let us assume we
want to knock down, using short-interfer-
ing (si) RNAs, the expression of certain
genes to study their influence on intracel-
lular protein transport. Here, a negative
control could be sequence-scrambled
siRNA applied to the cells, while a posi-
tive control for the working of the assay
system could be a siRNA against a gene
with an already known role in intracellu-
lar transport. It is furthermore advisable
to establish an “experimentalist control”
by “blinding” the experimenter to ensure
that s/he does not know which condition
the readout belongs to.

For a thorough discussion of various dif-
ferent types of controls, see Glass (2014)
(Section 3 therein).
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Blocks/batches

We aim to perform experiments within a
homogeneous group of experimental units.
These homogeneous groups, referred to as
blocks, help to reduce the variability
between the units and increase the meaning
of differences between conditions (as well
as the power of statistics to detect them).

For example, it is beneficial to take
measurements for many (ideally all) experi-
mental conditions at the same time. If the
measurements are done over
extended period of time, then day-to-day
variability between the measurements needs
to be estimated and eliminated. If all control
conditions are measured on one day and all
treatment conditions on another day, then it
is not possible to disentangle the day effect
from the treatment effect and, in the worst
case, the data become inconclusive. As a
general rule, at least some “common condi-
tions” are essential to assess potential block
effects.

As an example, assume there are six
treatment conditions you want to apply to
mice (the experimental units), but you can
fit only five mice per cage (i.e. block). In this
case, not all treatments can be applied
simultaneously in each cage/block. You can,
however, apply four identical treatments to
each of the cages and only alternate the fifth
condition each time (see Fig 1). Now, the
“cage effect” can be estimated by computing
the mean of the differences between the four
treatments that are identical, as given by the
formula in Fig 1. A priori the conditions E
and F are not directly comparable since they
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were measured on mice from two different
cages. However, the replicated treatments
allow a computation of a “cage effect”
that corresponds to the average difference
between the identical conditions measured
in the two cages. Then, the difference
between E and F can be computed as
E — F — “cage effect”.

Undiscovered block effects that strongly
influence the result of the experiments are
commonly called batch effects and they may
cloud scientific conclusions. The severe
influence of batch effects has been revealed
in high-throughput experiments (Leek et al,
2010); Importantly, batch effects also exist
in small-scale experiments, but are harder to
detect, and while they may affect the
scientific conclusions, they often remain
hidden.

In practice, drafting a plan detailing
which measurements to perform is very
helpful in order to maximize the number of
measurements within one batch, or to try to
balance the conditions of interest within the
batch. For data tables, it is a good idea to
add as much useful metadata (e.g. date,
time, and experimenter) as possible. As an
example, see Table 1.

Randomization

Even after careful identification of blocks,
other factors may still influence experimen-
tal outcome, such as mouse age and sex dif-
ferences, and different genetic backgrounds.
In order to balance out these factors,
randomization  techniques are  used.
Randomization reduces confounding effects
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Figure 1. Example of a simple batch effect correction.
Illustration of batches and how to correct for them. All but two treatments have been applied to mice in two
different cages (= batches). The batch/cage effect can now be computed based on the treatments that are shared

between the cages.
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by equalizing variables that influence exper-
imental units and that have not been
accounted for in the experimental design.
This requires randomly allocating the experi-
mental units to the experimental conditions.
Thus, ideally, the allocation of units to
conditions should not be predictable.

For example, if an experiment compares
the effect of a genetic modification on
tomato growth, many potentially complex
factors apart from the genetic modification
itself could influence growth: For example,
the growth chamber could be slightly
warmer on one end than the other, the qual-
ity of the compost variable, or different
irrigation techniques used. In this case, it
will be necessary to randomize the positioning
of the plants.

Replication

Replication of measurements is very impor-
tant. Without replication, it is impossible to
judge whether there is an actual difference
between conditions, or whether an observed
difference is merely due to chance.

For example, if you would like to
compare the height of two plant varieties by
only taking one plant height measurement
and observing a difference of 10 cm, it is
impossible to say whether this difference is
meaningful or due to natural variation. On
the other hand, if multiple plants of each
variety are measured, and the height dif-
ferences always turn out somewhere around
10 cm, the observed difference is less likely
due to chance, as illustrated in Fig 2. The
difference is strong relative to the variability
between the measurements.

Technical versus biological replicates

When referring to replicates, it is important
to distinguish between biological and techni-
cal replicates (see Fig 3). Technical repli-
cates refer to experimental samples isolated
from one biological sample, for example
preparing three sequencing libraries from
RNA extracted from the cells of a single
mouse; in contrast, biological replication
would mean extracting RNA from three
different mice for the comparisons of inter-
est. In other words, it is not sufficient to
merely “re-pipet” an experiment from the
same sample, as this does not constitute
biological, but merely technical replication.
In general, technical replicates tend to show
less variability than biological replicates,
thus potentially leading to false-positive
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Table 1. An example of a comprehensively annotated data table.

Signal
Condition Time Target MS run Technician intensity
40 ng/ml HGF + AKTi 10's pMEK 5567 A 5579
40 ng/ml HGF + AKTi 20s pMEK 5567 B 3360
80 ng/ml HGF 10's PAKT 6650 A 8836
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Figure 2. A comparison between two groups.

Comparison of two groups. The difference is strong relative to the variability between the measurements within

each group.
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Figure 3. Technical versus biological replicates.
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Illustration of the difference between technical and biological replicates.

results. Technical replicates can be useful
when a new technique is reported, but, in
general, biological replicates should be
reported. Either way, this has to be clearly
labeled in a paper and technical and biologi-
cal replicates should not be integrated into a
single statistic.

Outlook

After the experimental data have been
obtained, a next step is to look at the data via
exploratory graphics. Appropriate graphics
are also very important for the final presenta-
tion of the work. In the next column, best
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practices for the display of both numerical
and categorical data will be introduced and
suitable estimators for the mean and the
variance of the data will be discussed.
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