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Abstract

Motivation: Circularized Chromosome Conformation Capture (4C) is a powerful technique for
studying the spatial interactions of a specific genomic region called the ‘viewpoint’ with the rest of
the genome, both in a single condition or comparing different experimental conditions or cell
types. Observed ligation frequencies typically show a strong, regular dependence on genomic dis-
tance from the viewpoint, on top of which specific interaction peaks are superimposed. Here, we
address the computational task to find these specific peaks and to detect changes between differ-
ent biological conditions.

Results: We model the overall trend of decreasing interaction frequency with genomic distance by
fitting a smooth monotonically decreasing function to suitably transformed count data. Based on
the fit, zscores are calculated from the residuals, and high z-scores are interpreted as peaks provid-
ing evidence for specific interactions. To compare different conditions, we normalize fragment
counts between samples, and call for differential contact frequencies using the statistical method
DESeq2 adapted from RNA-Seq analysis.

Availability and implementation: A full end-to-end analysis pipeline is implemented in the R pack-

age FourCSeq available at www.bioconductor.org.
Contact: felix.klein@embl.de or whuber@embl.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Circularized Chromosome Conformation Capture (4C) couples the
low-throughput Chromosome Conformation Capture (3C) tech-
nique (Dekker et al., 2002) for studying chromatin—chromatin inter-
actions with high-throughput sequencing (Simonis et al., 2006;
Stadhouders et al., 2013). 4C detects the contacts of a chosen view-
point with, in principle, the entire genome. The 4C protocol consists
of six main steps (Stadhouders ez al., 2013). First, the chromatin is
cross-linked with formaldehyde to fix DNA-protein complexes,
thereby capturing DNA sequences that are in close spatial proxim-
ity. In the next step, the cross-linked chromatin is digested with a re-
striction enzyme. In the third step, the fragment ends from the
digestion treatment are ligated under dilute conditions to favor
intra-complex ligation, ligating DNA sequences that have been in
close spatial proximity. After this, the cross-linking is reversed, fol-
lowed by a second round of digestion with a different restriction
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enzyme to obtain smaller DNA molecules. These molecules are then
circularized and amplified by polymerase chain reaction (PCR). The
resulting library is sequenced. The possibility to multiplex several
viewpoints in one sequencing library further increases the
throughput.

As result, the distribution of reads from a 4C sequencing library
throughout the genome provides an estimate of the contact frequen-
cies of the viewpoint with the rest of the genome. Overall, the 4C
signal decreases with genomic distance from the viewpoint and
reaches a constant level of noise for large distances. Specific inter-
actions of DNA elements sit on top of this overall trend. One task is
to identify positions that stand out from the general trend.
Moreover, if 4C has been performed on samples with different cell
types, developmental stages or experimental treatments, a second
task is the detection of changes in interaction frequencies between
the sample groups.
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Several analysis approaches for the first task, detection of
interactions, have already been developed for 4C sequencing data.
The approach by Thongjuea er al. (2013) uses a non-parametric
smoothing spline on library-size normalized count data to estimate
the signal decrease with distance to the viewpoint and detects
interactions by calculating z-scores from the residuals of this fit.
Another approach, used by van de Werken ez al. (2012) and Splinter
et al. (2012) employs two complementary arms: in the proximity of
the viewpoint, multi-scale visualization of a semi-quantitative
contact map, remote from the viewpoint, an empirically
estimated contact background model of binary contact profiles
combined with a window-based enrichment and permutation
analysis.

Currently, methods are missing that use replicate information as
the basis for data-driven error modeling to detect consistent peaks
and to statistically infer changes in contact frequencies between dif-
ferent conditions.

We address these needs with the following approach. We use a
distance-dependent monotone fit to estimate the signal decay with
increasing distance from the viewpoint, since the unspecific compo-
nent of the signal decreases monotonically. As input to the fit we use
variance-stabilized read count data (Anders and Huber, 2010). To
detect strong interactions, we calculate z-scores from the fit residuals
and associated P-values. For the comparison of different conditions
we use the methods implemented in the DESeq2 package (Love et
al.,2014).

2 Materials and methods

2.1 Data preprocessing
The data processing pipeline (Fig. 1) starts from the reads of the
4C library. If several 4C libraries were multiplexed, the view-
point primer sequences and, if present, additional barcodes, are
used to demultiplex the sample and trim of the primer sequences.
For the demultiplexing and trimming of primer sequences a
Python script is included in the package. The remaining se-
quences are aligned to the full reference genome using a standard
alignment tool.

The analysis pipeline of our R package starts with the binary
alignment/map (BAM) files output from the alignment. The follow-
ing steps are now described in more detail.

Sequencing of - Demultiplexing &
the 4C library primer trimming

Y

Counting at Alignment
restriction |<®@= | to reference
fragments genome

N\

Variance stabilizing
transformation &
trend fitting

Identify interactions| | Call differential interactions
within a sample between sample groups

Fig. 1. Overall workflow of steps described in this paper

2.1.1 Cutting the reference genome

The input to the statistical analysis is a count table, with one row
for each restriction fragment, and one column for each sample, with
the table entries indicating how many reads have been assigned to
each restriction fragment in each sample. By restriction fragment,
we mean the sequences between the cutting sites of the first restric-
tion enzyme, because this first digestion defines the resolution at
which interactions can be seen in 4C. To define fragments, we cut
the reference genome in silico using the recognition sequence of the
first cutter. Fragments are delimited by adjacent cutting sites of the
first restriction enzyme. The second restriction enzyme is used to re-
duce the size of the fragments for efficient circularization and PCR
amplification. Correspondingly, fragment ends are defined as the
genomic region between the start/end position of the fragment and
the closest cutting site of the second enzyme (Fig. 2a).

Because mainly fragments that contain a site for the second cut-
ter are efficiently amplified, a fragment is considered valid if it con-
tains at least one cutting site of the second enzyme and has long
enough fragments ends. By default, we use a threshold of 20 nt.

2.1.2 Mapping of primer sequences

The primer sequence of the viewpoint is mapped to the reference
genome to find the fragment that contains the viewpoint. This frag-
ment is used to calculate the genomic distance to fragments on the
same chromosome. More precisely, we use the genomic distance be-
tween the middle of the viewpoint fragment and the middle of the
other fragment.

2.1.3 Mapping reads to fragment ends

To filter out non-informative reads, we use the following criteria,
motivated by the 4C protocol. Only reads that fulfill the criteria are
mapped to a fragment end. A first condition is that reads should
start directly at a restriction enzyme cutting site. Additionally, the

a) Reference based classfication Iﬁrst cutter
of possible fragments
|second cutter
valid/ invalid
-—
fragment end
valid/ invalid
-
fragment

b) Assigning aligned sequencing
reads to restriction fragments

viewpoint primer starting at:

¥ N\

first cutter second cutter

Fig. 2. (a) Schematic of the rules to define valid fragments, i.e. fragments that
are used subsequently in the analysis. The pink fragment end is smaller than
the defined threshold, but since the other fragment end is valid, the fragment
is kept for analysis. The red fragment is invalid because it does not contain a
cutting site of the second restriction enzyme, and it is removed from the ana-
lysis. (b) If the sequencing primer starts at the first restriction enzyme cutting
site, reads (green arrows) that start at the fragment ends and are oriented to-
ward the fragment middle are kept for analysis. If the sequencing primer
starts at the second restriction enzyme cutting site, reads (green arrows) that
start right next to the cutting site of the second restriction enzyme and are dir-
ected toward the ends of the fragment are kept for analysis
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orientation of the read at the fragment end is important and defined
by the protocol (Fig. 2b). If the sequencing library was prepared
with a primer starting next to a cutting site of the first cutting en-
zyme, reads should be directed toward the middle of the fragment. If
instead the primer starts next to a cutting site of the second cutter,
reads should be directed toward the fragment ends. The reads
mapped to both fragment ends are combined for subsequent ana-
lysis. To check for consistency between replicates, we visualize scat-
ter plots of count values (Fig. 3).

2.2 Detecting interactions

2.2.1 Variance-stabilizing transformation

The count values usually span several orders of magnitude. If a
logarithmic transformation were used for the count values, low
abundance fragments would tend to show large standard deviations
across samples. On the other hand, if untransformed data were
used, the standard deviations across samples would be large for high
abundance fragments. Such heteroscedasticity would skew the
analysis toward either the fragments far from or close to the
viewpoint. Therefore, we use the variance-stabilizing transformation
v as introduced by Anders and Huber (2010) and implemented in
the DESeq2 package (Love et al., 2014) to transform the count k;; of
fragment 7 in sample j to v(k;;). After transformation the standard
deviations show less dependence on the fragment abundance
(Fig. 4).

2.2.2 Trend fitting
The 4C signal decays with genomic distance from the viewpoint and
converges toward a constant level of background. This decay trend
fi(d;) is fitted using the transformed count values v(k;;) as a function
of the logarithm of the genomic distance d; from each fragment i to
the viewpoint.

The FourCSeq package offers two choices for the distance de-
pendence fit. Using the smooth monotone fit function of the fda
package (Ramsay et al., 2014), we may choose to assume that the
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Fig. 3. Correlation between two biological replicates of the apterous CRM
viewpoint for whole embryo tissue at 6-8 h after fertilization. In the plot, the
pairwise distribution of count values per fragment is shown. The x- and y-
axes (drawn in logarithm-like scale, with zero) correspond to the counts for
the fragments in two biological replicate libraries for the same viewpoint and
biological condition. The replicates show good concordance for higher count
values. Fragments with 0 counts for both replicates are not shown

trend is symmetric around the viewpoint and fit a symmetric
monotone curve on the combined data from both sides.
Alternatively, we perform a monotone fit separately for each side of
the viewpoint.

The second option can be useful if one is interested in finding
asymmetries in the interaction profiles of a viewpoint, which might
be of particular interest at boundaries of topological domains
(Dixon et al., 2012). For both methods, we provide standard param-
eters that work for a wide range of data and which can be adjusted
by the user if necessary.

An example of a symmetric monotone fit is shown in Figure 5.
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Fig. 4. Variance-stabilizing transformation. For each fragment, the mean and
standard deviation of its count data were computed across all samples for the
apterous CRM viewpoint. The plots visualize the distributions of these values
for all fragments. Fragments close to the viewpoint are on the right side with
higher count values. When the untransformed count data are considered
(upper panel), the standard deviations are very large for high abundance frag-
ments (close to the viewpoint). When the count data are considered on the
logarithmic scale (middle panel), the standard deviations are large for low
abundance fragments (far from the viewpoint). Both effects would make the
analysis overly susceptible to noise either close to or far from the viewpoint.
When a variance stabilizing transformation is applied, the standard devi-
ations show less dependence on the fragment abundance, facilitating a more
consistent statistical treatment across the whole dynamic range of the data
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Fig. 5. Symmetric monotone fit of the variance-stabilized count data over the
logarithm of the distance from viewpoint for the apterous CRM viewpoint.
The solid line shows the fit and the dashed line is the fit plus 3¢
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2.2.3 z-scores of residuals

To find specific interactions, i.e. fragments that show interaction fre-
quencies higher than expected at a given distance from the view-
point, we calculate z-scores from the residuals of the fit:

v(ki) = f;(di)

gj

zij = (1)
where ¢; = mad;(v(k;) — f;(d;)) is the median absolute deviation (a
robust estimator of scale), i runs over all fragments and j over all
samples. In principle, users can call specific interactions by looking
for large, positive values of the z-score. To select the threshold, they
can use known positive and likely negative control regions. A poten-
tial disadvantage of this approach is that no type I error control in
the face of multiple testing is provided. Therefore, by default
FourCSeq performs the following additional steps. The z-scores are
converted into one-sided P-values using the standard Normal cumu-
lative distribution function, and these are adjusted for multiple test-
ing using the method of Benjamini and Hochberg (1995). In this
way, control of the false discovery rate (FDR) is provided. Specific
interactions are then found by looking for fragments with small ad-
justed P-values; a large enough value of the effect size, z may be an
additional requirement (Section 3.2). For the P-values to be well-
calibrated in this approach, the z-scores should follow a standard
Normal distribution under the null hypothesis, corresponding to
fragments that are not affected by an interaction with the viewpoint.
In the data that we examined (Ghavi-Helm et al., 2014), this as-
sumption appeared reasonable; for their own data, users are advised
to inspect quantile-quantile plots of z against N(0, 1), and histo-
grams of the unadjusted P-values to asses the calibration. Example
visualizations are provided in the package vignette.

2.3 Differences between conditions

We have observed the distance dependence of the signal to be vari-
able between samples, and this needs to be taken into account for
comparisons. Therefore, we calculate a matrix of normalization fac-
tors ;;, such that the scaled read counts #;k;; for fragment i become
comparable across the samples j. Moreover, we need the normaliza-
tion factors to represent the fitted distance dependence on the scale
of the raw counts. Hence, we back-transform the fitted values f;; to
the scale of raw counts and scale them to have unit geometric mean
across samples to obtain the normalization factors:

2)

where 7;; is the normalization factor and v~!(f;(d;)) is the back
transformed fitted value at the genomic distance d;. The index 7 runs
over all fragments and j over all samples.

To detect differences between conditions, we apply the methods
implemented in the DESeq2 package to the counts k;; together with
the normalization factors #; (Love et al., 2014). DESeq2 is a statis-
tical method for differential analysis of count data. Originally estab-
lished for RNA-Seq (Anders and Huber, 2010), it has in the
meanwhile also been shown to be useful for other sequencing-based
assays, including ChIP-Seq (Ross-Innes er al., 2012), CLIP-Seq
(Konig et al., 2011) and Hi-C (Pekowska et al., 2014). DESeq2
allows analysis-of-variance (ANOVA) type analyses—including the
simple pairwise comparison between two conditions—with an error
model adapted to the technical and biological variability of the data.
Technically, it does this via generalized linear models (GLMs) of the

Negative Binomial (NB) family. To facilitate the application of NB-
GLMs to experiments with small numbers of replicates, DESeq2
uses an Empirical Bayes method to shrink (and stabilize) its esti-
mates of dispersion and effect size parameters.

For each fragment, a significant interaction change is called
when the observed change between conditions is significantly stron-
ger than what is expected from the size of the changes seen between
replicates.

3 Results

To illustrate our approach, we use a 4C dataset of developing
Drosophila melanogaster embryos (Ghavi-Helm et al., 2014). In this
dataset, 103 viewpoints were selected throughout the D. mela-
nogaster genome, with a focus on cis-regulatory modules (CRMs).
Samples were taken from embryos at 2-4 h and 6-8 h after fertiliza-
tion either using whole embryos or mesoderm-specific cells (Ghavi-
Helm et al., 2014).

3.1 Preprocessing

Starting from FASTQ, files we used a Python program included in
the FourCSeq package to demultiplex the libraries and trim off bar
codes and adapters. Next, we aligned the reads to the dm3 reference
genome with Novoalign (http://www.novocraft.com).

For short restriction fragments, we observed the problem that
reads contained the whole fragment and then continued through the
cutting site of the second restriction enzyme into the ligated frag-
ments (in most cases the viewpoint fragment). This often resulted in
two possible alignments causing the reads to be reported as not
uniquely mapping. To address this problem and rescue some of the
shorter fragments we checked whether the restriction enzyme cut-
ting site was found within unaligned reads. In such a case the end of
the read was trimmed at the restriction enzyme cutting site and
alignment was attempted again.

We then generated a fragment reference and mapped the aligned
reads to these fragments as described in Sections 2.1.1 and 2.1.3.

For quality control, the percentage of reads mapping to valid
fragments from all aligned reads was calculated. For our data this
value was around 70-95% in most cases. A value in that range
should be obtained for a 4C library. If the percentage is much
smaller, the first region that should be investigated is the region
around the viewpoint, where a single fragment can pile up a high
percentage of the reads. Other possible reasons for low mapping
percentages might be reads that map either to invalid fragments,
which have been removed from analysis, or to new fragments, cre-
ated by mutations relative to the reference genome.

To check whether technical and biological replicates gave a simi-
lar signal, scatter plots of the replicates were generated. For our
dataset, these plots showed good agreement for higher count values
in most cases. However, at lower count values, the replicates
showed higher relative variation, as is expected from Poisson noise.
An example is shown in Figure 3.

3.2 Detecting interactions

First, to reduce noise in the data, we removed fragments that had
less than a median of 40 counts across all samples for one viewpoint.
Second, we set aside fragments that were too close to the viewpoint,
because the high ligation frequencies seen for these fragments tend
to obscure any specific signal. The package used a heuristic to iden-
tify the boundaries of this masked out region around the viewpoint
as those fragments where the observed signal for the first time
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increased between successive fragments. The parameters of the vari-
ance-stabilizing transformation were fitted on the count values of
the remaining fragments (Fig. 4). Next, the decay trend was fitted
on the transformed scale using a monotone symmetric fit. The fit is

o -

log2 fold change
0
1
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-3

T T T T T T T T T
50 100 500 2000 10000
Mean 4C signal

Fig. 6. MA plot of the apterous CRM viewpoint 4C profile comparison be-
tween Drosophila embryo mesoderm tissue and whole embryo 6-8 h after
fertilization. The y-axis shows the difference between log interaction counts
for a given fragment which is plotted against the average log interaction
counts per fragment on the x-axis. Red dots represent fragments that show
differential interactions (p-adjusted < 0.01)

shown in Figure 5. z-scores and associated P-values were calculated
from the fit residuals. Interactions were found by looking for
fragments with z-scores larger than 3 in both replicates and an ad-
justed P-values smaller than 0.01 in at least one replicate. Figure 7
shows the results for one of the viewpoints in our dataset, which
is located in a CRM close to the apterous (ap) gene. The
fragments that showed an interaction are highlighted by red or
orange dots.

In mesoderm specific and whole embryo tissue at 6-8 h after fertil-
ization the interaction of the viewpoint with the ap gene promoter on
the right side of the viewpoint was captured. Further interactions were
found as well, but could not be directly attributed to a specific genomic
element. In general, we were able to detect interactions between 10
known enhancer-promoter pairs and many more interactions through-
out the set of 103 viewpoint (Ghavi-Helm ez al., 2014).

3.3 Differences between conditions

To detect differences between conditions, we used the method
described in Section 2.3. Figure 6 shows the MA plot comparing
mesoderm tissue and whole embryo for Drosophila embryos 6-8 h
after fertilization, and an along-genome visualization of the results
for the same viewpoint is shown in Figure 7. Fragments that had an
adjusted P-value of less than 0.01 in the Wald test are highlighted by
blue points, or by orange points, if they additionally were called as
an interaction in the depicted sample.

5 2

e %'10.

w

2 3 s

= O

o

it

8

o

=

g

o

8

o

1)

w

=

-

N

o

8|

o

%)

w

=

g
S
2
T 24¢
S o8 -O~:. \‘ Mo 00 oo ..S. o .:. ° ) P 2 e e 0ge
T g4 s 4% [ oA o > 80 Pe 900 ¢ 8 0 o
2 o.-.J. e NVERG b oW Fre ot "’%‘:‘-,os‘o{‘:.\.s:n"ﬁ.{c'.(":”.:.'o*...q.".°
-2+ L4
o

genes
——

H-E 1 I i

' '
1500000 1550000

' '
1600000 1650000

Genomic position
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z-score >3 in both replicates and p-adjusted < 0.01 for at least one replicate are shown as red or orange points. Fragments represented by orange points addition-
ally show a differential interactions (p-adjusted < 0.01, differential Wald test). Differential changes in the contact profile that are not called as interactions are
shown as blue points (p-adjusted < 0.01, differential Wald test). The color bar below the 4C profiles shows whether the upper condition (green) or the lower condi-
tion (red) has the higher signal for the detected differences (p-adjusted < 0.01). The calculated log2 fold change of the differential testing per fragment are shown

above the track at the bottom, which shows the gene model of the region
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In general one can observe that the effect sizes for differential
changes are very small, and the overall pattern of the interaction
profiles remains largely unchanged, as we recently reported (Ghavi-
Helm et al., 2014). Only 6% of identified interactions showed evi-
dence of interaction changes across time and tissue context (Ghavi-
Helm et al., 2014). However, for the strong interaction at the ap
promoter we estimated a fold change of 2.25 between the condi-
tions. Stronger contacts in the mesoderm tissue could be due to the
fact that the ap gene is only expressed in the mesoderm.

4 Discussion

Our approach to detect peaks is broadly similar to that of the
r3Cseq package (Thongjuea et al., 2013). However, while r3Cseq
performs the fit on raw count scale, we use a variance-stabilizing
transformation on the data to reduce biases deriving from the large
dynamic range of the count data. To detect specific interactions, we
fit the decay of the variance-stabilized 4C signal with distance from
the viewpoint and calculate z-scores from the fit residuals. With this
approach, we were able to detect long-range chromatin interactions
that spanned genomic distances > 100 kb in the compact Drosophila
genome (Ghavi-Helm et al., 2014). A direct comparison of r3Cseq
and FourCSeq on two mouse datasets from different labs, the Myb
data of Thongjuea et al. (2013) and the Ap2c data of Tsujimura et
al. (2015), is provided in Supplementary File S1. It shows that
r3Cseq is prone to over-calling interactions when the library has
good coverage, while FourCSeq identifies interactions between the
Tfap2c promoter and an annotated DNAsel hypersensitive region
containing a brain enhancer with high specificity. On the other
hand, for data with low agreement of fragment counts between
replicates—possibly due to high rates of PCR duplicates—the statis-
tical model FourCSeq does not call significant interactions, while
r3Cseq reports a large set of peaks.

Instead of only looking at fold changes from single or merged
samples between conditions as in r3Cseq, we make use of the frame-
work for differential expression analysis implemented in the
DESeq2 package to detect differences between groups of samples in
different experimental conditions. With this approach, we take the
variability between replicates of the data for each genomic position
into account for the quantitative comparison of the fragment counts
between conditions. The fold change between conditions is com-
pared with the variability of the data between biological replicates,
and differential interaction are called statistically significant only if
the observed fold change between conditions is significantly higher
than what it is expected based on the noise level in the data.

Our implementation allows the use of any FASTA file as refer-
ence genome. For example, the dm3 genome was used for the data
shown in Section 3. In contrast, the r3Cseq package is currently lim-
ited to the mm9, hg18 and hg19 genomes.

The method of van de Werken et al. (2012) uses a customized
approach for aligning reads to a reference of fragment ends. The re-
sulting coverage profiles can be further normalized and visualized
with the tool that they provide. The results are plots of contact pro-
files and contact domainograms generated by analyzing the data
with different window sizes. However, with this approach, compari-
sons between interaction profiles are only made qualitatively, and
no statistical framework is provided.

To integrate called interactions and differences with other gen-
omic data the results from our package can be used within the
Bioconductor framework of GenomicRanges (Lawrence et al.,
2013). Furthermore, we provide the possibility to export the

interaction profiles as bigWig files for visual inspection in a genome
browser along with other tracks of interest.

Our approach looks for localized, specific interactions and treats
large-scale patterns that decrease with distance from the viewpoint
as background (Section 2.2.3). In particular, changes in the back-
ground between conditions will be absorbed by the normalization
(2). Although these choices are reasonable for analyses such those
reported in Ghavi-Helm et al. (2014), studies that investigate large-
scale reorganization of chromosomal structure will need different
analytical approaches.

Potential for improvement might lie in methods that adjust the
4C signal for the influences of fragment size, GC content and mapp-
ability. Such models exist for Hi-C and ChIA-PET data (Imakaev
et al., 2012; Yaffe and Tanay, 2011). However, due to the much
smaller amount and viewpoint-centric nature of 4C data, the correct
estimation of these biases and deconfounding them from the domin-
ant distance-related effects is difficult. Moreover, in the differential
analysis of interactions, much of the per-fragment biases will cancel
out, as we essentially consider ratios.

Our method has been thoroughly validated in the course of the ana-
lysis of more than 100 viewpoints in the developing Drosophila em-
bryo. Positive controls of enhancer-promoter interactions were
confirmed, and several newly detected long-range interactions were vali-
dated by DNA-FISH (Ghavi-Helm et al., 2014). We calculated the over-
lap between the identified interactions of all viewpoints from this 4C
dataset and regulatory regions identified by DNasel hypersensitivity
sites (Thomas et al., 2011). This analysis showed significant enrichment
overlap compared with a background set (Ghavi-Helm ez al., 2014).

In summary, our package provides the tools to analyze 4C
sequencing data and integrate the results with other genomic fea-
tures. Its use will help to further investigate and understand the role
of chromatin 3D structure in biological processes such as gene regu-
lation and embryogenesis.
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