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The complexity of the functional proteome extends considerably beyond

the coding genome, resulting in millions of proteoforms. Investigation

of proteoforms and their functional roles isimportant to understand
cellular physiology and its deregulation in diseases but challenging to
perform systematically. Here we applied thermal proteome profiling with
deep peptide coverage to detect functional proteoform groupsinacute
lymphoblastic leukemia cell lines with different cytogenetic aberrations.
We detected 15,846 proteoforms, capturing differently spliced, cleaved

and post-translationally modified proteins expressed from 9,290 genes. We
identified differential co-aggregation of proteoform pairs and established
links to disease biology. Moreover, we systematically made use of measured
biophysical proteoform states to find specific biomarkers of drug sensitivity.
Our approach, thus, provides a powerful and unique tool for systematic
detection and functional annotation of proteoform groups.

Proteins are the functional units expressed from genes and ultimately
define the phenotype of cells. Through genomic variation (thatis,
mutations and single-nucleotide polymorphisms), alternative splicing
of transcripts, proteolytic cleavage, post-translational modifications
(forexample, phosphorylation, ubiquitination, acetylation and others)
and protein-protein interactions (PPIs), the complexity of the func-
tional proteome is expanded to millions of proteoforms'2. Therefore,
identification and functional characterization of proteoforms can
improve understanding of biological processes in health and disease.

Although global proteoform measurement is critical for achiev-
ing full proteome characterization and annotation, its realization is
stillhampered by technological and analytical limitations. Top-down
proteomics enables the precise characterization of proteoforms of
individual proteins®, and inference based on peptide-level data from
bottom-up proteomics has recently been established using different
approaches*’. In peptide correlation analysis (PeCorA)*, the pattern
across samples ofindividual peptides mappingtoaproteinis compared

to all other peptides to find differentially abundant peptides that
may reflect proteoforms. Correlation-based functional proteoform
assessment (COPF)’, however, aims to detect proteoforms supported
by multiple peptides using a combination of PeCorA and hierarchical
clustering, cutting obtained clusters to obtain a predefined number of
proteoforms per protein that are tested for significance and scored by
within versus across cluster correlation. However, these approaches,
although powerful, can be limited by proteome coverage or by avail-
ability and variability of sample conditions that distinguish different
proteoforms. Furthermore, proteoforms have been detected repre-
senting protein sequence and post-translational modification status
differences, but otherimportant variations of functional protein state,
including protein complex and metabolite associations, are difficult to
distinguishwithout specific targeted experimental methods and have,
therefore, been excluded from identification. Recent initiatives have
been proposed to define ahuman proteoform reference®®, and arefer-
ence map of proteoforms of human hematopoietic cells has recently
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been reported’, and additional efforts are underway to address these
gaps and improve knowledge of proteoforms.

Thermal proteome profiling (TPP) is a method originally devel-
oped for unbiased detection of drug targets in living cells® and, more
recently, tissues’ by monitoring the changes in the thermal stability
of proteins upon drug binding. It is implemented by applying the
cellular thermal shift assay (CETSA)'® on a proteome-wide scale using
multiplexed quantitative mass spectrometry™. Recent work has shown
that TPP can not only inform on drug-target engagement but also on
protein-nucleic acid”, protein—-protein® and protein—-metabolite
interactions' as well as metabolic pathway activity” and the func-
tional relevance of post-translational modifications'®. Moreover, it
has been found that cell-type-specific physiology is reflected in char-
acteristic proteome thermal stability profiles and canbe predictive of
drugresponses".

Here we introduce the application of TPP for the detection of
functional proteoform groups. We demonstrate this by applying TPP
to detectbiologically influenced melting differences without any drug
perturbationin 20 different B cell childhood acute lymphoblastic leu-
kemia (cALL) celllines, representing various disease subtypes defined
by characteristic chromosomal rearrangements. Incombination with
high-resolutionisoelectric focusing fractionation (HiRIEF)'$, we meas-
ured thermal stability with unprecedented peptide coverage per gene.
This aspect was exploited to infer functionally relevant proteoform
groupsinanunbiased manner, capturing differently spliced, modified
or cleaved proteins expressed from the same gene. We linked differ-
entially thermally stable proteoform groups across cell lines with the
developmental stage of the cell of origin and the genetic subtypes of
the cALL samples. Moreover, we analyzed differential co-aggregation
of pairs of proteoform groups across the different cALL cell lines and
linked co-aggregation to disease biology. Lastly, we systematically
made use of measured biophysical proteoformsstates to find biomark-
ers for cell line sensitivity to 528 oncology and investigational com-
pounds. The results of protein and proteoform group melting can be
explored and used for hypothesis generation in auser-friendly online
tool at https://www.proteomics.se/deepmeltome/.

Results

Deep thermal profiling assigns peptides to proteoforms

To systematically measure the melting behavior of proteins in cALL
cell lines representing different molecular subtypes, we performed
temperature-range TPP® with eight temperatures per sample and
multiplexed two cell lines at a time using TMTpro'**° (Supplementary
Table 1). We profiled cell lines that reflect different cALL subtypes, as
defined by diverse genomic rearrangements, a balanced mix of female
and male donor patients and different B cell developmental stages of
origin (Fig.1a). Intotal, weidentified 243,929 unique peptides mapping
to 16,094 gene symbols across cell lines with similar global melting
profiles (Fig. 1b and Supplementary Fig. 1). We obtained deep peptide
coverage per gene symbol (Supplementary Fig. 2a) by measuring a
total of 114 HiRIEF fractions per sample by liquid chromatography with
tandem mass spectrometry (LC-MS/MS) analysis'®.

As expected for proteoforms with different cellular functions,
we observed that peptides mapping to a single gene symbol often
formed groups with distinct thermal stability patterns. In fact,
grouping of peptides by thermal stability reflected annotated pro-
teoforms for individual proteins (illustrative examples in Supple-
mentary Fig. 2b,c). We, thus, exploited clustering of similar peptide
melting profiles by developing a method—pepnet—to assign pep-
tides to different proteoforms without relying on their annotation
(Fig. 2a). To do so, we filtered our dataset to contain only peptides
that had beenidentified and quantified in at least two cell lines and
computed pairwise similarities between all melting curves of pep-
tides mapping to the same gene symbol. Then, for each gene symbol,
afully connected graph was constructed based on respective peptide

similarities, and clusters were detected using the Leiden algorithm.
We accepted all recovered clusters supported by at least three unique
peptidesand modularity Q >1x 10, which was found to control the
false discovery rate (FDR) at 10% when evaluating our method on
simulated datasets (Supplementary Fig. 3). Thisresulted in detection
of 15,846 functional proteoform groups of 9,290 genes, with most
genes being represented by one (44%) or two (44%) and a maximum of
five proteoformgroups (Supplementary Fig. 4a and Supplementary
Datal). Asexpected, our derived proteoforms showed higher modu-
larity than Ensembl annotated ones (Supplementary Fig. 4b), sug-
gesting that this approach extends delineation of proteoforms in
comparison to existing annotations, with 23% of detected proteo-
form groups reflecting currently annotated proteoforms (illustra-
tive examples in Supplementary Fig. 5a,b). Proteins with detected
proteoform groups were analyzed in terms of different features, such
assubcellular localization, length, protein abundance and half-life,
and compared to proteins with known isoforms (Supplementary
Fig. 6a-s). We found that globally similar trends were observed
for these parameters between proteins with detected proteoform
groups and those with annotated isoforms, except for protein
abundance and length-normalized peptide coverage. When exam-
ining detected proteoforms in detail, we confirmed our approach
by identifying proteoforms representing previously described
cases of alternative splicing and proteolytic cleavage. For example,
lamina-associated polypeptide 2 (TMPO) is a protein known to be
expressed in several isoforms generated via alternative splicing. Two
functionally important isoforms, alpha and beta, share acommon
N-terminus but differ in their C-termini*. The TMPO alpha isoform
associates with chromatin in a cell-cycle-dependent manner, and
TMPO beta isoform associates with the inner nuclear lamina via a
transmembrane domain and facilitates lamin-mediated structural
organization of chromatin (Fig. 2b)*. Using our proteoform detec-
tion method, we found two distinctly melting proteoforms for TMPO
(Fig. 2¢). We used an antibody recognizing the TMPO N-terminus
to confirm differential melting for bands at molecular weights cor-
responding to alpha and beta isoforms (Fig. 2d). Furthermore, we
observed that most peptides assigned to proteoform 1 (TMPO_1)
were specifically mapping either to the sequence of the TMPO beta
isoform or to the joint N-terminus of both isoforms (Fig. 2e). Thus,
our method successfully detected the TMPO alpha and betaisoforms
solely by considering the melting profiles of the peptides across cell
lines mapping to the respective gene symbol.

In another example, we identified two proteoforms of the zinc
phosphodiesterase ELAC2 (Fig. 3a,b), an enzyme known to localize
to the nucleus and to mitochondria®. Although ELAC2_2, compris-
ing an unmodified peptide covering serine 199 (S199), showed a pro-
file similar to the median peptide signal per gene symbol, ELAC2_1
displayed a pattern (Fig. 3c) reminiscent of a differentially melting
proteoform phosphorylated on S199 that we observed in a previous
study using a phosphoTPP experiment (Fig. 3d)". To corroborate
ELAC2_1as the pS199 phospho-proteoform of ELAC2, we queried our
dataset against the human database, this time including phospho-
rylation as a modification. In fact, we found a peptide capturing the
pS199 site of ELAC2 that showed a thermal stability pattern similar to
ELAC2_1and the pS199 phospho-proteoform identified in the phos-
phoTPP experiment (Supplementary Fig. 7). Therefore, our proteo-
form detection approach successfully identified post-translationally
modified subpools of the same protein without the need for
peptide enrichment.

In addition to these examples, we found several cases of proteo-
formsthatresulted from proteolytic cleavage—for example pre-saposin
(PSAP) (Supplementary Fig. 8a-d) and NOTCHI1 (Supplementary
Fig. 8e-g). These results are also in agreement with previous studies
that established the existence and biological relevance of these pro-
teoforms, further validating our approach.
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Fig.1| Characteristics and thermal profiles of cALL cell lines in this study. a, Alluvial diagram representing profiled cell lines and their characteristics. b, Exemplary
average melting profiles across all peptides identified and quantified in the cell lines 697, KASUMI-9 and REH after normalization.

Taken together, the peptide-level TPP data and the new proteo-
form detection algorithm allowed us to identify different proteo-
formsthat reflected known functional characteristics of the respective
proteins.

Proteoform thermal stability reflects B cell biology

Thermal stability of proteins can vary across cell lines, reflecting
genomic variation, specific protein interaction networks and differ-
ential pathway activity”. To explore this aspect, we sought to identify
differential thermally stable proteoforms across our samples. To do so,
we performed non-parametric analysis of response curves (NPARC)**
to find differences across the 20 cALL cell lines (illustrated by NEK2
kinase peptide profiles in Fig. 4a). This allowed us to detect 1,408 pro-
teoforms with differential melting curves (90% percentile of observed
F-statistics, aheuristic based on the observed reproducible differences
at this cutoff rather than a concrete error rate control that was not
readily applicable here) across the profiled cell lines (Fig. 4b and Sup-
plementary Data2). A similar analysis at the proteinlevel leads to alower
overall F-statistic per protein symbol (median = 8.30, compared to 9.17
when performed at the proteoformgroup level). Thisindicates that our
grouping enables us to detect differences between some proteoforms
thatarehiddenatthe proteinlevel. Amongthe top hits of the analysis,
we found a proteoform of p53 (TP53_1), a tumor suppressor protein,
and fructose-1,6-bisphosphatase 1 (FBP1_1), a rate-limiting enzyme
of gluconeogenesis (Supplementary Fig. 9a). For the NPARC hits, we
sought to identify potential mechanisms behind differential melting of
these proteoforms and, therefore, annotate differences in proteoform

functional roles in different cell line backgrounds. Although the dif-
ferential thermal stability of TP53_1 could be related to altered protein
interactions (see nextsection), inthe case of FBP1_1the higher thermal
stability of the cluster of proteoform peptides was associated with high
FBP1proteinabundanceinrespective cell lines (P=3.3 x 107, two-sided
Welch two-sample ¢-test on protein fold changes; Supplementary
Fig. 9b). However, as we did not observe global correlation between
thermal stability and abundance (Supplementary Fig. 9¢), these data
suggested a specific effect linked to higher FBP1 activity in these cell
lines. Previous studies had shown that cell lines with high FBP1 abun-
dancedisplay activation of the pentose phosphate pathway, resulting
in chemotherapy resistance and poor clinical outcome in acute myeloid
leukemia®. Inagreement with these observations, we found higher ther-
malstability of all proteoforms of glucose-6-phosphate dehydrogenase,
therate-limiting enzymein the oxidative pentose phosphate pathway,
inthe celllines with high thermal stability of FBP1_1, although not all of
them were significant (Supplementary Fig. 9d). Thisillustrates how our
data can be used to identify functional links based on the differential
thermal stability of proteoforms.

Another protein with differential thermal stability across cell lines
was the DNA nucleotidylexotransferase proteoform1(DNTT_1),aDNA
polymerase that adds random nucleotides to thejunction of rearranged
immunoglobulin chains during B cell maturation®. We identified strik-
ingly distinct melting profiles (Fig. 4c) that were associated (P= 0.036,
Fisher test) with the B cell progenitor origin of the acute lymphoblastic
leukemia cell lines”. DNTT diversifies the variable region of the Ig-light
chain during the pre-B stage and diversifies Ig-heavy chain variable
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regions during the pro-B stage®®”. Thus, higher thermal stability may
indicate differences in DNTT-DNA binding dynamics between the
developmental stages.

We also found that INPP4B_1, a proteoform of INPP4B, a protein
and lipid phosphatase that antagonizes the PI3K/Akt signaling path-
way’?, showed higher thermal stability in cell lines of the TCF3-PBX1
subtype (P=0.017, two-sided Wilcoxon rank-sum test on area
under the melting curves; Fig. 4d). INPP4B has also been shown to
be involved in maintaining genomic integrity through associations
with RAD50 in the nucleus, and loss of INPP4B was shown to sensitize
cells to PARP inhibition®. We observed that TCF3-PBX1 fusion cells
had decreased INPP4B abundance at baseline” (P = 0.039, two-sided
Welch two-sample ¢-test on protein fold changes) and were selec-
tively sensitive to the PARP inhibitor talazoparib (P = 0.011, two-sided
Welch two-sample t-test on selective drug sensitivity scores (sDSS)”).
This suggests that this proteoform is associated with sensitivity to
drug treatment that reduces genomic stability, which could impli-
cate nuclear relocalization in the cell lines with observed high
thermal stability.

Overall, we detected hundreds of examples of proteoforms with
differential thermal stability in the cALL cell lines studied. Because
thermal stability reflects the state and activity of proteinsinacomple-
mentary way to traditional abundance proteomics'>", these examples
pinpoint pathway activation status and reveal new candidate bio-
markers for therapy.

Co-aggregationindicates differential proteoform
interactions

Melting curves of interacting proteins (PPIs) or complex members have
been shown to often coincide, a feature attributed to co-aggregation
of the respective interactors®. Recently, we exploited this concept to
test for differential co-aggregation of protein interactors between
two conditions®. Here, we adapted this approach to a robust multi-
group comparison (Fig. 5a) to detect differential proteoform-proteo-
forminteractions (PFPFIs) across the profiled cALL cell lines using an
extended PPlannotation of the STRING database®. Benchmarking the
PPl prediction of deep TPP versus the size-exclusion chromatography
coupled to mass spectrometry (SEC-MS) dataset>* showed a slightly
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inferior predictive power for our deep TPP approach (Supplementary
Fig.10).Intotal, we tested 2,901 PFPFIs, which showed co-aggregation
inatleastone of the celllines, for differential co-aggregation across cell
lines. We considered PFPFIs within the top 10% of obtained F-statistics
(290 PFPFIs) as significantly differential across cell lines (Fig. 5b
and Supplementary Data 3). Among those cases, we identified several
examples of differential intra-complex PFPFIs, potentially reflecting
varying degrees of complex assembly or activity across the profiled
cell lines (Supplementary Fig. 11a-e).

One differentially co-aggregating proteoform pair was MDM2_2
and TP53_1 (Supplementary Fig. 11e). MDM2 is an E3 ubiquitin ligase
that is known to ubiquitinate the tumor suppressor p53 and, thus,
promote its degradation®. Furthermore, MDM2 is often upregulated
indifferent cancers, leadingtoincreased degradation of p53, resulting
in uncontrolled cell division®®. We, thus, wondered whether cell lines
inwhich MDM2_2 and TP53_1 co-aggregated, which we interpreted as
a sign of MDM2 binding to p53 and promoting its degradation, were
more susceptible to MDM2 inhibition than other cell lines. Indeed,
thetwo cell lines that featured co-aggregation of MDM2_2and TP53 1,
LC4-1and P30-OHKUBO, showed higher sensitivity to idasanutlin, an
MDM2inhibitor, compared to other cell lines (P= 0.02, two-sided Welch
two-sample t-test; Supplementary Fig. 9f). Additionally, when examin-
ing TP53 and MDM2 mutation status in the DepMap sequencing data-
set”, these cell lines featuring co-aggregation of the two proteoforms
did not have mutations in the respective proteins, whereas other cell
linesincluded both mutated and unmutated genotypes. This showcases
how our strategy can reveal functionally relevant connections between
proteins and use them to generate hypotheses on drug sensitivity.

We also found the differentially co-aggregating proteoform pair
CXXC1_2 and SETD1A_3 (Fig. 5¢). SETD1A is a SET domain containing
histone methyltransferase, which has been reported to mediate DNA
damage response’®, and CXXC1was found to regulate SETD1A activity™.
We hypothesized that co-aggregation of CXXC1_2and SETD1A_3 could
reflect an ongoing DNA damage response in respective cell lines.
In fact, comparing RNA sequencing (RNA-seq) profiles” of cell lines
with co-aggregating versus differential CXXC1_2 and SETD1A_3 melt-
ing profilesrevealed that the gene set ‘p53-Independent DNA Damage
Response’ was significantly enriched among upregulated genesin cell

lines that featured co-aggregation of this proteoform pair (Fig. 5d).
We further asked whether these cell lines showed altered sensitivity to
DNA damage-inducing drugs, such as nucleoside analogs. Consistent
with this hypothesis, we observed significantly higher sensitivity to
the nucleoside analogs and hypomethylating agents azacitidine and
decitabine for celllinesin which CXXC1_2 and SETD1A_3 co-aggregated
(Fig. 5e).

Taken together, we present an approach for the detection of
differentially co-aggregating pairs of proteoforms and show that
some of these altered interactions can be linked to activity of
cellular processes and drug response.

Proteoform thermal stabilities as drug response biomarkers

Encouraged by the observed associations between pathway activity
(reflected in protein thermal stability) and drug sensitivity, we sought
to generalize this principle across a larger drug panel—namely, the
528 drugs used in our previous study”. By using limma*° to corre-
late previously published sDSSs” of 378 drugs with a minimal effect
cutoff on any of the profiled cell lines (sDSS > 6) with all previously
determined 1,408 differentially thermally stable proteoforms
(Fig. 6a), we retrieved 26 significant drug-proteoform thermal sta-
bility associations (P, < 0.1, Benjamini-Hochberg method) (Fig. 6b
and Supplementary Data4). Among these, we found thermal stability
of CRKL_1to be positively correlated with sensitivity to the BCR-ABL
inhibitors imatinib, asciminib and bafetinib (Fig. 6b, ¢). CRKL is an
adapter protein downstream of ABL1 that is phosphorylated upon
activation of ABLI1 (ref. *'). Previously, it was observed that CRKL was
thermally destabilized upon treatment with dasatinib, another BCR-ABL
inhibitor®. Inversely, thermal stabilization of CRKL appears to be related
to active ABL1 signaling, which is in line with a positive correlation
of sensitivity to BCR-ABL1 inhibitors (Fig. 6¢c and Supplementary
Fig. 12). Moreover, we found that cell line sensitivity to several
anti-mitotic drugs was negatively correlated with figetin-like pro-
tein (FIGNL1) proteoform 1 (FIGNL1_1) thermal stability (Fig. 6b and
Supplementary Fig. 13a-f). FIGNL1is involved in DNA double-strand
repair via homologous recombination*’. Because FIGNL1_1 thermal
stability was negatively correlated with FIGNL1 protein abundance
(p=-0.64, P=0.0025), high FIGNL1_1 thermal stability could reflect
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profile of INPP4B_1across cell lines color-labeled by cell line genomic aberration
subtype.

active engagementin the FIGNL1-containing complex to resolve DNA
double-strand breaks. Indeed, correlation of FIGNL1_1 thermal stability
with anti-mitotic drug sensitivity (p =-0.9 and p = -0.86 for eribulin
andvinorelbine, respectively) was stronger than for FIGNL1 abundance

(p=-0.7and p =-0.68foreribulin and vinorelbine, respectively). Fur-
thermore, the proteoform FIGLN1_2 did not correlate significantly with
drugsensitivity (Supplementary Fig.13g-i), suggesting a specificrole
for FIGLN1_1. Thus, high activity of the FIGNL1_1-containing complex
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Fig. 5| Differential proteoform co-aggregation analysis. a, Schematic of the
performed analysis. To obtain robust results, the F-statistic is computed based
onthe difference of the second highest (RSS,-;)) and second lowest (RSS,,))
residual sum of squares between the two proteoforms in all cell lines. b, Volcano
plot of the results of the analysis. RSS,;,— RSS, represents the effect size—that
is, the difference between the profiles of proteoform A and Bin the cell line

with the second highest and second lowest distance. ¢, Profiles of CXXC1_2 and
SETDI1A_3 across cell lines showing their co-aggregation in some cell lines (gray
background) and differential melting (white background) in other cell lines.

d, Enrichment plot for genes part of the ‘p53-Independent DNA Damage

Euclidean distance CXXC1_2:SETD1A_3 < 0.1

Response’ set based on differentially expressed transcripts between cell lines
with co-aggregation of CXXC1_2 and SETD1A 3 versus all others (NES = 1.82;

P,4. = 0.01, Kolmogorov-Smirnov test with Benjamini-Hochberg method for
multiple testing adjustment). e, Box plots of drug sensitivity of cell lines with
CXXC1_2and SETDI1A_3 co-aggregation (n =11) versus all others (n = 8) to two
different nucleoside analogs. The Pvalues shown were obtained from a two-sided
Welch two-sample t-test. Center lines in all box plots represent the median; the
bounds of the boxes are the 75th and 25th percentiles—that is, the interquartile
range; and the whiskers correspond to the highest or lowest respective value.

could lead to reduced mitotic exit at cell cycle checkpoints and may,
thus, explain lower sensitivity to anti-mitotic drugs.

Another interesting hit was the positive correlation of PIP4K2C_2
thermal stability with cell line sensitivity to the MDM2 inhibitor idasa-
nutlin (Supplementary Fig. 14a,b). Several PIP4K2 family members

were previously linked to promotion of tumorigenesis in the context
of p53 loss of function®. Thus, it appears plausible that high ther-
mal stability of PIP4K2C_2, potentially reflecting a higher fraction of
cofactor-bound protein pool, is associated with increased sensitivity
to MDM2 inhibition, as the related signaling pathway appears to lead
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Fig. 6 | Association of thermal proteoform stability to drug sensitivity across
cALL celllines. a, Schematic of the strategy to test for thermal proteoform
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totest for correlation between thermal stability and drug response; obtained
Pvalues were adjusted for multiple testing using the Benjamini-Hochberg
method. AUC, area under the curve. b, Volcano plot representing the results
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obtained from the limma linear modeling workflow depicted in a. ¢,d, Scatter
plot of CRKL_1and EPS8L2_2 thermal stability and cell line drug sensitivity to
imatinib and eltanexor, respectively. The Pearson correlation coefficient (p) is
shownin each scatter plot. The linear regression trendline (black) and its 95%
confidence interval (shaded gray area) are shown in the scatter plots.

only to cell growth in the absence of p53 function. The fact that the
correlation ofidasanutlin sensitivity to PIP4K2C abundance is weaker
and positive rather than negative (Supplementary Fig. 14¢), and that
stability of other PIP4K2C proteoforms is also strongly correlated to
drugresponse (Supplementary Fig. 14d-f), reinforces the notion that
thermal stability gives amore functional readout of protein state than
measurements of protein abundance.

Finally, we detected a positive correlation between EPS8L2_2
(epidermal growth factor receptor kinase substrate 8-like protein 2)
with eltanexor (Fig. 6¢), a nuclear export inhibitor. EPS8L2 is known
to form acomplex with SOS1and ABI1, whichisinvolvedin regulating
actinremodeling*‘. The observed correlation was specific to thermal
stability and to the EPS8L2_2 proteoform (Supplementary Fig.15a-d).
Toinvestigate how high EPS8L2_2 thermal stability could confer sensi-
tivity to nuclear exportinhibition, we performed a differential expres-
sion analysis between cell lines with high and low EPS8L2_2 thermal
stability. When performing Gene Ontology (GO) molecular function
enrichment analysis on the transcripts upregulated in cell lines with
high EPS8L2_2 thermal stability, we found a significant enrichment
(P,g;. < 0.1) of the terms “actin binding’, ‘antigen binding’” and ‘immu-
noglobulin receptor binding’. This may indicate that high EPS8L2_2
could reflect actin remodeling in response to B cell receptor (BCR)
activation®. It was shown previously that nuclear exportinhibition sup-
presses downstream effects of BCR signaling in chronic lymphocytic
leukemia®¢; therefore, it is plausible that eltanexor treatment may be

effective ina subset of acute lymphoblastic leukemias relying on BCR
signaling for proliferation.

Discussion

CETSA and TPP were developed with the primary goal of detecting
protein targets of drugs®'°. However, it has been realized that these
methods can also detect other sources of protein biophysical vari-
ation that are difficult to quantify with other proteomics methods,
including protein interactions with other biomolecules”. Since the
adaptation of the method to infer functional phosphorylation sites'®,
it has also become clear that TPP bears the potential for detecting
post-translationally modified proteoforms. In the present study, we
performed TPP with unprecedented peptide coverage and general-
ized this concept to enable unbiased detection of co-existing func-
tional proteoform groups. The detected events of diversified protein
products comprise cases of alternative splicing, proteolytic cleavage,
post-translational modifications and variantsinteracting with metabo-
lites, proteins or DNA.

Previous efforts used linear models* or peptide correlation com-
bined with hierarchical clustering for detection of functional pro-
teoform groups from bottom-up proteomics datasets, such as full
proteome or size-exclusion experiments. However, underlying sample
conditions need toreveal proteoform differences at the level of protein
abundance for these methods to work. Furthermore, analysis methods
either have been designedto specifically detect single outlier peptides,
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inthe case of PeCorA, or require specification of the number of proteo-
forms expected per protein, in the case of the COPF algorithm’. Our
approach,instead, measures peptide thermal stability, which canreflect
any form of thermodynamic perturbation of a protein’s makeup or its
interactions. This has been shown toreveal various types of functional
proteoforms, suchas fusion events®, post-translational modifications',
differential PPIs and spliced and proteolytically cleaved isoforms.
Combining this readout across different cell lines further increases
robustness of the approach toward outlier peptides and sensitivity to
detect subtle differences between proteoforms. Our FDR-controlled
graph-based analysis strategy is able to flexibly decide how many func-
tional proteoform groups a protein has (fromasingle proteoformto any
number). It makes use of peptide profile similarity rather than correla-
tion, the latter being problematicin the context of TPP due to the high
inherent correlation of peptide melting curves. One of the limitations of
our strategy is thatit relies onidentifying aminimal number of peptides
per protein to detect proteoforms. Because longer proteins give rise
to more tryptic peptides, we are more likely to find proteoforms for
longer proteins (Supplementary Fig. 6). However, longer proteins are
also known to have more isoforms (Supplementary Fig. 6). Addition-
ally, we require different proteoforms of a protein to differ in thermal
stability by a certain temperature—with the analysis of our simulated
benchmark dataset revealing that the sensitivity of our method for
detection of proteoforms differing in melting temperature by less
than 4 °C depends on the peptide coverage and the intra-proteoform
peptide noise level (Supplementary Fig. 3c-e). We apply a filter for a
minimum of three peptides supporting afunctional proteoformgroup
asatradeoffbetween allowing detection of proteoforms with few sup-
porting peptides but reducing false positives supported only by outlier
peptides or missed cleavage peptides that share high sequenceidentity.
Moreover, the predictive power of deep TPP for inference of annotated
PPIs, althoughinformative oninteractions presentin live cells, is slightly
inferior to SEC-MS when considering the same number of observations
(Supplementary Fig.10). Lastly, the TMT multiplexed measurement of
eight deeply fractionated different heat treatment conditions in two
cell lines requires considerable MS time (-6 days); however, with the
constant advancements of more sensitive and faster instruments, we
think that this method will become amenable to even more research-
ersin the future and possibly, at some point, albeit in a more targeted
fashion, for the analysis of clinical samples. To enable cross-disciplinary
engagement with our results, we created aninteractive web application:
https://www.proteomics.se/deepmeltome/.

In conclusion, we show that performing TPP with high peptide
coverage allows for the detection of proteoform groups and simulta-
neous inference of functional aspects by revealing peptide sequence
coverage, differences in PPIs and associations with drug response.
By integrating thermal stability of proteoforms, transcriptomics and
drug sensitivity profiling data across cell lines, we demonstrate that
itis possible to identify biomarkers for cellular processes and drug
response. Thus, we think that deep TPP for proteoform detection is
abroadly applicable and complementary addition to existing tech-
nologies for delineating proteoforms and for supporting analytical
strategies interrogating proteoform composition and contribution
to cellular processes.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butionsand competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41589-023-01284-8.
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Methods

Cell cultivation

The 20 childhood B cell precursor acute lymphoblastic leukemia
(BCP-ALL) celllines used in this study were obtained from the Deutsche
Sammlung von Mikroorganismen und Zellkulturen (DSMZ, German
Collection of Microorganisms and Cell Cultures), the Children’s
Oncology Group*® Childhood Cancer Repository, the American
Type Culture Collection, the Japanese Collection of Research
Bioresources Cell Bank, the European Collection of Authenticated Cell
Culturesand the BancaBiologica e Cell Factory. RPMI11640 (AQmedia,
Sigma-Aldrich) or IMDM (Sigma-Aldrich) supplemented with either 10%
or20% FBS (Sigma-Aldrich),20 mM HEPES (Gibco/Life Technologies),
1 mM sodium pyruvate (Sigma-Aldrich), 1x MEM non-essential amino
acids (Sigma-Aldrich) and 1x penicillin-streptomycin (Sigma-Aldrich)
was preferably used. Cellline provider details, culture conditions and
growth media are also described in Supplementary Table1and in our
previous study?. Cell lines were grown at 37 °C and 5% CO, to a cell
density of approximately 1-2 million cells per milliliter. Cells were
harvested at 500g for 3 minutes and washed twice with HBSS (Gibco;
no calcium, nomagnesium and no phenol red).

Sample preparation for LC-MS/MS

TPP of the cell lines. Freshly washed cells were resuspended to a
density of 100 million cells per milliliter in HBSS and distributed as
aliquots of 10 million cells into eight 0.2-mI PCR tubes. Tubes were
heated in parallel for 3 minutes to 41, 44, 47, 50, 53, 56, 59 and 63 °C,
followed by a 3-minute incubation time at room temperature. After-
wards, cells were flash-frozen in liquid nitrogen.

Digest and TMT labeling

Lysis was performed by five freeze-thaw cycles using a 25 °C heat-
ing block and liquid nitrogen. Cell debris and precipitated proteins
were removed by centrifugation at 21,000g and 4 °C for 40 minutes.
Supernatants were transferred to new tubes, and protein concen-
trations were determined using the DC protein assay according to
standard protocols provided by the kit manufacturer (Bio-Rad). Equal
volumes of soluble protein supernatants were transferred to new
tubes and subjected to in-solution digestion. First, the samples were
supplemented with reagents to contain afinal concentration of 50 mM
TEAB, 0.1% SDS and 5 mM TCEP. Reduction was performed at 65 °C for
30 minutes. Samples were then cooled down to room temperature
and alkylated with 15 mM of chloroacetamide for 30 minutes. Proteins
were digested overnight with 1:40 Lys-C (Wako Chemicals)-to-protein
ratio. Consecutively, trypsin (Thermo Fisher Scientific) was added ata
1:70 enzyme-to-proteinratio for an 8-hour incubation at 37 °C. Finally,
the same amount of trypsin was added one more time for an over-
nightincubation. Resulting peptides were labeled by 16-plex TMTpro
tags (TMTpro, Thermo Fisher Scientific) using the same amount of
respective label for each sample. Eight melting points of two randomly
selected celllines were combined ineach TMT 16-plex set. The protein
amounts were adjusted to contain the same total protein amount for
all cell lines throughout the TMT sets. An overview of the sets is given
in Supplementary Table 1. Labeling was performed according to the
manufacturer’sinstructions but with 2-hour incubation before quench-
ingthe TMT labeling reaction. Labeling efficiency was determined by
LC-MS/MS before mixing the TMT-labeled samples. Sample cleanup
was performed using solid-phase extraction Strata-X-C SPE columns
(Phenomenex). Purified peptides were dried in a vacuum centrifuge.

HiRIEF of peptides

The pre-fractionation method was applied as previously described®.
Sample pools of 300 pg were subjected to peptide IEF-IPG (isoelectric
focusing byimmobilized pH gradient) ina pHrange of 3-10 and 3.7-4.9,
respectively. Dried peptide samples were dissolved in 250 pl of rehydra-
tionsolution of 8 Murea containing 1% IPG pharmalyte pH3-10 or 2.5-5,

respectively (GE Healthcare) and allowed to adsorb to the gel bridge
strip and the 24-cmlinear gradient IPG strips (GE Healthcare) by swell-
ing overnight. After focusing, the peptides were passively eluted into
72 contiguous fractions with MilliQ water/35% acetonitrile (ACN)/35%
ACN +0.1% formic acid (FA) using anin-house-constructed IPG extrac-
tion robot (GE Healthcare Bio-Sciences AB, prototype instrument) into
a96-well plate (V-bottom, Greiner, 651201), whichwerethendriedina
SpeedVac. The resulting fractions were dried and kept at —20 °C.

LC-MS/MS runs of the HiRIEF fractions

Online LC-MS was performed using a Dionex UltiMate 3000 RSLC-
nano System coupled to a Q-Exactive HF mass spectrometer (Thermo
Fisher Scientific). Each fraction was subjected to MS analysis. Samples
were trapped on a C18 guard-desalting column (Acclaim PepMap
100, 75 um x 2 cm, nanoViper, C18, 5 um, 100 A) and separated on a
50-cm-long C18 column (EASY-Spray PepMap RSLC, C18,2 um, 100 A,
75 um x 50 cm). The nano capillary solvent A was 95% water, 5% DMSO
and 0.1% FA; solvent B was 5% water, 5% DMSO, 95% ACN and 0.1% FA.
At a constant flow of 0.25 pl min™, the curved gradient went from 2%
Bup to40%Bineachfraction, as shownin Supplementary Data 5, fol-
lowed by a steep increase to 100% B in 5 minutes. FTMS master scans
with 60,000 resolution (and mass range 300-1,500 m/z) were followed
by data-dependent MS/MS (35,000 resolution) on the top five ions
using higher-energy collision dissociation at 30% normalized collision
energy. Precursors were isolated with a 1.2-m/z window. Automatic
gain controltargets were1x 10®for MS1and1 x 10° for MS2. Maximum
injection times were 100 ms for MS1 and 100 ms for MS2. Dynamic
exclusion was set to 30-second duration. Precursors with unassigned
charge state or charge state 1 were excluded. An underfill ratio of
1% was used.

Analysis of LC-MS/MS runs

Orbitrap raw MS/MS files were converted to mzML format using
msConvert from the ProteoWizard tool suite®. Spectra were then
searched using MSGF+ (v10072)*° and Percolator (version 2.08)",
where search results from eight subsequent fractions were grouped
for Percolator target/decoy analysis. All searches were done against
the human protein subset of Ensembl 99 in the Galaxy platform®2
MS-GF+ settings included precursor mass tolerance of 10 ppm, fully
tryptic peptides, maximum peptide length of 50 amino acids and
a maximum charge of 6. Fixed modifications were TMTpro 16-plex
on lysines and peptide N-termini and carbamidomethylation on
cysteine residues, and a variable modification was used for oxidation
on methionine residues. Quantification of TMTpro 16-plex reporter
ions was done using IsobaricAnalyzer (version 2.0) of the OpenMS
project®. Peptide-spectrum matches (PSMs) found at 1% FDR were
used toinfer geneidentities. Protein quantification by TMTpro 16-plex
reporter ions was calculated using TMT PSM ratios. The median PSM
TMT reporter ratio from peptides unique to a gene symbol was used
for quantification. Protein FDRs were calculated using the picked
FDR method using gene symbols as protein groups and limited
to1%FDR™.

Data pre-processing and proteoform detection

Quantitative reporterion signal for PSMs was summarized on peptide
level by summation. Reporterionsignals of allindividual temperatures
were normalized using variance stabilizing normalization® and con-
verted to fold changes relative to the first temperature. Next, to assign
similarly melting peptides found to map to a certain gene symbol,
a graph for each gene symbol was created connecting all peptides
(vertices) with weights (edges) corresponding to their similarity in
melting profile. The similarity was computed with

Sj=——. )
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where d; is the weighted Euclidean distance between two peptides
acrossall cell lines:

- R K K.Y
dy =2 X (e =) (©)

where x{jk represents the fold change of peptide and respectivelyin cell

linen atjtemperature k,and vrepresents the number of valid compari-
sons—thatis, #( is the fraction of fold changes without missing values
of either peptide. Obtained graphs were then used for community
detection using the Leiden algorithm®®; however, only gene symbols
for which at least ten peptides were identified and with at least two
peptides per sample were subjected to this analysis (a detected com-
munity had to be supported by at least three peptides to be accepted
to ensure that outlier peptides did not affect robust proteoformiden-
tification). Peptides mappingto gene symbols for which these criteria
were not fulfilled were grouped to single proteoforms, and peptides
mappingto gene symbols that wereincluded in the community detec-
tion were assigned to proteoform groups if the modularity of the
detected communities was higher than1x 10 and the peptide ambi-
guity ratiowas lower than 0.5 (for peptides mapping to multiple genes,
itis calculated as the number of ambiguous peptides divided by the
sum of the number of gene-specificand ambiguous peptides). Modu-
larity was computed using the function modularity() of the igraph R
package. Through the assignment of peptides to communities, func-
tional proteoform groups for each gene symbol were created. Sum-
marization on proteoform group level was performed by summation
of non-normalized raw peptide data assigned to individual communi-
ties. Obtained proteoform ssignal intensities were then normalized per
temperature using variance stabilizing normalization, and relative fold
changesto the lowest measured temperature were formed.

Differential melting curve analysis

All functional proteoform groups detected in at least ten cell lines
were fitted by a sigmoid function for each cell line individually.
The sigmoid was fit using the NPARC R package implementation,
whichisdefined as

1-p

fn= 1+exp(b— 5;)

+p, 3)

where T represents the temperature; p represents the plateau; and
a and b are parameters affecting the slope and inflection point of the
curve®* . Fits forindividual cell lines (alternative model for the NPARC
method) were accepted if they had a residual standard deviation of
S,s < 0.1(forexample, Supplementary Fig.16), because high residuals
duetoasingle cellline could hinder the detection of differential melt-
ing profiles in other cell lines. The residual sum of squares (RSS) was
computed across cell lines as RSS® RSS® = ¥V ¥ (f(T,,k)(D - x,,k)

and melting points (f(T,,) = 0.5), and areas under the melting curve were
computed for accepted fits of cell-line-specific proteoform thermal
profiles by integration of the fitted sigmoid formulas. Null models
were fit using the same sigmoid model (4) for each proteoformacross
all cell lines for which an alternative model fit was accepted. The null

2
model RSS was computed asRsS® = y°_ ¢ (f(Tnk)(O) - x,,k) .Based
ontheRSS of both models, an F-statistic was computed with

_ RSS©@ —RSS® d,

N 4
RSS© d, @

wherethe degreesof freedom d; = v, — vsand d, = p; — v, Withp;, u,and
v, representing the number of observations for proteiniand the num-
ber of parameters of the null and alternative model, respectively*.

Proteoforms with an F-statistic above the 90th percentile were consid-
ered to have differential melting across cell lines. The rationale of
considering this threshold for considering proteoforms differentially
thermally stable across cell lines is the observation that, due to the
heterogeneity across cell lines, most proteoforms do not reflect the
expected distribution under the null hypothesis. However, this is
assumed by the NPARC approach, which uses an empirical null model
to infer significant deviance from the null. Although not controlling
FDRatafixed threshold, we chose this threshold, because proteoform
groups withan F-statistic above the 90th percentile were found to have
visually distinct thermal stability differences across cell lines.

Differential proteoform-proteoform co-aggregation analysis
To test for pairs of proteoforms that co-aggregated in some cell lines
but melted differentially in others, we adapted our previous approach
for testing this between two conditions™. We started by extending the
list of highly confident string interactions (combined score > 950) by
allpossible proteoforminteractions—thatis, if protein Awas previously
annotated tointeract with protein Band we detected three proteoforms
for protein A and two for B, we replaced this entry by all possible 3 x 2
combinations. Next, we tested for co-aggregation of pairs of proteo-
formsinallindividual cell lines using the approach described inref. .
All pairs of proteoforms that showed significant co-aggregation
(P,g. < 0.1) in at least one of the cell lines were included for the differ-
ential analysis across cell lines. The test statistic for differences in
co-aggregation across cell lines was determined by computing
RSS, = Xr, (xf —xB)?across all temperatures k, between all annotated
pairs of proteoforms A and B for all individual cell lines n, ranking all
RSS, and computing

_ RSS(u1) —RSS(y)

Above, RSS,,.;y and RSS,, represent the second highest and the
second lowest RSS. In this way, the F-statistic became large only for
casesinwhichatleast two cell lines featured small and big differences
between the melting curves of the two proteoforms, respectively. We
considered F-statistics higher than the 90th percentile for further
inspection due to difficult tractability of the underlying null distribu-
tionrequired to calibrate the F-statistic in terms of FDR.

Proteoform thermal stability and drug response correlation
Proteoformthermal stabilities were associated with sDSSs by perform-
ing correlation analyses between the area under the melting curves
of proteoforms found to differ across cell lines (90th percentile of
observed F-statistics obtained from the NPARC analysis) with the sDSSs
of therespective cell lines for all drugs with aminimal effect (sDSS < 6
foratleast one cellline) using the R package limma®*’. Results obtained
for all proteoforms and drugs were jointly adjusted for multiple testing
using the Benjamini-Hochberg method*’. Proteoform-sDSS associa-
tions with an adjusted Pvalue of less than 0.1 were considered signifi-
cant. The cellline COG-319 was excluded from the analysis because the
sDSS for the cell line was an outlier that appeared unspecifically sensi-
tive to most drugs, which negatively affected interpretation of drug
sensitivity correlation results.

Benchmark of the functional proteoform group detection
method

Tobenchmark the PepNet algorithm for detection of proteoforms, we
simulated two different datasets: (1) a datasetin which we generated 15
peptides per proteinand (2) one with 50 peptides per protein. For each
dataset, we simulated 1,000 negative proteins (thatis, withno evidence
for proteoforms) with varying melting points (ranging between 50 °C
and 60 °C) with peptides that only differed by noise on two levels:
(1) a melting point variability with standard deviation of 2 °C and
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(2) variability of the measured fold changes with standard deviation of
0.1, whereas variations below O were forbidden by forcing such cases
to a small non-zero value. Additionally, we simulated a total of 200
positive proteins (that is, with evidence for two different proteoforms,
with 50 proteins each differingby1°C,2 °C,3 °Cand 4 °C, respectively)
using the same sources of noise as for the negatives. For each peptide,
we simulated eight-fold changes in 20 different cell lines, similar to our
measurements in our true dataset.

We applied the PepNet algorithm to this dataset and sorted the
results by modularity to perform a receiver operating characteristic
(ROC) analysis checking whether true-positive proteoforms were
ranked higher than true-negative ones.

Toapply the COPF algorithm® to the same dataset for comparison,
we multiplied simulated fold changes by afactor of1,000 because the
algorithm expectsintensity values rather than fold changes. Obtained
results were ranked by the algorithm’s ‘proteoform_score’ and sub-
jected toROC analysis.

For both methods, proteoforms were accepted as correctly
detected if two proteoforms were detected when simulated regard-
less of whether all peptides were correctly assigned to both IDs.

Benchmark of PPl recapitulation

Tobenchmark the capability of deep TPP datato predict PPIs, we com-
puted the average Euclidean distances between all pairs of quantified
proteins as suggested previously”. We ranked protein pairs by increas-
ing average distance and performed a ROC analysis using PPIs anno-
tated by StringDB* with acombined score of 900 or higher and direct
and indirect PPIs within human protein complexes as annotated in
ref. * as positives and all non-annotated PPl pairs as negatives.

To compare the capability of SEC-MS data to predict PPIs, we
downloaded the interphase dataset in ref. ** measured in HeLa cells.
Intensity values measured in the different fractions were converted
to fold changes by dividing by the highest value per protein across
fractions. The dataset, which comprised 42 fractions, was then down-
sampled to eight fractions to have a similar number of observations
per proteinto the TPP dataset. We then employed the same procedure
as for the deep TPP dataset to compute average Euclidean distances
between pairs of proteins. The results were also sorted by increasing
distances, and the same annotation of positives and negatives was
used for ROC analysis.

Differential RNA-seq analysis

Differential RNA-seq analysis was performed using DESeq2 (ref.
Thesex of the cellline donors wasincluded as a covariate in the design
formula, when testing for a difference in conditions.

59)‘

Gene set enrichment analysis

Geneset enrichment analysis was performed using the log fold changes
computed between the conditions of all genes using the R Bioconduc-
tor package fgsea.

GO enrichment
GO enrichment was performed using the R Bioconductor package
clusterProfiler®.

CETSA temperature range analysis

COG-355 and ALL-PO cell suspensions were centrifuged at 300g for
5 minutes; the supernatant media was discarded; and the cells were
washed twice with HBSS (Gibco/Life Technologies). Pelleted cells were
resuspended in HBSS, and 75-pl cell suspensions (10 million cells) were
aliquoted to 0.2-mltubes.Samples were then heated in atemperature
range of 37-70 °C in a Veriti Thermal Cycler (Applied Biosystems/
Thermo Fisher Scientific) for 3 minutes, followed by 3-minute cooling
atroom temperature and immediate snap-freezingin liquid nitrogen.
The cells were then lysed by three repeated freeze-thaw cycles and

centrifuged at21,000g for 40 minutesat4 °C. The cleared supernatants
weretransferred tonew tubes, denatured in LDS sample buffer (Thermo
Fisher Scientific) and analyzed by western blotting.

Westernblotting

Cleared protein supernatants were denatured in LDS sample buffer
(ThermoFisher Scientific), resolved by SDS-PAGE using NUPAGE 4-12%,
Bis-Tris gel (Invitrogen, Thermo Fisher Scientific) and NuPAGE MES SDS
Running Buffer (Invitrogen, Thermo Fisher Scientific) and transferred
to nitrocellulose membranes (Invitrogen, Thermo Fisher Scientific).
SeeBlue Plus2 Pre-stained Standard was used as protein ladder
(Invitrogen, Thermo Fisher Scientific). Afterwards, the membranes
were blocked with 5% non-fat dry milkin TBST (Thermo Fisher Scientific)
and incubated with primary antibodies for the appropriate
target. TMPO/LAP2 (Thermo Fisher Scientific, A304-838A-M, RRID:
AB_2782213 and PA5-96154, RRID:AB_2807956, 1:1,000 dilution),
PSAP (Thermo Fisher Scientific, PA5-21340, 1:1,000 dilution, RRID:
AB_11154619) and Saposin-C (Santa Cruz Biotechnology, sc-374119,
1:500dilution, RRID: AB_10947406) antibodies were used for western
blotting to detect corresponding targets. After overnight primary
incubationat4 °C, blots were rinsed using TBST and incubated with the
appropriate HRP-conjugated secondary antibodies (Millipore, AP127P,
RRID: AB_92472 for mouse primary antibody and Santa Cruz Biotech-
nology, sc-2004, RRID: AB_631746 for rabbit primary antibody, both
used atadilution of 1:5,000). All antibody incubations were diluted in
5% non-fat dry milkin TBST. Protein bands were developed with Clarity
ECL Substrate Chemiluminescent HRP substrate (Bio-Rad) inaiBright
CL1000 Imaging System (Invitrogen, Thermo Fisher Scientific). Bands
were quantified using iBright Analysis Software version 4.0.1(Thermo
Fisher Scientific). Images of the full uncropped blots are provided with
annotation in Supplementary Fig.17 and Source Data.

Reporting Summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All proteomics datasets generated in this study have been depositedin
PRIDE with the datasetidentifier PXD031162. Annotations of proteins
were based on the Ensembl 99, GRCh38.p13 human genome assembly,
released on16 January 2020. The post-search files and source data for
supplementary figures were uploaded to Mendeley Data under DOI
10.17632/dwhtwh4dj7.2. The quantitative protein abundance datawere
taken from the PRIDE repository with the dataset identifier PXD023662.
The RNA-seq datawere taken from the National Center for Biotechnol-
ogy Information’s Gene Expression Omnibus with accession number
GSE168386.Analyzed datacan be browsed using our interactive shiny
app: https://www.proteomics.se/deepmeltome/. Source data are
provided with this paper.

Code availability

All code used to perform the computational analyses described and
to reproduce the figures is available at https://github.com/nkurzaw/
deepPedAllMeltome.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

|X| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|X| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

|Z| The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

X| A description of all covariates tested
|X| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

El A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

|Z| For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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|Z| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.
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OpenMS project’s IsobaricAnalyzer (v2.0) (https://www.openms.de/openms220/); iBright Analysis Software (v5.0).
Data analysis All data analysis code is available at: https://github.com/nkurzaw/deepPedAllMeltome, all code was run using R v. 4.0.0.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
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All proteomics datasets have been deposited on PRIDE with the dataset identifier PXDO31162. The post search files are also uploaded to Mendeley Data under the
DOI: 10.17632/dwhtwh4dj7.1. Protein abundance data was taken from the PRIDE repository with the dataset identifier PXD023662. Protein-protein interactions
were obtained from the public data download portal for STRING Database v11.5 (https://string-db.org/).
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Sample size

Data exclusions

Replication

Randomization

Blinding

The number of cell lines included in the study (n=20) was chosen to include the largest attainable range of accessible cell lines meeting the
following criteria:

- Acute lymphoblastic leukemia

- Childhood (age limit up to 20 years)

- BCP-ALL lineage, derived from sampling from any tissue (bone marrow, peripheral blood) and not limited to any subtypes (genes fusions,
mutations).

- Commercial availability or easily available upon request from repositories

- 20 cell lines are sufficient to achieve large effect sizes, many significant comparisons, and robust biological replication for statistical analyses
and method development.

-Based on previous publication (Jarzab et al. 2020, DOI: 10.1038/s41592-020-0801-4) sample size of 20 was sufficient to identify differential
thermal stability across cell lines.

Non-protein coding transcripts were excluded from the analyses of RNAseq data.

All proteoform results were supported by strict replicate detection standards. Successfully identified proteoforms were only considered if they
met these replication standards, therefore all data interpreted represents successful technical replication. Proteoform identification was
derived from melt curves quantified in at least two cell lines and inclusion of at least three unique peptides. Two duplicate biological replicate
proteomics datasets were prepared from the cell lines RCH-ACV and MHH-CALL3. The replication attempts were successful (R2 = 0.79).
Western blot experiments for selected cases were performed and replicated proteoform detection and melting. In addition, 23% of identified
proteoforms are validated by current annotations in public data.

The technical replicates were chosen at random prior to data analysis but excluding combinations of cell lines with the same genetic fusion
subtype. Randomization was not otherwise relevant to this study because it generated a complete and comprehensive dataset representing
all possible parameters that could be detected using data dependent mass spectrometry proteomics methods. The cell line panel as
developed represents as many possible known and rare subtypes of childhood BCP-ALL that could be obtained from a readily available source,
selection of these cell lines was not altered based on additional randomization criteria.

Investigator blinding was not relevant to this study. All conclusions were obtained by or supported by unbiased non-parametric analyses,
which represent in-depth results of many parameters obtained in a technically identical and unsupervised manner.
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Antibodies used

TMPO/LAP2 (Thermo Fisher Scientific, cat. No; A304-838A-M, RRID: AB_2782213 and cat# PA5-96154, RRID:AB_2807956 both at
1:1000 dilution), PSAP (Thermo Fisher Scientific, cat# PA5-21340, RRID: AB_11154619, 1:1000 dilution), Saposin-C (Santa Cruz
Biotechnology cat# sc-374119, RRID: AB_10947406, 1:500 dilution), Anti-mouse secondary (Millipore, cat no. AP127P, RRID:
AB_92472, 1:5000 dilution), Anti-rabbit secondary (Santa Cruz Biotechnology cat# sc-2004, RRID: AB_631746, 1:5000 dilution)
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Validation Protein size and thermal properties were in alignment with the results obtained in our mass spectrometry dataset. Advanced
verification by knockdown was performed by the antibody vendor for: PSAP (Thermo Fisher Scientific, cat# PA5-21340, RRID:
AB_11154619). No advanced verification was reported by vendor for the remainder of antibodies.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) ALL-PO BBCF/iclc.it; COG-319; COG-355; COG-394 COG; HAL-01 DSMZ; KASUMI-2 DSMZ; KASUMI-9 JCRB; KOPN-8 DSMZ;
LC4-1 JCRB; MHH-CALL-2 DSMZ; MHH-CALL-3 DSMZ; MHH-CALL-4 DSMZ; NALL-1 JCRB; P30-OHKUBO DSMZ; RCH-ACV DSMZ;
REH ATCC; SEM DSMZ; SUP-B15 ATCC; TMD5 JCRB; 697 DSMZ.

Authentication All cell lines were authenticated by STR profiling (Eurofins Genomics, Ebersberg, Germany).

Mycoplasma contamination All cell lines were tested for Mycoplasma by MycoAlert Mycoplasma detection kit (Lonza). All cell lines used in this study
tested negative for mycoplasma.
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(See ICLAC register)
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