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Abstract: In comparative high-throughput sequencing assays, a funda-
mental task is the analysis of count data, such as read counts per gene
in RNA-Seq data, for evidence of systematic changes across experimental
conditions. Small replicate numbers, discreteness, large dynamic range and
the presence of outliers require a suitable statistical approach. We present
DESeq2, a method for differential analysis of count data. DFESeq2 uses
shrinkage estimation for dispersions and fold changes to improve stability
and interpretability of the estimates. This enables a more quantitative anal-
ysis focused on the strength rather than the mere presence of differential
expression and facilitates downstream tasks such as gene ranking and visu-
alization. DESeq2 is available as an R/Bioconductor package.

Background

The rapid adoption of high-throughput sequencing (HTS) technologies for ge-
nomic studies has resulted in a need for statistical methods to assess quantitative
differences between experiments. An important task here is the analysis of RNA-
Seq data with the aim of finding genes that are differentially expressed across
groups of samples. This task is general: methods for it are typically also applica-
ble for other comparative HTS assays, including ChIP-Seq, 4C, HiC, or counts of
observed taxa in metagenomic studies.

Besides the need to account for the specifics of count data, such as non-
Normality and a dependence of the variance on the mean, a core challenge is
the small number of samples of typical HT'S experiments — often as few as two
or three replicates per condition. Inferential methods that treat each gene sepa-
rately suffer here from lack of power, due to the high uncertainty of within-group
variance estimates. In high-throughput assays, this limitation can be overcome by
pooling information across genes; specifically, by exploiting assumptions about the
similarity of the variances of different genes measured in the same experiment [1].

Many methods for differential expression analysis of RNA-Seq data perform
such information sharing across genes for variance (or, equivalently, dispersion)
estimation. edgeR [2, 3] moderates the dispersion estimate for each gene toward
a common estimate across all genes, or toward a local estimate from genes with
similar expression strength, using a weighted conditional likelihood. Our DESeq
method [4] detects and corrects dispersion estimates which are too low through
modeling of the dependence of the dispersion on the average expression strength
over all samples. BBSeq [5] models the dispersion on the mean, with the mean
absolute deviation of dispersion estimates used to reduce the influence of outliers.



DSS [6] uses a Bayesian approach to provide an estimate for the dispersion for
individual genes which accounts for the heterogeneity of dispersion values for
different genes. BaySeq [7] and ShrinkBayes [8] estimate priors for a Bayesian
model over all genes, and then provide posterior probabilities or false discovery
rates for the case of differential expression.

The most common approach to comparative analysis of transcriptomics data
is to test the null hypothesis that the logarithmic fold change (LFC) between
treatment and control for a gene’s expression is exactly zero, i.e., that the gene is
not at all affected by the treatment. Often the goal of a differential analysis is a
list of genes passing multiple-test adjustment, ranked by p-value. However, small
changes, even if statistically highly significant, might not be the most interesting
candidates for further investigation. Ranking by fold-change, on the other hand,
is complicated by the noisiness of LFC estimates for genes with low counts. Fur-
thermore, the number of genes called significantly differentially expressed depends
as much on the sample size and other aspects of experimental design as it does
on the biology of the experiment — and well-powered experiments often generate
an overwhelmingly long list of “hits” [9]. We therefore developed a statistical
framework to facilitate gene ranking and visualization based on stable estimation
of effect sizes (LFCs), as well as testing of differential expression with respect to
user-defined thresholds of biological significance.

Here we present DESeq2, a successor to our DESeq method [4]. DESeq2 in-
tegrates methodological advances with several novel features to facilitate a more
quantitative analysis of comparative RNA-Seq data by means of using shrink-
age estimators for dispersion and fold change. We demonstrate the advantages
of DESeq2’s new features by describing a number of applications possible with
shrunken fold changes and their estimates of standard error, including improved
gene ranking and visualization, hypothesis tests above and below a threshold,
and the “regularized logarithm” transformation for quality assessment and clus-
tering of overdispersed count data. We furthermore compare DESeq2’s statistical
power with existing tools, revealing that our methodology has high sensitivity
and precision, while controlling the false positive rate. DESeq2 is available as an
R/Bioconductor package [10] at http://www.bioconductor.org.

Results and discussion

Model and normalization

The starting point of a DESeq2 analysis is a count matrix K with one row for
each gene ¢ and one column for each sample j. The matrix entries K;; indicate
the number of sequencing reads that have been unambiguously mapped to a gene
in a sample. Note that although we refer in this paper to counts of reads in genes,
the methods presented here can be applied as well to other kinds of HTS count
data. For each gene, we fit a generalized linear model (GLM) [11] as follows.

We model read counts K;; as following a Negative Binomial distribution (some-
times also called a Gamma-Poisson distribution) with mean pu,; and dispersion
a;. The mean is taken as a quantity g¢;;, proportional to the concentration of
cDNA fragments from the gene in the sample, scaled by a normalization factor
8ij, i.e., ftij = S;5¢;5. For many applications, the same constant s; can be used
for all genes in a sample, which then accounts for differences in sequencing depth
between samples. To estimate these size factors, the DESeq2 package offers the
median-of-ratios method already used in DESeq [4]. However, it can be advan-
tageous to calculate gene-specific normalization factors s;; to account for further
sources of technical biases such as GC content, gene length or the like, using
published methods [12, 13], and these can be supplied instead.

We use GLMs with logarithmic link, logy ¢;; = ), B, with design matrix
elements z;, and coeflicients §;.. In the simplest case of a comparison between
two groups, such as treated and control samples, the design matrix elements
indicate whether a sample j is treated or not, and the GLM fit returns coefficients
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Figure 1: Shrinkage estimation of dispersion. Plot of dispersion estimates
over the average expression strength (A) for the Bottomly et al. [15] dataset with 6
samples across 2 groups and (B) for 5 samples from the Pickrell et al. [16] dataset,
fitting only an intercept term. First, gene-wise maximum likelihood estimates
(MLE) are obtained using only the respective gene’s data (black dots). Then,
a curve (red) is fit to the MLEs to capture the overall trend of dispersion-mean
dependence. This fit is used as a prior mean for a second estimation round, which
results in the final maximum a posteriori (MAP) estimates of dispersion (arrow
heads). This can be understood as a shrinkage (along the blue arrows) of the noisy
gene-wise estimates toward the consensus represented by the red line. The black
points circled in blue are detected as dispersion outliers and not shrunk toward
the prior (shrinkage would follow the dotted line). For clarity, only a subset of
genes is shown, which is enriched for dispersion outliers. Supplemental Figure S1
displays the same data but with dispersions of all genes shown.

indicating the overall expression strength of the gene and the log, fold change
between treatment and control. The use of linear models, however, provides the
flexibility to also analyze more complex designs, as is often useful in genomic
studies [14].

Empirical Bayes shrinkage for dispersion estimation

Within-group variability, i.e., the variability between replicates, is modeled by
the dispersion parameter «;, which describes the variance of counts via Var K;; =
Hij + 0y ufj. Accurate estimation of the dispersion parameter «; is critical for the
statistical inference of differential expression. For studies with large sample sizes
this is usually not a problem. For controlled experiments, however, sample sizes
tend to be smaller (experimental designs with as little as two or three replicates
are common and reasonable), resulting in highly variable dispersion estimates for
each gene. If used directly, these noisy estimates would compromise the accuracy
of differential expression testing.

One sensible solution is to share information across genes. In DESeq2, we
assume that genes of similar average expression strength have similar dispersion.
We here explain the concepts of our approach using as example a dataset by
Bottomly et al. [15] with RNA-Seq data of mice of two different strains and a
dataset by Pickrell et al. [16] with RNA-Seq data of human lymphoblastoid cell
lines. For the mathematical details, see Methods.

We first treat each gene separately and estimate “gene-wise” dispersion esti-
mates (using maximum likelihood), which rely only on the data of each individual
gene (black dots in Figure 1). Next, we determine the location parameter of the
distribution of these estimates; to allow for dependence on average expression
strength, we fit a smooth curve, as shown by the red line in Figure 1. This pro-



vides an accurate estimate for the expected dispersion value for genes of a given
expression strength but does not represent deviations of individual genes from
this overall trend. We then shrink the gene-wise dispersion estimates toward the
values predicted by the curve to obtain final dispersion values (blue arrow heads).
We use an empirical Bayes approach (Methods), which lets the strength of shrink-
age depend (i) on an estimate of how close true dispersion values tend to be to the
fit and (ii) on the degrees of freedom: as the sample size increases, the shrinkage
decreases in strength, and eventually becomes negligible. Our approach therefore
accounts for gene-specific variation to the extent that the data provide this infor-
mation, while the fitted curve aids estimation and testing in less information-rich
settings.

Our approach is similar to the one used by DSS [6], in that both sequentially
estimate a prior distribution for the true dispersion values around the fit, and
then provide the maximum a posteriori as the final estimate. It differs from the
previous implementation of DESeq, which used the maximum of the fitted curve
and the gene-wise dispersion estimate as the final estimate and tended to overesti-
mate the dispersions (Supplemental Figure S2). The approach of DESeq2 differs
from that of edgeR [3], as DESeq2 estimates the width of the prior distribution
from the data and therefore automatically controls the amount of shrinkage based
on the observed properties of the data. In contrast, the default steps in edgeR
require a user-adjustable parameter, the prior degrees of freedom, which weighs
the contribution of the individual gene estimate and edgeR’s dispersion fit.

Note that in Figure 1 a number of genes with gene-wise dispersion estimates
below the curve have their final estimates raised substantially. The shrinkage
procedure thereby helps avoid potential false positives which can result from un-
derestimates of dispersion. If, on the other hand, an individual gene’s dispersion
is far above the distribution of the gene-wise dispersion estimates of other genes,
then the shrinkage would lead to a greatly reduced final estimate of dispersion.
We reasoned that in many cases, the reason for extraordinarily high dispersion
of a gene is that it does not obey our modeling assumptions; some genes may
show much higher variability than others for biological or technical reasons, even
though they have the same average expression levels. In these cases, inference
based on the shrunken dispersion estimates could lead to undesirable false posi-
tive calls. DESeq?2 handles these cases by using the gene-wise estimate instead of
the shrunken estimate when the former is more than 2 residual standard devia-
tions above the curve.

Empirical Bayes shrinkage for fold-change estimation

A common difficulty in the analysis of HT'S data is the strong variance of logarith-
mic fold change estimates (LFCs) for genes with low read count. We demonstrate
this issue using the dataset by Bottomly et al. [15]. As visualized in Figure
2A, weakly expressed genes seem to show much stronger differences between the
compared mouse strains than strongly expressed genes. This phenomenon, seen
in most HTS datasets, is a direct consequence of the fact that one is dealing
with count data, in which ratios are inherently more noisy when counts are low.
This heteroskedasticity (variance of LFCs depending on mean count) complicates
downstream analysis and data interpretation, as it makes effect sizes difficult to
compare across the dynamic range of the data.

DESeq2 overcomes this issue by shrinking LFC estimates toward zero in a
manner such that shrinkage is stronger when the available information for a gene
is low, which may be because counts are low, dispersion is high, or there are
few degrees of freedom. We again employ an empirical Bayes procedure: we first
perform ordinary GLM fits to obtain maximum-likelihood estimates (MLE) for the
LFCs and then fit a zero-centered Normal distribution to the observed distribution
of MLEs over all genes. This distribution is used as a prior on LFCs in a second
round of GLM fits, and the maximum of the posterior (MAP) estimates are kept
as final estimates of LFC. Furthermore, a standard error for each estimate is
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Figure 2: Effect of shrinkage on logarithmic fold change estimates. Plots
of the (A) maximum likelihood estimate (MLE, i.e., no shrinkage) and (B) maxi-
mum a posteriori (MAP) estimate (i.e., with shrinkage) for the logarithmic fold
changes attributable to mouse strain, over the average expression strength for a
10 vs 11 sample comparison of the Bottomly et al. [15] dataset. Small triangles
at the top and bottom of the plots indicate points that would fall outside of the
plotting window. Two genes with similar mean count and MLE logarithmic fold
change are highlighted with green and purple circles. (C) The counts (normalized
by size factors s;) for these genes reveal low dispersion for the gene in green and
high dispersion for the gene in purple. (D) Density plots of the likelihoods (solid
lines, scaled to integrate to 1) and the posteriors (dashed lines) for the green and
purple gene and of the prior (solid black line): due to the higher dispersion of the
purple gene, its likelihood is wider and less peaked (indicating less information),
and the prior has more influence on its posterior than in the case of the green
gene. The stronger curvature of the green posterior at its maximum translates
to a smaller reported standard error for the MAP LFC estimate (horizontal error

bar).

reported, which is derived from the posterior’s curvature at its maximum (see
Methods for details). These shrunken LFCs and their standard errors are used in
the Wald tests for differential expression described in the next section.

The resulting MAP LFCs are biased toward zero in a manner that removes
the problem of “exaggerated” LFCs for low counts. As Figure 2B shows, the
strongest LFCs are no longer exhibited by genes with weakest expression. Rather,
the estimates are more evenly spread around zero, and for very weakly expressed
genes (less than one read per sample on average), LFCs hardly deviate from zero,
reflecting that accurate LFC estimates are not possible here.

The strength of shrinkage does not depend simply on the mean count, but
rather on the amount of information available for the fold change estimation (as
indicated by the observed Fisher information; see Methods). Two genes with equal
expression strength but different dispersions will experience different amount of
shrinkage (Figure 2C-D). The shrinkage of LFC estimates can be described as a
“bias-variance trade-off” [17]: for genes with little information for LFC estimation,
a reduction of the strong variance is “bought” at the cost of accepting a bias
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Figure 3: Stability of logarithmic fold changes. DFESeq2 is run on equally
split halves of the data of Bottomly et al. [15], and the logarithmic fold changes
from the halves are plotted against each other, (A) showing MLEs, i.e., without
LFC shrinkage, (B) showing MAP estimates, i.e., with shrinkage. Points in the top
left and bottom right quadrant indicate genes with a change of sign of logarithmic
fold change. Red points indicate genes with adjusted p-value less than 0.1. The
legend displays the root mean squared error of the estimates in group I to those
in group II.

toward zero, and this can result in an overall reduction in mean squared error,
e.g., when comparing to LFC estimates from a new dataset. Genes with high
information for LFC estimation will have, in our approach, LFCs with both low
bias and low variance. Furthermore, as the degrees of freedom increase, and the
experiment provides more information for LFC estimation, the shrunken estimates
will converge to the unshrunken estimates. We note that other Bayesian, efforts
toward moderating fold changes for RNA-Seq include hierarchical models [8, 18]
and the GFOLD (or “generalized fold change”) tool [19], which uses a posterior
distribution of logarithmic fold changes.

The shrunken MAP LFCs offer a more reproducible quantification of tran-
scriptional differences than standard MLE LFCs. To demonstrate this, we split
the Bottomly et al. samples equally into two groups, I and II, such that each
group contained a balanced split of the strains, simulating a scenario where an
experiment (samples in group I) is performed, analyzed and reported, and then
independently replicated (samples in group II). Within each group, we estimated
LFCs between the strains and compared between group I and II, using the MLE
LFCs (Figure 3A) and using the MAP LFCs (Figure 3B). Because the shrink-
age moves large LFCs that are not well supported by the data toward zero, the
agreement between the two independent sample groups increases considerably.
Therefore, shrunken fold-change estimates offer a more reliable basis for quanti-
tative conclusions than normal maximum-likelihood estimates.

This makes shrunken LFCs also suitable for ranking genes, e. g., to prioritize
them for follow-up experiments. For example, if we sort the genes in the two
sample groups of Figure 3 by unshrunken LFC estimates, and consider the 100
genes with the strongest up- or down-regulation in group I, we find only 21 of
these again among the top 100 up- or down-regulated genes in group II. However,
if we rank the genes by shrunken LFC estimates, the overlap improves to 81 of
100 genes (Supplemental Figure S3).

A simpler, often used method is to add a fixed number (“pseudocount”) to
all counts before forming ratios. However, this requires the choice of a tuning
parameter and only reacts to one of the sources of uncertainty, low counts, but
not to gene-intrinsic dispersion differences, or sample size. We demonstrate this
in the Benchmarks section below.
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Figure 4: Hypothesis testing involving non-zero thresholds. Shown are
MA-plots for a 10 vs 11 comparison using the Bottomly et al. [15] dataset, with
highlighted points indicating low adjusted p-values. The alternate hypotheses are
that logarithmic (base 2) fold changes are (A) greater than 1 in absolute value or
(B) less than 1 in absolute value.

Hypothesis tests for differential expression

After GLMs are fit for each gene, one may test for each model coefficient whether
it differs significantly from zero. To this end, DESeq2 reports the standard error
for each shrunken LFC estimate, obtained from the curvature of the coefficient’s
posterior (dashed lines in Figure 2D) at its maximum. For significance testing,
DESeq2 uses a Wald test: the shrunken estimate of LFC is divided by its stan-
dard error, resulting in a z-statistic which is compared to a standard Normal.
(See Methods for details.) The Wald test allows testing of individual coefficients,
or contrasts of coefficients, without the need to fit a reduced model as with the
likelihood ratio test, though the likelihood ratio test is also available as an op-
tion in DESeq2. The Wald test p-values from the subset of genes that pass an
independent filtering step, described in the next section, are adjusted for multiple
testing using the procedure of Benjamini and Hochberg [20].

Automatic independent filtering

Due to the large number of tests performed in the analysis of RNA-Seq and other
genome-wide experiments, the multiple testing problem needs to be addressed.
A popular objective is control or estimation of the false discovery rate (FDR).
Multiple testing adjustment tends to be associated with a loss of power, in the
sense that the false discovery rate for a set of genes is often higher than the
individual p-values of these genes. However, the loss can be reduced if genes
are omitted from the testing that have little or no chance of being detected as
differentially expressed, provided that the criterion for omission is independent
of the test statistic under the null [21] (see Methods). DESeq2 uses the average
expression strength of each gene, across all samples, as its filter criterion, and
it omits all genes with mean normalized counts below a filtering threshold from
multiple testing adjustment. DESeq2 by default will choose a threshold that
maximizes the number of genes found at a user-specified target FDR. In Figures
2A-B and 3, genes found in this way to be significant at an FDR of 10% are
depicted in red.

Depending on the distribution of mean normalized counts, the resulting in-
crease in power can be substantial, sometimes making the difference whether or
not any differentially expressed genes are detected.



Hypothesis tests with thresholds on effect size
Specifying minimum effect size.

Most approaches to testing for differential expression, including the default ap-
proach of DESeq?2, test against the null hypothesis of zero logarithmic fold change.
However, once any biological processes are genuinely affected by the difference in
experimental treatment, this null hypothesis implies that the gene under consid-
eration is perfectly decoupled from these processes. Due to the high intercon-
nectedness of cells’ regulatory networks, this hypothesis is, in fact, implausible,
and arguably wrong for many if not most genes. Consequently, with sufficient
sample size, even genes with a very small, but non-zero logarithmic fold change
will eventually be detected as differentially expressed. A change should therefore
be of sufficient magnitude to be considered biologically significant. For small scale
experiments, statistical significance is often a much stricter requirement than bi-
ological significance, thereby relieving the researcher from the need to decide on
a threshold for biological significance.

For well-powered experiments, however, a statistical test against the conven-
tional null hypothesis of zero logarithmic fold change may report genes with sta-
tistically significant changes that are so weak in effect strength that they could be
considered irrelevant or distracting. A common procedure is to disregard genes
whose estimated logarithmic fold change (;, is below some threshold, |B;.| < 6.
However, this approach loses the benefit of an easily interpretable false discovery
rate, as the reported p-value and adjusted p-value still correspond to the test of
zero logarithmic fold change. It is therefore desirable to include the threshold into
the statistical testing procedure directly, i.e., not to filter post-hoc on a reported
fold-change estimate, but rather to statistically evaluate directly whether there is
sufficient evidence that the logarithmic fold change is above the chosen threshold.

DESeq?2 offers tests for composite null hypotheses of the form |8;.| < 6, where
Bir is the shrunken LFC from the estimation procedure described above. (See
Methods for details.) Figure 4A demonstrates how such a thresholded test gives
rise to a curved decision boundary: to reach significance, the estimated LFC has
to exceed the specified threshold by an amount that depends on the available
information. We note that related approaches to generate gene lists that satisfy
both statistical and biological significance criteria have been previously discussed
for microarray data [22] and recently for sequencing data [18].

Specifying maximum effect size.

Sometimes, a researcher is interested in finding genes that are not, or only very
weakly (negligibly), affected by the treatment or experimental condition. This
amounts to a setting similar to the one just discussed, but the roles of null and
alternative hypotheses are swapped. We are here asking for evidence of the effect
being weak, not for evidence of the effect being zero, because the latter question
is rarely tractable. The meaning of weak needs to be quantified for the biological
question at hand by choosing a suitable threshold 6 for the LFC. For such analyses,
DESeq2 offers a test of the composite null hypothesis |3;.| > 0, which will report
genes as significant for which there is evidence that their LFC is weaker than 6.
Figure 4B shows the outcome of such a test. For genes with very low read count,
even an estimate of zero LFC is not significant, as the large uncertainty of the
estimate does not allow us to exclude that the gene may in truth be more than
weakly affected by the experimental condition. Note the lack of LFC shrinkage:
To find genes with weak differential expression, DESeq2 requires that the LFC
shrinkage has been disabled. This is because the zero-centered prior used for
LFC shrinkage embodies a prior belief that LFCs tend to be small, and hence is
inappropriate here.



Detection of count outliers

Parametric methods for detecting differential expression can have gene-wise esti-
mates of logarithmic fold change overly influenced by individual outliers that do
not fit the distributional assumptions of the model [23]. An example of such an
outlier would be a gene with single-digit counts for all samples, except one sample
with a count in the thousands. As the aim of differential expression analysis is
typically to find consistently up- or down-regulated genes, it is useful to consider
diagnostics for detecting individual observations which overly influence the loga-
rithmic fold change estimate and p-value for a gene. A standard outlier diagnostic
is Cook’s distance [24], which is defined within each gene for each sample as the
scaled distance that the coefficient vector, @, of a linear or generalized linear
model would move if the sample were removed and the model refit.

DESeq2 flags, for each gene, those samples which have a Cook’s distance
greater than the 0.99 quantile of the F(p,m — p) distribution, where p is the
number of model parameters including the intercept, and m is the number of
samples. The use of the F' distribution is motivated by the heuristic reasoning
that removing a single sample should not move the vector ,62 outside of a 99%
confidence region around ﬂ_; fit using all the samples [24]. However, if there are
2 or fewer replicates for a condition, these samples do not contribute to outlier
detection, as there are insufficient replicates to determine outlier status.

How should one deal with flagged outliers? In an experiment with many
replicates, discarding the outlier and proceeding with the remaining data might
make best use of the available data. In a small experiment with few samples,
however, the presence of an outlier can impair inference regarding the affected
gene, and merely ignoring the outlier may even be considered data cherry-picking
— and therefore, it is more prudent to exclude the whole gene from downstream
analysis.

Hence, DESeq2 offers two possible responses to flagged outliers. By default,
outliers in conditions with 6 or fewer replicates cause the whole gene to be flagged
and removed from subsequent analysis, including p-value adjustment for multiple
testing. For conditions that contain 7 or more replicates, DESeq2 replaces the
outlier counts with an imputed value, namely the trimmed mean over all samples,
scaled by the size factor, and then re-estimates the dispersion, logarithmic fold
changes and p-values for these genes. As the outlier is replaced with the value
predicted by the null hypothesis of no differential expression, this is a more con-
servative choice than simply omitting the outlier. When there are many degrees
of freedom, the second approach avoids discarding genes which might contain true
differential expression.

Supplementary Figure S4 displays the outlier replacement procedure for a
single gene in a 7 by 7 comparison of the Bottomly et al. [15] dataset. While the
original fitted means are heavily influenced by a single sample with a large count,
the corrected logarithmic fold changes provide a better fit to the majority of the
samples.

Regularized logarithm transformation

For certain analyses, it is useful to transform data to render them homoskedastic.
As an example, consider the task of assessing sample similarities in an unsuper-
vised manner using a clustering or ordination algorithm. For RNA-Seq data, the
problem of heteroskedasticity arises: if the data are given to such an algorithm on
the original count scale, the result will be dominated by highly expressed, highly
variable genes; if logarithm-transformed data are used, undue weight will be given
to weakly expressed genes, which show exaggerated logarithmic fold changes, as
discussed above. Therefore, we use the shrinkage approach of DESeq2 to imple-
ment a “regularized logarithm” transformation (rlog), which behaves similarly to
a log, transformation for genes with high counts, while shrinking together the
values for different samples for genes with low counts. It therefore avoids a com-
monly observed property of the standard logarithm transformation, the spreading
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Figure 5: Variance stabilization and clustering after rlog transforma-
tion. Two transformations were applied to the counts of the Hammer et al. [25]
dataset: the logarithm of normalized counts plus a pseudocount, i.e. f(K;;) =
logy(K;;/s; + 1), and the rlog. The gene-wise standard deviation of transformed
values is variable across the range of the mean of counts using the logarithm (A),
while relatively stable using the rlog (B). A hierarchical clustering on Euclidean
distances and complete linkage using the rlog (D) transformed data clusters the
samples into the groups defined by treatment and time, while using the logarithm
transformed counts (C) produces a more ambiguous result.

apart of data for genes with low counts, where random noise is likely to dominate
any biologically meaningful signal. When we consider the variance of each gene,
computed across samples, these variances are stabilized —i. e., approximately the
same, or homoskedastic— after the rlog transformation, while they would otherwise
strongly depend on the mean counts. It thus facilitates multivariate visualization
and ordinations such as clustering or principal component analysis that tend to
work best when the variables have similar dynamic range.

Note that while the rlog transformation builds upon on our LFC shrinkage
approach, it is distinct from and not part of the statistical inference procedure for
differential expression analysis described above, which employs the raw counts,
not transformed data.

The rlog transformation is calculated by fitting for each gene a GLM with
a base-line expression (i.e., intercept only) and, computing for each sample,
shrunken logarithmic fold changes with respect to the base-line, using the same
empirical Bayes procedure as before (Methods). Here, however, the sample co-
variate information is not used, in order to treat all samples equally. The rlog
transformation accounts for variation in sequencing depth across samples as it
represents the logarithm of ¢;; after accounting for the size factors s;;. This is
in contrast to the variance stabilizing transformation (VST) introduced in DE-
Seq [4]: while the VST for counts is also effective at stabilizing variance, it does
not directly take into account differences in size factors; and in datasets with
large variation in sequencing depth (say, dynamic range of size factors > 4) we
observed undesirable artifacts in the performance of the VST. A disadvantage of
the rlog transformation with respect to the VST is, however, that the ordering
of genes within a sample will change if neighboring genes undergo shrinkage of
different strength. As with the VST, the value of rlog(k;;) for large counts is
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approximately equal to log, (K;;/s;). Both the rlog transformation and the VST
are provided in the DESeq2 package.

We demonstrate the use of the rlog transformation on the RNA-Seq dataset
of Hammer et al. [25], wherein RNA was sequenced from the dorsal root gan-
glion of rats which had undergone spinal nerve ligation and controls, at 2 weeks
and at 2 months after the ligation. The count matrix for this dataset was down-
loaded from the ReCount online resource [26]. This dataset offers more subtle
differences between conditions than the Bottomly et al. [15] dataset. Figure 5
provides diagnostic plots of the normalized counts under the ordinary logarithm
with a pseudocount of one and the rlog transformation, showing that the rlog
both stabilizes the variance through the range of the mean of counts and helps to
find meaningful patterns in the data. The rlog transformation is therefore more
appropriate than the usual logarithm for visualization and machine learning ap-
plications such as clustering or classification, where otherwise the high variance
of logarithm-transformed low counts can introduce an excess of noise.

Gene-level analysis

We here present DESeq?2 for the analysis of per-gene counts, i. e, the total number
of reads that can be uniquely assigned to a gene. In contrast, several algorithms
[27, 28] work with probabilistic assignments of reads to transcripts, where multi-
ple, overlapping transcripts can originate from each gene. It has been noted that
the total read count approach can result in false detection of differential expression
when in fact only transcript isoform lengths change, and even in a wrong sign of
LFCs in extreme cases [27]. However, in our benchmark, discussed in the follow-
ing section, we found that LFC sign disagreements between total read count and
probabilistic assignment based methods were rare for genes that were differentially
expressed according to either method (Supplemental Figure S5). Furthermore, if
estimates for average transcript length are available for the conditions, these can
be incorporated into the DESeq2 framework as gene- and sample-specific normal-
ization factors. In addition, the approach used in DESeq2 can be extended to
isoform-specific analysis, either through generalized linear modeling at the exon
level with a gene-specific mean as in the DEXSeq package [29] or through count-
ing evidence for alternative isoforms in splice graphs [30, 31]. In fact, the latest
release version of DEXSeq now uses DESeq?2 as its inferential engine and so offers
shrinkage estimation of dispersion and effect sizes for an exon-level analysis, too.

Comparative benchmarks

To assess how well DESeq2 performs for standard analyses in comparison to other
current methods, we used a combination of simulations and real data. The Nega-
tive Binomial based approaches compared were DESeq (0ld) [4], edgeR [32], edgeR
with the robust option [33], DSS [6] and EBSeq [34]. Other methods compared
were the voom normalization method followed by linear modeling using the limma
package [35] and the SAMseq permutation method of the samr package [23]. For
the benchmarks using real data, the Cuffdiff 2 [27] method of the Cufflinks suite
was included.

For version numbers of the software used, see Supplementary Table S3. For all
algorithms returning p-values, the p-values from genes with non-zero sum of read
counts across samples were adjusted using the Benjamini-Hochberg procedure
[20].

Benchmarks through simulation

Sensitivity and precision. We simulated datasets of 10,000 genes with Neg-
ative Binomial distributed counts. To simulate data with realistic moments, the
mean and dispersions were drawn from the joint distribution of means and gene-
wise dispersion estimates from the Pickrell et al. data. These datasets were of
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Figure 6: Sensitivity and precision of algorithms across combinations of
sample size and effect size. DESeq?2 often had the highest sensitivity of those
algorithms which controlled the false discovery rate, i.e., those algorithms which
fall on or to the left of the vertical black line. For a plot of sensitivity against
false positive rate, rather than false discovery rate, see Supplemental Figure S6.

varying sample size (m € {6, 8,10, 20}), and the samples were split into two equal-
sized groups. 80% of the simulated genes had no true differential expression, while
for 20% of the genes true fold changes of 2, 3,4 were used to generate counts across
the two groups, with the direction of fold change chosen randomly.

Algorithms’ performance in the simulation benchmark were assessed by their
sensitivity and precision. The sensitivity was calculated as the fraction of genes
with adjusted p-value less than 0.1 among the genes with true differences between
group means. The precision was calculated as the fraction of genes with true
differences between group means among those with adjusted p-value less than
0.1. The sensitivity is plotted over 1 — precision, or the false discovery rate, in
Figure 6. DESeq?2 often had the highest sensitivity of algorithms which controlled
type-1 error in the sense that the actual false discovery rate was below 0.1, the
threshold for adjusted p-values used for calling differentially expressed genes. DE-
Seq?2 revealed an increase in sensitivity over the other algorithms which controlled
the false discovery rate particularly for small sample size (m = 6,8) and small
fold change (fold change 2,3), as was also found in benchmarks performed by
Zhou et al. [33]. For larger sample sizes and larger fold changes the performance
of the various algorithms was more consistent. The overly conservative calling of
the old DESeq tool can be observed, with reduced sensitivity compared to the
other algorithms and an actual false discovery rate less than the nominal value of
0.1.

Outlier sensitivity. We used simulations to compare the sensitivity and speci-
ficity of DESeq2’s outlier handling approach to that of edgeR, which was recently
added to the software and published while this manuscript was under review.
edgeR now includes an optional method to handle outliers by iteratively refitting
the generalized linear model after down-weighting potential outlier counts [33].
The simulations, summarized in Supplemental Figure S7, indicated that both ap-
proaches to outliers nearly recover the performance on an “outlier-free” dataset,
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though edgeR-robust had slightly higher actual than nominal false discovery rate,
as seen in Supplemental Figure S8.

Precision of fold change estimates. We benchmarked the DESeq2 approach
of using an empirical prior to achieve shrinkage of logarithmic fold change (LFC)
estimates against two competing approaches: The GFOLD method, which allows
for analysis of experiments without replication [19], can also handle experiments
with replicates and the edgeR package provides a pseudocount-based shrinkage
termed predictive logarithmic fold changes. Results are summarized in Supple-
mental Figures S9-S13. DFESeq2 had consistently low root mean squared error
and mean absolute error across a range of sample sizes and models for the true
logarithmic fold changes. GFOLD had similarly low error to DESeq2 over all
genes; however when focusing on the differentially expressed genes, it performed
worse for larger sample sizes. edgeR with default settings had similarly low error
to DESeq2 when focusing only on the differentially expressed genes and when
models that include a “spike” of genes with LFC=0 were used, but had higher
error over all genes.

Clustering. We compared the performance of the rlog transformation against
other methods of transformation or distance calculation in the recovery of true
clusters. The adjusted Rand Index [36] was used to compare a hierarchical clus-
tering based on various distances with the true cluster membership. We tested the
Fuclidean distance on normalized counts, logarithm of normalized counts plus a
pseudocount of 1, rlog transformed counts and VST counts. In addition we com-
pared these Euclidean distances with the Poisson Distance implemented in the
PoiClaClu package [37], and a distance implemented internally in the plotMDS
function of edgeR (though not the default distance, which is similar to the log-
arithm of normalized counts). The results, shown in Supplemental Figure S14,
revealed that when the size factors were equal for all samples, Poisson Distance
and the Euclidean distance of rlog-transformed or VST counts outperformed other
methods. However, when the size factors were not equal across samples, the rlog
approach generally outperformed the other methods. Finally, we note that the
rlog transformation provides normalized data, which can be used for a variety of
applications, of which distance calculation is one.

Benchmark on RNA-Seq data

While simulation is useful to verify how well an algorithm behaves with idealized,
theoretical data, and hence allows verification that the algorithm performs as
expected under its own assumptions, simulations cannot inform us how well the
theory fits reality. With real RNA-Seq data, there is the complication of not
knowing fully or directly the underlying truth; however, we can work around this
limitation by using more indirect inference, explained below.

In the following benchmarks, we considered three performance metrics for dif-
ferential expression calling: the false positive rate (or 1 minus the specificity),
sensitivity and precision. We can obtain meaningful estimates of specificity from
looking at datasets where we believe all genes to fall under the null hypothesis of
no differential expression [38]. Sensitivity and precision are more difficult to esti-
mate, as they require independent knowledge of those genes that are differentially
expressed. To circumvent this problem, we used experimental reproducibility on
independent samples (though from the same dataset) as a proxy. We used a
dataset with large numbers of replicates in both of two groups, where we expect
that truly differentially expressed genes exist. We repeatedly split this dataset
into an evaluation set and a larger verification set, and compared the calls from
the evaluation set with the calls from the verification set, which were taken as
“truth”. It is important to keep in mind that the calls from the verification set
are only an approximation of the true differential state, and the approximation
error has a systematic and a stochastic component. The stochastic error becomes
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Figure 7: Benchmark of false positive calling. Shown are estimates of P(p-
value < 0.01) under the null hypothesis. The number of p-values less than 0.01
divided by the total number of tests, from randomly selected comparisons of 5 vs
5 samples from the Pickrell et al. [16] dataset, with no known condition dividing
the samples. Type-I error control requires that the tool does not substantially
exceed the nominal value of 0.01 (black line).

small once the sample size of the verification set is large enough. For the system-
atic errors, our benchmark assumes that these affect all algorithms more or less
equally and do not markedly change the ranking of the algorithms.

False positive rate. To evaluate the false positive rate of the algorithms, we
considered mock comparisons from a dataset with many samples and no known
condition dividing the samples into distinct groups. We used the RNA-Seq data
of Pickrell et al. [16] on lymphoblastoid cell lines derived from unrelated Nigerian
individuals. We chose a set of 26 RNA-Seq samples of the same read length (46
base pairs) and from male individuals. We randomly drew without replacement 10
samples from the set to perform a comparison of 5 against 5, and this process was
repeated 30 times. We estimated the false positive rate associated with a critical
value of 0.01 by dividing the number of p-values less than 0.01 by the total number
of tests; genes with zero sum of read counts across samples were excluded. For
EBSeq, the posterior probability of equal expression was substituted for a p-value
for calculating specificity, and hence falling beneath the critical value should not
be interpreted as overly conservative calling. The results over the 30 replications,
summarized in Figure 7, indicated that all algorithms generally controlled the
number of false positives. DESeq (0ld) and Cuffdiff 2 appeared overly conservative
in this analysis, not using up their type-I error “budget”.

Sensitivity. To obtain an impression of the sensitivity of the algorithms, we
considered the Bottomly et al. [15] dataset, which contains 10 and 11 replicates of
two different, genetically homogeneous mice strains. This allowed for a split of 3
vs 3 for the evaluation set and 7 vs 8 for the verification set, which were balanced
across the 3 experimental batches. Random splits were replicated 30 times. Batch
information was not provided to the DESeq (o0ld), DESeq2, DSS, edgeR, and voom
algorithms, which can accomodate complex experimental designs, in order to have
comparable calls across all algorithms.

We rotated though each algorithm to determine the calls of the verification
set. Against a given algorithm’s verification set calls, we tested the evaluation set
calls for every algorithm. We used this approach rather than a consensus-based
method, as we did not want to favor or disfavor any particular algorithm or group
of algorithms. Sensitivity was calculated as in the simulation benchmark, now
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Figure 8: Sensitivity estimated from experimental reproducibility. Each
algorithm’s sensitivity in the evaluation set (boxplots) is evaluated using the calls
of each other algorithm in the verification set (panels with grey label).
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Figure 9: Precision estimated from experimental reproducibility. Each
algorithm’s precision in the evaluation set (boxplots) is evaluated using the calls
of each other algorithm in the verification set (panels with grey label).

with “true” differential expression defined by an adjusted p-value less than 0.1 in
the larger verification set, as diagrammed in Supplemental Figure S15. Figure 8
displays the estimates of sensitivity for each algorithm pair.

The ranking of algorithms was generally consistent regardless of which algo-
rithm was chosen to determine calls in the verification set. DFESeq2 had compara-
ble sensitivity to edgeR and voom though less than DSS. The median sensitivity
estimates were typically between 0.2 and 0.4 for all algorithms. That all algo-
rithms had relatively low median sensitivity can be explained by the small sample
size of the evaluation set and the fact that increasing the sample size in the ver-
ification set increases power. It is expected that the permutation-based SAMseq
method rarely produced adjusted p-value less than 0.1 in the evaluation set, be-
cause the 3 vs 3 comparison does not enable enough permutations.

15



Precision. Another important consideration from the perspective of an inves-
tigator is the precision, or fraction of true positives in the set of genes which pass
the adjusted p-value threshold. This can also be reported as 1 — FDR, the false
discovery rate. Again, “true” differential expression was defined by an adjusted
p-value less than 0.1 in the larger verification set. The estimates of precision
are displayed in Figure 9, where we can see that DFESeq2 often had the second
highest median precision, behind DESeq (old). We can also see that algorithms
which had higher median sensitivity, e.g., DSS, were generally associated here
with lower median precision. The rankings differed significantly when Cuffdiff 2
was used to determine the verification set calls. This is likely due to the additional
steps Cuffdiff 2 performed to deconvolve changes in isoform-level abundance from
gene-level abundance, which apparently came at the cost of lowered precision when
compared against its own calls.

To further compare the sensitivity /precision results, we calculated the preci-
sion of algorithms along a grid of nominal adjusted p-values (Supplemental Fig-
ure S16). We then found the nominal adjusted p-value for each algorithm which
resulted in a median actual precision of 0.9 (false discovery rate of 0.1). Having
thus calibrated each algorithm to a target false discovery rate, we evaluated the
sensitivity of calling, as shown in Supplemental Figure S17. As expected, here
the algorithms performed more similarly to each other. This analysis revealed
that, for a given target precision, DESeq2 often was among the top algorithms
by median sensitivity, though the variability across random replicates was larger
than the differences between algorithms.

The absolute number of calls for the evaluation and verification sets can be
seen in Supplemental Figures S18 and S19, which mostly matched the order seen
in the sensitivity plot of Figure 8. Supplemental Figures S20 and S21 provide
heatmaps and clustering based on the Jaccard index of calls for one replicate of
the evaluation and verification sets, indicating a large overlap of calls across the
different algorithms.

In summary, the benchmarking tests showed that DESeq2 effectively con-
trolled type-I error, maintaining a median false positive rate just below the chosen
critical value in a mock comparison of groups of samples randomly chosen from a
larger pool. For both simulation and analysis of real data, DESeq2 often achieved
the highest sensitivity of those algorithms which controlled the false discovery
rate.

Conclusion

DESeq2 offers a comprehensive and general solution for gene-level analysis of
RNA-Seq data. The use of shrinkage estimators substantially improves the sta-
bility and reproducibility of analysis results compared to maximum-likelihood
based solutions. The use of empirical Bayes priors provides automatic control of
the amount of shrinkage based on the amount of information for the estimated
quantity available in the data. This allows DESeq2 to offer consistent performance
over a large range of data types and makes it applicable for small studies with
few replicates as well as for large observational studies. DFESeq2’s heuristics for
outlier detection help to recognize genes for which the modeling assumptions are
unsuitable and so avoids type-I errors caused by these. The embedding of these
strategies in the framework of generalized linear models enables the treatment of
both simple and complex designs.

A critical advance is the shrinkage estimator for fold changes for differential
expression analysis, which offers a sound and statistically well-founded solution to
the practically relevant problem of comparing fold change across the wide dynamic
range of RNA-Seq experiments. This is of value for many downstream analysis
tasks, including the ranking of genes for follow-up studies and association of fold
changes with other variables of interest. In addition, the rlog transformation,
which implements shrinkage of fold changes on a per-sample basis, facilitates
visualization of differences, for example in heatmaps, and enables the application
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of a wide range of techniques that require homoskedastic input data, including
machine-learning or ordination techniques such as principal-component analysis
and clustering.

DESeq2 hence offers to practitioners a wide set of features with state-of-the-art
inferential power. Its use cases are not limited to RNA-Seq data or other tran-
scriptomics assays; rather, many kinds of high-throughput count data can be used.
Other areas for which DESeq or DESeq2 have been used include ChIP-Seq assays
(e.g., [39]; see also the Diff Bind package [40, 41]), barcode-based assays (e.g., [42]),
metagenomics data (e.g., [43]), ribosome profiling [44] and CRISPR/Cas-library
assays [45]. Finally, the DESeq2 package is well integrated in the Bioconductor
infrastructure [10] and comes with extensive documentation, including a vignette
that demonstrates a complete analysis step by step and discusses advanced use
cases.

Methods

A summary of the notation used in the following section is provided in Supple-
mental Table S1.

Model and normalization

The read count K;; for gene 7 in sample j is described with a generalized linear
model (GLM) of the Negative Binomial family with logarithmic link:

K;j ~ NB(mean = p;;, dispersion = o) (1)
Hij = SijQij
loggij = Y jrBir- (2)

For notational simplicity, the equations here use the natural logarithm as the link
function, though the DESeq2 software reports estimated model coefficients and
their estimated standard errors on the log, scale.

By default, the normalization constants s;; are considered constant within a
sample, s;; = s;, and are estimated with the median-of-ratios method previously
described and used in DESeq [4] and DEXSeq [29]:

1/m

Ki; R s
s; = median — with K;' = K;;
T KRz KR ' ]1;[1 ”

7

Alternatively, the user can supply normalization constants s;; calculated using
other methods (e.g., using cgn [12] or EDASeq [13]), which may differ from gene
to gene.

Expanded design matrices

For consistency with our software’s documentation, in the following text we will
use the terminology of the R statistical language. In linear modeling, a cate-
gorical variable or factor can take on two or more values or levels. In standard
design matrices, one of the values is chosen as a reference value or base level and
absorbed into the intercept. In standard GLMs, the choice of base level does not
influence the values of contrasts (LFCs). This, however, is no longer the case in
our approach using ridge-regression-like shrinkage on the coefficients (described
below), when factors with more than two levels are present in the design matrix,
because the base level will not undergo shrinkage while the other levels do.

To recover the desirable symmetry between all levels, DESeq2 uses expanded
design matrices which include an indicator variable for each level of each factor,
in addition to an intercept column (i.e., none of the levels is absorbed into the

17



intercept). While such a design matrix no longer has full rank, a unique solution
exists because the zero-centered prior distribution (see below) provides regular-
ization. For dispersion estimation and for estimating the width of the LFC prior,
standard design matrices are used.

Contrasts

Contrasts between levels and standard errors of such contrasts can be calculated
as they would in the standard design matrix case, i.e., using:

B¢ ='B; (3)
SE(B]) = V'Eic, (4)

where ¢ represents a numeric contrast, e.g., 1 and —1 specifying the numerator
and denominator of a simple two level contrast, and 3; = Cov(f;), defined below.

Estimation of dispersions

We assume the dispersion parameter «; follows a log-Normal prior distribution
that is centered around a trend that depends on the gene’s mean normalized read
count:

log a; ~ N(log a,(fi;), 03). (5)

Here, oy, is a function of the gene’s mean normalized count, ji; = % Zj (Kij/sij)-
It describes the mean-dependent expectation of the prior. oq4 is the width of
the prior, a hyperparameter describing how much the individual genes’ true dis-
persions scatter around the trend. For the trend function, we use the same
parametrization as we used for DEXSeq [29], namely,

g () = ﬁ + agp. (6)

We get final dispersion estimates from this model in three steps, which imple-
ment a computationally fast approximation to a full empirical Bayes treatment.
We first use the count data for each gene separately to get preliminary gene-wise
dispersion estimates of" by maximum likelihood estimation. Then, we fit the
dispersion trend «y,. Finally, we combine the likelihood with the trended prior
to get maximum a posteriori (MAP) values as final dispersion estimates. Details
for the three steps follow.

Gene-wise dispersion estimates. To get a gene-wise dispersion estimate for
a gene i, we start by fitting a Negative Binomial GLM without logarithmic fold
change prior for the design matrix X to the gene’s count data. This GLM uses
a rough method-of-moments estimate of dispersion, based on the within-group
variances and means. The initial GLM is necessary to obtain an initial set of
fitted values, ﬂ?j. We then maximize the Cox-Reid adjusted likelihood of the
dispersion, conditioned on the fitted values ﬂgj from the initial fit, to obtain the
gene-wise estimate a%w, ie.,

o = arg max lor (o; 19, Ki.)
with
= 1
fon(as ) = £(0) ~ 5 log(det (X' W X)) )

L) =Y log fus(Kj: pj, ),
J

where fng(k; i, @) is the probability mass function of the Negative Binomial distri-
bution with mean p and dispersion «, and the second term provides the Cox-Reid
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bias adjustment [46]. This adjustment, first used in the context of dispersion
estimation for SAGE data [47] and then for HTS data [3] in edgeR, corrects for
the negative bias of dispersion estimates from using the maximum likelihood esti-
mates (MLE) for the fitted values ﬂ?j (analogous to Bessel’s correction in the usual
sample variance formula; for details, see [48, Section 10.6]). It is formed from the
Fisher information for the fitted values, which is here calculated as det(X'W X),
where W is the diagonal weight matrix from the standard iteratively re-weighted
least squares (IRLS) algorithm. As the GLM’s link function is g(u) = log(u) and
its variance function is V(u; ) = p + ap?, the elements of the diagonal matrix
W; are given by:
1 1
TGPV ) g +al

The optimization in Equation (7) is performed on the scale of log«a using
a backtracking line search with proposals accepted which satisfy Armijo condi-
tions [49].

Dispersion trend. A parametric curve of the form (6) is fit by regressing the
gene-wise dispersion estimates af" onto the means of the normalized counts,
ii;. The sampling variance of the gene-wise dispersion estimate around the true
value «; can be highly skewed, and therefore we do not use ordinary least square
regression but rather Gamma-family GLM regression. Furthermore, dispersion
outliers could skew the fit and hence a scheme to exclude such outliers is used.

The hyperparameters a; and ag of (6) are obtained by iteratively fitting a
Gamma-family GLM. At each iteration, genes with ratio of dispersion to fitted
value outside the range [107%, 15] are left out until the sum of squared logarithmic
fold changes of the new coefficients over the old coefficients is less than 1076 (same
approach as in DEXSeq [29]).

The parametrization (6) is based on reports by us and others of decreasing
dependence of dispersion on the mean in many datasets [4, 5, 50, 3, 6]. Some
caution is warranted to disentangle true underlying dependence from effects of
estimation bias that can create a perceived mean-dependence of the dispersion.
Consider a Negative Binomial distributed random variable with expectation u
and dispersion a. Its variance v = p + au? has two components, v = vp + vp, the
Poisson component vp = p independent of o and the overdispersion component
vp = ap?. When p is small (1 < 1/a), the Poisson component dominates, in the
sense that vp/vp = 1/(apu) 2 1, and the observed data provide little information
on the value of a. Therefore the sampling variance of an estimator for a will be
large when p < 1/«, which leads to the appearance of bias. This phenomenon
may give rise to an apparent dependence of o on p. It is possible that the shape
of the dispersion-mean fit for the Bottomly data (Figure 1A) can be explained in
that manner: the asymptotic dispersion is gy ~ 0.01, and the non-zero slope of the
mean-dispersion plot is limited to the range of mean counts up to around 100, the
reciprocal of agy. However, overestimation of « in that low-count range has little
effect on inference, as in that range the variance v is anyway dominated by the
a-independent Poisson component vp. The situation is different for the Pickrell
data: here, a dependence of dispersion on mean was observed for counts clearly
above the reciprocal of the asymptotic dispersion « (Figure 1B), and hence is not
due merely to estimation bias. Simulations (shown in Supplementary Figure S22)
confirmed that the observed joint distribution of estimated dispersions and mean is
not compatible with a single, constant dispersion. Therefore, the parametrization
(6) is a flexible and mildly conservative modeling choice: it is able to pick up
dispersion-mean dependence if it is present, while it can lead to a minor loss of
power in the low count range due to a tendency to overestimate dispersion there.

Dispersion prior. As also observed by Wu et al. [6], a log-Normal prior fits
the observed dispersion distribution better for typical RNA-Seq than a conjugate
prior. We solve the computational difficulty of working with a non-conjugate
prior using the following argument: the logarithmic residuals from the trend fit,
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log " — log v, (J1;), arise from two contributions, namely the scatter of the true
logarithmic dispersions around the trend, given by the prior with variance 037 and
the sampling distribution of the logarithm of the dispersion estimator, with vari-
ance of,. The sampling distribution of a dispersion estimator is approximately
a scaled x? distribution with m — p degrees of freedom, with m the number of
samples and p the number of coefficients. The variance of the logarithm of a
X?—distributed random variable is given [51] by the trigamma function 1,

Varlog X% =11 (f/2) for X2~ X?-

Therefore, o3, ~ ¥1((m — p)/2), i.e., the sampling variance of the logarithm
of a variance or dispersion estimator is approximately constant across genes and
depends only on the degrees of freedom of the model.

Supplementary Table S2 compares this approximation for the variance of log-
arithmic dispersion estimates with the variance of logarithmic Cox-Reid adjusted
dispersion estimates for simulated Negative Binomial data, over a combination of
different sample sizes, number of parameters and dispersion values used to create
the simulated data. The approximation is close to the sample variance for various
typical values of m, p and a.

Therefore, the prior variance o2 is obtained by subtracting the expected sam-
pling variance from an estimate of the variance of the logarithmic residuals, s3.:

03 = min{si. — 1 ((m —p)/2), 0.25}.

The prior variance 03 is thresholded at a minimal value of 0.25 so that the dis-
persion estimates are not shrunk entirely to ay,(fi;) in the case that the variance
of the logarithmic residuals is less than the expected sampling variance.

To avoid inflation of 03 due to dispersion outliers (i.e., genes not well captured
by this prior; see below), we use a robust estimator for the standard deviation s,
of the logarithmic residuals,

s = mad (log " — log a, (1)) (8)

where mad stands for the median absolute deviation, divided as usual by the
scaling factor ®~1(3/4).

Three or less residuals degrees of freedom. When there are 3 or less resid-
ual degrees of freedom (number of samples minus number of parameters to es-
timate), the estimation of the prior variance 03 using the observed variance of
logarithmic residuals s tends to underestimate o3. In this case, we instead
estimate the prior variance through simulation. We match the distribution of
logarithmic residuals to a density of simulated logarithmic residuals. These are
the logarithm of x7,  -distributed random variables added to N(0,03) random
variables to account for the spread due to the prior. The simulated distribution
is shifted by —log(m — p) to account for the scaling of the x? distribution. We
repeat the simulation over a grid of values for 03, and select the value which min-
imizes the Kullback-Leibler divergence from the observed density of logarithmic
residuals to the simulated density.

Final dispersion estimate. We form a logarithmic posterior for the dispersion
from the Cox-Reid adjusted logarithmic likelihood (7) and the logarithmic prior
(5) and use its maximum (i.e., the maximum a posteriori, MAP, value) as final
estimate of the dispersion,

aMAP = arg max (ECR(Q; i K) + Ai(a)> , (9)

where

A(a) = — (log v — log atr(ﬂi))Q

2 )
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is, up to an additive constant, the logarithm of the density of prior (5). Again, a
backtracking line search is used to perform the optimization.
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Dispersion outliers. For some genes, the gene-wise estimate of" can be so
far above the prior expectation a,(fi;) that it would be unreasonable to assume
that the prior is suitable for the gene. If the dispersion estimate for such genes
were down-moderated toward the fitted trend, this might lead to false positives.
Therefore, we use the heuristic of considering a gene as a “dispersion outlier”, if
the residual from the trend fit is more than two standard deviations of logarithmic
residuals, si; (see Equation (8)), above the fit, i.e., if

log 8" > log vy (i) + 281y

Such genes are flagged and the gene-wise estimate af" is not shrunk toward the
trended prior mean. Instead of the MAP value aMP  we use the gene-wise
estimate of" as a final dispersion value in the subsequent steps. In addition, the
iterative fitting procedure for the parametric dispersion trend described above
avoids that such dispersion outliers influence the prior mean.

Shrinkage estimation of logarithmic fold changes

To incorporate empirical Bayes shrinkage of logarithmic fold changes, we postulate
a zero-centered Normal prior for the coefficients ;. of model (2) that represent
logarithmic fold changes (i.e., typically, all coefficients except for the intercept
Bio):

Bir ~ N(0,07). (10)

As was observed with differential expression analysis using microarrays, genes
with low intensity values tend to suffer from a small signal-to-noise ratio. Alter-
native estimators can be found which are more stable than the standard calcu-
lation of fold change as the ratio of average observed values for each condition
[52, 53, 54]. DESeq2’s approach can be seen as an extension of these approaches
for stable estimation of gene expression fold changes to count data.

Empirical prior estimate. To obtain values for the empirical prior widths o,
for the model coefficients, we again approximate a full empirical Bayes approach,
as with the estimation of dispersion prior, though here we do not subtract the
expected sampling variance from the observed variance of maximum likelihood
estimates. The estimate of the logarithmic fold change prior width is calculated
as follows. We use the standard iteratively reweighted least squares (IRLS) algo-
rithm [11] for each gene’s model (1,2) to get maximum likelihood estimates for
the coefficients BMIE. We then fit, for each column r of the design matrix (except
for the intercept) a zero-centered Normal to the empirical distribution of MLE
fold change estimates @VHJE.

To make the fit robust against outliers with very high absolute LFC values,
we use quantile matching: the width o, is chosen such that the (1 — p) empirical
quantile of the absolute value of the observed LFCs, SMLE| matches the (1 —p/2)
theoretical quantile of the prior, N(0,02), where p is set by default to 0.05. If we
write the theoretical upper quantile of a Normal distribution as Qn(1 — p) and
the empirical upper quantile of the MLE LFCs as Q,(1 — p), then the prior
width is calculated as:

Qs (1 —p)

Op = ———— .
" Qn(1-p/2)

To ensure that the prior width o, will be independent of the choice of base
level, the estimates from the quantile matching procedure are averaged for each
factor over all possible contrasts of factor levels. When determining the empirical
upper quantile, extreme LFC values with ‘BMLE’ > log(1024) are excluded.

Final estimate of logarithmic fold changes. The logarithmic posterior for
the vector, B;, of model coefficients ;. for gene i is the sum of the logarithmic
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likelihood of the GLM (2) and the logarithm of the prior density (10), and its
maximum yields the final MAP coefficient estimates:

B = arg max Zlog InB (Kz‘jo(ﬂ)aai) +A5) |
B J

where

and «; is the final dispersion estimate for gene i, ie., a; = «
dispersion outliers, where o; = af".

The term A(5), i. e., the logarithm of the density of the Normal prior (up to an
additive constant), can be read as a ridge penalty term, and therefore, we perform
the optimization using the iteratively reweighted ridge regression algorithm [55],
also known as weighted updates [56]. Specifically, the updates for a given gene are
of the form

B (XWX + M) ' X' Wz,
with A, = 1/02 and
K
oy —loghd 4 B
Sj Hj
where the current fitted values u; = Sjezr zjrBr are computed from the current
estimates 5 in each iteration.

Fisher information. The effect of the zero-centered Normal prior can be un-
derstood as to shrink the MAP LFC estimates based on the amount of information
the experiment provides for this coefficient, and we briefly elaborate on this here.
Specifically, for a given gene 4, the shrinkage for an LFC ;. depends on the
observed Fisher information, given by

2
- 8851%6(51';[(1‘70‘1') e

Bir=Bir

where E(B;; I?i, a;) is the logarithm of the likelihood, and partial derivatives are
taken with respect to LFC ;.. For a Negative Binomial GLM, the observed
Fisher information, or peakedness of the logarithm of the profile likelihood, is
influenced by a number of factors including the degrees of freedom, the estimated
mean counts ji;;, and the gene’s dispersion estimate ;. The prior exerts its
influence on the MAP estimate when the density of the likelihood and the prior
are multiplied to calculate the posterior. Genes with low estimated mean values
fti; or high dispersion estimates «; have flatter profile likelihoods, as do datasets
with few residual degrees of freedom, and therefore in these cases the zero-centered
prior pulls the MAP estimate from a high-uncertainty MLE closer toward zero.

Wald test

The Wald test compares the beta estimate ;. divided by its estimated standard
error SE(B;,) to a standard Normal distribution. The estimated standard errors
are taken from the diagonal of the estimated covariance matrix, ¥;, for the co-
efficients, i.e., SE(B;r) = X; .. Contrasts of coefficients are tested similarly by
forming a Wald statistics using (3) and (4). We use the following formula for the
coefficient covariance matrix for a generalized linear model with Normal prior on
coefficients [55, 57]:

% = Cov(fi) = (XWX + X)) Y X'WX) (XWX + X)L

The tail integrals of the standard Normal distribution are multiplied by 2 to
achieve a two-tailed test. The Wald test p-values from the subset of genes which
pass the independent filtering step are adjusted for multiple testing using the
procedure of Benjamini and Hochberg [20].
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Independent filtering

Independent filtering does not compromise type-I error control as long as the
distribution of the test statistic is marginally independent of the filter statistic
under the null hypothesis [21], and we argue in the following that this is the
case in our application. The filter statistic in DESeq2 is the mean of normalized
counts for a gene, while the test statistic is p, the p-value from the Wald test. We
first consider the case where the size factors are equal and where the gene-wise
dispersion estimates are used for each gene, i.e. without dispersion shrinkage.
The distribution family for the Negative Binomial is parameterized by 6 = (u, «).
Aside from discreteness of p due to low counts, for a given pu, the distribution of
p is Uniform(0, 1) under the null hypothesis, so p is an ancillary statistic. The
sample mean of counts for gene i, K;, is boundedly complete sufficient for p. Then
from Basu’s theorem, we have that K; and p are independent.

While for very low counts, one can observe discreteness and non-uniformity of
p under the null, DESeq2 does not use the distribution of the p in its estimation
procedure — for example, DESeq2 does not estimate the proportion of null genes
using the distribution of p — so this kind of dependence of p on p does not lead
to increased type-I error.

If the size factors are not equal across samples, but not correlated with condi-
tion, conditioning on the mean of normalized counts should also provide uniformly
distributed p as with conditioning on the mean of counts, K;. We may consider a
pathological case where the size factors are perfectly confounded with condition,
in which case, even under the null hypothesis, genes with low mean count would
have non-uniform distribution of p, as one condition could have positive counts
and the other condition often zero counts. This could lead to non-uniformity of p
under the null hypothesis, however such a pathological case would pose problems
for many statistical tests of differences in mean.

We used simulation to demonstrate that the independence of the null distribu-
tion of the test statistic from the filter statistic still holds in the case of dispersion
shrinkage. Supplemental Figure S23 displays marginal null distributions of p
across the range of mean normalized counts. Despite spikes in the distribution
for the genes with the lowest mean counts due to discreteness of the data, these
densities were nearly uniform across the range of average expression strength.

Composite null hypotheses

DESeq2 offers tests for composite null hypotheses of the form Hg : || < 0
in order to find genes whose LFC significantly exceeds a threshold 8 > 0. The
composite null hypothesis is replaced by two simple null hypotheses: Hq, : i = 0
and Hop : Bir = —60. Two-tailed p-values are generated by integrating a Normal
distribution centered on # with standard deviation SE(8;,.) from |5;,| toward oco.
The value of the integral is then multiplied by 2 and thresholded at 1. This
procedure controls type-I error even when [;. = 46, and is equivalent to the
standard DESeq2 p-value when 6 = 0.

Conversely, when searching for genes whose absolute LFC is significantly below
a threshold, i.e., when testing the null hypothesis Hg : |5;-| > 0, the p-value is
constructed as the maximum of two one-sided tests of the simple null hypotheses:
Hoa : Bir = 0 and Hop : Bir = —0. The one-sided p-values are generated by
integrating a Normal distribution centered on 6 with standard deviation SE(8;,)
from g, toward —oo, and integrating a Normal distribution centered on —6 with
standard deviation SE(5;,.) from ;. toward co.

Note that while a zero-centered prior on LFCs is consistent with testing the
null hypothesis of small LECs, it should not be used when testing the null hypoth-
esis of large LFCs, because the prior would then favor the alternative hypothesis.
DESeq2 requires that no prior has been used when testing the null hypothesis of
large LFCs, so that the data alone must provide evidence against the null.
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Interactions

Two exceptions to the default DESeq2 LFC estimation steps are used in the
case of experimental designs with interaction terms. First, when any interaction
terms are included in the design, the LFC prior width for main effect terms is not
estimated from the data, but set to a wide value (¢2 = 1000). This ensures that
shrinkage of main effect terms will not result in false positive calls of significance
for interactions. Second, when interaction terms are included and all factors have
two levels, then standard design matrices are used rather than expanded model
matrices, such that only a single term is used to test the null hypothesis that a

combination of two effects is merely additive in the logarithmic scale.

Regularized logarithm

The rlog transformation is calculated as follows. The experimental design matrix
X is substituted with a design matrix with an indicator variable for every sample
in addition to an intercept column. A model as described in Equations (1,2) is
fit with a zero-centered Normal prior on the non-intercept terms and using the
fitted dispersion values oy, (fi), which capture the overall variance-mean depen-
dence of the dataset. The true experimental design matrix X is then only used
in estimating the variance-mean trend over all genes. For the purpose of unsu-
pervised analyses, for instance sample quality assessment, it is desirable that the
experimental design have no influence on the transformation, and hence DESeq2
by default ignores the design matrix and re-estimates the dispersions treating all
samples as replicates, i. e., uses blind dispersion estimation. The rlog transformed
values are the fitted values,

rlog(K;j) = logy gij = Bio + Bij

where 3;; is the shrunken LFC for the j-th sample. The variance of the prior is set
using a similar approach as taken with differential expression, by matching a zero-
centered Normal distribution to observed LFCs. First a matrix of logarithmic fold
changes is calculated by taking the logarithm (base 2) of the normalized counts
plus a pseudocount of % for each sample divided by the mean of normalized
counts plus a pseudocount of % The pseudocount of % allows for calculation of
the logarithmic ratio for all genes, and has little effect on the estimate of the
variance of the prior or the final rlog transformation. This matrix of LFCs then
represents the common-scale logarithmic ratio of each sample to the fitted value
using only an intercept. The prior variance is found by matching the 95% quantile
of a zero-centered Normal distribution to the 90% quantile of the values in the
logarithmic fold change matrix.

Cook’s distance for outlier detection

The maximum likelihood estimate of @ is used for calculating Cook’s distance.
Considering a gene ¢ and sample j, Cook’s distance for generalized linear models
is given by [58]:
2
D= B D

1] T )

T (1= hyy)?
where R;; is the Pearson residual of sample j, 7 is an overdispersion parameter
(in the Negative Binomial GLM, 7 is set to 1), p is the number of parameters
including the intercept, and h;; is the j-th diagonal element of the hat matrix H:

H=wY2X(X'WX) 1 X'W/2,
Pearson residuals R;; are calculated as

(K5 — paj)

R = ;
V V(Nz‘j)
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where ;5 is estimated by the Negative Binomial GLM without the logarithmic
fold change prior, and using the variance function V(1) = p + au®. A method of
moments estimate aﬁ‘)b which provides robustness against outliers is used here,
estimating the variance using the median absolute deviation:

2 —
s 1 — I
;rob ?
ol = max | 22— rofz 01,
2

2
S7 rob = <mad(Kij/ Sz‘j))
J

with

where, again, the mad operator includes the usual scaling factor of 1/®~1(3/4).

R /Bioconductor package

DESeq?2 is implemented as a package for the R statistical environment as available
as part of the Bioconductor project [10] at http://www.bioconductor.org. The
count matrix and metadata including the gene model and sample information
are stored in an S4 class derived from the SummarizedExperiment class of the
GenomicRanges package [59]. SummarizedExperiment objects containing count
matrices can be easily generated using the summarizeOverlaps function of the
GenomicAlignments package [60]. This workflow automatically stores the gene
model as metadata and additionally other information such as the genome and
gene annotation versions. Other methods to obtain count matrices include the
htseq-count script [61] and the Bioconductor packages easyRNASeq [62] and fea-
tureCount [63].

The DESeq2 package comes with a detailed vignette working through a num-
ber of example differential expression analyses on real datasets, and the use of the
rlog transformation for quality assessment and visualization. A single function,
called DESeq, is used to run the default analysis, while lower-level functions are
also available for advanced users.

Reproducible code

Sweave vignettes for reproducing all figures and tables in this paper, including
data objects for the experiments mentioned, and code for aligning reads and
for benchmarking, can be found in a package DESeq2paper, available at http:
//www-huber . embl.de/DESeq2paper.
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GLM  generalized linear model

HTS  high-throughput sequencing
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Supplement

Supplemental Methods

Read alignment for the Bottomly et al. and Pickrell et al.
datasets

Reads were aligned using the TopHat2 aligner [64], and assigned to genes using the
summarize Overlaps function of the GenomicRanges package [59]. The SRA fastq
files of the Pickrell et al. [16] dataset were aligned to the Homo Sapiens reference
sequence GRCh37 downloaded in March 2013 from Illumina iGenomes. Reads
were counted in the genes defined by the Ensembl GTF file, release 70, contained
in the Illumina iGenome. The SRA fastq files of the Bottomly et al. [15] dataset
were aligned to the Mus Musculus reference sequence NCBIM37 downloaded in
March 2013 from Illumina iGenomes. Reads were counted in the genes defined
by the Ensembl GTF file, release 66, contained in the [llumina iGenome.

Benchmarking code

The code used to run the count-based algorithms is contained in the file /inst/
script/runScripts.R in the DESeq2paper package (available at http://www.
huber.embl.de/DESeq2paper). The code for the simulations is referenced from
the simulations vignette in this package. The code which ran the algorithms over
the real datasets is contained in the files /inst/script/pickrell/diffExpr.R
(the specificity analysis run on the Pickrell et al. [16] dataset) and and /inst/
script/bottomly/diffExpr.R (for the sensitivity and precision analysis run on
the Bottomly et al. [15] dataset). The Cuffdiff 2 commands are contained in the
/inst/script/pickrell/ and /inst/script/bottomly/ directories.
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Supplemental Tables

ie{l,...,n}
je{l,...,m}
ref0,...,p—1}

gene index

sample index

covariate index, with intercept r =0

counts of reads for gene i, sample j

fitted mean

gene-specific dispersion

sample-specific size factor

gene- and sample-specific size factor

proportional to true concentration of fragments
elements of the design matrix X

the logarithmic fold change for gene 7 and covariate r
mean of normalized counts of gene 4

prior variance for logarithmic dispersions

sampling variance of logarithmic dispersion estimator
variance estimate for logarithmic residuals of dispersion
gene-wise dispersion estimate

trended dispersion fit

maximum a posteriori estimate of dispersion

prior variance for logarithmic fold change r

covariance matrix for (;

Supplementary Table S1: Notation

Supplementary Table S2: Theoretical and sample variance of logarithmic disper-
sion estimates for various combinations of sample size m, number of parameters
p and true dispersion . The estimates are the DESeq2 gene-wise estimates from
4000 simulated genes with Negative Binomial counts with a mean of 1024. The
sample variance of the logarithmic dispersion estimates is generally close to the

m p «  theor. var. sample var.
6 2 0.05 0.645 0.670
6 2 0.20 0.645 0.642
8 2 0.05 0.395 0.409
8 2 0.20 0.395 0.396
8 3 0.05 0.490 0.530
8 3 0.20 0.490 0.462
16 2 0.05 0.154 0.160
16 2 0.20 0.154 0.138
16 3 0.05 0.166 0.169
16 3 0.20 0.166 0.156

approximation of theoretical variance.
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function/package version additional information

DESeq (old)  1.16.0 using the GLM test
DESeq2 1.4.0
edgeR 3.6.0 wusing GLM and trended dispersion estimation

DSS 2.2.0
voom: limma  3.20.1
SAMseq: samr 2.0 using samr.pvalues.from.perms for p-values

EBSeq 1.4.0 (1 —PPDE) used for FDR cutoff, following user guide;

(1 — PPDE) substituted as p-value for specificity plots
Cuffdiff 2 2.1.1
GFOLD 1.1.2
PoiClaClu 1.0.2

Supplementary Table S3: Versions of software used in manuscript

Supplemental Figures
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Supplementary Figure S1: Shrinkage estimation of dispersion over all
genes. Plot of dispersion estimates over the average expression strength (A)
for the Bottomly et al. [15] dataset with 6 samples across 2 conditions and (B)
for the Pickrell et al. [16] dataset with 5 samples fitting only an intercept term.
This plot shows the same data as Figure 1, but with dispersions drawn for all
genes instead of only a subset. The points at the bottom of the plot typically
arise from genes for which the observed variance is below the variance expected
under a Poisson model. In such a case, the maximum-likelihood estimate will be
essential zero, and appears here with the surrogate value 1078,
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; 0.61 fit

0.81 0.88 maximum ;
g- 0.95 0.75 0.91 MAP

0.86 0.58 0.77 0.87 true ;

Supplementary Figure S2: Scatterplot of various estimates of dispersion
using DESeq2, against the true dispersion in the logarithmic scale (base
10) from simulated counts. The blue, red, and yellow colors indicate regions
of increasing density of points. Counts for 4000 genes and for 10 samples in two
groups were simulated with no true difference in means. The Negative Binomial
counts had mean and dispersion drawn from the joint distribution of the mean
and gene-wise dispersion estimates from the Pickrell et al. dataset. The estimates
shown are genewise, the CR-adjusted maximum likelihood estimate; fit the value
from the fitted curve; mazimum, the maximum of the two previous values (the
estimate used in the older version of DESeq); and MAP, the maximum a pos-
teriori estimate used in DESeq2. The correlations shown in the bottom panels
do not include the very low gene-wise estimates of dispersion which can result
in potential false positives. The MAP, shrunken estimates used in DESeq2 were
closer to the diagonal, while the mazimum estimate was typically above the true
value of dispersion, which can lead to overly-conservative inference of differential
expression.
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Supplementary Figure S3: “Concordance at the top” plot. DESeq2 is run on
equally split halves of the data of Bottomly et al. [15] and the proportion of genes
in common after ranking by absolute logarithmic fold changes is compared [65].
On the y-axis is the number of genes in common between the splits divided by
the size of the top-ranked list. The MAP estimate of logarithmic fold change
and the MLE after adding a pseudocount of 1 to all samples provide nearly the
same concordance for various cutoffs, while ranking by the MLE on raw counts
has generally low concordance. Here, MAP and pseudocount both offer good
performance over MLE. For further demonstrations of the advantage of MAP
over pseudocount, see section Benchmarks.
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Supplementary Figure S4: Cook’s distance outlier detection. Shown are
normalized counts and Cook’s distances for a 7 by 7 comparison of the Bot-
tomly et al. [15] dataset. (A) Normalized counts for a single gene, samples divided
into groups by strains (light green and light blue). Dotted segments represent fit-
ted means. An apparent outlier is highlighted in red. Note the logarithmic scaling
of the y-axis. (B) The Cook’s distances for each sample for this gene, and the 99%
quantile of the F(p,m — p) cutoff used for flagging outliers. (C) The normalized
counts after replacing the outlier with the trimmed mean over all samples, scaled
by size factor. The fitted means now are less affected by the single outlier sample.
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Supplementary Figure S5: Scatterplots of estimated logarithmic fold
changes from all algorithms. log, fold changes are estimated from one of
the verification sets of the Bottomly et al. [15] dataset (see section Benchmarks
on RNA-Seq data). Bottom panels display the Pearson correlation coefficients.
We note that the direction of the estimate of differential expression for DESeq2
and Cuffdiff 2 accorded for the majority of genes called differentially expressed:
among genes which were called differentially expressed by either of these two al-
gorithms, both agreed on the sign of the estimated logarithmic fold change for
96% of genes (averaged over all 30 replicates) in the evaluation set and for 96%
of genes in the verification set.
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Supplementary Figure S6: Use of simulation to assess the sensitivity and
specificity of algorithms across combinations of sample size and effect
size. Shown are results for the benchmark through simulation described in the
main text and in Figure 6. The sensitivity was calculated as the fraction of genes
with adjusted p-value less than 0.1 among the genes with true differences between
group means. The specificity was calculated as the fraction of genes with p-value
greater than 0.01 among the genes with no true differences between group means.
For EBSeq, the posterior probability of equal expression was substituted for a
p-value for calculating specificity. The p-value was chosen instead of the adjusted
p-value, as this allows for comparison against the expected fraction of p-values less
than a critical value given the uniformity of p-values under the null hypothesis.
DESeq2 often had the highest sensitivity of those algorithms which control the
false positive rate, i.e., those algorithms which fall on or to the left of the vertical
black line (1% p-values less than 0.01 for the non-DE genes). For EBSeq, due to
the substitution, falling to the left of the critical value should not be interpreted
as overly conservative behavior.

37



0% outlier 5% outlier 10% outlier 15% outlier
0.8+
- =
0.6 —
/ 3
04 /7 A )
S| algorithm
I
2‘0 2 DESeq2
é 0.04 ! -+~ DESeq2-noFilt
2 08 -=- DESeq2-noRepl
0.
7] —+ edgeR
0.6 - 5 edgeR-robust
0.4+ b
o
0.2+
0.0
T T T T T T T T T T T T
0.0 0.1 02 00 0.1 0.2 0.0 0.1 0.2 00 0.1 0.2
1 - specificity

Supplementary Figure S7: Sensitivity-specificity curves for detecting true
differences in the presence of outliers. Negative Binomial counts were sim-
ulated for 4000 genes and total sample sizes (m) of 10 and 20, for a two-group
comparison. 80% of the simulated genes had no true differential expression, while
for 20% of the genes true logarithmic (base 2) fold changes were randomly drawn
from {-1, 1}. The number of genes with simulated outliers was increased from
0% to 15%. The outliers were constructed for a gene by multiplying the count of
a single sample by 100. Sensitivity and specificity were calculated by threshold-
ing on p-values. Points indicate an adjusted p-value cutoff of 0.1. DESeq2 with
the default settings and edgeR with the robust setting had higher area under the
curve compared to running edgeR without the robust option, turning off DESeq2
gene filtering, and turning off DESeq2 outlier replacement. DESeq2 filters genes
with potential outliers for samples with 3 to 6 replicates and replaces outliers for
samples with 7 or more replicates, hence the filtering can be turned off for the
top row (m = 10) and the replacement can be turned off for the bottom row
(m = 20).
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Supplementary Figure S8: Owutlier handling: One minus the precision
(false discovery rate) plotted over various thresholds of adjusted p-
value. Shown are the results for the same simulation with outliers described in
Supplemental Figure S7. Points indicate an adjusted p-value cutoff of 0.1. edgeR
run with the robust setting had false discovery rate generally above the nominal
value from the adjusted p-value threshold (black diagonal line). DESeq2 run with
default settings was generally at or below the line, which indicated control of the
false discovery rate.
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Supplementary Figure S9: Benchmarking LFC estimation: Models for sim-
ulating logarithmic (base 2) fold changes. For the bell model, true loga-
rithmic fold changes were drawn from a Normal with mean 0 and variance 1. For
the slab bell model, true logarithmic fold changes were drawn for 80% of genes
from a Normal with mean 0 and variance 1 and for 20% of genes from a Uniform
distribution with range from -4 to 4. For the slab spike model, true logarithmic
fold changes were drawn similarly to the slab bell model except the Normal is
replaced with a spike of logarithmic fold changes at 0. For the spike spike model,
true logarithmic fold changes were drawn according to a spike of logarithmic fold
changes at 0 (80%) and a spike randomly sampled from -2 or 2 (20%). These
spikes represent fold changes of 1/4 and 4, respectively.
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Supplementary Figure S10: Root mean squared error (RMSE) for esti-
mating logarithmic fold changes under the four models of logarithmic
fold changes and varying total sample size m. Simulated Negative Binomial
counts were generated for two groups and for 1000 genes. Points and error bars
are drawn for the mean and 95% confidence interval over 10 replications. DESeq2
and GFOLD, which both implement posterior logarithmic fold change estimates,
had lower root mean squared error to the true logarithmic fold changes over all
genes, compared to predictive logarithmic fold changes from edgeR, either using
the default value of 0.125 for the edgeR argument prior.count, or after increasing
prior.count to 10 (edgeR predFC10).
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Supplementary Figure S11: Root mean squared error (RMSE) of logarith-
mic fold change estimates, only considering genes with non-zero true
logarithmic fold change. For the same simulation as shown in Supplemental
Figure S10, shown here is the error only for the 20% of genes with non-zero true
logarithmic fold changes (for bell and slab bell all genes have non-zero logarithmic
fold change). DESeq2 had generally lower root mean squared error, compared to
GFOLD which had higher error for large sample size and edgeR which had higher
error for low sample size.
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Supplementary Figure S12: Mean absolute error (MAE) of logarithmic
fold change estimates. Results for the same simulation as shown in Supple-
mental Figure S10, however here using mean absolute error in place of root mean
squared error. Mean absolute error places less weight on the largest errors. For
the bell and slab bell models, DESeq2 and GFOLD had the lowest mean absolute
error, while for the slab spike and spike spike models, GFOLD and edgeR with a
prior.count of 10 had lowest mean absolute error.
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Supplementary Figure S13: Mean absolute error (MAE) of logarithmic fold
change estimates, only considering those genes with non-zero true log-
arithmic fold change. While in Supplemental Figure S12, considering all genes
for the slab spike and spike spike models, GFOLD and edgeR with a prior.count
of 10 had lowest mean absolute error, the mean absolute error for these methods
was relatively large for large sample size, when considering only the 20% of genes
with true differentially expression. DESeq2 and edgeR generally had the lowest
mean absolute error.
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Supplementary Figure S14: Adjusted Rand Index of clusters using vari-
ous transformation and distances compared to the true clusters from
simulation. 4 simulated clusters with 4 samples each were generated using Neg-
ative Binomial counts over 2000 genes using the means and gene-wise estimates
of dispersion from the Pickrell et al. dataset. 80% of genes were given equal
mean across clusters, while for 20% of genes, logarithm (base 2) fold changes
from a centroid were drawn from a zero-centered Normal distribution while vary-
ing the standard deviation (SD, x-axis). Larger standard deviation resulted in
more distinct clusters, which are easier for the methods to recover. Simulation
was performed with equal size factors, and with size factors for each group set to
1,1, %, 3]. The methods assessed were: Euclidean distance on counts normalized
by size factor, logarithm of normalized counts plus a pseudocount of 1, rlog trans-
formed counts and variance stabilized counts (VST). Additionally, the Poisson
Distance from the PoiClaClu package and the Biological Coefficient of Variation
(BCV) distance from the plotMDS function of the edgeR package were used for
hierarchical clustering. We note that the default distance used by plotMDS is
not the BCV distance but more similar to the Euclidean distance of logarithmic
counts. The points and error bars indicate the mean and 95% confidence interval
from 20 replicates. In the simulations with equal size factors, the Poisson dis-
tance, the VST and the rlog had the highest accuracy in recovering true clusters.
In the unequal size factor simulations, the rlog outperformed the Poisson distance
and the VST.
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Supplementary Figure S15: Diagram of the evaluation scheme for the
benchmarks using real RNA-Seq data. The Bottomly et al. dataset with 10
and 11 replicates was split into a 3 vs 3 “evaluation set” and a 7 vs 8 “verification
set”. The positive calls from the verification set, denoted as set V, were taken
as a pseudo-gold standard of truly differentially expressed genes. The algorithms
were then evaluated based on the set E of positive calls in the evaluation set,
comparing to the gold-standard calls from the set V. Sensitivity was calculated
as |E NV|/|V] and precision was calculated as |E N V|/|E|. Each algorithm’s
calls in the evaluation set were compared against each algorithm’s calls in the
verification set.
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Supplementary Figure S16: Actual versus nominal false discovery rate for
the Bottomly et al. dataset. The actual false discovery rate was calculated us-
ing the median of (1 — precision), though here varying the adjusted p-value cutoff,
i.e., the nominal FDR, for the evaluation set. A false positive was defined as a call
in the evaluation set for a given critical value of adjusted p-value which did not
have adjusted p-value less than 0.1 in the verification set. Ideally, curves should
fall on the identity line (indicated by a black line); curves that fall above indicate
that an algorithm is too permissive (anti-conservative), curves falling below indi-
cate that an algorithm does not use its type-I error budget, i.e., is conservative.
DESeq2 had a false discovery rate nearly matching the nominal false discovery
rate (black diagonal line) for the majority of algorithms used to determine the
verification set calls. The old DESeq tool was often too conservative.
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Supplementary Figure S17: Sensitivity of algorithms evaluated while con-
trolling the median precision. While it was generally noted that sensitivity
and precision were negatively correlated (Figures 8 and 9), here this effect was
controlled by setting the adjusted p-value cutoff for the evaluation set calls such
that the median precision of all algorithms would be 0.9 (actual false discovery
rate of 0.1). This amounted to finding the point on the x-axis in Supplemental
Figure S16, where the curve crosses 0.1 on the y-axis. For most algorithms, this
meant setting an adjusted p-value cutoff below 0.1. DESeq2 often had the high-
est median sensitivity for a given target precision, though the variability across
random replicates was generally larger than the difference between algorithms.
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Supplementary Figure S18: Number of total calls in the evaluation set (3
vs 3 samples) of the sensitivity/precision analysis using the Bottomly et al. [15]
dataset thresholding at adjusted p-value < 0.1, over 30 replications.
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Supplementary Figure S19: Number of total calls in the verification set (7
vs 8 samples) of the sensitivity /precision analysis using the Bottomly et al. [15]
dataset thresholding at adjusted p-value < 0.1, over 30 replications.
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Supplementary Figure S20: Clustering of each algorithm’s calls on the eval-
uation set (3 vs 3 samples) for one replicate of the sensitivity/precision
benchmark. Genes are on the vertical axis and algorithms on the horizontal
axis. Red lines indicate a gene had adjusted p-value < 0.1 in the evaluation set.
Genes in which no algorithm had a call are not shown. Clustering is based on the
Jaccard index.
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Supplementary Figure S21: Clustering of algorithm calls on the verifica-
tion set (7 vs 8 samples) for one replicate of the sensitivity/precision
benchmark. Genes are on the vertical axis and algorithms on the horizontal
axis. Red lines indicate a gene had adjusted p-value < 0.1 in the verification set.
Genes in which no algorithm had a call are not shown. Clustering is based on the
Jaccard index.
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Supplementary Figure S22: Demonstration through simulation that the
dependence of dispersions on the mean seen in Figure 1B is not an
artifact of estimation bias. (A) The gene-wise estimates of dispersion for
the 69 samples of the Pickrell et al. dataset. (B) The gene-wise estimates of
dispersion for a simulated Negative Binomial dataset, using a fixed dispersion of
a = 0.16, equal to the asymptotic gene-wise dispersion estimate aq seen in the
original dataset (A), and with the same means and the same number of genes
and samples as the original dataset. Genes with dispersion estimates below the
plotting range are depicted at the bottom of the frame. For genes with mean
counts greater than ~ 5, the gene-wise dispersion estimates do not exhibit a
dependence on the mean count for the simulated data in panel B.
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Supplementary Figure S23: Marginal null histogram of the test statistic, p-
values, conditioning on the filter statistic, the row mean of normalized
counts across all samples, used for independent filtering. A simulated
dataset was constructed with (A) 6 samples or (B) 12 samples and 20,000 genes.
In either case the samples were equally divided into 2 groups with no true dif-
ference between the means of the two groups. The means and dispersions of the
Negative Binomial simulated data were drawn from the estimates from the Pick-
rell et al. dataset, and the standard DESeq2 pipeline was run. The histogram
of p-values was estimated at 16 equally spaced intervals spanning [0,1]. The
marginal distributions of the test statistic were generally uniform while condi-
tioning on bins based on the filter statistic. The row mean bin with the smallest
mean of normalized counts (mean count 0 — 10) was depleted of small p-values.
The black line indicates the expected frequency for a uniform distribution.
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