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Abstract

Chronic lymphocytic leukemia cells have an atered energy metabolism compared to normal
B cells. While there is growing understanding of the molecular heterogeneity of the disease,
the extent of metabolic heterogeneity and its relation to molecular heterogeneity has not been
systematically studied. Here, we assessed 11 bioenergetic features, primarily reflecting cell’s
oxidative phosphorylation and glycolytic activity, in leukemic cells from 140 chronic
lymphocytic leukemia patients using metabolic flux analysis. We surveyed these bioenergetic
features for relationships with molecular profiles (including genetic aberrations, transcriptome
and methylome profiles) of the tumors, their ex vivo responses to a panel of 63 compounds,

and with clinical data.

We observed that leukemic cells with mutated immunoglobulin variable heavy-chain show
significantly lower glycolytic activity than cells with unmutated immunoglobulin variable
heavy-chain. Accordingly, several key glycolytic genes (PFKP, PGAM1 and PGK1) were
found to be downregulated in samples harboring mutated immunoglobulin variable heavy-
chain. In addition, 8q24 copy number gains, 8pl2 deletions, 13914 deletions and ATM
mutations were identified as determinants of cellular respiration. The metabolic gate of
leukemic cells was associated with drug sensitivity, in particular, higher glycolytic activity

was linked to increased resistance towards several drugs including rotenone, navitoclax, and



orlistat. In addition, we found glycolytic capacity and glycolytic reserve to be predictors of

overal survival (P < 0.05) independent of established genetic predictors.

Taken together, our study shows that heterogeneity in the energy metabolism of chronic
lymphocytic leukemia cells is influenced by genetic variants and may be exploitable for the

choice of therapeutic strategies.



I ntroduction

Resigtance to apoptosis rather than aberrant proliferation is regarded as the reason for CLL
cell accumulation. However, active proliferation also contributes to CLL pathogenesis, as
sizable clonal birth rates were observed in CLL*% This suggests a substantial bioenergetic
demand of proliferating subsets of CLL cells in order to support cell growth and division.
Deregulated energy metabolism is considered as one of the cancer hallmarks’. While
molecular mechanisms promoting survival and proliferation of CLL cells have been
extensively studied, fewer studies have addressed energy metabolism in CLL. Garcia-
Manteiga et al. suggested oxidative phosphorylation as the primary source of energy”. This
hypothesis is supported by subsequent findings that aerobic mitochondrial respiration results
in high levels of oxidative stress of circulating CLL cells’ and that targeting the respiratory
machinery can be therapeutically exploited to achieve selective toxicity®. However, Maclntyre
et al. reported increased concentrations of pyruvate and glutamate in serum samples from

CLL patients as compared to healthy donors, which suggests active glycolysis’.

It is well established that genetic heterogeneity contributes to the variable clinical outcomes
of CLL. Based on the somatic mutation status in the variable regions of the immunoglobulin
(lg) heavy chain (IGHV) genes, CLL can be divided into two subgroups with distinct
prognosis. CLL cells with unmutated IGHV genes (U-CLL) display higher BCR signaling
activity and are more aggressive than CLL cells with mutated IGHV genes (M-CLL). Serum
samples from U-CLL patients were found to contain higher levels of lactate, fumarate, and
uridine than those from M-CLL patients’, suggesting U-CLL cells might have higher rates of
aerobic glycolysis. This finding is in line with the observation that normal B cells undergo a
metabolic switch from oxidative phosphorylation towards glycolysis upon BCR stimulation”.
However, considering the number of clinically relevant genetic alterations documented in

CLL®®, the relationship between genetic heterogeneity and energy metabolism is largely
4



unexplored. Our previous work showed that many of the recurrent mutations influence drug
sensitivities of CLL'. As metabolic reprogramming has been shown to affect drug
responsiveness of various cancers®***?, metabolism may serve as a promising target for

overcoming drug resistance in CLL.

To gain a better understanding of the metabolic landscape of CLL tumor cells in relation to
their genetic profile and to determine the role of metabolism in the response to drug
treatments, we assessed the bioenergetic features of primary CLL samples (n = 140 patients)
through extracellular flux assays investigating two major metabolic processes, namely aerobic
glycolysis and oxidative phosphorylation. We performed an integrative analysis of these data
with previously recorded ex vivo responses of the same samples to a panel of 63 drugs,
somatic genome mutations, tumor transcriptomes, DNA methylomes, and clinical data'®. We
found multiple associations between the mutational status and bioenergetic features and found
glycolysis activity of CLL cells to contribute to resistance towards compounds targeting
mitochondria-related biological processes that include rotenone, orlistat, venetoclax, and
navitoclax. In addition, glycolytic capacity and glycolytic reserve features were shown to
provide additional information to known genomic markers, such as IGHV and TP53, for

predicting overall survival.



M ethods

Extracellular flux assays

Extracellular Flux analyses (illustrated in Supplementary Figure S1) were performed on 152
CLL samples and 9 B cell samples from healthy donors on a Seahorse XFe96 system as
previously described™. The resulting data files (*.asyr) were converted to comma-separated
values (CSV) files using the Wave Desktop software package (Agilent / Seahorse Bioscience)
and imported into R for quality assessment and further analysis. The data for 140 of the 152
CLL samples passed quality control and were used for subsequent analyses. A detailed
description of the workflow and criteria for quality control are described in the

Supplementary Methods.

Integrative data analysis

Analyses were performed using R 3.4 and included univariate association tests, multivariate
regression with and without lasso penalization, Cox regression, generalized linear models,
principal component analysis and gene set enrichment analysis. For association tests between
bioenergetic features and genetic variants (i.e., copy number variants and gene mutations),
only those with five or more variant cases were included. Summary dtatistics of patients
demographic and clinical features are provided in Table S1. All p-values from association
tests were adjusted for multiple testing by applying the Benjamini-Hochberg procedure to

control false discovery rate (FDR). Further details are provided in Supplementary Methods.

Data availahility

Our data and analysis are provided as a reader-reproducible pipeline supported by the R

package seahorseCLL (https.//github.com/lujunyan1118/seahorseCLL). A R Shiny based




online platform (http://mozi.embl.de/public/seahorseCLL) is aso provided for querying and

visualizing our dataset.

Study approval

The study was approved by the Ethics Committee Heidelberg (University of Heidelberg,
Germany; S-206/2011; S-356/2013). Patients who donated tumor material provided written

informed consent prior to study.

Results

CLL cellsand B cells show distinct energy metabolic phenotypes

We first compared the energy metabolic profiles of the 140 CLL samples and 9 B cell
samples from healthy donors. In a principal component analysis (PCA, Figure 1A), the CLL
samples were clearly separated from the B cell samples, which indicatesthat CLL cells have a
digtinct metabolic phenotype. Nine of the 11 bioenergetic features showed altered levels
between CLL cells and B cells (ANOVA test, multiple testing method of Benjamini and
Hochberg for FDR = 5%; Table S2). In accordance with a previous report®, mitochondrial
respiration-related features, including basal respiration, maximal respiration, and ATP

production were increased in CLL cells (Figure 1B).

With regard to aerobic glycolysis, the basal glycolysis activity did not show significant
differences between CLL and B cells. However, CLL cells showed elevated glycolytic
capacity and glycolytic reserve (Figure 1B). As those two features measure the maximum
capability of cells for glycolysis and the flexibility of cellsto respond to energetic demands,
this observation suggests an increased adaptability of CLL cellsto use glycolysis as an energy

source when needed, although they do not primarily rely onit.



Molecular determinants of energy metabolism in CLL

Figure 1 shows a variability among the bioenergetic profiles of the CLL samples. We
hypothesized that this variability may be related to the molecular heterogeneity of CLL3°.
Therefore, we tested the tumor-to-tumor variations of the bioenergetic features for possible
correlations with 20 molecular features, including recurrent somatic mutations and copy
number variations, IGHV status and methylation clusters (Figure 2A and Supplementary

Figure S2).

The most prominent association identified was the IGHV status: IGHV mutated CLL (M-
CLL) samples had lower glycolytic activity and glycolytic capacity than IGHV unmutated
CLL (U-CLL) samples (Figure 2B). Patients with M-CLL and U-CLL have been observed to
have distinct serum metabolite profiles, with U-CLL patients having higher lactate level in
serum, which can be considered a sign of elevated glycolysis’. To our knowledge, our large
sample size study provides the first direct proof that U-CLLs indeed have a higher glycolytic
activity than M-CLLs. IGHV statusis strongly associated with three subtypes of CLL defined
by their global levels of CpG methylation™. Accordingly, we found that the high-programmed
CLL (HP-CLL) subtype, which has higher global methylation level, had a lower glycolysis

activity than the low-programmed CLL (LP-CLL) subtype (Figure 2C).

To further dissect the role of IGHV status in metabolic reprogramming, we analyzed
transcriptome data that we had measured for 120 of these patient samples (of which 111 had
annotation for IGHV status). We performed gene set enrichment analysis on the genes that
were differentially expressed between M-CLL and U-CLL samples using the Hallmark gene
sets from Molecular Signature Database (MSigDB)™. We found that genes down-regulated in

M-CLL were enriched in the glycolysis pathway (Figure 3A). Thirty-four glycolysis-related



genes were down-regulated in M-CLL (Figure 3B), including several that encode key
enzymes. PFKP (Phosphofructokinase, platelet), PGAM1 (Phosphoglycerate Mutase 1), and
PGK 1 (Phosphoglycerate kinase 1) (Figure 3C)**8, This analysis suggests that IGHV status
directly influences the expression of genes related to glycolysis resulting in the observed
difference of glycolytic parameters between M-CLLs and U-CLLs. As IGHV status reflects
the B-cell receptor (BCR) signaling activity™, we queried two published datasets for the
transcriptomic signatures of BCR stimulation in CLLs either by IgM?° (GEO ID: GSE49695)
or unmethylated bacterial DNA (CpG) (GEO ID: GSE30105). In both conditions, genes that
were up-regulated after BCR stimulation were significantly enriched in glycolysis pathway
(Supplementary Figure S3). Together these results indicate a causal link from BCR signaling

to glycolysis activity in CLL; such arelation isaso in line with previous evidence™ .

We also identified several other novel associations between bioenergetic features and genetic
variants (Supplementary Figure $S4). Gain of 8924, deletion of 8p12, ATM mutation, EGR2
mutation and MED12 mutation were found to be associated with higher values of respiration-
related features such as ATP production and maximal respiration, while tumors with

chromothripsis showed lower OCR values.

Glycolytic activity contributes to drug resistancein CLL

Sensitivity to drugs is an informative cellular phenotype that reflects pathway dependencies
of tumor cells™ and therefore we asked how the 11 intrinsic bioenergetic features were related
to the vulnerabilities of CLL cells towards a panel of 63 drugs applied ex vivo. This panel
comprised clinically used drugs as well as small molecule probes of pathways important in
leukemia. Using the Pearson correlation test, we identified 118 significant associations (FDR

= 10%) between drug sensitivities and bioenergetic features (Figure 4A and Supplementary



Figure Sb). Thirty-two drugs had at least one significant association with a bioenergetic
feature. A significant association between a bioenergetic feature and an ex vivo drug response
indicates that the sensitivity or resistance of CLL samples to the drug is affected by the

intrinsic activity of the bioenergetic feature.

At an aggregate level, glycolysis-related features of the CLL cells were positively correlated
with the viabilities of those cells after drug treatment, while respiration-related features were
negatively correlated. This suggests that higher glycolysis activity of CLL cells reduces
sensitivity to drugs, while higher respiration activity contributes to increased sensitivity ex

vivo.

There were more specific patterns for drugs with different target profiles. CLL samples with
higher respiration activity were more sensitive to kinase inhibitors, including the inhibitors of
Bruton's tyrosine kinase (BTK), ibrutinib, and of spleen tyrosine kinase, tamatinib, both of
which target the BCR pathway. In addition, two checkpoint kinase 1 (Chk1) inhibitors,
AZD7762 and PF-477736, and the heat shock protein 90 (Hsp90) inhibitor AT13387 showed
similar association patterns, which is in line with the report that they also target the BCR

signaling cascade™.

Viabilities after treatment of drugs targeting mitochondria-related biological processes
(rotenone, venetoclax and navitoclax) were positively correlated with the glycolysis-related
features (Figure 4A, Supplementary Figure S6) for most of the drug concentrations
(Supplementary Figure S5); this finding is not merely due to confounding by IGHV status as
shown by the multivariate test results (Supplementary Figure S7). Rotenone is a
mitochondrial complex | inhibitor, which disrupts the electron transport chain and thus blocks
cellular respiration. Therefore, the correlation between rotenone response and glycolysis
activity can be explained by the fact that higher glycolysis activity or potential (with

increased metabolic flexibility) can compensate for cytotoxic effects of respiration inhibition
10



by providing an alternative way of producing ATP. Venetoclax and navitoclax are BH3-
mimetics that target the BCL2 protein and lead to mitochondrial damage and the inhibition of
oxidative respiration®®. Thus, lower reliance on oxidative respiration is a plausible explanation
for the resistance to BH3-mimetics of CLL cells with high glycolysis activity. We aso
observed associations between glycolysis-related features and the responses to orlistat, an
anti-obesity drug, which has also been identified as a pro-apoptotic agent in CLL by
inhibiting lipoprotein lipase (LPL)*, and KX2-391, an inhibitor of the proto-oncogene

tyrosine-protein kinase Src (Supplementary Figure S6).

We previoudy showed that although drug response phenotypes of CLL cells were largely
influenced by genetic variants, there was ill substantial variance in the drug response
phenotypes that were not explained by genetics. Thus, we asked whether the energy
metabolism profile could add additional predictive information. For each drug, we built two
multivariate linear regression models to predict its response profile: one included only the 20
genetic features shown in Supplementary Figure S2 as predictors, the other included these
genetic features plus 11 bioenergetic features. As a measure of predictive strength, we
compared the variance explained (R? value adjusted by numbers of predictors) between the
two models. As shown in Figure 4B, for most drugs, including bioenergetic features in the
model did not increase explanatory power (dots on diagonal line); moreover, responses to
individual kinase inhibitors were well explained by the genetic features (blue dots in Figure
4B and Supplementary Figure S8). However, for five drugs, including venetoclax and
rotenone, the variance explained increased by 10% or more upon inclusion of the bioenergetic
features (red dots in Figure 4B). In addition, except for cephaeline, bioenergetic features were

more significant than genetic featuresin the multivariate models (Figure 4C).

Association between clinical course and energy metabolism of CLL
11



The use of primary patient cells enabled us to investigate the associations between
bioenergetic features with patient history or outcome in CLL. In our study cohort, 43 patients
had received treatment before sample collection, in all cases with chemotherapeutic agents
(Table S1), and none of them was undergoing treatment when samples were collected.
Therefore, we first asked whether these completed treatments prior to sample collection
affected the energy metabolism of primary tumor samples, as studies have shown
chemotherapy or targeted therapy could drive clonal evolution leading to drug resistance or
oxidative stress™?. We found two bioenergetic features, namely glycolytic capacity and
glycolytic reserve, associated with pretreatment status at a significance threshold of P < 0.05
(Table S3, Supplementary Figure S9). However, pretreatment status was aso highly
correlated with IGHV (P = 0.0006, Chi-square test). This reflects the fact that U-CLL patients
more fregquently receive treatment due to faster progression. Furthermore, glycolytic capacity
and reserve are correlated with IGHV status based on our above analysis. Thus, to dissect
confounding from more direct association, we included IGHV status as a blocking factor in a
multivariate modd. In this more careful analysis, no significant association between
pretreatment status and bioenergetic features was detected (P < 0.05). In a second analysis to
assess potential roles of pretreatment status on the biology of the tumor samples, we revisited
our association tests between the bioenergetic features and (i) the genetic variants and (ii) the
drug responses. Including pretreatment status as a blocking factor had negligible impact on
directions, strengths and p-values of these associations (Supplementary Figure S10). Together,
these results indicate that the treatments experienced by 43 of our patients led to no detectable
differences between the metabolic phenotypes of their circulating CLL cell samples and those
of the 97 other patients. Therefore, we proceeded with the subsequent analysis using the

combined dataset of 140 samples.

Returning to clinical outcomes, we considered two endpoints; time to treatment (TTT) and

overal survival (OS). Univariate Cox regression models indicated that glycolytic reserve,
12



maximal respiration, and spare respiratory capacity were associated with TTT, and glycolytic
capacity and glycolytic reserve were associated with OS (P < 0.05, Supplementary Figure
S11). Samples with higher values of these features were associated with worse clinical
outcomes, i.e., shorter time to treatment and overall survival. In multivariate Cox models
including age, trisomy 12, deletion of 11922.3, deletion of 17p13, TP53 mutation and IGHV
status as covariates, bioenergetic features were not picked up as predictive for TTT (Table
A-S6). However, glycolytic capacity and glycolytic reserve were the most significant
predictors for OS also in the multivariate Cox models (Table 1), indicating those two
glycolysis-related features provide additional OS-related information to established variables
such as IGHV gatus, one of the most reliable prognostic markersin CLL. As shown in Figure
5 A-B, M-CLL patients with low glycolytic capacity or reserve showed best prognosis, U-
CLL patients with high glycolytic capacity or reserve showed worst prognosis, while the

other two groups lie in between.

We also investigated associations of each bioenergetic feature to clinical relevant phenotypes
including CD38 expression, CD49d (IGTA4) expression and lymphocyte doubling time

(LDT), which are considered as indicators for CLL progression”®™"

. Again, we considered
IGHV status as a potential confounder (Table S7 and S8). Significant correlations existed of
CD38 gene expression with glycolytic capacity, and with glycolytic reserve (5% FDR)
(Figure 5 C-D). On top of the known fact that CD38 expression is highly associated with
IGHV status®, we found that it was positively correlated to glycolytic capacity or glycolytic
reserve in either of the M-CLL or U-CLL disease subgroups (Supplementary Figure S12).
This result suggests an IGHV gatus-independent link between CD38 activity and adaptability

of CLL cellsto glycolysisasan energy source.

The complex network of CLL energy metabolic predictors
13



While the analyses presented so far provide insights on pairwise associations between
bioenergetic features and other tumor properties, we next aimed at a systems-level map of the
network of gene mutations, DNA methylation, gene expression, ex vivo drug responses, and
bioenergetic features. We used multivariate linear regression with lasso regularization to
regressed each bioenergetic feature upon other available biological features and measured

prediction performance using cross-validated R? (Figure 6).

We first assessed to what extent each omics data type alone, or the combination of all the
datasets, explained each bioenergetic features. The gene expression data and the drug
response data performed best in predicting bioenergetic features (Figure 6A). Combining al
datasets slightly increased the prediction power for each metabolic feature, indicating that
each set contains non-redundant information. Notably, the glycolysis-related features were
better explained by the multi-omics data than the respiration-related features (Figure 6A and

Supplementary Figure S13).

We visualized predictor profiles for individual bioenergetic features, focusing on the ex vivo
drug responses, gene expressions, and genetic variants (Figure 6B and Supplementary Figure
S13). In accordance with the above univariate analysis, the multivariate model identified
IGHV gatus and response to mitochondria-targeting drugs like venetoclax and rotenone as
important predictors for glycolysis-related features. In addition, SF3B1 mutation was
identified as one of the top predictors for glycolytic capacity and reserve, its presence being
associated with higher values. SF3B1 is an mRNA splicing factor that is frequently mutated
in CLL and associated with more aggressive disease and worse survival, but its oncogenic
mechanism is till elusive®. Another genomic aberration, deletion of 13g14, was selected as

one of the top predictors for basal respiration and ATP production.

Several principal components (PC) from the gene expression datasets were also identified by

the multivariate modeling. PC8 was the top predictor with positive coefficient for all
14



respiration related features. As the genes with high positive loadings on PC8 are enriched in
E2F targets, this suggests that higher expression of E2F targets associates with higher
respiratory activity in CLL cells. On the other hand, PC10 was the top predictor, with
negative coefficient, for maximal respiration and spare respiratory capacity (Supplementary
Figure S14). Based on enrichment analysis, genes with high negative loadings on PC10 are
enriched in the mTOR pathway and therefore this also suggests higher mTOR pathway
activity associates with high respiration capability. These findings are in line with previous
reports that E2F transcription factors and mTOR pathway are key players in regulating

mitochondrial activity**®.

PCs 2, 4, 6 and 11 were identified as predictors for several glycolysis-related features (Figure
6B and Supplementary Figure S13). Gene set enrichment analysis highlighted TNFa-NFkB
signaling as the most enriched pathway for genes with high loadings on PC2, 4 and 6
(Supplementary Figure S14). This finding is consistent with previous reports that NFkB
signaling pathway controls energy homeostasis in inflammatory and cancer cells®. As we
also found NF«B activation signatures in the two published transcriptomic profiling datasets
of BCR stimulation (Supplementary Figure S3), which is in line with previous reports that
BCR dimulation activate NFkB, we suggest that NFxB activation may play a role in

increased glycolysis after BCR activation® .

Discussion

In this study, we identified molecular features that underlie the heterogeneity of energy
metabolism in CLL and linked bioenergetic features with ex vivo drug responses and clinical
course. We found that although CLL cells and B cells to have a similar basal glycolytic
activity, CLL cells had a significantly higher glycolytic capacity and glycolytic reserve,
which are both indicators for the cell’s potential to switch to glycolysis as an energy source

when necessary. Interestingly, we also found glycolytic capacity and reserve, but not basal
15



glycolysis, to be novel predictors for overal survival in our cohort — CLL patients with higher
glycolytic capacity and reserve showed worse prognosis. In addition, higher glycolytic
capacity and reserve were also found to be correlated with high expression of CD38 gene, a
cell surface marker of B-cell activation and a negative prognostic marker in CLL. These
observations can be viewed in context of a recent report of CLL cells' increased reliance on
aerobic glycolysis to produce energy after a glycolytic switch induced by their contact with
stromal cells®. Although we assayed circulating CLL cells for our study, the glycolytic
capacity and reserve in the flux assay may actually measure the ability of CLL cells to adapt
to glycolysis in a stimulated state, similar to the stimulation by stromal cells. Our findings
thus imply that circulating CLL cells may have previously undergone such metabolic
reprogramming and carry the metabolic repertoire that allows them to quickly switch to
glycolysis when a suitable stimulation occurs, e.g., upon stromal contact, and the magnitude

and efficiency of this switch can have further impact on the prognosis of CLL patients.

We showed that U-CLL has significantly higher glycolytic rates, which validates the previous
hypothesis that U-CLL may have higher reliance on aerobic glycolysis due to higher BCR
signaling pathway activity®’. In addition, we illustrated that the glycolysis pathway is more
active in U-CLLs than M-CLLs, accompanied by an up-regulation of key enzymes regulating
cellular glycolysis. This indicates that the energy metabolism may be intrinsically different
between M-CLLs and U-CLLs and that the BCR signaling pathway may have a direct impact
on the metabolic reprogramming. As previous attempts to monitor circulating CLL cells in
vivo by using fluorodeoxyglucose positron emission tomography (FDG-PET), which
pinpoints anatomical locations with high rate of glycolysis, failed due to insufficient
sensitivity™®, our results suggest that considering the difference between the M-CLL and U-

CLL subtypes could increase the sensitivity of this diagnostic approach.
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We found that the CLL patient samples with gain of 8924 showed increased respiratory
activity. The reason is likely the oncogenic activity of the extra copy of the MYC proto-
oncogene. Previous studies have shown that MY C substantially contributes to mitochondrial
biogenesis, and the over-expression of MY C leads to increased respiratory capability in

several cell line models, which isin line with our observation®.

In our study, we also highlighted the possibility of exploiting heterogeneity of energy
metabolism to improve individualized patient care. We show that higher glycolytic flexibility
can contribute to the resistance of CLL samples to the treatment by drugs that affect
mitochondria, such as rotenone, venetoclax, and navitoclax. We postulate that the cytotoxic
effects of those drugs may partially result from restricting the energy supply by blocking
cellular respiration and thus, cells with higher glycolytic potential can counteract their effect

due to higher metabolic flexibility.

We are aware of certain limitations of the current study. Firgtly, while most of the
proliferative activity of CLL cells appears in lymph node and bone marrow, we only used
circulating CLL cells in the study due to the easier availability of patient material, which was
instrumental in enabling the study size. In addition, although we observed many biologically
meaningful associations, they are generally weak, as indicated by relatively small effect sizes
or correlation coefficients. While there is the possibility that biological variables not
measured by us contribute to the heterogeneity in energy metabolism, a likely explanation
comprises biological noise (since we are using patient samples instead of cell lines) and
technical noise of the Seahorse extracellular flux measurements, and the other assays used.
Indeed, our study is to our knowledge the first that uses such a dynamic assay to

systematically interrogate energy metabolism at such large scale.

All in al, our in-depth characterization of the energy metabolism and integrative analyses

provide valuable insights on mechanisms underlying the metabolic regulation of CLL cells
17



and reveal the possibilities of guiding clinical diagnosis and individualized patient care based
on metabolic profiles. Our large-scale energy metabolism dataset complements the current
traditional omics datasets, such as RNA sequencing, DNA sequencing, and methylation

profiling and provide another layer for a better understanding of CLL biology.
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Table 1. Results of multivariate Cox regression model for overall survival (n=119, events =18) by
including either glycolytic reserve or glycolytic capacity as a predictor

M ultivariate cox model including glycolytic reserve

Factor p value Hazard Ratio lower 95% ClI upper 95% Cl
glycolytic reserve 0.033 1.10 1.00 1.20
U-CLL 0.095 3.00 0.83 11.00
treatment 0.206 2.50 0.61 9.90
trisomy12 0.265 2.40 0.52 11.00
age 0.413 1.20 0.79 1.80
TP53 mutations 0.504 1.60 0.42 5.90
11g22.3 deletions 0.629 0.71 0.17 2.90
17p13 deletions 0.790 0.80 0.16 4.00
M ultivariate cox model including glycolytic capacity

Factor p value Hazard Ratio lower 95% ClI upper 95% Cl
glycolytic capecity 0.046 1.10 1.00 1.10
U-CLL 0.101 2.90 0.81 10.00
treatment 0.178 2.60 0.65 10.00
trisomy12 0.312 2.20 0.48 9.70
TP53 mutation 0.469 1.70 0.42 6.50
11g22.3 deletions 0.494 0.61 0.15 250
age 0.546 1.10 0.76 1.70
17p13 deletions 0.644 0.68 0.13 3.60

Cl: Confidence interval
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Figurelegends

Figure 1: Difference of energy metabolism between CLL cells and normal B cells. (A)
Scatterplot of the top two principal components of the 11 tested bioenergetic features. Each
dot represents a CLL patient sample (blue) or a healthy-donor derived B cell (red). (B)
Beeswarm plots showing differences of six of the bioenergetic features between B cell

samples (n=9) and CLL samples (n=140).

Figure 2: Associations between genetic variants and bioenergetic features. (A) The
digribution of P-values of the associations between each genetic variant and each energy
metabolic feature (ANOV A test). Associations that did not pass a threshold corresponding to
5% FDR (method of Benjamini and Hochberg) are colored in gray. The associations with
higher bioenergetic values in mutated cases are colored by red while the associations with
lower bioenergetic values in mutated cases (or high-programmed subtype) are colored by blue.
(B, C) Exemplary associations, visualized in beeswarm plots. (B) Glycolysisand IGHV status.

(C) Glycolysisand DNA methylation cluster.

Figure 3: Genes from the glycolysis pathway are down-regulated in M-CLL samples. (A)
Hallmark gene sets that are significantly enriched (method of Benjamini and Hochberg for
FDR = 10%) among genes differentially expressed between M-CLL and U-CLL. (B) The
heatmap shows the z-score of the expression values of glycolysis pathway genes that are
differentially expressed between M-CLL and U-CLL samples. (C) Beeswarm plots for the
expression values of three key genes in the glycolysis pathway, PFKP (Phosphofructokinase,
platelet), PGAM1 (Phosphoglycerate Mutase 1), and PGK 1 (Phosphoglycerate kinase 1).
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Figure 4. Correlation test results between drug response phenotypes and bioenergetic
features. A) The y-axis shows the negative logarithm of the Pearson correlation test p-values.
Only drugs with at least one significant association with bioenergetic features are shown
(method of Benjamini and Hochberg for FDR = 10%). Viahilities across different drug
concentrations were aggregated using Tukey’'s median polish method. Correlations with
glycolysis-related features are colored by warm colors and correlations with respiration-
related features are colored by cold colors. The dotted line indicates the P-value threshold
given by the method of Benjamini and Hochberg for FDR=10%. B) Comparison of explained
variance of drug responses between the multivariate model including only genetic features
and the model including genetic and bioenergetic features. C) Predictors with significant p
values (<0.05) in multivariate models for the drugs colored by red in figure 4B. A red bar
indicates a positive association with drug responses (higher drug sensitivity is associated with
presence of the mutation or higher value of the bioenergetic feature), and a blue bar indicates

negative association.

Figure5. Associations between bioener getic features and clinical course. A, B) Kaplan-
Meier plots for overall survival stratified by IGHV status and glycolytic capacity (A) or
glycolytic reserve (B). The cutoff to define high and low bioenergetic groups was estimated
by maximally selected rank test. The cutoff value and number of samplesin each group are
shown inside the parentheses in the figure legends. C, D) Scatter plots for associations of

CD38 expression with glycolytic capacity and glycolytic reserve.
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Figure 6: Multivariate regresson models for energy metabolism features. (A)
Explanatory power (cross-validated R?) of datasets of different data types for the prediction of
the energy metabolic features. The error bars represent standard deviations of R? over 100
repeated cross-validations. The numbers in parentheses after dataset names indicate the
number of variables in the dataset. (B) Visualization of fitted adaptive L1 (lasso)
regularization multivariate models using drug responses, gene mutations, IGHV status,
pretreatment status and the top 20 principal components of the gene expression (RNASeq)
data. The numbers in parentheses indicate the number of samples used for the regression. The
Z-scores of the energy metabolic features (i.e., centered by mean and scaled by standard
deviation) are shown in the scatter plot at the bottom. The heatmap in the middle shows the
predictor values. The continuous variables (drug responses and gene expression PCs) are
shown centered and scaled using the red-white-blue color representation, the binary variables
(genetic variants, IGHV status) in black and white (black: mutation present). The average
model coefficients over 100 repeated cross-validations are shown by horizontal bars on the

left. Only the features that were selected at least 80 times out of 100 repeats are shown.
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Energy metabolism is co-determined by
genetic variants in chronic lymphocytic

leukemia and influences drug sensitivity
(Supplementary Materials)

1 Supplementary Methods

1.1 Experimental details for extracellular flux assays

Seahorse XFe96 culture plates (Agilent/Seahorse Bioscience) were prepared by coating each well
with Corning™ Cell-Tak Cell and Tissue Adhesive (BD, 354241) according to the manufacturer’s
recommendations. Additionally, a Seahorse XFe96 cartridge (Agilent, Seahorse Bioscience) was
loaded with 200 nul Calibrant solution (Agilent, Seahorse Bioscience) per well and incubated
overnight in a COs-free atmosphere. The next day, healthy donor-derived, magnetic-bead iso-
lated B cells or CLL peripheral blood mononuclear cells (PBMCs) were thawed from cryo-frozen
aliquots, washed in assay specific medium according to the manufacturer’s recommendations,
and viable cells were automatically counted on a Muse®)Cell Analyzer (Merck Millipore). Cells
were seeded at a density of 2.4 x 10° cells in 175 pl medium per well. Samples were run with 2-7
technical replicates depending on the material’s availability. The ports of the Seahorse cartridge
were loaded with 25 nl of each 80 mM glucose, 9 pM oligomycin and 1M 2DG for the glycolysis
stress test (GST) and 20 pl of 10 uM oligomycin, 22 ul of 15 pM FCCP and 25 pl of 30 pM
antimycin A /rotenone for the mitochondrial stress test (MST). After sensor calibration, assays
were run as prescribed in the manufacturer’s manual to record ECAR (extracellular acidification
rate) and OCR (oxygen consumption rate) over time.

1.2 Quality control criteria for extracellular flux assay measurements

First, we filtered out failed measurements in MST and GST by examining the changes of OCR
and ECAR values after compound application, as follows. In MST, there are four stages, and
each stage is separated by the application of tool compounds. Based on the biology of mi-
tochondrial respiration, the following criteria were defined (see Supplementary Figure S1 for
illustration): the OCR values of stage 2 (after oligomycin and before FCCP injection) should
be lower than the OCR values of stage 1 (before oligomycin injection); the OCR values of stage
3 (after FCCP and before rotenone & antimycin A injection) should be higher or equal to the
OCR values from stage 1; the OCR values of stage 4 (after rotenone & antimycin A injection)
should be lower than the OCR values from stage 1. Similarly, in GST, there are also four stages:
the ECAR values of stage 2 (after glucose and before oligomycin injection) should be higher
than the ECAR values of stage 1 (before glucose injection); the ECAR values of stage 3 (after
oligomycin and before 2-DG injection) should be higher or equal to the ECAR values in stage
2; the ECAR values of stage 4 (after 2-DG injection) should be lower than those in stage 2.
Measurements that did not meet these criteria were considered invalid and set aside.



Next, outlier samples were identified based on the modified Z-score of the OCR and ECAR
values; the modified Z-score (Z;) of a measurement point was defined as Z; = 0.6745 x (z; —
Z)/MAD, with & denoting the median of the values from a certain measurement point across all
samples and MAD the median absolute deviation. If a certain sample contained more than 40%
measurements with modified Z-score higher than 3.5, this sample was considered as an outlier
sample and excluded from the subsequent analysis.

Due to the large number of samples, MST and GST were performed over periods of 18 and 16
days, respectively. Therefore, each day was defined as a batch, and batch effects were estimated
and adjusted. Specifically, to test for associations between bioenergetic features and categorical
variables, i.e., the genomic variants and cell types (B cell VS CLL cell), ANOVA test by including
batch as a blocking factor was used. For associations with continuous variables (i.e., drug
responses and gene expressions) the batch effect in bioenergetic features was firstly adjusted by
using the comBat function in the sva package [1] and then the Pearson correlation test was used.

After the quality control process described above, totally 12 out of 152 samples that did not
pass quality control were excluded from subsequent analysis.

1.3 Summarizing bioenergetic features

Based on the Seahorse assay (illustrated in Supplementary Figure S1), five mitochondrial respiration-
related bioenergetic features (basal respiration, ATP production, proton leak, maximal respira-
tion and spare respiratory capacity) were calculated from the oxygen consumption rate (OCR)
time course during a mitochondrial stress test (MST), and three glycolysis-related features (gly-
colysis, glycolytic capacity and glycolytic reserve) were calculated from the extracellular acidifi-
cation rate (ECAR) during a glycolysis stress test (GST). The stress tests employ metabolically
interfering compounds as described in the Supplementary Methods. In addition, the baseline
OCR and ECAR values and the ECAR/OCR values were also defined as bioenergetic features.

1.4 Multi-omics profiling and ex-vivo drug sensitivity assay

Multi-omics profiling, including whole-exome sequencing, targeted sequencing, DNA methyla-
tion profiling and RNA sequencing, were previously performed on the same set of patient sam-
ples; in addition, the sensitivities of these samples to a panel of 63 small molecule compounds
at 5 concentrations each were characterized [2]. Clinical outcomes of those sample were also
recorded. Those data are available in the R data package BloodCancerMultiOmics2017, from
the Bioconductor project (http://bioconductor.org).

1.5 Gene enrichment analysis

For the n = 120 patient samples for which we had both bioenergetic data and RNASeq data, the
RNAseq data were used for identifying expression signatures of IGHV mutation status and for
defining biological meanings of gene expression principal components selected by multivariate
regression models. To characterize expression signatures of IGHV status, differentially expressed
genes (FDR = 10%, method of Benjamini and Hochberg) were firstly identified by using DE-
Seq2 [3] and then raked by their test statistics. As for defining the biological meanings of gene
expression principal component, genes were ranked by their loadings on each principal compo-
nents. Gene set enrichment analysis was then performed on the ranked lists using the Parametric
Analysis of Gene Set Enrichment (PAGE) method [4] with the KEGG and H gene set selections
from the MSigDB database (http://software.broadinstitute.org/gsea/msigdb).

1.6 Penalized multivariate regression

We performed multivariate regression to explain bioenergetic features by a large feature data
space. We used a Gaussian linear model with L1-penalty (i.e., lasso regression) as implemented



in the R package glmnet version 2.0 with mixing parameter o = 1 [5]. Before analysis the
expression data were normalized and transformed using the varianceStabilizing Transformation
function from DESeq2, and both expression and methylation data were filtered to include only
the top 5000 most variable features each. Genetic mutations were only included in the model
if present in at least 5 samples. Features with more than 20% missing values were excluded.
Remaining missing values were imputed by the mean for methylation data and by the most
common mutation status for genetic data.

As predictors in the lasso model the genetic mutations and IGHV status (coded as 0-1),
demographics (age, sex) and the top 20 principal components of gene expression and methylation
data were used. All features were scaled to unit variance and mean zero before using lasso to
achieve fair treatment of all predictors by the penalty constraint. To compare explanatory
power of different datasets a separate model was fit including only predictors of one omic type
at a time as well as a joint model including all predictors. Using 3-fold cross-validation, the
optimal penalty parameter \ was chosen to minimize the cross-validated R? of the model using
the function cv.glmnet. The cross-validation process was repeated 100 times for each model to
reduce the model variance, and then the average coefficient and feature selection frequency over
100 repeats were calculated. As a measure of explained variance, the reduction in cross-validated
mean squared error relative to the null model was calculated and then averaged over 100 repeats.
For single features, i.e. IGHV the R? from a standard linear model was used as corresponding
quantity.



2 Supplementary Figures
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Figure S1: Representative scheme of the glycolytic stress test (left panel) and the mitochondrial
stress test (right panel) depicting the extracellular acidification rate (ECAR) and
the oxygen consumption rate (OCR), respectively. The calculation of the different
metabolic parameters after sequential injection of metabolically active compounds
is illustrated by colored boxes as indicated. The grey box symbolizes non-glycolytic
acidification as well as non-mitochondrial respiration as background.
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Figure S2: A heatmap plot showing the p values for all tested associations between
bioenergetic features and genetic variants. A positive p value (colored by blue)
indicates higher bioenergetic value in mutated cases (or highly methylated group for
methylation cluster). A negative p value (colored by red) indicates lower bioenergetic
value in mutated cases. ** indicates the association passed 5% FDR control and *
indicates the association passed 10% FDR control, using the method of Benjamin
and Hochberg on the set of 220 (20 x 11) raw p-values.
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Figure S3: Gene expression signatures of B-cell receptor stimulation queried from two
public datasets (A, C) Hallmark gene sets that are significantly enriched (method
of Benjamini and Hochberg for FDR = 1%) among genes differentially expressed after
BCR stimulation by IgM (GEO accession ID: GSE49695) or by CPG (GEO accession
ID: GSE30105). (B,D) The heatmaps show the z-score of the expression values of
glycolysis pathway genes that are differentially expressed after BCR stimulation by
IgM or CPG.
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Figure S4: Beeswarm plots for all significant associations (method of Benjamini and Hochberg
for FDR = 5%) between genetic variants and energy bioenergetic features
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3 Supplementary Tables

Table S1: Background information of patients included in the study. (n.d. - no data available)
No. PatientID Sex IGHV Age Methylation_Cluster Pretreated Type of treatment

1 HO17 m U 56 LP no
2 HO15 f U 62 LP no
3 H023 f U 70 LP yes Chemoimmunotherapy
4 H033 f M 62 HP no
5 H035 f M 79 1P yes Chemoimmunotherapy
6 HO036 f M 75 HP no
7 HO040 f M 83 1P no
8 HO042 f U 71 LP yes Chemoimmunotherapy
9 HO046 m M 88 HP no
10 HO014 f U 86 LP yes Chemoimmunotherapy
11 HO028 f M 72 HP no
12 HO062 m M 53 n.d. no
13 HO065 f U 7 LP yes Chemoimmunotherapy
14  HO10 f U 72 LP no
15  HO027 m U 57 LP no
16  HO069 f U 76 LP yes Chemoimmunotherapy
17 HO063 f M 49 1P no
18  HO082 m M 82 1P no
19  HO72 m U 57 1P no
20  HO056 m M 83 HP no
21 HO21 m M 49 HP no
22 HO11 f M 72 HP no
23 HO78 m U 68 LP yes Chemoimmunotherapy
24  HO12 f U 61 LP yes Chemoimmunotherapy
25  HO16 m M 55 1P no
26 HO57 m M 66 HP no
27 HO45 m U 90 LP yes Chemoimmunotherapy
28  HO13 m U 7 LP yes Chemoimmunotherapy
29  HO094 m M 45 HP no
30  HO60 m U 75 HP no
31  HO039 f M 54 HP no
32 HO090 f M 70 1P yes Chemoimmunotherapy
33  HO095 f U 52 LP no
34  HO029 f M 75 1P yes Chemoimmunotherapy
35  HO020 m M 64 HP no
36  HO19 f U 70 1P yes Chemoimmunotherapy
37  HO041 m M 75 HP no
38  H100 m M 74 HP no
39  HO032 m U 67 LP yes Chemoimmunotherapy
40 H101 f M 72 HP no
41 H102 f U 78 LP no
42 HO044 m U 59 1P yes Chemoimmunotherapy
43  HO83 m n.d. 69 HP no
44  H104 m U 79 LP no
45  HO058 f M 74 1P no
46  HO77 f U 69 LP no
47  HO031 f M 62 1P no
48  HO005 m M 75 IP yes Chemoimmunotherapy
49  H105 m M 49 HP no
50  HO81 f M 64 HP no
51 H106 m M 70 HP no
52  HO054 f M 49 HP no
53  HO89 f M 54 HP no
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Table S2: ANOVA test results (adjusted for batch effect) of bioenergetic features between CLL
cells and normal B cells

Seahorse measurement p Difference of mean adjusted p
ATP production 0.000 15.333 0.000
basal respiration 0.000 16.308 0.000
ECAR 0.013 -2.890 0.016
ECAR/OCR 0.000 -0.622 0.000
glycolysis 0.972 -0.044 0.972
glycolytic capacity 0.000 13.896 0.000
glycolytic reserve 0.000 13.940 0.000
maximal respiration 0.000 58.044 0.000
OCR 0.000 17.166 0.000
proton leak 0.629 0.975 0.692
spare respiratory capacity 0.000 41.736 0.000

Table S3: Association test results of bioenergetic features related to pretreatment status

Seahorse mearuement p value adjusted p (I GHpVVl?)lll(l)ike 4 [ G?ﬁ‘]\l/lsﬁfjdfe d)
ATP production 0.755 0.831 0.867 0.934
basal respiration 0.641 0.821 0.934 0.934
ECAR 0.672 0.821 0.426 0.670
ECAR/OCR 0.245 0.385 0.271 0.597
glycolysis 0.065 0.185 0.229 0.597
glycolytic capacity 0.016 0.174 0.083 0.597
glycolytic reserve 0.037 0.185 0.114 0.597
maximal respiration 0.101 0.185 0.489 0.672
OCR 0.098 0.185 0.224 0.597
proton leak 0.851 0.851 0.925 0.934
spare respiratory capacity 0.085 0.185 0.409 0.670
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Table S4: Multivariate Cox regression model for time to treatment with glycolytic reserve as a

covariate

factor p value hazard ratio lower 95% CI upper 95% CI
age 0.0397 0.77 0.61 0.99
trisomy12 0.594 1.3 0.53 3.1

11g22.3 deletions 0.622 1.2 0.55 2.7

17p13 deletions 0.556 1.3 0.55 3

TP53 mutations  0.0125 2.6 1.2 5.6

U-CLL 0.108 1.8 0.88 3.6

glycolytic reserve 0.095 1 0.99 1.1

Table S5: Multivariate Cox regression model for time to treatment with maximal respiration as

a covariate

factor p value hazard ratio lower 95% CI upper 95% CI
age 0.0169  0.77 0.62 0.95
trisomy12 0.336 1.5 0.66 3.3

11g22.3 deletions 0.18 1.6 0.79 3.4

17p13 deletions 0.581 1.3 0.54 3

TP53 mutations 0.00532 3 1.4 6.4

U-CLL 0.0354 2 1 3.8

maximal respiration 0.0743 1 1 1

Table S6: Multivariate Cox regression model for time to treatment with spare respiratory ca-

pacity as a covariate

factor p value hazard ratio lower 95% CI upper 95% CI
age 0.0191  0.77 0.62 0.96
trisomy12 0.328 1.5 0.67 3.4

11q22.3 deletions 0.187 1.6 0.79 3.4

17p13 deletions 0.572 1.3 0.54 3

TP53 mutations 0.00743 2.9 1.3 6.1

U-CLL 0.0332 2 1.1 3.8

spare respiratory capacity 0.0672 1 1 1
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Table S7: Correlation tests between each Seahorse measurements and lymphocyte doubling time

Seahorse mearuement p value adjusted p (1 GI—?VVEll)lllcl)ike 4 [ (?ﬁll\lflsgfjcie d)
ATP production 0.170 0.442 0.519 0.815
basal respiration 0.666 0.814 0.786 0.959
ECAR 0.838 0.862 0.435 0.815
ECAR/OCR 0.862 0.862 0.161 0.815
glycolysis 0.032 0.199 0.778 0.959
glycolytic capacity 0.036 0.199 0.488 0.815
glycolytic reserve 0.099 0.364 0.452 0.815
maximal respiration 0.505 0.729 0.959 0.959
OCR 0.201 0.442 0.143 0.815
proton leak 0.330 0.605 0.269 0.815
spare respiratory capacity 0.530 0.729 0.882 0.959

Table S8: Associations of bioenergetic features with CD38 and IGTA4(CD49d) expression

Measurement Gene p value (I G}?Vvilllgike d) adjusted p value ?;1 (‘]}lﬁt\?dbﬁ) :lielg()e
glycolytic capacity CD38 0.000 0.001 0.001 0.021
glycolytic reserve CD38 0.000 0.003 0.003 0.033
glycolysis CD38 0.001 0.019 0.004 0.083
maximal respiration CD38 0.002 0.032 0.009 0.083
glycolysis ITGA4 0.003 0.028 0.013 0.083
ECAR CD38 0.005 0.009 0.015 0.067
spare respiratory capacity CD38 0.005 0.072 0.015 0.121
basal respiration ITGA4 0.005 0.028 0.015 0.083
basal respiration CD38 0.006 0.027 0.015 0.083
OCR CD38 0.009 0.070 0.021 0.121
ATP production CD38 0.013 0.070 0.026 0.121
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