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Abstract 

Chronic lymphocytic leukemia cells have an altered energy metabolism compared to normal 

B cells. While there is growing understanding of the molecular heterogeneity of the disease, 

the extent of metabolic heterogeneity and its relation to molecular heterogeneity has not been 

systematically studied. Here, we assessed 11 bioenergetic features, primarily reflecting cell’s 

oxidative phosphorylation and glycolytic activity, in leukemic cells from 140 chronic 

lymphocytic leukemia patients using metabolic flux analysis. We surveyed these bioenergetic 

features for relationships with molecular profiles (including genetic aberrations, transcriptome 

and methylome profiles) of the tumors, their ex vivo responses to a panel of 63 compounds, 

and with clinical data. 

We observed that leukemic cells with mutated immunoglobulin variable heavy-chain show 

significantly lower glycolytic activity than cells with unmutated immunoglobulin variable 

heavy-chain. Accordingly, several key glycolytic genes (PFKP, PGAM1 and PGK1) were 

found to be downregulated in samples harboring mutated immunoglobulin variable heavy-

chain. In addition, 8q24 copy number gains, 8p12 deletions, 13q14 deletions and ATM 

mutations were identified as determinants of cellular respiration. The metabolic state of 

leukemic cells was associated with drug sensitivity, in particular, higher glycolytic activity 

was linked to increased resistance towards several drugs including rotenone, navitoclax, and 
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orlistat. In addition, we found glycolytic capacity and glycolytic reserve to be predictors of 

overall survival (P < 0.05) independent of established genetic predictors. 

Taken together, our study shows that heterogeneity in the energy metabolism of chronic 

lymphocytic leukemia cells is influenced by genetic variants and may be exploitable for the 

choice of therapeutic strategies. 
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Introduction 

Resistance to apoptosis rather than aberrant proliferation is regarded as the reason for CLL 

cell accumulation. However, active proliferation also contributes to CLL pathogenesis, as 

sizable clonal birth rates were observed in CLL1,2. This suggests a substantial bioenergetic 

demand of proliferating subsets of CLL cells in order to support cell growth and division. 

Deregulated energy metabolism is considered as one of the cancer hallmarks3. While 

molecular mechanisms promoting survival and proliferation of CLL cells have been 

extensively studied, fewer studies have addressed energy metabolism in CLL. Garcia-

Manteiga et al. suggested oxidative phosphorylation as the primary source of energy4. This 

hypothesis is supported by subsequent findings that aerobic mitochondrial respiration results 

in high levels of oxidative stress of circulating CLL cells5 and that targeting the respiratory 

machinery can be therapeutically exploited to achieve selective toxicity6. However, Maclntyre 

et al. reported increased concentrations of pyruvate and glutamate in serum samples from 

CLL patients as compared to healthy donors, which suggests active glycolysis7.  

It is well established that genetic heterogeneity contributes to the variable clinical outcomes 

of CLL. Based on the somatic mutation status in the variable regions of the immunoglobulin 

(Ig) heavy chain (IGHV) genes, CLL can be divided into two subgroups with distinct 

prognosis: CLL cells with unmutated IGHV genes (U-CLL) display higher BCR signaling 

activity and are more aggressive than CLL cells with mutated IGHV genes (M-CLL). Serum 

samples from U-CLL patients were found to contain higher levels of lactate, fumarate, and 

uridine than those from M-CLL patients7, suggesting U-CLL cells might have higher rates of 

aerobic glycolysis. This finding is in line with the observation that normal B cells undergo a 

metabolic switch from oxidative phosphorylation towards glycolysis upon BCR stimulation4. 

However, considering the number of clinically relevant genetic alterations documented in 

CLL8,9, the relationship between genetic heterogeneity and energy metabolism is largely 
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unexplored. Our previous work showed that many of the recurrent mutations influence drug 

sensitivities of CLL10. As metabolic reprogramming has been shown to affect drug 

responsiveness of various cancers2,11,12, metabolism may serve as a promising target for 

overcoming drug resistance in CLL.  

To gain a better understanding of the metabolic landscape of CLL tumor cells in relation to 

their genetic profile and to determine the role of metabolism in the response to drug 

treatments, we assessed the bioenergetic features of primary CLL samples (n = 140 patients) 

through extracellular flux assays investigating two major metabolic processes, namely aerobic 

glycolysis and oxidative phosphorylation. We performed an integrative analysis of these data 

with previously recorded ex vivo responses of the same samples to a panel of 63 drugs, 

somatic genome mutations, tumor transcriptomes, DNA methylomes, and clinical data10. We 

found multiple associations between the mutational status and bioenergetic features and found 

glycolysis activity of CLL cells to contribute to resistance towards compounds targeting 

mitochondria-related biological processes that include rotenone, orlistat, venetoclax, and 

navitoclax. In addition, glycolytic capacity and glycolytic reserve features were shown to 

provide additional information to known genomic markers, such as IGHV and TP53, for 

predicting overall survival.  
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Methods 

Extracellular flux assays 

Extracellular Flux analyses (illustrated in Supplementary Figure S1) were performed on 152 

CLL samples and 9 B cell samples from healthy donors on a Seahorse XFe96 system as 

previously described13. The resulting data files (*.asyr) were converted to comma-separated 

values (CSV) files using the Wave Desktop software package (Agilent / Seahorse Bioscience) 

and imported into R for quality assessment and further analysis. The data for 140 of the 152 

CLL samples passed quality control and were used for subsequent analyses. A detailed 

description of the workflow and criteria for quality control are described in the 

Supplementary Methods.  

Integrative data analysis 

Analyses were performed using R 3.4 and included univariate association tests, multivariate 

regression with and without lasso penalization, Cox regression, generalized linear models, 

principal component analysis and gene set enrichment analysis. For association tests between 

bioenergetic features and genetic variants (i.e., copy number variants and gene mutations), 

only those with five or more variant cases were included. Summary statistics of patients’ 

demographic and clinical features are provided in Table S1. All p-values from association 

tests were adjusted for multiple testing by applying the Benjamini-Hochberg procedure to 

control false discovery rate (FDR). Further details are provided in Supplementary Methods. 

Data availability 

Our data and analysis are provided as a reader-reproducible pipeline supported by the R 

package seahorseCLL (https://github.com/lujunyan1118/seahorseCLL). A R Shiny based 
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online platform (http://mozi.embl.de/public/seahorseCLL) is also provided for querying and 

visualizing our dataset. 

Study approval 

The study was approved by the Ethics Committee Heidelberg (University of Heidelberg, 

Germany; S-206/2011; S-356/2013). Patients who donated tumor material provided written 

informed consent prior to study. 

 

Results 

CLL cells and B cells show distinct energy metabolic phenotypes 

We first compared the energy metabolic profiles of the 140 CLL samples and 9 B cell 

samples from healthy donors. In a principal component analysis (PCA, Figure 1A), the CLL 

samples were clearly separated from the B cell samples, which indicates that CLL cells have a 

distinct metabolic phenotype. Nine of the 11 bioenergetic features showed altered levels 

between CLL cells and B cells (ANOVA test, multiple testing method of Benjamini and 

Hochberg for FDR = 5%; Table S2). In accordance with a previous report6, mitochondrial 

respiration-related features, including basal respiration, maximal respiration, and ATP 

production were increased in CLL cells (Figure 1B). 

With regard to aerobic glycolysis, the basal glycolysis activity did not show significant 

differences between CLL and B cells. However, CLL cells showed elevated glycolytic 

capacity and glycolytic reserve (Figure 1B). As those two features measure the maximum 

capability of cells for glycolysis and the flexibility of cells to respond to energetic demands, 

this observation suggests an increased adaptability of CLL cells to use glycolysis as an energy 

source when needed, although they do not primarily rely on it. 
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Molecular determinants of energy metabolism in CLL 

Figure 1 shows a variability among the bioenergetic profiles of the CLL samples. We 

hypothesized that this variability may be related to the molecular heterogeneity of CLL8,9. 

Therefore, we tested the tumor-to-tumor variations of the bioenergetic features for possible 

correlations with 20 molecular features, including recurrent somatic mutations and copy 

number variations, IGHV status and methylation clusters (Figure 2A and Supplementary 

Figure S2). 

The most prominent association identified was the IGHV status: IGHV mutated CLL (M-

CLL) samples had lower glycolytic activity and glycolytic capacity than IGHV unmutated 

CLL (U-CLL) samples (Figure 2B). Patients with M-CLL and U-CLL have been observed to 

have distinct serum metabolite profiles, with U-CLL patients having higher lactate level in 

serum, which can be considered a sign of elevated glycolysis7. To our knowledge, our large 

sample size study provides the first direct proof that U-CLLs indeed have a higher glycolytic 

activity than M-CLLs. IGHV status is strongly associated with three subtypes of CLL defined 

by their global levels of CpG methylation14. Accordingly, we found that the high-programmed 

CLL (HP-CLL) subtype, which has higher global methylation level, had a lower glycolysis 

activity than the low-programmed CLL (LP-CLL) subtype (Figure 2C).  

To further dissect the role of IGHV status in metabolic reprogramming, we analyzed 

transcriptome data that we had measured for 120 of these patient samples (of which 111 had 

annotation for IGHV status). We performed gene set enrichment analysis on the genes that 

were differentially expressed between M-CLL and U-CLL samples using the Hallmark gene 

sets from Molecular Signature Database (MSigDB)15. We found that genes down-regulated in 

M-CLL were enriched in the glycolysis pathway (Figure 3A). Thirty-four glycolysis-related 
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genes were down-regulated in M-CLL (Figure 3B), including several that encode key 

enzymes: PFKP (Phosphofructokinase, platelet), PGAM1 (Phosphoglycerate Mutase 1), and 

PGK1 (Phosphoglycerate kinase 1) (Figure 3C)16–18. This analysis suggests that IGHV status 

directly influences the expression of genes related to glycolysis resulting in the observed 

difference of glycolytic parameters between M-CLLs and U-CLLs. As IGHV status reflects 

the B-cell receptor (BCR) signaling activity19, we queried two published datasets for the 

transcriptomic signatures of BCR stimulation in CLLs either by IgM20 (GEO ID: GSE49695) 

or unmethylated bacterial DNA (CpG) (GEO ID: GSE30105). In both conditions, genes that 

were up-regulated after BCR stimulation were significantly enriched in glycolysis pathway 

(Supplementary Figure S3). Together these results indicate a causal link from BCR signaling 

to glycolysis activity in CLL; such a relation is also in line with previous evidence21,22. 

We also identified several other novel associations between bioenergetic features and genetic 

variants (Supplementary Figure S4). Gain of 8q24, deletion of 8p12, ATM mutation, EGR2 

mutation and MED12 mutation were found to be associated with higher values of respiration-

related features such as ATP production and maximal respiration, while tumors with 

chromothripsis showed lower OCR values. 

 

Glycolytic activity contributes to drug resistance in CLL 

Sensitivity to drugs is an informative cellular phenotype that reflects pathway dependencies 

of tumor cells10 and therefore we asked how the 11 intrinsic bioenergetic features were related 

to the vulnerabilities of CLL cells towards a panel of 63 drugs applied ex vivo. This panel 

comprised clinically used drugs as well as small molecule probes of pathways important in 

leukemia. Using the Pearson correlation test, we identified 118 significant associations (FDR 

= 10%) between drug sensitivities and bioenergetic features (Figure 4A and Supplementary 
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Figure S5). Thirty-two drugs had at least one significant association with a bioenergetic 

feature. A significant association between a bioenergetic feature and an ex vivo drug response 

indicates that the sensitivity or resistance of CLL samples to the drug is affected by the 

intrinsic activity of the bioenergetic feature.  

At an aggregate level, glycolysis-related features of the CLL cells were positively correlated 

with the viabilities of those cells after drug treatment, while respiration-related features were 

negatively correlated. This suggests that higher glycolysis activity of CLL cells reduces 

sensitivity to drugs, while higher respiration activity contributes to increased sensitivity ex 

vivo. 

There were more specific patterns for drugs with different target profiles. CLL samples with 

higher respiration activity were more sensitive to kinase inhibitors, including the inhibitors of 

Bruton’s tyrosine kinase (BTK), ibrutinib, and of spleen tyrosine kinase, tamatinib, both of 

which target the BCR pathway. In addition, two checkpoint kinase 1 (Chk1) inhibitors, 

AZD7762 and PF-477736, and the heat shock protein 90 (Hsp90) inhibitor AT13387 showed 

similar association patterns, which is in line with the report that they also target the BCR 

signaling cascade10.  

Viabilities after treatment of drugs targeting mitochondria-related biological processes 

(rotenone, venetoclax and navitoclax) were positively correlated with the glycolysis-related 

features (Figure 4A, Supplementary Figure S6) for most of the drug concentrations 

(Supplementary Figure S5); this finding is not merely due to confounding by IGHV status as 

shown by the multivariate test results (Supplementary Figure S7). Rotenone is a 

mitochondrial complex I inhibitor, which disrupts the electron transport chain and thus blocks 

cellular respiration. Therefore, the correlation between rotenone response and glycolysis 

activity can be explained by the fact that higher glycolysis activity or potential (with 

increased metabolic flexibility) can compensate for cytotoxic effects of respiration inhibition 
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by providing an alternative way of producing ATP. Venetoclax and navitoclax are BH3-

mimetics that target the BCL2 protein and lead to mitochondrial damage and the inhibition of 

oxidative respiration23. Thus, lower reliance on oxidative respiration is a plausible explanation 

for the resistance to BH3-mimetics of CLL cells with high glycolysis activity. We also 

observed associations between glycolysis-related features and the responses to orlistat, an 

anti-obesity drug, which has also been identified as a pro-apoptotic agent in CLL by 

inhibiting lipoprotein lipase (LPL)24, and KX2-391, an inhibitor of the proto-oncogene 

tyrosine-protein kinase Src (Supplementary Figure S6).  

We previously showed that although drug response phenotypes of CLL cells were largely 

influenced by genetic variants, there was still substantial variance in the drug response 

phenotypes that were not explained by genetics. Thus, we asked whether the energy 

metabolism profile could add additional predictive information. For each drug, we built two 

multivariate linear regression models to predict its response profile: one included only the 20 

genetic features shown in Supplementary Figure S2 as predictors, the other included these 

genetic features plus 11 bioenergetic features. As a measure of predictive strength, we 

compared the variance explained (R2 value adjusted by numbers of predictors) between the 

two models. As shown in Figure 4B, for most drugs, including bioenergetic features in the 

model did not increase explanatory power (dots on diagonal line); moreover, responses to 

individual kinase inhibitors were well explained by the genetic features (blue dots in Figure 

4B and Supplementary Figure S8). However, for five drugs, including venetoclax and 

rotenone, the variance explained increased by 10% or more upon inclusion of the bioenergetic 

features (red dots in Figure 4B). In addition, except for cephaeline, bioenergetic features were 

more significant than genetic features in the multivariate models (Figure 4C). 

 

Association between clinical course and energy metabolism of CLL 
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The use of primary patient cells enabled us to investigate the associations between 

bioenergetic features with patient history or outcome in CLL. In our study cohort, 43 patients 

had received treatment before sample collection, in all cases with chemotherapeutic agents 

(Table S1), and none of them was undergoing treatment when samples were collected. 

Therefore, we first asked whether these completed treatments prior to sample collection 

affected the energy metabolism of primary tumor samples, as studies have shown 

chemotherapy or targeted therapy could drive clonal evolution leading to drug resistance or 

oxidative stress25–27. We found two bioenergetic features, namely glycolytic capacity and 

glycolytic reserve, associated with pretreatment status at a significance threshold of P < 0.05 

(Table S3, Supplementary Figure S9). However, pretreatment status was also highly 

correlated with IGHV (P = 0.0006, Chi-square test). This reflects the fact that U-CLL patients 

more frequently receive treatment due to faster progression. Furthermore, glycolytic capacity 

and reserve are correlated with IGHV status based on our above analysis. Thus, to dissect 

confounding from more direct association, we included IGHV status as a blocking factor in a 

multivariate model. In this more careful analysis, no significant association between 

pretreatment status and bioenergetic features was detected (P < 0.05). In a second analysis to 

assess potential roles of pretreatment status on the biology of the tumor samples, we revisited 

our association tests between the bioenergetic features and (i) the genetic variants and (ii) the 

drug responses. Including pretreatment status as a blocking factor had negligible impact on 

directions, strengths and p-values of these associations (Supplementary Figure S10). Together, 

these results indicate that the treatments experienced by 43 of our patients led to no detectable 

differences between the metabolic phenotypes of their circulating CLL cell samples and those 

of the 97 other patients. Therefore, we proceeded with the subsequent analysis using the 

combined dataset of 140 samples. 

Returning to clinical outcomes, we considered two endpoints: time to treatment (TTT) and 

overall survival (OS). Univariate Cox regression models indicated that glycolytic reserve, 
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maximal respiration, and spare respiratory capacity were associated with TTT, and glycolytic 

capacity and glycolytic reserve were associated with OS (P < 0.05, Supplementary Figure 

S11). Samples with higher values of these features were associated with worse clinical 

outcomes, i.e., shorter time to treatment and overall survival. In multivariate Cox models 

including age, trisomy 12, deletion of 11q22.3, deletion of 17p13, TP53 mutation and IGHV 

status as covariates, bioenergetic features were not picked up as predictive for TTT (Table 

S4–S6). However, glycolytic capacity and glycolytic reserve were the most significant 

predictors for OS also in the multivariate Cox models (Table 1), indicating those two 

glycolysis-related features provide additional OS-related information to established variables 

such as IGHV status, one of the most reliable prognostic markers in CLL. As shown in Figure 

5 A-B, M-CLL patients with low glycolytic capacity or reserve showed best prognosis, U-

CLL patients with high glycolytic capacity or reserve showed worst prognosis, while the 

other two groups lie in between. 

We also investigated associations of each bioenergetic feature to clinical relevant phenotypes 

including CD38 expression, CD49d (IGTA4) expression and lymphocyte doubling time 

(LDT), which are considered as indicators for CLL progression28–31. Again, we considered 

IGHV status as a potential confounder (Table S7 and S8). Significant correlations existed of 

CD38 gene expression with glycolytic capacity, and with glycolytic reserve (5% FDR) 

(Figure 5 C-D). On top of the known fact that CD38 expression is highly associated with 

IGHV status32, we found that it was positively correlated to glycolytic capacity or glycolytic 

reserve in either of the M-CLL or U-CLL disease subgroups (Supplementary Figure S12). 

This result suggests an IGHV status-independent link between CD38 activity and adaptability 

of CLL cells to glycolysis as an energy source. 

 

The complex network of CLL energy metabolic predictors 
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While the analyses presented so far provide insights on pairwise associations between 

bioenergetic features and other tumor properties, we next aimed at a systems-level map of the 

network of gene mutations, DNA methylation, gene expression, ex vivo drug responses, and 

bioenergetic features. We used multivariate linear regression with lasso regularization to 

regressed each bioenergetic feature upon other available biological features and measured 

prediction performance using cross-validated R2 (Figure 6). 

We first assessed to what extent each omics data type alone, or the combination of all the 

datasets, explained each bioenergetic features. The gene expression data and the drug 

response data performed best in predicting bioenergetic features (Figure 6A). Combining all 

datasets slightly increased the prediction power for each metabolic feature, indicating that 

each set contains non-redundant information. Notably, the glycolysis-related features were 

better explained by the multi-omics data than the respiration-related features (Figure 6A and 

Supplementary Figure S13).  

We visualized predictor profiles for individual bioenergetic features, focusing on the ex vivo 

drug responses, gene expressions, and genetic variants (Figure 6B and Supplementary Figure 

S13). In accordance with the above univariate analysis, the multivariate model identified 

IGHV status and response to mitochondria-targeting drugs like venetoclax and rotenone as 

important predictors for glycolysis-related features. In addition, SF3B1 mutation was 

identified as one of the top predictors for glycolytic capacity and reserve, its presence being 

associated with higher values. SF3B1 is an mRNA splicing factor that is frequently mutated 

in CLL and associated with more aggressive disease and worse survival, but its oncogenic 

mechanism is still elusive33. Another genomic aberration, deletion of 13q14, was selected as 

one of the top predictors for basal respiration and ATP production.  

Several principal components (PC) from the gene expression datasets were also identified by 

the multivariate modeling. PC8 was the top predictor with positive coefficient for all 
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respiration related features. As the genes with high positive loadings on PC8 are enriched in 

E2F targets, this suggests that higher expression of E2F targets associates with higher 

respiratory activity in CLL cells. On the other hand, PC10 was the top predictor, with 

negative coefficient, for maximal respiration and spare respiratory capacity (Supplementary 

Figure S14). Based on enrichment analysis, genes with high negative loadings on PC10 are 

enriched in the mTOR pathway and therefore this also suggests higher mTOR pathway 

activity associates with high respiration capability. These findings are in line with previous 

reports that E2F transcription factors and mTOR pathway are key players in regulating 

mitochondrial activity34,35. 

PCs 2, 4, 6 and 11 were identified as predictors for several glycolysis-related features (Figure 

6B and Supplementary Figure S13). Gene set enrichment analysis highlighted TNFα-NFκB 

signaling as the most enriched pathway for genes with high loadings on PC2, 4 and 6 

(Supplementary Figure S14). This finding is consistent with previous reports that NFκB 

signaling pathway controls energy homeostasis in inflammatory and cancer cells36. As we 

also found NFκB activation signatures in the two published transcriptomic profiling datasets 

of BCR stimulation (Supplementary Figure S3), which is in line with previous reports that 

BCR stimulation activate NFκB, we suggest that NFκB activation may play a role in 

increased glycolysis after BCR activation37,38.  

Discussion 

In this study, we identified molecular features that underlie the heterogeneity of energy 

metabolism in CLL and linked bioenergetic features with ex vivo drug responses and clinical 

course. We found that although CLL cells and B cells to have a similar basal glycolytic 

activity, CLL cells had a significantly higher glycolytic capacity and glycolytic reserve, 

which are both indicators for the cell’s potential to switch to glycolysis as an energy source 

when necessary. Interestingly, we also found glycolytic capacity and reserve, but not basal 
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glycolysis, to be novel predictors for overall survival in our cohort – CLL patients with higher 

glycolytic capacity and reserve showed worse prognosis. In addition, higher glycolytic 

capacity and reserve were also found to be correlated with high expression of CD38 gene, a 

cell surface marker of B-cell activation and a negative prognostic marker in CLL. These 

observations can be viewed in context of a recent report of CLL cells’ increased reliance on 

aerobic glycolysis to produce energy after a glycolytic switch induced by their contact with 

stromal cells39. Although we assayed circulating CLL cells for our study, the glycolytic 

capacity and reserve in the flux assay may actually measure the ability of CLL cells to adapt 

to glycolysis in a stimulated state, similar to the stimulation by stromal cells. Our findings 

thus imply that circulating CLL cells may have previously undergone such metabolic 

reprogramming and carry the metabolic repertoire that allows them to quickly switch to 

glycolysis when a suitable stimulation occurs, e.g., upon stromal contact, and the magnitude 

and efficiency of this switch can have further impact on the prognosis of CLL patients. 

We showed that U-CLL has significantly higher glycolytic rates, which validates the previous 

hypothesis that U-CLL may have higher reliance on aerobic glycolysis due to higher BCR 

signaling pathway activity4,7. In addition, we illustrated that the glycolysis pathway is more 

active in U-CLLs than M-CLLs, accompanied by an up-regulation of key enzymes regulating 

cellular glycolysis. This indicates that the energy metabolism may be intrinsically different 

between M-CLLs and U-CLLs and that the BCR signaling pathway may have a direct impact 

on the metabolic reprogramming. As previous attempts to monitor circulating CLL cells in 

vivo by using fluorodeoxyglucose positron emission tomography (FDG-PET), which 

pinpoints anatomical locations with high rate of glycolysis, failed due to insufficient 

sensitivity40, our results suggest that considering the difference between the M-CLL and U-

CLL subtypes could increase the sensitivity of this diagnostic approach. 
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We found that the CLL patient samples with gain of 8q24 showed increased respiratory 

activity. The reason is likely the oncogenic activity of the extra copy of the MYC proto-

oncogene. Previous studies have shown that MYC substantially contributes to mitochondrial 

biogenesis, and the over-expression of MYC leads to increased respiratory capability in 

several cell line models, which is in line with our observation41. 

In our study, we also highlighted the possibility of exploiting heterogeneity of energy 

metabolism to improve individualized patient care. We show that higher glycolytic flexibility 

can contribute to the resistance of CLL samples to the treatment by drugs that affect 

mitochondria, such as rotenone, venetoclax, and navitoclax. We postulate that the cytotoxic 

effects of those drugs may partially result from restricting the energy supply by blocking 

cellular respiration and thus, cells with higher glycolytic potential can counteract their effect 

due to higher metabolic flexibility. 

We are aware of certain limitations of the current study. Firstly, while most of the 

proliferative activity of CLL cells appears in lymph node and bone marrow, we only used 

circulating CLL cells in the study due to the easier availability of patient material, which was 

instrumental in enabling the study size. In addition, although we observed many biologically 

meaningful associations, they are generally weak, as indicated by relatively small effect sizes 

or correlation coefficients. While there is the possibility that biological variables not 

measured by us contribute to the heterogeneity in energy metabolism, a likely explanation 

comprises biological noise (since we are using patient samples instead of cell lines) and 

technical noise of the Seahorse extracellular flux measurements, and the other assays used. 

Indeed, our study is to our knowledge the first that uses such a dynamic assay to 

systematically interrogate energy metabolism at such large scale. 

All in all, our in-depth characterization of the energy metabolism and integrative analyses 

provide valuable insights on mechanisms underlying the metabolic regulation of CLL cells 
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and reveal the possibilities of guiding clinical diagnosis and individualized patient care based 

on metabolic profiles. Our large-scale energy metabolism dataset complements the current 

traditional omics datasets, such as RNA sequencing, DNA sequencing, and methylation 

profiling and provide another layer for a better understanding of CLL biology. 
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Table 1. Results of multivariate Cox regression model for overall survival (n=119, events =18) by 
including either glycolytic reserve or glycolytic capacity as a predictor 

Multivariate cox model including glycolytic reserve 

Factor   p value Hazard Ratio lower 95% CI  upper 95% CI 

glycolytic reserve 0.033 1.10 1.00 1.20 

U-CLL 0.095 3.00 0.83 11.00 

treatment 0.206 2.50 0.61 9.90 

trisomy12 0.265 2.40 0.52 11.00 

age 0.413 1.20 0.79 1.80 

TP53 mutations 0.504 1.60 0.42 5.90 

11q22.3 deletions 0.629 0.71 0.17 2.90 

17p13 deletions 0.790 0.80 0.16 4.00 

Multivariate cox model including glycolytic capacity 

Factor  p value Hazard Ratio lower 95% CI  upper 95% CI 

glycolytic capacity 0.046 1.10 1.00 1.10 

U-CLL 0.101 2.90 0.81 10.00 

treatment 0.178 2.60 0.65 10.00 

trisomy12 0.312 2.20 0.48 9.70 

TP53 mutation 0.469 1.70 0.42 6.50 

11q22.3 deletions 0.494 0.61 0.15 2.50 

age 0.546 1.10 0.76 1.70 

17p13 deletions 0.644 0.68 0.13 3.60 

CI: Confidence interval     
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Figure legends 

Figure 1: Difference of energy metabolism between CLL cells and normal B cells. (A) 

Scatterplot of the top two principal components of the 11 tested bioenergetic features. Each 

dot represents a CLL patient sample (blue) or a healthy-donor derived B cell (red). (B) 

Beeswarm plots showing differences of six of the bioenergetic features between B cell 

samples (n=9) and CLL samples (n=140). 

 

Figure 2: Associations between genetic variants and bioenergetic features. (A) The 

distribution of P-values of the associations between each genetic variant and each energy 

metabolic feature (ANOVA test). Associations that did not pass a threshold corresponding to 

5% FDR (method of Benjamini and Hochberg) are colored in gray. The associations with 

higher bioenergetic values in mutated cases are colored by red while the associations with 

lower bioenergetic values in mutated cases (or high-programmed subtype) are colored by blue. 

(B, C) Exemplary associations, visualized in beeswarm plots. (B) Glycolysis and IGHV status. 

(C) Glycolysis and DNA methylation cluster. 

 

Figure 3: Genes from the glycolysis pathway are down-regulated in M-CLL samples. (A) 

Hallmark gene sets that are significantly enriched (method of Benjamini and Hochberg for 

FDR = 10%) among genes differentially expressed between M-CLL and U-CLL. (B) The 

heatmap shows the z-score of the expression values of glycolysis pathway genes that are 

differentially expressed between M-CLL and U-CLL samples. (C) Beeswarm plots for the 

expression values of three key genes in the glycolysis pathway, PFKP (Phosphofructokinase, 

platelet), PGAM1 (Phosphoglycerate Mutase 1), and PGK1 (Phosphoglycerate kinase 1). 
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Figure 4: Correlation test results between drug response phenotypes and bioenergetic 

features. A) The y-axis shows the negative logarithm of the Pearson correlation test p-values. 

Only drugs with at least one significant association with bioenergetic features are shown 

(method of Benjamini and Hochberg for FDR = 10%). Viabilities across different drug 

concentrations were aggregated using Tukey’s median polish method. Correlations with 

glycolysis-related features are colored by warm colors and correlations with respiration-

related features are colored by cold colors. The dotted line indicates the P-value threshold 

given by the method of Benjamini and Hochberg for FDR=10%. B) Comparison of explained 

variance of drug responses between the multivariate model including only genetic features 

and the model including genetic and bioenergetic features. C) Predictors with significant p 

values (<0.05) in multivariate models for the drugs colored by red in figure 4B.  A red bar 

indicates a positive association with drug responses (higher drug sensitivity is associated with 

presence of the mutation or higher value of the bioenergetic feature), and a blue bar indicates 

negative association. 

 

Figure 5. Associations between bioenergetic features and clinical course. A, B) Kaplan-

Meier plots for overall survival stratified by IGHV status and glycolytic capacity (A) or 

glycolytic reserve (B). The cutoff to define high and low bioenergetic groups was estimated 

by maximally selected rank test. The cutoff value and number of samples in each group are 

shown inside the parentheses in the figure legends. C, D) Scatter plots for associations of 

CD38 expression with glycolytic capacity and glycolytic reserve. 
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Figure 6: Multivariate regression models for energy metabolism features. (A) 

Explanatory power (cross-validated R2) of datasets of different data types for the prediction of 

the energy metabolic features. The error bars represent standard deviations of R2 over 100 

repeated cross-validations. The numbers in parentheses after dataset names indicate the 

number of variables in the dataset. (B) Visualization of fitted adaptive L1 (lasso) 

regularization multivariate models using drug responses, gene mutations, IGHV status, 

pretreatment status and the top 20 principal components of the gene expression (RNASeq) 

data. The numbers in parentheses indicate the number of samples used for the regression. The 

Z-scores of the energy metabolic features (i.e., centered by mean and scaled by standard 

deviation) are shown in the scatter plot at the bottom. The heatmap in the middle shows the 

predictor values. The continuous variables (drug responses and gene expression PCs) are 

shown centered and scaled using the red-white-blue color representation, the binary variables 

(genetic variants, IGHV status) in black and white (black: mutation present). The average 

model coefficients over 100 repeated cross-validations are shown by horizontal bars on the 

left. Only the features that were selected at least 80 times out of 100 repeats are shown. 

 

 

 

 

 

 















Energy metabolism is co-determined by
genetic variants in chronic lymphocytic
leukemia and influences drug sensitivity

(Supplementary Materials)

1 Supplementary Methods

1.1 Experimental details for extracellular flux assays

Seahorse XFe96 culture plates (Agilent/Seahorse Bioscience) were prepared by coating each well
with Corning™ Cell-Tak Cell and Tissue Adhesive (BD, 354241) according to the manufacturer’s
recommendations. Additionally, a Seahorse XFe96 cartridge (Agilent, Seahorse Bioscience) was
loaded with 200 µl Calibrant solution (Agilent, Seahorse Bioscience) per well and incubated
overnight in a CO2-free atmosphere. The next day, healthy donor-derived, magnetic-bead iso-
lated B cells or CLL peripheral blood mononuclear cells (PBMCs) were thawed from cryo-frozen
aliquots, washed in assay specific medium according to the manufacturer’s recommendations,
and viable cells were automatically counted on a Muse®Cell Analyzer (Merck Millipore). Cells
were seeded at a density of 2.4×105 cells in 175 µl medium per well. Samples were run with 2-7
technical replicates depending on the material’s availability. The ports of the Seahorse cartridge
were loaded with 25 µl of each 80 mM glucose, 9 µM oligomycin and 1M 2DG for the glycolysis
stress test (GST) and 20 µl of 10 µM oligomycin, 22 µl of 15 µM FCCP and 25 µl of 30 µM
antimycin A/rotenone for the mitochondrial stress test (MST). After sensor calibration, assays
were run as prescribed in the manufacturer’s manual to record ECAR (extracellular acidification
rate) and OCR (oxygen consumption rate) over time.

1.2 Quality control criteria for extracellular flux assay measurements

First, we filtered out failed measurements in MST and GST by examining the changes of OCR
and ECAR values after compound application, as follows. In MST, there are four stages, and
each stage is separated by the application of tool compounds. Based on the biology of mi-
tochondrial respiration, the following criteria were defined (see Supplementary Figure S1 for
illustration): the OCR values of stage 2 (after oligomycin and before FCCP injection) should
be lower than the OCR values of stage 1 (before oligomycin injection); the OCR values of stage
3 (after FCCP and before rotenone & antimycin A injection) should be higher or equal to the
OCR values from stage 1; the OCR values of stage 4 (after rotenone & antimycin A injection)
should be lower than the OCR values from stage 1. Similarly, in GST, there are also four stages:
the ECAR values of stage 2 (after glucose and before oligomycin injection) should be higher
than the ECAR values of stage 1 (before glucose injection); the ECAR values of stage 3 (after
oligomycin and before 2-DG injection) should be higher or equal to the ECAR values in stage
2; the ECAR values of stage 4 (after 2-DG injection) should be lower than those in stage 2.
Measurements that did not meet these criteria were considered invalid and set aside.
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Next, outlier samples were identified based on the modified Z-score of the OCR and ECAR
values; the modified Z-score (Zi) of a measurement point was defined as Zi = 0.6745 × (xi −
x̃)/MAD, with x̃ denoting the median of the values from a certain measurement point across all
samples and MAD the median absolute deviation. If a certain sample contained more than 40%
measurements with modified Z-score higher than 3.5, this sample was considered as an outlier
sample and excluded from the subsequent analysis.

Due to the large number of samples, MST and GST were performed over periods of 18 and 16
days, respectively. Therefore, each day was defined as a batch, and batch effects were estimated
and adjusted. Specifically, to test for associations between bioenergetic features and categorical
variables, i.e., the genomic variants and cell types (B cell VS CLL cell), ANOVA test by including
batch as a blocking factor was used. For associations with continuous variables (i.e., drug
responses and gene expressions) the batch effect in bioenergetic features was firstly adjusted by
using the comBat function in the sva package [1] and then the Pearson correlation test was used.

After the quality control process described above, totally 12 out of 152 samples that did not
pass quality control were excluded from subsequent analysis.

1.3 Summarizing bioenergetic features

Based on the Seahorse assay (illustrated in Supplementary Figure S1), five mitochondrial respiration-
related bioenergetic features (basal respiration, ATP production, proton leak, maximal respira-
tion and spare respiratory capacity) were calculated from the oxygen consumption rate (OCR)
time course during a mitochondrial stress test (MST), and three glycolysis-related features (gly-
colysis, glycolytic capacity and glycolytic reserve) were calculated from the extracellular acidifi-
cation rate (ECAR) during a glycolysis stress test (GST). The stress tests employ metabolically
interfering compounds as described in the Supplementary Methods. In addition, the baseline
OCR and ECAR values and the ECAR/OCR values were also defined as bioenergetic features.

1.4 Multi-omics profiling and ex-vivo drug sensitivity assay

Multi-omics profiling, including whole-exome sequencing, targeted sequencing, DNA methyla-
tion profiling and RNA sequencing, were previously performed on the same set of patient sam-
ples; in addition, the sensitivities of these samples to a panel of 63 small molecule compounds
at 5 concentrations each were characterized [2]. Clinical outcomes of those sample were also
recorded. Those data are available in the R data package BloodCancerMultiOmics2017, from
the Bioconductor project (http://bioconductor.org).

1.5 Gene enrichment analysis

For the n = 120 patient samples for which we had both bioenergetic data and RNASeq data, the
RNAseq data were used for identifying expression signatures of IGHV mutation status and for
defining biological meanings of gene expression principal components selected by multivariate
regression models. To characterize expression signatures of IGHV status, differentially expressed
genes (FDR = 10%, method of Benjamini and Hochberg) were firstly identified by using DE-
Seq2 [3] and then raked by their test statistics. As for defining the biological meanings of gene
expression principal component, genes were ranked by their loadings on each principal compo-
nents. Gene set enrichment analysis was then performed on the ranked lists using the Parametric
Analysis of Gene Set Enrichment (PAGE) method [4] with the KEGG and H gene set selections
from the MSigDB database (http://software.broadinstitute.org/gsea/msigdb).

1.6 Penalized multivariate regression

We performed multivariate regression to explain bioenergetic features by a large feature data
space. We used a Gaussian linear model with L1-penalty (i.e., lasso regression) as implemented
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in the R package glmnet version 2.0 with mixing parameter α = 1 [5]. Before analysis the
expression data were normalized and transformed using the varianceStabilizingTransformation
function from DESeq2, and both expression and methylation data were filtered to include only
the top 5000 most variable features each. Genetic mutations were only included in the model
if present in at least 5 samples. Features with more than 20% missing values were excluded.
Remaining missing values were imputed by the mean for methylation data and by the most
common mutation status for genetic data.

As predictors in the lasso model the genetic mutations and IGHV status (coded as 0-1),
demographics (age, sex) and the top 20 principal components of gene expression and methylation
data were used. All features were scaled to unit variance and mean zero before using lasso to
achieve fair treatment of all predictors by the penalty constraint. To compare explanatory
power of different datasets a separate model was fit including only predictors of one omic type
at a time as well as a joint model including all predictors. Using 3-fold cross-validation, the
optimal penalty parameter λ was chosen to minimize the cross-validated R2 of the model using
the function cv.glmnet. The cross-validation process was repeated 100 times for each model to
reduce the model variance, and then the average coefficient and feature selection frequency over
100 repeats were calculated. As a measure of explained variance, the reduction in cross-validated
mean squared error relative to the null model was calculated and then averaged over 100 repeats.
For single features, i.e. IGHV the R2 from a standard linear model was used as corresponding
quantity.
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2 Supplementary Figures
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Figure S1: Representative scheme of the glycolytic stress test (left panel) and the mitochondrial
stress test (right panel) depicting the extracellular acidification rate (ECAR) and
the oxygen consumption rate (OCR), respectively. The calculation of the different
metabolic parameters after sequential injection of metabolically active compounds
is illustrated by colored boxes as indicated. The grey box symbolizes non-glycolytic
acidification as well as non-mitochondrial respiration as background.
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Figure S2: A heatmap plot showing the p values for all tested associations between
bioenergetic features and genetic variants. A positive p value (colored by blue)
indicates higher bioenergetic value in mutated cases (or highly methylated group for
methylation cluster). A negative p value (colored by red) indicates lower bioenergetic
value in mutated cases. ** indicates the association passed 5% FDR control and *
indicates the association passed 10% FDR control, using the method of Benjamin
and Hochberg on the set of 220 (20 × 11) raw p-values.
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Figure S3: Gene expression signatures of B-cell receptor stimulation queried from two
public datasets (A, C) Hallmark gene sets that are significantly enriched (method
of Benjamini and Hochberg for FDR = 1%) among genes differentially expressed after
BCR stimulation by IgM (GEO accession ID: GSE49695) or by CPG (GEO accession
ID: GSE30105). (B,D) The heatmaps show the z-score of the expression values of
glycolysis pathway genes that are differentially expressed after BCR stimulation by
IgM or CPG.
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for FDR = 5%) between genetic variants and energy bioenergetic features
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Figure S5: Correlations between bioenergetic features and drug response for all drug concentra-
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highest concentration and c5 indicates the lowest concentration.
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Figure S6: Exemplary scatter plots of the significant correlations between glycolysis-related fea-
tures and drugs that target mitochondria. The x-axis shows the values of measured
bioenergetic features, the y-axis shows the viabilities of the CLL samples after drug
treatment.
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Figure S10: Impact of pretreatment status on the associations of bioenergetic fea-
tures to genetic variants and drug responses. (A,B) Comparison of p values
between the model without considering pretreatment status and the model consider-
ing pretreatment status. The scatter plot indicates that the test results from the two
models are highly concordant. (C) Correlation test results between drug response
phenotype and bioenergetic features. Similar to main text Figure 4A, but pretreat-
ment status was included as a cofactor in a multivariate model in order to exclude
the confounding effect of pretreatment stauts. The dashed line indicate 5% FDR.
The two plots are highly similar, suggesting a very minimal impact of pretreatment
status on the association between bioenergetic features and drug responses.
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Figure S12: Scatter plots for associations of CD38 expression with glycolytic capacity and gly-
colytic reserve in U-CLL samples and M-CLL samples separately.
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Figure S13: Barplots for explanatory power (R2) of features from different data types for the
prediction of energy metabolism and visualization of fitted adaptive LASSO reg-
ularization multivariate models, for bioenergetic features not shown in main text
Figure 6.
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Figure S14: Gene set enrichment analysis on the genes correlated with principal components that
are frequently picked by multivariate models as predictors for energy metabolism
phenotype.

17



3 Supplementary Tables

Table S1: Background information of patients included in the study. (n.d. - no data available)
No. Patient ID Sex IGHV Age Methylation Cluster Pretreated Type of treatment
1 H017 m U 56 LP no
2 H015 f U 62 LP no
3 H023 f U 70 LP yes Chemoimmunotherapy
4 H033 f M 62 HP no
5 H035 f M 79 IP yes Chemoimmunotherapy
6 H036 f M 75 HP no
7 H040 f M 83 IP no
8 H042 f U 71 LP yes Chemoimmunotherapy
9 H046 m M 88 HP no
10 H014 f U 86 LP yes Chemoimmunotherapy
11 H028 f M 72 HP no
12 H062 m M 53 n.d. no
13 H065 f U 77 LP yes Chemoimmunotherapy
14 H010 f U 72 LP no
15 H027 m U 57 LP no
16 H069 f U 76 LP yes Chemoimmunotherapy
17 H063 f M 49 IP no
18 H082 m M 82 IP no
19 H072 m U 57 IP no
20 H056 m M 83 HP no
21 H021 m M 49 HP no
22 H011 f M 72 HP no
23 H078 m U 68 LP yes Chemoimmunotherapy
24 H012 f U 61 LP yes Chemoimmunotherapy
25 H016 m M 55 IP no
26 H057 m M 66 HP no
27 H045 m U 90 LP yes Chemoimmunotherapy
28 H013 m U 77 LP yes Chemoimmunotherapy
29 H094 m M 45 HP no
30 H060 m U 75 HP no
31 H039 f M 54 HP no
32 H090 f M 70 IP yes Chemoimmunotherapy
33 H095 f U 52 LP no
34 H029 f M 75 IP yes Chemoimmunotherapy
35 H020 m M 64 HP no
36 H019 f U 70 IP yes Chemoimmunotherapy
37 H041 m M 75 HP no
38 H100 m M 74 HP no
39 H032 m U 67 LP yes Chemoimmunotherapy
40 H101 f M 72 HP no
41 H102 f U 78 LP no
42 H044 m U 59 IP yes Chemoimmunotherapy
43 H083 m n.d. 69 HP no
44 H104 m U 79 LP no
45 H058 f M 74 IP no
46 H077 f U 69 LP no
47 H031 f M 62 IP no
48 H005 m M 75 IP yes Chemoimmunotherapy
49 H105 m M 49 HP no
50 H081 f M 64 HP no
51 H106 m M 70 HP no
52 H054 f M 49 HP no
53 H089 f M 54 HP no
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54 H108 m M 57 HP no
55 H047 m U 68 LP yes Chemoimmunotherapy
56 H064 m n.d. 71 LP yes Chemoimmunotherapy
57 H113 m M 69 IP no
58 H066 m U 47 LP yes Chemoimmunotherapy
59 H111 m U 54 LP yes Chemoimmunotherapy
60 H043 f U 44 LP yes Chemoimmunotherapy
61 H088 f M 59 HP no
62 H107 m U 43 LP no
63 H051 f U 78 IP yes Chemoimmunotherapy
64 H118 m M 49 IP yes Chemoimmunotherapy
65 H093 f U 76 LP no
66 H030 m U 52 LP no
67 H053 f M 83 IP no
68 H059 m M 54 HP no
69 H096 f n.d. 61 HP no
70 H080 m U 81 LP yes Chemoimmunotherapy
71 H133 m n.d. 68 HP no
72 H073 m M 64 IP yes Chemoimmunotherapy
73 H135 f M 76 HP yes Chemoimmunotherapy
74 H079 m U 47 LP no
75 H136 m U 65 LP yes Chemoimmunotherapy
76 H103 m M 70 IP no
77 H148 f U 33 LP yes Chemoimmunotherapy
78 H164 f U 73 LP no
79 H165 f U 57 LP no
80 H166 f U 62 LP no
81 H099 f M 54 HP no
82 H115 m M 72 IP no
83 H037 m M 71 IP no
84 H067 f M 77 HP no
85 H169 f M 41 HP no
86 H170 f M 74 HP yes Chemoimmunotherapy
87 H184 m M 74 HP no
88 H084 m M 87 LP no
89 H186 f M 72 IP no
90 H070 m n.d. 71 HP no
91 H171 m U 73 LP yes Chemoimmunotherapy
92 H173 f M 73 IP yes Chemoimmunotherapy
93 H228 m U 64 IP no
94 H229 f M 74 n.d. yes Chemoimmunotherapy
95 H191 m n.d. 38 IP yes Chemoimmunotherapy
96 H230 m U 70 IP yes Chemoimmunotherapy
97 H055 m M 64 HP no
98 H168 m n.d. 57 IP yes Chemoimmunotherapy
99 H192 f M 72 IP no
100 H185 f M 86 HP no
101 H187 m U 59 LP no
102 H109 m U 85 LP no
103 H049 m M 58 IP no
104 H163 m M 65 HP no
105 H231 m U 46 LP no
106 H234 m U 68 LP no
107 H235 m M 73 HP no
108 H236 m M 67 HP no
109 H225 f M 46 HP no
110 H038 m M 73 HP no
111 H237 f M 73 IP no
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112 H238 m U 74 LP no
113 H240 m M 82 IP no
114 H233 m U 54 LP no
115 H242 m U 48 LP no
116 H243 m U 79 LP no
117 H167 f U 64 LP no
118 H247 f M 46 HP no
119 H194 m M 75 HP no
120 H248 f M 62 HP no
121 H050 f M 62 n.d. no
122 H246 m U 74 LP no
123 H249 m U 83 LP no
124 H137 m M 53 HP no
125 H110 m M 66 HP no
126 H252 m U 69 LP no
127 H255 m U 67 LP yes Chemoimmunotherapy
128 H239 f U 69 LP no
129 H256 f n.d. 62 HP yes Chemoimmunotherapy
130 H257 f U 65 LP no
131 H258 m M 64 HP no
132 H259 m U 60 LP yes Chemoimmunotherapy
133 H264 m M 77 HP yes Chemoimmunotherapy
134 H265 m U 59 LP yes Chemoimmunotherapy
135 H260 m U 62 LP yes Chemoimmunotherapy
136 H268 m n.d. 82 HP no
137 H266 m M 74 HP yes Chemoimmunotherapy
138 H270 f M 66 IP no
139 H271 m M 65 HP no
140 H272 m U 55 LP yes Chemoimmunotherapy
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Table S2: ANOVA test results (adjusted for batch effect) of bioenergetic features between CLL
cells and normal B cells

Seahorse measurement p Difference of mean adjusted p

ATP production 0.000 15.333 0.000
basal respiration 0.000 16.308 0.000
ECAR 0.013 -2.890 0.016
ECAR/OCR 0.000 -0.622 0.000
glycolysis 0.972 -0.044 0.972
glycolytic capacity 0.000 13.896 0.000
glycolytic reserve 0.000 13.940 0.000
maximal respiration 0.000 58.044 0.000
OCR 0.000 17.166 0.000
proton leak 0.629 0.975 0.692
spare respiratory capacity 0.000 41.736 0.000

Table S3: Association test results of bioenergetic features related to pretreatment status

Seahorse mearuement p value adjusted p
p value

(IGHV blocked)
adjusted p

(IGHV blocked)

ATP production 0.755 0.831 0.867 0.934
basal respiration 0.641 0.821 0.934 0.934
ECAR 0.672 0.821 0.426 0.670
ECAR/OCR 0.245 0.385 0.271 0.597
glycolysis 0.065 0.185 0.229 0.597
glycolytic capacity 0.016 0.174 0.083 0.597
glycolytic reserve 0.037 0.185 0.114 0.597
maximal respiration 0.101 0.185 0.489 0.672
OCR 0.098 0.185 0.224 0.597
proton leak 0.851 0.851 0.925 0.934
spare respiratory capacity 0.085 0.185 0.409 0.670
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Table S4: Multivariate Cox regression model for time to treatment with glycolytic reserve as a
covariate

factor p value hazard ratio lower 95% CI upper 95% CI

age 0.0397 0.77 0.61 0.99
trisomy12 0.594 1.3 0.53 3.1
11q22.3 deletions 0.622 1.2 0.55 2.7
17p13 deletions 0.556 1.3 0.55 3
TP53 mutations 0.0125 2.6 1.2 5.6
U-CLL 0.108 1.8 0.88 3.6
glycolytic reserve 0.095 1 0.99 1.1

Table S5: Multivariate Cox regression model for time to treatment with maximal respiration as
a covariate

factor p value hazard ratio lower 95% CI upper 95% CI

age 0.0169 0.77 0.62 0.95
trisomy12 0.336 1.5 0.66 3.3
11q22.3 deletions 0.18 1.6 0.79 3.4
17p13 deletions 0.581 1.3 0.54 3
TP53 mutations 0.00532 3 1.4 6.4
U-CLL 0.0354 2 1 3.8
maximal respiration 0.0743 1 1 1

Table S6: Multivariate Cox regression model for time to treatment with spare respiratory ca-
pacity as a covariate

factor p value hazard ratio lower 95% CI upper 95% CI

age 0.0191 0.77 0.62 0.96
trisomy12 0.328 1.5 0.67 3.4
11q22.3 deletions 0.187 1.6 0.79 3.4
17p13 deletions 0.572 1.3 0.54 3
TP53 mutations 0.00743 2.9 1.3 6.1
U-CLL 0.0332 2 1.1 3.8
spare respiratory capacity 0.0672 1 1 1
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Table S7: Correlation tests between each Seahorse measurements and lymphocyte doubling time

Seahorse mearuement p value adjusted p
p value

(IGHV blocked)
adjusted p

(IGHV blocked)

ATP production 0.170 0.442 0.519 0.815
basal respiration 0.666 0.814 0.786 0.959
ECAR 0.838 0.862 0.435 0.815
ECAR/OCR 0.862 0.862 0.161 0.815
glycolysis 0.032 0.199 0.778 0.959
glycolytic capacity 0.036 0.199 0.488 0.815
glycolytic reserve 0.099 0.364 0.452 0.815
maximal respiration 0.505 0.729 0.959 0.959
OCR 0.201 0.442 0.143 0.815
proton leak 0.330 0.605 0.269 0.815
spare respiratory capacity 0.530 0.729 0.882 0.959

Table S8: Associations of bioenergetic features with CD38 and IGTA4(CD49d) expression

Measurement Gene p value
p value

(IGHV blocked)
adjusted p value

adjusted p value
(IGHV blocked)

glycolytic capacity CD38 0.000 0.001 0.001 0.021
glycolytic reserve CD38 0.000 0.003 0.003 0.033
glycolysis CD38 0.001 0.019 0.004 0.083
maximal respiration CD38 0.002 0.032 0.009 0.083
glycolysis ITGA4 0.003 0.028 0.013 0.083
ECAR CD38 0.005 0.009 0.015 0.067
spare respiratory capacity CD38 0.005 0.072 0.015 0.121
basal respiration ITGA4 0.005 0.028 0.015 0.083
basal respiration CD38 0.006 0.027 0.015 0.083
OCR CD38 0.009 0.070 0.021 0.121
ATP production CD38 0.013 0.070 0.026 0.121
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