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Chronic Lymphocytic Leukemia (CLL) has a complex pattern of driver mutations and much of its
clinical diversity remains unexplained. We devised a method for simultaneous subgroup discovery
across multiple data types and applied it to genomic, transcriptomic, DNA methylation and
ex-vivo drug response data from 217 Chronic Lymphocytic Leukemia (CLL) cases. We uncovered
a biological axis of heterogeneity strongly associated with clinical behavior and orthogonal to

the known biomarkers. We validated its presence and clinical relevance in four independent
cohorts (7=547 patients). We find that this axis captures the proliferative drive (PD) of CLL cells,
as it associates with lymphocyte doubling rate, global hypomethylation, accumulation of driver
aberrations and response to pro-proliferative stimuli. CLL-PD was linked to the activation of
mTOR-MY C-oxidative phosphorylation (OXPHOS) through transcriptomic, proteomic and single
cell resolution analysis. CLL-PD is a key determinant of disease outcome in CLL. Our multi-table
integration approach may be applicable to other tumors whose inter-individual differences are
currently unexplained.

Introduction

A better understanding of the source of inter-patient heterogeneity is a prerequisite

for improved cancer treatment. Chronic lymphocytic leukemia is a frequent blood
malignancy with large differences in tumor expansion rate and clinical outcome. Different
genomic and epigenomic aberrations influence the clinical behavior of CLLY2, but the
underlying mechanisms are not sufficiently understood. One well-acknowledged source of
heterogeneity is the cell type of origin of a CLL tumor, which is marked by the mutation
status in the variable regions of the immunoglobulin (1g) heavy chain (IGHV) or by the
epigenetic fingerprint based on DNA methylation34. These molecular traits are important
prognostic markers: IGHV unmutated CLL (U-CLL) or lowly programmed CLL (LP-CLL)
shows faster disease progression and worse clinical outcome than IGHV mutated CLL
(M-CLL) or highly programmed CLL (HP-CLL)>’ Cell of origin is also one of the

major sources of heterogeneity in B-cell receptor signaling activity8, RNA expression®,
ex-vivo drug responsel? and the energy metabolism!® in CLL. Therefore, the cell of origin
is considered a key biological axis that drives heterogeneous molecular and phenotypic
features of CLL. However, it only partially explains the clinical and molecular heterogeneity
of CLL, and major driving forces in CLL etiology remain elusive.

Other mechanisms, such as defects in DNA damage repairl2, chromatin remodeling2 and
aberrant RNA splicing* have been linked to CLL pathogenesis. Sequencing studies revealed
more than 60 putative driver genomic aberrations in CLL, including 7P53 mutations and
deletions, NOTCH1, SF3B1 and ATM mutations or deletions. A proportion of tumors,
however, lack these well-known disease drivers, and there remains substantial heterogeneity
in CLL prognosis to be explained215-17,

We extended the search for biological sources of interpatient heterogeneity in CLL by using
a multi-omics approach. We jointly analyzed multimodal data from 217 CLL tumor samples
using the multi-table factor analysis method MOFA (Multi-Omics Factor Analysis)!8. Factor
analysis aims to find the major axes of variation in tabular datasets. For a single data
modality, principal component analysis (PCA) is often used to identify principal axes that
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represent most of the variation in high-dimensional data. For the multiple modalities, MOFA
identifies the principal axes—termed factors—within each single data modality, as well as
those common to several or all data types.

Multi-omics data integration identifies CLL-PD

We assembled data from tumor samples of 217 CLL patients, comprising four data types
(also termed as views): genome (somatic mutations and copy number variations), epigenome
(DNA methylation), transcriptome (RNA expression), and ex vivo drug response phenotypes
(Extended Data Fig. 1a). Patient characteristics are shown in Supplementary Table 1. MOFA
identified seven factors, based on the criterion that a factor should amount to at least 5% of
the variance in at least one view (Fig. 1a, Extended Data Fig. 1b). Factors 1 (F1) and 2 (F2)
were associated with IGHV status and trisomy12, respectively (Extended Data Fig. 2a-c). F1
also separated the three epigenetic subtypes (Extended Data Fig. 2d). Thus, F1 represents
the cell-of-origin axis in CLL.

We next tested the seven factors for association with two measures of clinical outcome, time
to treatment (TTT) and overall survival (OS). Factors 1 and 4 showed associations with TTT
and OS (5% familywise error rate, Fig. 1b). The results for F1 was in line with the known
association of IGHV status with outcome®®. Factors 3, 5, 6 and 7 were largely limited to the
RNA-Seq view and had no or very weak association with outcome (Supplementary Table 2
and 3). They appeared to represent RNAseq batch effects and signatures of residual T-cells
and stress responses (Extended Data Fig. 2e-i). Therefore, we set those four factors aside
and focused on Factor 4 (F4), which was associated with variance across multiple views
(Fig. 1a), and was not explained by a known molecular marker.

Higher values of F4 were associated with worse outcome (OS and TTT) (Fig. 1b).
Stratification of patients into risk subgroups was improved in a bivariate model including
F4 and IGHV status, compared to IGHV status alone. M-CLLs with lower than median

F4 value had the best outcome. U-CLLs with higher than median F4 value had the worst
outcome (Fig. 1c and 1d). F4 was one of the strongest predictors in multivariate Cox
regression models including IGHV status and other well-established risk factors: age,

sex, mutations of 7P53, SF3B1 or NOTCHI, and deletion of chromosome arm 17p (Fig.

1e and 1f). This result suggests that F4 is a risk factor that is non-redundant with the
established demographic and genomic risk factors. Neither age nor sex were associated with
F4 (Extended Data Fig. 3a-b).

In our cohort, 62 patients had been treated before their samples were gathered, and these
samples showed higher F4 values (Extended Data Fig. 3c). To understand the relationship
between F4 and pretreatment status, we correlated F4 with OS and TTT in the subset of
patients without pretreatment and found F4 to remain associated with the clinical outcome.
(Extended Data Fig. 3d-g). Therefore, we concluded that high F4 is a tumor property
associated with more aggressive disease and earlier need for treatment.
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High values of F4 were associated with shorter lymphocyte doubling time (Fig. 1g). The
association between F4 and doubling time remained significant when only untreated samples
were considered (Extended Data Fig. 3h). Furthermore, this association was independent of
IGHV status (Extended Data Fig. 3i). IGHV status and F4 better explained the doubling
time than either IGHV status or F4 alone (Fig. 1h). These results imply that F4 captures

a cell-of-origin independent biological variable that co-determines the proliferation rate of
CLL. We termed F4 the “CLL proliferative drive” (CLL-PD), a name that we will further
substantiate in the following.

CLL-PD predicts outcome in external cohorts

Next, we aimed to test whether disease stratification by CLL-PD was reproducible in
independent cohorts. Since no published study used the same combination of four assay
technologies that we used here, we first determined whether CLL-PD could be predicted

by any of the individual data types. We applied multivariate linear regression with LASSO
regularization to compute the CLL-PD from each of the individual views in turn. We
employed cross-validation, with repeated random splits into training set (70% of samples)
and test set (30% of samples), and used the average R-squared value (R2) on the test sets as
a performance measure. As shown in Fig. 2a, the transcriptome and DNA methylation views
performed well, with average R2 above 0.6. The genes and CG probes that were selected by
the linear models with the highest RZ are shown in Supplementary Table 4 and 5. This result
indicates that it is possible to measure CLL-PD from either a transcriptomic or an epigenetic
assay alone.

We then computed a CLL-PD score for each sample in four independent cohorts with
publicly available gene expression profiles: The International Cancer Genomic Consortium
(ICGC) CLL cohort (249 patients) 219, the Munich CLL cohort (107 patients) 20, the UCSD
CLL cohort (130 patients) 2! and the Duke CLL cohort (61 patients) 22. All samples were
obtained before treatment. In each cohort, the CLL-PD scores were associated with the
available outcome variables (P < 0.05) (Fig. 2b, Extended Data Fig. 4).

For the ICGC cohort, genomic and demographic data were also available, which enabled us
to apply multivariate analysis. Similar to the results in our own cohort, combining CLL-PD
and IGHYV status in the ICGC cohort led to improved stratification of patients (Fig. 2c and
2d). In multivariate Cox regression, CLL-PD was a significant predictor of TTT and OS, and
not redundant with the established risk predictors (Fig. 2e and 2f).

CLL-PD relates to accumulation of genetic disease drivers

To understand the biology of CLL-PD, we investigated its molecular signatures, starting
with the genome view. CLL-PD (F4) was associated with multiple genomic aberrations,

as indicated by the feature loadings of F4 (Fig. 3a) and #tests for association (Fig. 3b).
Many of these aberrations are known to be associated with worse outcome in CLL, in
particular, 7P53 mutations, deletion of 17p, NOTCHI mutations, SF381 mutations and gain
of 8q17:23-25_ |n multivariate modeling of outcomes, these aberrations lost significance if
CLL-PD was included (Fig. 1e and 1f). Moreover, CLL-PD was associated with the total
number of aberrations known to be recurrent in CLL (Fig. 3c). We considered that high
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CLL-PD might be related to the defect in the DNA damage response system and therefore
subject the cancer cells to an increased mutation rate. However, CLL-PD was not associated
with the total number of mutations (Extended Data Fig. 5a-b). We obtained the same

results for the ICGC cohort, where CLL-PD again correlated with the presence of disease
drivers but not with overall mutation load (Extended Data Fig. 5¢-d). We hypothesize that
the association between the accumulation of driver aberrations and CLL-PD results from
positive fitness effects of these aberrations on tumor cell survival or proliferation.

The DNA methylation signature of CLL-PD

We next investigated the DNA methylation view. The methylation status of 52,956 CpG
sites out of 394,735 tested was correlated with CLL-PD (FDR=1%). For the vast majority of
these, higher CLL-PD was associated with hypomethylation (Fig. 3d). In contrast, F1, which
aligns with IGHV status, was correlated with the methylation levels of a smaller number of
CpG sites, which are primarily hypermethylated in U-CLL (Fig. 3d). We also observed a
strong negative correlation between CLL-PD and overall DNA methylation level (Fig. 3e).
Global loss of DNA methylation has been proposed as a hallmark feature of CLL compared
to normal B-cells and linked to worse prognosis26-27. We found that CpG sites correlated
with CLL-PD were significantly enriched (P = 1.0x10) for a mitotic clock-like signature
termed solo-WCGWs by Zhou et al. 28, suggesting that CLL-PD is related to more cell
divisions in the past lifetime of the tumor. This is in line with a recent report that DNA
hypomethylation reflects the proliferative history of CLL cells2%. However, in contrast to the
findings by Duran-Ferrer et al. for their proliferation history marker epiCMIT, we did not
observe significant association between CLL-PD and overall number of somatic mutations
(Extended Data Fig. 5a-d). To discover potential functional roles of the CLL-PD associated
DNA hypomethylation, we noted that local reduction of DNA methylation can be related

to increased transcription factor binding activity 3931 and therefore searched the affected
regions for transcription factor binding motifs. The strongest enrichment was for MYC
family transcription factors (Fig. 3f, Extended Data Fig. 5e), according to Homer32. This
result suggests an increased MY C activity in samples with high CLL-PD. This finding is

in contrast to those for epiCMIT, where no MYC association was found??, but is consistent
with previous reports of the importance of MYC for CLL cell proliferation33:34,

Next, we investigated whether CLL-PD reflected the proliferative capacity of CLL cells.

In vitro proliferation of CLL cells depends on the presence of stimuli such as, e.g.,

CpG oligonucleotides (CpG ODN), a class of Toll-like receptor 9 (TLR9) agonists3®.

This model has been used to mimic the microenvironment of proliferation centers where
CLL expands36:37 and the response of CLL cells to CpG ODN has been suggested to be
predictive of clinical outcomes38. We selected samples with high and low CLL-PD (n=24,
balanced for IGHV status) (Supplementary Table 6) and measured the expression of Ki-67,
a proliferation marker, with and without CpG ODN stimulation using flow cytometry.

As shown in Fig. 3g, the samples with high CLL-PD showed significant increase of the
Ki-67 positive fraction, independent of their IGHV status, upon CpG ODN treatment, while
samples with low CLL-PD were mostly unresponsive (Fig. 3g). This finding suggests that
CLL-PD governs the proliferative capability of CLL cells.
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CLL-PD is associated with mTOR-MYC-OXPHOS pathways

We next investigated the transcriptome (RNA-Seq) to understand pathway activity changes
related to CLL-PD. We identified 5227 genes (20% of all tested genes) whose expression
levels were correlated with CLL-PD (FDR=1%). We performed a gene set enrichment
analysis (GSEA) against the H (Hallmark gene sets) collection from the Molecular Signature
Database (MSigDB) 3940, In line with the DNA methylation analysis, the gene set of

MY C targets was enriched for genes up-regulated in samples with higher CLL-PD, and

the MY C transcript itself was positively correlated with CLL-PD (Fig. 4a, Extended Data
Fig. 6a). Oxidative phosphorylation (OXPHOS) and mTORCL1 signaling gene sets were also
enriched for genes positively correlated with CLL-PD (Fig. 4a, Extended Data Fig. 6b-c), a
finding that suggests activation of those cellular processes. We found the same enrichment
signatures in all four external cohorts (Extended Data Fig. 6d). The GSEA results were
largely the same when the enrichment tests were performed separately for U-CLL and
M-CLL (Extended Data Fig. 6e).

To characterize the processes underlying CLL-PD, we compared the gene expression profile
of CLL-PD to signatures of CLL cells upon pro-proliferative stimulations, namely CpG
ODN (ArrayExpress ID: E-GEOD-30105), co-culturing with T-cells?, 1L21+CD40L41,
and cross-linked anti-IgM#2. The genes positively correlated with CLL-PD were enriched

in each of the four sets of genes up-regulated by these stimuli (A<0.001 in each case,
Extended Data Fig. 7a), suggesting similarities between the transcription program associated
with CLL-PD and the programs triggered by these stimuli. These transcription programs
were enriched in MYC targets, mTOR and OXPHOS pathways (Extended Data Fig. 7b).
These results support the conclusion that the biological processes captured by CLL-PD

are different to the cell-of-origin signature represented by IGHV status, and reflect cell
proliferation and the response to pro-proliferative stimuli.

To query pathway activities at the protein level, we obtained mass spectrometry proteomics
profiles on 46 CLL samples from our cohort (approximately balanced for CLL-PD and
IGHV status). GSEA results showed MY C targets gene set was the most enriched set for

the proteins positively correlated with CLL-PD (Fig. 4b). While we did not detect MYC
protein itself, the abundance of the protein products of several direct MY C target genes
were significantly associated with CLL-PD, including genes involved in the regulation of
cell proliferation, such as NMEL (P= 1.3x104) 4344 MCM4 (P=0.02) 4, and PAICS (P=
2.3x10®) 46 (Extended Data Fig. 8a). Similar to the enrichment analysis at the transcriptome
level, mMTORC1 signaling and OXPHOS pathways were also significantly enriched for
proteins positively correlated with CLL-PD (Fig. 4b).

In the ex-vivo drug response view, while many drugs had strong associations with F1 (IGHV
status) and F2 (trisomy12) (Extended Data Fig. 8b), in line with previous results19, most
drugs were not or only weakly associated with CLL-PD. An exception was the effect of the
mTOR inhibitor rapamycin, which was stronger on samples with high CLL-PD (= 0.01)
(Extended Data Fig. 8c), consistent with the association of CLL-PD with mTOR pathway
activation. There was also a positive correlation of the effect of the bromodomain (BRD)
inhibitor OXT015 with CLL-PD (P = 4.2x10°) (Extended Data Fig. 8c), consistent with the
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association of CLL-PD with MY C activation and reports that BRD inhibitors act through
downregulating MYC in some tumors 4748,

CLL-PD is associated with increased mitochondrial biogenesis

As OXPHOS has been shown to be critical for B-cell growth*?, we tested if CLL samples
with high CLL-PD had higher OXPHOS activity. We measured 11 bioenergetic features
that reflect the cells’ OXPHOS and glycolytic activity in 125 samples!l. CLL-PD was
positively correlated with several respiration related bioenergetic features (5% FDR),
including oxidative phosphorylation rate (OCR), spare respiratory capacity and maximal
respiration (Fig. 4c and Extended Data Fig. 8d), which reflect the maximum capability and
flexibility of cells for utilizing OXPHOS. F1, which represents IGHV status, was correlated
with glycolysis-related features (Fig. 4c).

On both transcriptomic and proteomic level, many CLL-PD associated genes are annotated
as mitochondrial protein coding genes according to MitoCarta>® (Fig. 4d, Extended Data
Fig. 8e), suggesting high CLL-PD could be associated with increased mitochondrial
biogenesis. Accordingly, we found CLL-PD values to be positively correlated with the
mitochondrial biomass, analyzed by MitoTracker™ (P = 0.0045) (Extended Data Fig. 8f).
In line with the fact that induction of mitochondrial biogenesis is one of the mechanisms

by which MYC and mTOR regulate energy metabolism®1:52, we observed that, while most
of the CLL-PD associated mitochondrial protein coding genes are present in the OXPHOS
gene sets, some of them are also present in the mTOR and MY C target gene sets (Fig. 4d).
In addition, CLL-PD was positively correlated the protein levels of VDAC1 (P= 8.0x1014 )
and HSPD1 (also known as HSP60, 2= 6.1x10) (Extended Data Fig. 8g), two well-known
mitochondrial markers that are also annotated as MYC targets. >354 Overall, our results
suggest that CLL-PD associates with mitochondrial biogenesis, which could provide cells
with higher energy production capability upon pro-proliferating stimulation.

Single-cell analysis of CLL proliferation compartment

As proliferating CLL cells only constitute a small portion of all CLL cells in vitro, even
with CpG ODN stimulation, we used CyTOF (cytometry by time-of-flight) 3° to study CLL
proliferation and its connection to mTOR and MYC activities at single cell resolution. We
measured the abundance of 33 proteins and phosphorylated proteins, including markers

for cell type, cell proliferation and signaling pathway activity (Supplementary Table 7)

in 16 CLLs from our cohort (8 CLL-PD high and 8 CLL-PD low, balanced for IGHV)
(Supplementary Table 6). We exposed the tumors to CpG ODN (5ug/mL), the mTOR
inhibitor everolimus (250 nM), combined CpG ODN and everolimus, and DMSO control to
elicit proliferation and assess its dependence on mTOR. Within CLL cells, we identified the
fraction of proliferating cells, which we defined as those positive for the three proliferating
markers Ki-67, phospho-Rb and Cyclin B1 (Fig. 5a and 5b, Extended Data Fig. 9a). CpG
ODN treatment significantly increased the size of the proliferating fraction in samples with
high CLL-PD (Fig. 5b-d). The treatment with everolimus blocked the CpG ODN induced
proliferation (Fig. 5c).
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We next investigated the changes of marker expression in the CLL population with

the different conditions (Fig. 5e). CpG ODN induced significant up-regulation of MYC

and mTOR pathway activity, including c-Myc and the protein products of its direct

targets, cyclin-dependent kinase 4 (CDK4) and glucose transporter 1 (GLUT1); mTOR
direct targets, phospho-p70 S6 kinase (P-S6K) and phospho-4E-BP1 (P-4E-BP1) (Fig.

5f and 5g), in line with our observations that MYC and mTOR pathways are activated

upon CpG ODN stimulation. CpG ODN treatment also up-regulated the BCR signaling
components, phospho-ZAP70/Syk (P-ZAP70/Syk), phospho-Bruton's tyrosine kinase (P-
BTK) and phospho-PLC-gamma 2 (P-PLC-gamma 2). In addition, the phosphorylated 5'
AMP-activated protein kinase (P-AMPK alpha) was one of the top markers up-regulated by
CpG ODN (Fig. 5f and 5g). The CpG ODN induced up-regulation of markers was largely
reversed by everolimus treatment, most completely for c-Myc targets, mTOR targets and
P-AMPK alpha and to a lesser extent for BTK pathway components (Fig. 5f). We also
searched for markers that were differentially expressed between CLL-PD high and low
groups upon CpG ODN treatment. CDK4, GLUT1, P-4E-BP1 and P-S6K were the most
up-regulated markers in the CLL-PD high group (Fig. 5h, Extended Data Fig. 9b). The
expression of P-AMPK alpha was also higher in the CLL-PD high group (Fig. 5h), although
the association did not pass our multiple testing procedure. We did not detect a significant
association between CLL-PD and c-Myc expression, potentially due to the overall low
intensity of c-Myc detected by CyTOF.

To characterize the proliferating population of CLL cells further, we used LASSO-
regularized logistic regression to select pathway activity markers that strongly associate
with proliferation status at single-cell level. The 10 selected markers included c-Myc and
its targets CDK4, GLUT1, the mTOR target P-4E-BP1, and P-AMPK alpha (Fig. 5i and
5j). In addition, the nuclear factor of activated T cells (NFAT1), which induces c-Myc
expression and correlates with CLL clinical outcomes®®-57, also showed high expression in
the proliferating compartment.

Overall, our single cell analysis reveals that the proliferating cellular compartment of CLL is
characterized by mTOR, MYC and AMPK alpha activation, which is captured by CLL-PD.

Discussion

We identified a hitherto unknown biological axis in CLL that is strongly associated with
lymphocyte doubling time and clinical outcome. This axis, which we term CLL-PD, is
independent of the well-known cell-of-origin axis, which reflects normal B-cell maturation
states manifested by IGHV status or epigenetic subgroups3°:6. The situation of a CLL tumor
in a two-dimensional range spanned by these two axes provides non-redundant information
for predicting clinical outcome (Fig. 6). The disease driving force captured by CLL-PD

is associated with the proliferative drive of CLL cells both in vivo and in vitro, as high
CLL-PD is associated with shorter lymphocyte doubling time, global hypomethylation as a
sign of proliferative history, in vitro proliferative response to CpG ODN and accumulation
of driver mutations. Although CLL is characterized by a large population of quiescent cells,
an actively proliferating cell population can also be observed in CLL, and its size and
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proliferation rate have been related to more aggressive disease®8:59, Therefore, CLL-PD is
an important characteristic in the etiology of CLL.

We used CpG ODN, a TLR9 agonist, as a model for CLL expansion3®-37, but our data do
not suggest that the proliferative drive is mediated exclusively by TLR signaling. Rather,
a range of pro-proliferative stimuli induce gene expression changes similar to those that
differentiate high and low CLL-PD samples, including the up-regulation of MYC target
genes, mTOR signaling and OXPHOS pathways.

Using CyTOF, we showed that everolimus, an mTOR inhibitor, blocks the CpG ODN
stimulated proliferation and the up-regulation of c-Myc and its targets, CDK4 and GLUT1.
These results indicate a functional link between mTOR and MYC in CLL proliferation. In
addition, we were able to outline the cellular signaling that characterizes the proliferating
compartment of CLL, in particular, MYC and mTOR pathway components as well as
AMPK alpha are induced or activated in proliferating cells. Moreover, AMPK alpha
activation was reversed upon mTOR inhibition, suggesting a direct involvement of AMPK
alpha in the mTOR pathway. As AMPK alpha, MYC and mTOR are known to promote
mitochondrial biogenesis and lead to increased OXPHOS51:52, our results suggest that these
proteins act in a concerted way to drive cell growth and meet the consequent energy demand
in CLL.

We used a multi-omics approach with unsupervised machine learning to discover the CLL-
PD. We were then able, using a supervised learning method, to derive a CLL-PD score
based on a small set of features in a single data type (gene expression), which allowed

us to validated the clinical relevance of CLL-PD in four independent datasets comprising
547 treatment-naive CLL samples. The multi-omics approach was instrumental for us to
overcome technical challenges, as it enabled us to distinguish underlying biological signal
from incidental variation due to measurement noise or confounding experimental factors that
tend to affect only individual data sources. However, now that CLL-PD has been identified,
disease stratification can be carried out by measuring a limited number of features. Thus,
we provide the function CLLPDestimate in the R package mofaCL L for readers to compute
CLL-PD score from compatible gene expression data. This score is a reasonable proxy but
unlikely to be optimal. Rather, it should be seen as a proof of concept that will allow further
refinement, e.g., by defining an optimal set of markers read-out by a targeted omic platform,
such as Nanostring® or methylation-iPLEX”.

Study approval

Our research complies with all relevant ethical regulations and has been approved

by the Ethics Committee Heidelberg (University of Heidelberg, Germany; S-206/2011;
S-356/2013) and Zurich, Switzerland (2019-01744). Patients who donated tumor material
provided informed consent prior to the study and were not compensated.
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Statistics & Reproducibility

For the discovery analysis, we used data previously generated by us on peripheral blood
samples from 217 chronic lymphocytic leukemia patients. These patients had been recruited
prospectively between 2011-2017 at the University Hospital Heidelberg with informed
consent and were representative for a tertiary referral center without obvious bias. The
sample size was not determined by formal power analysis, instead we used the maximum
available subject to practical limitations including: number of patient contacts during that
period, quality and quantity of sample material, availability of clinical follow-up records,
successful acquisition of at least three out of four data types (RNA expression, DNA
methylation, genomic variation and ex-vivo drug responses). For the ex-vivo drug response
data, a previously established quality filter based on sample viabilities and variability of
negative controls was used to exclude low quality samples. The resulting set of samples had
heterogeneous genetic backgrounds and came from patients with diverse clinical outcomes.
No formal randomization was performed. A summary of the patients’ demographic and
clinical information is provided in Supplementary Table 1.

For the computational validation analysis, we used all major CLL omics datasets with
outcomes that we could locate in the public databases GEO and ArrayExpress. No samples
were excluded.

For the validation experiments (FACS and CyTOF), samples from the original cohort of 217
| were selected based on their CLL-PD values (ranging from low to high), availability in our
biobank and balance for IGHV status.

The investigators were not blinded to allocation during experiments and outcome
assessment. We controlled covariates including age, sex, molecular subtypes (IGHV status
and trisomy12) and pretreatment status in our analyses.

Multi-omics profiling and ex-vivo drug sensitivity assay

Multi-omics profiling, including whole-exome sequencing, targeted sequencing, DNA
methylation profiling and RNA sequencing, were previously performed on 148 out of 217
CLL patient samples used in the current study’9. The omics data for the additional 69

CLL patient samples and the drug sensitivity phenotypes, including the sensitivities of 190
patient samples to a panel of 63 small molecule compounds at five concentrations each, were
generated and processed using the same protocol as described beforel0.

Mass-spectrometry analysis for the proteomic profiling of 46 primary CLL samples,

with variable CLL-PD, was performed as described previously51. Processing of protein
abundance data and quality control was done with the R/Bioconductor package DEP62,
Proteins were selected for further analysis if they showed fewer than 50% missing values
across all 46 samples. The protein abundance data were background corrected, scaled and

transformed using the variance stabilizing transformation approach described by Huber et al.
63
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MOFA model training and selection

The somatic mutation data (combination of targeted and whole-exome sequencing) of 217
samples, RNA expression of 202 samples, DNA methylation of 158 and ex vivo drug
response screen data of 190 samples were used for MOFA model training. 116 samples were
profiled with all four data types while the others were profiled by three out of four data types
(Extended Data Fig. 1a).

Sixty-three drug response measurements at five concentrations each (feature number = 315)
were used. Mutations or copy number variations were considered if present in at least

five samples and tested for at least 60% of samples (i.e., <40% missing values) (feature
number = 39). The gene-level RNA-Seq counts were normalized and transformed using

the estimateSizeFactors and varianceStabilizing Transformation functions of DESeq264,

We excluded genes from the sex chromosomes and then selected the top 5,000 most
variable genes. The beta-values of the top 5,000 most variable CpG sites, excluding sex
chromosomes, were used.

We trained a MOFA model using the R/Bioconductor package MOFA18 on the above set
of four data tables using 20 random initializations with a variance threshold of 2% and a
convergence threshold of 0.01. Default values were used for other training parameters. The
model with the best fit, i.e., the highest evidence lower bound (ELBO) value, was selected
for downstream analysis.

Survival analysis

Survival times were calculated from the time of sample collection to death (overall survival:
OS) or to treatment (time to treatment: TTT). Follow-up information to calculate OS and
TTT was available for all 217 CLL patients. The impact of inferred factors from MOFA

or predicted factors in external CLL cohorts as continuous variables on survival endpoint
was calculated by univariate Cox regression. Multivariate Cox regression was performed to
assess the impact of CLL-PD (F4) on survival endpoints in the context of other important
risk factors. The associations to CLL subgroups defined jointly by CLL-PD and IGHYV status
(or F1), shown in Fig. 1c,d and Fig. 2c,d were tested using two-sided log-rank tests against
the null hypothesis of no difference between the groups. The survival analysis for external
CLL cohorts was performed using the same procedure.

Gene expression and enrichment analysis

DESeq2%* was used to identify genes whose expression levels were associated with CLL-PD
(F4). The other factors inferred by MOFA were included in the design matrix as covariates.
Resulting P values were adjusted for multiple testing using the Benjamini and Hochberg
(BH) procedure®. To search for pathways that were enriched for the genes associated

with CLL-PD or F1, CAMERA (correlation adjusted mean rank gene set test) from the
limma“9-66 package against the H (Hallmark gene sets) collection from the Molecular
Signature Database (MSigDB)3° was used. Resulting P values were adjusted for multiple
testing using the BH procedure at a = 0.05. To test and plot the enrichment of genes
associated CLL-PD in customized gene sets, namely the set of genes up-regulated by the
four pro-proliferative stimulations, CpG ODN, anti-lgM, CD40L+1L21 and activated T cells,

Nat Cancer. Author manuscript; available in PMC 2022 February 01.



s1duosnuBIA Joyiny sispund DN edoin3 ¢

s1dLIOSNUBIA JoLINY sispund DN 8doin3 ¢

Luetal.

Page 12

the FGSEA (fast gene set enrichment analysis) package was used. 87 Pathway enrichment
analysis for the proteomic data was performed in the same way.

DNA methylation analysis

To identify CpG sites whose methylation levels (beta-values) were associated with CLL-PD
(F4) or F1, the limma linear modeling-based workflow was used. 66:68 Other factors inferred
by MOFA were regressed out by including them as covariates in the linear models. Resulting
Pvalues were adjusted for multiple testing using the BH procedure. The transcription

factor (TF) binding motif analysis was performed using a similar protocol as previously
described3. Briefly, the CpG methylation was first summarized by tiling the genome in
500-bp non-overlapping windows, and beta-values were averaged within each window
containing =5 interrogated CpG sites. Associations between methylation windows and CLL-
PD were tested using the same limma-based protocol as described above for the individual
CpG sites. The significantly associated windows (1% FDR) were searched for TF binding
motifs using the de novo search algorithm of the software HOMER v4.1032,

Penalized multivariate regression for calculating CLL-PD

Multivariate regression with L1 penalty (i.e., LASSO regression), implemented in the R
package glmnet (version 4.1)%9, was used for assessing the ability of each single-omic

data table in our dataset to predict CLL-PD. The same approach was also used for
predicting CLL-PD in the external cohorts. Specifically, an individual data table was used as
explanatory variable (“x”), and CLL-PD (F4) inferred by MOFA was used as the response
variable (“y”). The data were split randomly into a training set (70% of the samples) and a
test set (30%). On the training set, five-fold cross-validation was used to tune the parameter
lambda (the penalty factor), namely, we used the value of lambda.1se returned by the
cv.glmnet function. The selected model was applied on the test set to predict CLL-PD, and
RZ between predicted and original CLL-PD was computed. This outer cross-validation was
repeated 20 times, and the average of the R? values was used as the measure of performance
for the data table.

To predict the CLL-PD in the external RNA expression datasets, we first subsetted our
dataset and each external dataset, in turn, to the same set of genes. For the ICGC-CLL
RNAseq dataset, Ensembl identifiers were used to match gene identifiers; for the other,
microarray-based datasets, Entrez gene 1Ds were used. Then for each external dataset, a
glmnet prediction model was trained on our (subsetted) dataset using nested 20x5 cross-
validation as described above and applied to the external dataset. The predicted values of
CLL-PD were then used for the survival analysis.

Assessment of proliferation by flow cytometry

Total MNCs were isolated through Ficoll separation from the peripheral blood of CLL
patients (Supplementary Table 6). Cells were cultured in RPMI supplemented with 10%
(v/Vv) heat-inactivated (56°C, 30 min) human serum (Sigma H6914), 2 mM L-glutamine
(Gibco 25030-024) and 1 % Pen/Strep (Gibco 15070-063) at a concentration of 5x108
cells/ml. Cells were stimulated by treatment with either 5 pg/ml CpG ODN2006 (InvivoGen
tIrl-2006) or left untreated. Four days later, 2x10° cells were harvested, washed in FACS
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buffer (PBS 1X, 2mM EDTA, 2% FBS) and surface antigen staining was performed

as follows: samples were stained with either PE-Cy™5 Mouse Anti-Human CD19 (BD
555414) or PE-Cy™5 Mouse IgG1 « Isotype Control (BD 555750) diluted (1:50) in

FACS buffer for 20 minutes on ice. After incubation time, cells were washed in FACS
buffer and fixed/permeabilized using the Fixation/Permeabilization reagents (ThermoFisher
00-5123-43; 00-5223-56) according to manufacturer’s instructions, for 30 minutes at room
temperature. Cells were washed in 1X Permeabilization Buffer (ThermoFisher 00-8333-56)
and stained with either PE Mouse Anti-Ki-67 (BD 51-36525X) or PE Mouse IgG1,
Isotype Control (51-35405X) diluted (1:50) in 1X Permeabilization Buffer. The detailed
antibody information is available in Supplementary Table 8.

All samples were measured with the LSR 1 Fortessa 4L BD flow cytometer and analyzed
using the Flowjo 10.7.1 software. CLL cells were pre-gated according to granularity and
size parameters (SSC-A/FSC-A; FSC-H/FSC-A) and identified by CD19 expression. An
illustration of the gating strategy is shown in Extended Data Fig. 10a.

Single cell analysis through CyTOF (cytometry by time-of-flight)

Sample Preparation—Total MNCs were isolated and cultured as described in the
“Assessment of proliferation by flow cytometry” section. Cells were exposed either to single
agent treatments - 0.01% DMSO, 5ug/ml CpG ODN2006 (InvivoGen tIrl-2006), mTOR
inhibitor Everolimus (250nM) - or to the combination of CpG ODNZ2006 and Everolimus,

at the respective concentrations. After 48h exposure to treatments, 0.8x10° cells were
harvested and stained with 200 L of a 1 nM cisplatin solution (1%4Pt, Fluidigm, diluted
with RPMI 1640 medium) on ice for 5 min to stain the dead cells. The reaction was stopped
by adding 1 mL cell staining medium (CSM, PBS with 0.5% bovine serum albumin and

2 mM EDTA). Cells were centrifuged (250 g for 5 min at 4 °C), resuspended in 200 L
1.6% PFA working solution (PFA, Electron Microscopy Sciences, diluted with RPMI 1640
medium) and fixed at room temperature for 10 min. Subsequently the reaction was stopped
by adding 1 mL CSM. The cells were centrifuged (600 g for 4 min at 4 °C) and the disrupted
pellet frozen at -80 °C.

Mass Cytometry Barcoding—We ensured homogenous antibody staining by barcoding
0.25 x 10° cells per sample using a 126-well barcoding scheme consisting of

unique combinations of four out of nine mass tag barcoding reagents, as previously
described’0. Four palladium isotopes (102Pd, 106pd, 198pq and 110pd, Fluidigm),

were chelated to 1-(4-Isothiocyanatobenzyl)ethylenediamine-N,N,N EN Etetraacetic acid
(Isothiocyanobenzyl-EDTA, Dojino). Yttrium (82Y, Sigma Aldrich), two indium isotopes
(1131n and 1151, Fluidigm), and bismuth (2%9Bi, Sigma Aldrich) were chelated

to 1,4,7,10-tetraazacy-clododecane-1,4,7-tris-acetic acid 10-maleimide ethylacetamide
(mDOTA, Dojino) following standard procedures’L. We titrated mass tag barcoding reagents
to ensure equivalent staining for each reagent; the final concentrations were between 50 nM
and 500 nM. We used the transient partial permeabilization approach’? to barcode the cells.
All samples were loaded into a 96-well plate. Cells were washed with PBS-saponin (PBS-S,
PBS with 0.03 % saponin and 2 mM EDTA) and incubated for 30 min with 200 pL of
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barcoding reagent diluted in PBS-S. After washing three times with cell CSM samples were
pooled for staining with the metal tagged antibody panel.

Antibodies and Antibody Labeling—The antibodies used in this study, including
provider, clone, and metal tag, are listed in Supplementary Table 7. Antibodies were labeled
with the indicated metal tags using the MaxPAR antibody conjugation kit (Fluidigm).

We assessed the concentration of each antibody after metal conjugation using Nanodrop
(Thermo Scientific) and then supplemented each antibody with antibody stabilizer solution
(Candor). We performed titrations to determine optimal concentration of each conjugated
antibody. All antibodies used in this study were managed using the cloud-based platform
AirLab’3.

Antibody Staining and CyTOF data acquisition—After barcoding, pooled cells were
incubated with FcR blocking reagent (Miltenyi Biotec) for 10 min at 4 °C. Cells were
stained with 400 pL of the antibody panel per 107 cells for 45 min at 4 °C. Cells were
washed three times in CSM and once in PBS. Afterwards the cells were fixed with 1 mL
1.6 % PBS buffered formalin (Pierce) for 10 min at room temperature and then resuspended
in 1 mL of 0.5 uM nucleic acid Ir-Intercalator (Fluidigm) and incubated overnight at 4 °C.
Samples were prepared for CyTOF acquisition by washing the cells once in CSM, once in
PBS, and once in water.

Cells were then diluted to 0.5 x 106 cells/mL in Cell Acquisition Solution (CAS, Fluidigm)
containing 10% of EQ™ Four Element Calibration Beads (Fluidigm). Samples were
acquired on a Helios upgraded CyTOF 2. Individual .fcs files were pre-processed using an R
workflow based on CATALYST to perform file concatenation, normalization, compensation,
and debarcoding’4. A spillover matrix for CyTOF compensation was estimated on all
antibodies used in this study as previously suggested’®.

Bioinformatic analysis of CyTOF data—We applied gating and clustering on the data
of the cells pooled from all 64 samples (16 primary CLLs and 4 treatment conditions) to
assign cell types (Extended Data Fig. 10b). Debris and doublets were removed based on
automatic gating on DNA content and event length, using the openCyto package’®. The
average number of cells in each of the 64 samples was 66248 (min; 58538, max 63549),
after gating for intact cells and singlets. Dead or apoptotic cells were then identified by

a 2D clustering based on the intensity of cisplatin and cleaved-PARP/Caspase3 channels,
using the flowSOM package’” included in the CATALYST workflow’8. Cells that were
negative for both cisplatin and cleaved-PARP/Casp3 signal were annotated as live cells.
Next, flowSOM clustering was performed for all live cells based on the intensity of

cell lineage markers (CD45, CD19, CD20, CD7, CD3, MPO and CD14) as well as cell
proliferation markers (Ki-67, P-Rb and Cyclin B1). Clusters were then manually merged
into three cell populations based on the median intensity of the lineage markers among all
cells in each cluster. Clusters that were positive for CD45, MPO and CD14 were annotated
as myeloid cells; clusters that were positive for CD47 and CD7 or CD3 were annotated as T
cells. Clusters that were positive for CD45 and CD19 were annotated as CLL. At this point,
among the cells labeled as live, a small fraction (3.77%) were negative for CD45 and had

a very faint CD19 signal. These cells were annotated as dead/apoptotic cells and excluded
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from subsequent analyses. Within the live CLL cells, clusters that were positive for Ki-67,
P-Rb and Cyclin B1 were annotated as proliferating CLL cells.

After cell type identification, differential population abundance analysis and differential
protein/phospho-protein expression analysis was performed within the live CLL population
by using diffCyt’® implemented in the CATALYST workflow. Only markers that were not
used for defining cell types were included in the differential expression analysis. Prior

to gating, clustering and differential abundance analysis, an arcsinh (inverse hyperbolic
sine) transformation with cofactor 5 (i.e., f(x)=asinh(x/5)) was applied to the raw mass-
spectrometry signal intensities. For the visualization of signal intensities on t-SNE maps
and the heatmap in Fig. 5i, an additional affine transformation was performed to scale the
intensities of all markers to a common range of [0, 1], such that 1% and 99% percentiles of
the incoming distributions mapped to 0 and 1, respectively, and more extreme values were
clipped.

LASSO-regularized logistic regression, implemented in the R package glmnet59, on 100
bootstrap samples was used to select pathway activity markers that are predictive for
proliferation status. To avoid bias, in each bootstrap sample, 1000 cells (500 each from

the proliferating and non-proliferating compartment) from the seven CpG treated CLL-PD
high samples that showed significant proliferation were randomly selected for model fitting.
Within each bootstrap sample, a 10-fold cross-validation was performed to select the
optimal lambda (penalty factor), namely the value of lamda.1se returned by the cv.glmnet
function. Regression coefficients averaged over 100 bootstrap samples were used as feature
importance scores. Markers with selection frequency >80% and non-zero importance scores
were considered as predictive markers and are shown in Fig. 5i.

Other statistical analyses

For the associations between CLL-PD and genomic features (gene mutations and copy
number variations), Student’s t-test was used. For testing the associations of CLL-PD

to ex-vivo drug responses and bioenergetic features, the same linear model as used for
testing the associations between CLL-PD and DNA methylation was used. For each

sample, the ex-vivo responses under five concentrations for each drug were averaged when
performing association tests. Association Pvalues were adjusted for multiple testing using
the Benjamini-Hochberg (number of tests > 5) or Bonferroni procedure (hnumber of tests <5).
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Extended Data
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Extended data figure 1. I ntegration of multi-omics profiling datasets using multi-omics factor
analysis (MOFA).

a, Datasets included in the MOFA training model and the overlap of patient samples among
datasets. The number of features in each dataset is indicated by “d="and the number of
samples in each dataset is indicated by “n=". b, Stem plots showing the variance explained

(R?) values for each view by each factor.
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Extended data figure 2. Char acterization of the factorsidentified by MOFA.
a and b, Absolute loadings of the top features of F1 and F2 in the genomic dataset

(=217 samples). ¢, Visualization of patient samples using F1 and F2 as coordinates. A
dot represents a primary CLL with mutated IGHV status (M-CLL, /=117 samples), and

a circle represents a primary CLL with unmutated IGHV status (U-CLL, /7=89 samples).
CLL with (=25 samples) and without trisomy12 (/=181 samples) are colored by blue and
red, respectively. d, Association between F1 and three epigenetic subtypes of CLL: HP
(high-programmed, /7=86 samples), IP (intermediate-programmed, /7=35 samples) and LP
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(low-programmed, /7=86 samples). F1 separated the three epigenetic subtypes in their proper
order (HP-, IP-and LP-CLL). e, F3 values for CLL samples in different RNAseq batch
(=103, 33, 43 and 23 samples for batch 1, 2, 3 and 4, respectively). Each dot represents a
patient sample. The boxplot shows the interquartile range in the box with the median as a
horizontal line. Whiskers extend to 1.5 times the interquartile range. P value was calculated
by ANOVA test. f, Correlations between Factor 5 and the mMRNA expression of T cell
markers genes: CD4 and CD8A. P values are from two-sided Pearson’s correlation tests.

0, Correlations between Factor 6 and the expression of two exemplary genes (SOD1 and
GPX4) involved in the response to reactive oxygen species (ROS). P values are from two-
sided Pearson’s correlation tests. h, Pathway enrichment results for Factor 6. Enrichment

P values were adjusted by Benjamini-Hochberg method. i, Pathway enrichment results for
Factor 7. Enrichment P values were adjusted by Benjamini-Hochberg method. Factor 5 and
Factor 7 were characterized in detail, under the names of Factor 4 and Factor 5 respectively,
in the article describing the implementation of MOFA18. All analysis results shown in panel
f - i were performed on RNAseq data from 202 samples.
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Extended data figure 3. Associations between Factor 4 and demographic and clinical

characteristics.

a, Association of F4 to age. Pvalues is from two-sided Pearson’s correlation test. (/=217
samples) b and ¢, Associations of F4 to sex and pretreatment status. 2 values are from two-
sided t-tests. d and e, Kaplan-Meier plots for showing the associations between F4 and TTT
or OS in patients without previous treatment. The P-values were assessed by Cox regression
models with F4 as a continuous variable. For visualization purposes only, optimal cutoffs

to separate patients into high and low CLL-PD groups were estimated by the maximally
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selected rank test implemented in the R/JCRAN package maxstat (v0.7). f and g, Forest plots
showing the hazard ratios with 95% confidence intervals and Pvalues from multivariate
Cox models that include known demographic and genomic risk factors, for TTT and OS

in patients without previous treatment. F4 remained significantly associated with TTT in
multivariate analysis. In multivariate analysis for OS, none of the risk factors except for

age were significant, however, the hazard ratio showed the same trend for F4 as in the full
data set analysis, consistent with the reduced statistical power of the subset analysis. (/=154
patients) h, Correlation between F4 and lymphocyte doubling time (LDT) in previously
untreated patients. P values and coefficients are from two-sided Pearson’s correlation tests.
i, Correlation between F4 and lymphocyte doubling time (LDT) in M/U-CLL separately.
Pvalues and coefficients were from two-sided Pearson’s correlation tests. (/=43 and 40
samples for M-CLL and U-CLL, respectively).
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Extended data figure 4. Associations between CLL-PD score and outcomes (TTT or OS) in four

external CLL cohortswith gene expression data.

The per-test P-values were calculated by two-sided log-rank tests on Cox regression models

with CLL-PD score as a continuous variable. For visualization purposes only, optimal

cutoffs to separate patients into high and low CLL-PD groups were estimated by the
maximally selected rank test implemented in the RICRAN package maxstat (V0.7).
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Extended data figure 5. Associations of CLL-PD to genomic aberrationsand DNA methylation.
a and b, Scatter plots showing the associations between CLL-PD and the total number

of mutations detected by whole exome sequencing (a) or whole genome sequencing (b).
Mutations on immunoglobulin genes were excluded when calculating the total number of
mutations to avoid potential influence of somatic hypermutation. £ values and coefficients
were calculated by two-sided Pearson’s correlations tests. ¢, Associations of the CLL-PD
score to genomic aberrations in the ICGC-CLL cohort (/=249 samples). Pvalues are from
two-sided t-tests. d, Associations of the CLL-PD score to overall mutation load in the
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ICGC-CLL cohort. Pvalue is from two-sided Pearson’s correlation test. e, top 10 enriched
transcription factor binding motifs in the regions that show hypomethylation in samples with
high CLL-PD values, Pvalues were calculated by the Homer de novo algorithm32.
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Extended data figure 6. Gene expression signatures of CLL-PD.
ato ¢, Heatmap plots showing the z-score of the expression values of genes that are

significantly correlated with CLL-PD (1% FDR, Benjamini-Hochberg’s method) and are
in the Hallmark MY C targets v1 (a), Hallmark oxidative phosphorylation (OXPHQOS)
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(b) and Hallmark mTORC1 signaling (c) gene sets from Molecular Signatures Database
(MSigDB)3°. Samples (columns) are ordered by their CLL-PD values. Symbols of the

genes coding mitochondrial proteins are colored in red. d, Gene enrichment analysis of
genes correlated with the CLL-PD scores in the four external cohorts shown in Figure 2b,
using Hallmark gene sets from MSigDB. The names of gene sets related to MYC targets,
MTOR signaling and OXPHQOS are colored in red. (7=249, 107, 130 and 81 patients for the
ICGC-CLL, Munich, UCSD and Duke cohorts, respectively) e, Gene set enrichment analysis
of genes correlated with CLL-PD in U-CLL (/#=107 samples) and M-CLL (/=93 samples)
separately.
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Extended data figure 7. Comparison between the gene expression signatures of CLL-PD and the
signatures of pro-proliferative stimuli.

a, GSEA plots showing the enrichment of CLL-PD correlated genes in the gene sets
defined on the genes significantly up-regulated by the four indicated pro-proliferative stimuli
(1% FDR and log2 fold change >1). b, Gene enrichment analysis of genes differentially
regulated after four pro-proliferative microenvironment stimulations: including CpG ODN
(ArrayExpress ID: E-GEOD-30105, /=9 samples), co-culturing with T-cells (ArrayExpress
ID: E-GEOD-50572, n=5 samples), IL21+CD40L (ArrayExpress ID: E-GEOD-50572, n=4
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samples), and cross-linked anti-lgM (ArrayExpress ID: E-GEOD-39411, =11 samples).
Gene sets that passed a threshold corresponding to an FDR of 5% are shown. The names of
gene sets related to MY C targets, mTOR signaling and OXPHOS are colored in red.
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Extended data figure 8. Characterization of CLL-PD by proteomic, ex-vivo drug response and
bioener getic profiling.
a, Correlations between CLL-PD to the protein levels of three MYC direct targets that are

involved in cell proliferation: MCM4, NMEZ1 and PA/CS. Per-test Pvalues and coefficients

are from two-sided Pearson’s correlation tests (7=46 samples). b, Pvalues of associations

Nat Cancer. Author manuscript; available in PMC 2022 February 01.



s1duosnuBIA Joyiny sispund DN edoin3 ¢

s1dLIOSNUBIA JoLINY sispund DN 8doin3 ¢

Luetal.

Page 27

between drug responses and F1 (IGHV), F2 (trisomy12) and F4 (CLL-PD). Pvalues

are from ANOVA tests including F1, F2 and F4 as covariates. Dashed horizontal line
indicates the threshold associated with a false discovery rate (FDR) of 5% (method of
Benjamini and Hochberg). c, Scatter plots showing the correlations between cell viabilities
after drug treatment (averaged over five concentrations tested) and the CLL-PD values. P
values were from the same ANOVA test as shown in panel b. Only the drugs that showed
significant correlations (5% FDR) are shown here. (panel b and ¢ 7=190 samples): d, Scatter
plots showing the associations of CLL-PD to the three bioenergetic features related to
oxidative phosphorylation. Per-test P values and coefficients were from two-sided Pearson’s
correlation tests (/=136 samples). e, A heatmap plot showing the z-score of the expression
values of proteins that are significantly correlated with CLL-PD (5% FDR, method of
Benjamini and Hochberg). Samples (columns) are ordered by their CLL-PD values. The
names of mitochondrial proteins are colored in red. f, The correlation between the CLL-

PD values of 10 samples and their mitochondrial biomass, analyzed by MitoTracker
staining. MitoTracker Green (ThermoFisher Scientific, M7514) was used according to the
compound’s manual. P value and coefficient are from two-sided Pearson’s correlation tests.
g, Correlations between CLL-PD and the expressions of two mitochondrial marker proteins,
VDAC1 and HSPD1 (HSP60). Per-test Pvalues and coefficients in are from two-sided
Pearson’s correlation tests (n=46 samples).
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Extended data figure 9. Characterization of CLL-PD at single cell level using CyTOF.
a, The same £SNE layout as shown in Figure 5b, colored by the scaled intensity the other

two proliferation markers, P-Rb and Cyclin B1. b, A volcano plot showing the differentially
expressed markers between CLL-PD high and CLL-PD low samples upon CpG ODN
treatment. Text label colors indicate pathway: orange—MYC, purple—mTOR, magenta—
BCR, black—other. The y-axis shows the per-test P values, which were calculated by
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differential expression test (based on two-sided moderated t-test) implemented in the diffcyt
R package. The dashed horizontal line indicates the threshold associated with a false
discovery rate (FDR) of 10% (method of Benjamini and Hochberg) (7=8 tumor samples

for each of the CLL-PD high and low groups).
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Extended data figure 10. Illustrations of gating and cell type assignment strategies for flow

cytometry and CyTOF analyses.

a, Gating strategy used in the assessment of proliferation by flow cytometry. Debris was
excluded by gating the largest events based on the side and forward scatter of cells (SSC-
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AJFSC-A plot). Single cells were selected based on comparison of FSC-H and FSC-A
parameters. Ki67+/CD19+ double positive cells were gated among all events based on
unstained and staining controls conditions (anti-1gG-PE/anti-1gG-PE-Cy5 isotype controls,
anti-CD19-PE-Cy5 and anti-Ki67-PE single staining controls). b to g, An illustration of the
gating and clustering strategy to annotate cell types in the CyTOF data. b, Intact cells and
singlets were gated based on the two DNA channels and the event length channel. c, Intact
cells and singlets were clustered using flowSOM, based on the cisplatin (dead) and cleaved
PARP/Caspase3 (cl-PARP-Casp) channels. The number of clusters (k = 6) was chosen based
on the elbow point of the relative change in area under CDF curve. d, Cells in the cluster that
was negative for cisplatin and cl-PARP-Casp (Cluster3) were classified as live cells. Cells
in other clusters were classified as dead/apoptotic cells. e, Live cells were clustered into 10
clusters using flowSOM based on the intensity of cell lineage and proliferation markers. f,
Cluster 1, which was positive for CD45, MPO and CD14, was annotated as myeloid cell
cluster. Cluster 6, 9 and 10, which were positive for CD45 and CD3 or CD7, were annotated
as T cell clusters. Cluster 2, 5, 7 and 8, which were positive for CD45 and CD19, were
annotated as CLL clusters. Cluster 3 and 4, which were negative for CD45, may represent
non-lymphocytic cells or unhealthy cells and therefore were annotated as dead/apoptotic
clusters. Among CLL clusters, Cluster 7 and 8, which are positive for all three proliferation
markers, Ki-67, P-Rb and Cyclin B1, were annotated as proliferating CLL clusters, and
other CLL clusters were annotated as non-proliferating CLL clusters. g, Visualization of
cell types on a #SNE map. Due to their low population size (0.14%), myeloid cells are not
apparent.
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identifier: S-BSST587). Source data for main and extended data figures have been provided
as Source Data files. Processed omics data, including DNA sequencing, RNA sequencing,
DNA methylation profiling, proteomic profiling, CyTOF and drug sensitivity data are
available in the R package mofaCLL (https://github.com/Huber-group-EMBL/mofaCLL).

In our study, we used some public datasets: RNA sequencing data from ICGC-CLL cohort
via the ICGC data portal (https://dcc.icgc.org/) under accession code CLLE-ES; microarray
expression data from the Munich CLL cohort, the UCSD CLL cohort and the Duke CLL
cohort at ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) under the accession codes:
E-GEOD-22762, E-GEOD-39671 and E-GEOD-10138, respectively. The public microarray
expression data of CLL cells upon four pro-proliferative stimulations are available at
ArrayExpress under the accession code E-GEOD-30105 (CpG ODN), E-GEOD-50572
(co-culturing with T-cells and 1L21+CD40L treatment), and E-GEOD-39411 (cross-linked
anti-lgM). The Hallmark gene set (v6.2) was downloaded from the Molecular Signature
Database (MSigDB: http://www.gsea-msigdb.org/gsea/msigdb/index.jsp). The list of Solo-
WCGW CpGs for human genome assembly GRCh37 (hg19) was downloaded from https://
zwdzwd.github.io/pmd.

Code Availability

The computational codes, in the form of Rmarkdown documents, for reproducing all major
figures and results reported in this article are provided in the mofaCLL R package on
GitHub (https://github.com/Huber-group-EMBL/mofaCLL) under the GNU General Public
License v3.0. The CLLPDestimate function in the mofaCLL R package can be used to
compute CLL-PD from compatible gene expression data. Instructions can be found in the
vignette of the package.
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Fig. 1. Multi-omicsfactor analysisidentifiesa latent factor F4 (CLL-PD) that correlateswith

clinical outcome.

a, Factors and view-wise loading summarized from the multi-view factor analysis. b, Forest
plot showing the hazard ratios with 95% confidence intervals and P values from univariate
Cox regressions for testing the associations of Factors 1, 2 and 4 to overall survival (OS)
and time to treatment (TTT) (/7=206 patients). ¢c and d, Kaplan-Meier plots for TTT and

OS in the CLL subgroups defined jointly by IGHV status and F4 dichotomized by its
median: M-CLL with high F4 (red); M-CLL with low F4 (blue); U-CLL with high F4
(orange); U-CLL with low F4 (purple). The Pvalues are from two-sided log-rank tests. e
and f, Hazard ratios with 95% confidence intervals and P values from multivariate Cox
models that include known demographic and genomic risk factors, for TTT and OS (/7=206
patients). g, Association between F4 and lymphocyte doubling time (months). P value and
coefficient were assessed by two-sided Pearson’s correlation test (7=89 patients). h, Fraction
of variance explained (R? adjusted for number of predictors) for lymphocyte doubling time
by linear models including only IGHYV status, only F4, or both (same set of patients as in

panel g).
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Fig. 2. Association between CLL-PD and clinical outcomesin four independent cohorts.
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a, Variance explained (R?) values (top) and number of selected features (bottom) when each
individual data type is used to predict the CLL-PD score computed from the full multi-omic
factor analysis in our cohort (7=202, 158, 217 and 190 samples for the mRNA, Methylation,
Mutations and Drugs views, respectively). The error bars show the standard deviation of R?
(top) or number of selected features (bottom) over 20 random splits of the data into training
and test sets. The center of the error bars indicates mean values. b, Forest plot showing
hazard ratios with 95% confidence intervals and P values from univariate Cox regressions
for testing the associations between CLL-PD score and outcomes in the independent cohorts.
OS and TTT were available for the ICGC and Munich cohorts, and TTT was available

for the UCSD and Duke cohorts. ¢ and d, Kaplan-Meier plots for TTT or OS in the CLL
subgroups defined jointly by IGHV status and CLL-PD score dichotomized by its median, in
the ICGC-CLL cohort. M-CLL with high CLL-PD (red); M-CLL with low CLL-PD (blue);
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U-CLL with high CLL-PD (orange); U-CLL with low CLL-PD (purple). P values are from
two-sided log-rank tests. e and f, Hazard ratios with 95% confidence intervals and P values
from multivariate Cox models, including known demographic and genomic risk factors, for
TTT and OS in the ICGC-CLL cohort (/7=249 patients).
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Fig. 3. CLL-PD associates with oncogenic aberrations and global hypomethylation.
a, Loadings of the features in the “somatic mutations"” view on CLL-PD. b, Volcano plot

of genomic alterations that were significantly associated with CLL-PD, according to the
two-sided Student’s #test. The y~axis shows the per-test Pvalues and the dashed horizontal
line indicates the threshold associated with a false discovery rate (FDR) of 5% (method of
Benjamini and Hochberg) (7=217 samples for panels a and b). c, Scatter plot of CLL-PD
versus the total number of recurrent genetic aberrations (point mutations and copy number
variations) assessed by whole exome sequencing (/=199 samples). P value and coefficient
were computed with the two-sided Pearson’s correlation test. d, Number of CpG sites whose
methylation levels were significantly associated (1% FDR) with CLL-PD or F1. e, Scatter
plot of CLL-PD versus overall DNA methylation level, as measured by the mean beta value
taken across all CpG sites. Pvalue and coefficient were assessed by two-sided Pearson’s
correlation test. f, Position weight matrix of the top de novo motif over-represented in
hypomethylated regions related to CLL-PD. Its best match is the binding motif of the MYC
family. (/=158 samples for panel d-f). g, The percentage of Ki-67+CD19+ cells among
viable CD19+ cells after four-day culturing with water control or CpG ODN (1ug/ml) in
CLL-PD high and low samples. Pvalues are from two-sided paired t-tests. 12 biologically
independent tumor samples for each of the CLL-PD high and CLL-PD low groups were
assessed (no technical replicates). Same samples under the two different conditions are
connected by dotted lines.
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Fig. 4. High CLL-PD isassociated with activation of mMTOR-MY C-OXPHOS signaling.
aand b Gene sets enriched for genes correlated with CLL-PD at RNA level (panel a)

and protein level (panel b). For both datasets, gene set enrichment analysis was performed
using CAMERA (correlation adjusted mean rank gene set test) against the H (Hallmark gene
sets) collection from the Molecular Signature Database (MSigDB) (7=202 samples). ¢, P
values of correlations between bioenergetic features and F1 (orange) and CLL-PD (green)
(=136 samples). Only the bioenergetic features with associations detected with FDR < 5%
(method of Benjamini and Hochberg) are shown. d, Network plot showing genes whose
RNA expression positively correlated with CLL-PD (1% FDR) and that are part of the
oxidative phosphorylation, MYC targets or mTOR signaling pathways. Genes that code
mitochondrial proteins are colored in purple (7=202 samples).
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Fig. 5. Characterization of CLL proliferation at single-cell resolution.
a, Two-dimensional £SNE (#distributed stochastic neighbor embedding) representation of
the expression profiles of the 33 CyTOF markers in 64,000 pooled cells (16 tumors and

4 conditions). Each point corresponds to a cell, colored by inferred cell type. b, Same
layout as panel a, subset to cells from the CLL-PD high and low samples under CpG ODN
treatment and colored by scaled Ki-67 intensity. c, Fraction of proliferating cells among all
CLL cells, shown under different conditions for each primary CLL. d, CpG ODN treatment
data from panel c. Pvalue was calculated with a differential population abundance test based
on the two-sided Gamma-Poisson Wald test, as implemented in the diffcyt R package. e,
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The heatmap shows the relative expression intensity (difference between median value of

all CLL cells per group/condition and overall median) in CLL-PD high and low groups
under the four conditions. f, Volcano plots show the change of markers upon CpG ODN
treatment (left) or CpG ODN combined with everolimus (right). Text label colors indicate
pathway: orange—MY C, purple—mTOR, magenta—BCR, black— other. The y-axis shows
the per-test Pvalue and the dashed horizontal line indicates the threshold associated with

an FDR of 5% (method of Benjamini and Hochberg). g, Median intensity (among all CLL
cells) of six exemplary markers under the indicated conditions. Samples from the same
tumor are connected by lines. h, CpG ODN treatment data from panel g. The horizontal

line indicates the median value of the six samples in each group. Pvalues in panel f-h

were calculated by a differential marker expression test based on the two-sided #test, as
implemented in the diffcyfR package. i, Multivariate logistic regression of the proliferation
state on the other markers. Fitting was performed using L1 (LASSO) regularization on 100
bootstrap samples, and shown are the bootstrap averages for the markers with selection
frequency >80%. The detailed feature selection process is described in the Methods section.
j, Visualization of the top 6 markers from panel i across all cells, using the same 2D layout
as in panel a. For all panels in this figure, 16 biologically independent tumors (8 CLL-PD
high and 8 CLL-PD low) were used. In each CLL-PD group, 4 M-CLLs and 4 U-CLLs were
included.
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Fig. 6. Schematic presentation of thetwo major biological axesin CLL etiology and their related
biological processes.
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