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Abstract 

Understanding the molecular and phenotypic heterogeneity of cancer is a prerequisite for 

effective treatment. For chronic lymphocytic leukemia (CLL), recurrent genetic driver events 

have been extensively cataloged, but this does not suffice to explain the disease’s diverse course. 

Here, we performed RNA-sequencing on 184 CLL patient samples. Unsupervised analysis 

revealed two major, orthogonal axes of gene expression variation: the first one represented the 

mutational status of the immunoglobulin heavy variable (IGHV) genes, and concomitantly, the 

three-group stratification of CLL by global DNA methylation. The second axis aligned with 

trisomy 12 status and affected chemokine, MAPK and mTOR signaling. We discovered non-

additive effects (epistasis) of IGHV mutation status and trisomy 12 on multiple phenotypes, 

including the expression of 893 genes. Multiple types of epistasis were observed, including 

synergy, buffering, suppression and inversion, suggesting that molecular understanding of 

disease heterogeneity requires studying such genetic events not only individually but in 

combination. We detected strong differentially expressed gene signatures associated with major 

gene mutations and copy-number aberrations including SF3B1, BRAF and TP53, as well as 

del(17)(p13), del(13)(q14) and del(11)(q22.3) beyond dosage effect.  

Our study reveals previously underappreciated gene expression signatures for the major 

molecular subtypes in CLL and the presence of epistasis between them.  
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Introduction 

Chronic lymphocytic leukemia (CLL) etiology has been linked to abnormal B-cell receptor 

(BcR) activation and gene mutations targeting multiple pathways, including DNA damage 

pathways (TP53, ATM), NOTCH signaling (NOTCH1, FBXW7, MED12)2–7 and the spliceosome 

(SF3B1)8,9. In addition, the IGHV mutation status, the result of a physiological mutation and 

maturation process, reflects the tumor’s cell of origin and is one of the strongest predictors of 

clinical behavior 10. Several genetic subgroups of CLL are known to show profound differences 

in clinical course, presentation and outcome 11,12, although considerable variability remains 

within subgroups.  

Gene expression profiling can provide a better understanding of the functional role of mutations 

and may help dissect disease heterogeneity. Indeed, previous studies of CLL transcriptomes 

found substantial variability13–18, however, it has been a surprise how little of that variability 

could be associated with the genetic subgroups or other properties of the disease. For instance, 

Ferreira et al.13,14 found only a few robust gene expression changes associated with the major 

cancer driver mutations of CLL. IGHV mutation status only accounted for 1.5% of the overall 

variance in their study. Their study reported two gene expression based subgroups, termed 

C1/C2, as a predictor of clinical outcome independent of the known genetic disease groups. 

However, a later reanalysis of the data suggested a relation of C1/C2 to sample processing19. 

Overall, the relations between prominent genetic events that have significant impact on disease 

course and the gene expression programmes of CLL have remained unclear. Among possible 

explanations for this scarcity of associations are small sample sizes, confounding effects of 

multiple cytogenetic abnormalities or technical limitations. More recent studies have thus 
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collected larger cohorts with focus on a particular genetic aberration. Abruzzo et al.16 identified a 

set of dysregulated and potentially targetable pathways in CLL with trisomy 12. Herling et al.17 

developed a 17-gene signature that can identify a subset of treatment-naive patients with IGHV-

unmutated CLL (U-CLL) who might substantially benefit from treatment with FCR (fludarabine, 

cyclophosphamide and rituximab) chemoimmunotherapy. These findings underline the 

importance of transcriptional changes in CLL. Since they were based on focused studies limited 

to specific, selected subtypes of CLL, one may expect a more systematic picture and additional 

insights from a comprehensive RNA-sequencing based survey. 

To understand the impact of genetic and epigenetic subgroups of CLL on gene expression, we 

profiled 184 CLL samples using RNA-sequencing. After careful control of technical variations, 

and of possible confounding between genetic variants, we searched for transcriptomic signatures 

and pathway activity changes associated with the major recurrent genetic alterations in CLL. 

Furthermore, as a step towards gaining a better understanding of functional interdependencies 

between mutations in a tumor, we used a quantitative model of genetic interactions to identify 

non-additive effects of mutations on gene expression profiles.  

Methods 

Data acquisition 

RNA-sequencing 

We selected 184 CLL patient samples for RNA-sequencing. 123 of these patients were used in a 

prior study20. The current study is an extension, designed specifically to increase sample sizes of 

major molecular subgroups and focus on gene expression. The majority of patients (177 out of 
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184) showed the typical CLL phenotype, and 5 patients were diagnosed with atypical CLL. 92

patients had undergone prior treatment. Patient characteristics are shown in Supplemental Table 

S1. Total RNA was isolated from blood samples (CD19+ purified n=161) and sequenced using 

Illumina HiSeq. Sequenced reads were mapped to the Ensembl human reference genome (Homo 

sapiens GRCh37.75) using STAR21 version 2.5.2a. Mapped reads were summarized into per 

gene counts using htseq-count22 version 0.9.0. Further details are provided in the online 

supplement methods. 

Somatic variants 

Mutation calls for 66 distinct gene mutations and 22 structural variants were generated through 

targeted sequencing, whole-exome sequencing and whole-genome sequencing as described 

previously20. Statistical analyses were restricted to variants found in ≥ 5 patients, i.e., to 14 gene 

mutations (BRAF, NOTCH1, SF3B1, TP53, KRAS, ATM, MED12, EGR2, KLHL6, ACTN2, 

MGA, NFKBIE, PCLO, XPO1), and 9 copy-number aberrations (CNAs): trisomy 12, 

del(11)(q22.3), del(13)(q14), del(17)(p13), del(8)(p12), gain(8)(q24), gain(2)(p25.3), 

del(15)(q15.1), gain(14)(q32) (Supplemental Figure S2B). In addition, the somatic 

hypermutation status of the immunoglobulin heavy variable (IGHV) and a CLL subtype 

classification defined by global patterns of CpG methylation level23,24 were recorded.  Here, we 

discuss results for variants with > 200 differentially expressed genes detected: 4 CNAs, 3 gene 

mutations and IGHV mutation status. The somatic mutation information is available in our 

online repository: https://github.com/almutlue/transcriptome_cll and summarized in 

Supplemental Table S2.  
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Drug response profiling 

For 113 of our 184 samples, drug response profiles were reported in a previous study 25. 

Statistical analysis 

Statistical analyses were performed using R26 version 3.6. We performed quality controls 

including batch effect estimation27 (Supplemental Figure S1), exploratory data analysis and 

differential gene expression analysis using the Gamma-Poisson generalized linear modeling 

(GLM) approach of DESeq2, version 1.16.128,29.  Genetic interactions were identified by testing 

for an interaction term in the regression of gene expression data on the two variables IGHV 

mutation status and trisomy 12 using DESeq2. For the validation study, we analyzed microarray 

data from Abruzzo et al.16 using the R package limma version 3.50.1 30.  Gene set enrichment 

analysis31 was performed using the R package clusterProfiler32 version 3.12.0. Hallmark and 

KEGG gene set collections version 4.0 were downloaded from MSigDB33. Transcription factor 

target genes sets were downloaded from Harmonizome34. All p-values were adjusted for multiple 

testing using the method of Benjamini and Hochberg35. Further details are provided in the online 

supplement methods. 

Study approval 

The study was approved by the Ethics Committee Heidelberg (University of Heidelberg, 

Germany; S-206/2011; S-356/2013) and Zurich, Switzerland (2019-01744) 
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Results 

Unsupervised analysis reveals major drivers of gene expression variability 

We generated RNA-sequencing data from 184 CLL patient samples. To obtain a first overview 

of patterns of gene expression variability in CLL, we performed an unsupervised clustering 

analysis based on the 500 most variable genes (Figure 1A). This analysis showed a separation of 

distinct subgroups that coincided very well with IGHV mutation status/methylation epitype and 

the presence of trisomy 12. The role of IGHV mutation status and trisomy 12 was also reflected 

in the number of differentially expressed (DE) genes (>3000 DE genes) (Figure 1B). A similar 

separation was seen in a principal component analysis (PCA) (Figure 1C,D). The first principal 

component, which represented 11% of the variance, was associated with IGHV mutation status, 

while the second component separated samples based on trisomy 12. These results indicate that 

these two genetic variables shape gene expression in CLL to a previously underappreciated 

extent. We also considered a classification of CLL based on global DNA methylation levels into 

three groups according to previous studies 23,24, a refinement of the binary grouping by IGHV 

mutation status (Figure 1E). The first principal component arranged the DNA methylation 

subgroups in the consistent order low, intermediate and high programmed (LP, IP, HP). These 

results indicate that even though the three groups classification was discovered using DNA 

methylation data, it is now also apparent at the level of gene expression. Indeed, the global gene 

expression patterns shown in Figure 1 imply a further refinement into major groups, namely LP, 

IP and HP each with and without trisomy 12. 

The results of our unsupervised clustering analysis differ from those of a previous gene 

expression study, which also used unsupervised clustering of RNA-sequencing data to find novel 
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subgroups of CLL termed C1/C2, marked by 600 differentially expressed genes and associated 

with BcR activation and outcome13. In our data, hierarchical clustering of the samples based on 

the measurements of these 600 genes only, indeed resulted in two main clusters. However, most 

of these genes showed low variability across samples and only 26 of them were among the 500 

most variable genes (Supplemental Figure S2).  

  

Mutations modulate gene expression in CLL 

We performed differential expression analysis to explore the effect of 23 recurrent genetic 

aberrations and the IGHV mutations status (Supplemental Figure S3). In total, we found 6 

additional variants (besides trisomy 12 and the IGHV status) associated with more than 200 

differentially expressed genes. These were del(13)(q14), del(17)(p13), del(11)(q22), and SF3B1, 

TP53 and BRAF mutations (Figure 1B). Complete tables are provided in the computational 

analysis transcript. We compared previous findings from the literature for single genetic 

aberrations with differentially expressed genes in this study.  

Mutations in the splicing factor SF3B1 gene showed more than 600 associations. Gene sets 

enriched in CLL with SF3B1 mutations included “Cytokine-cytokine receptor interaction” and 

“Phosphatidylinositol signaling system” (Supplemental Figure S4A). Among differentially 

expressed genes, we found the chaperone gene UQCC1 (Supplement Figure S4B), which has 

already been linked to SF3B1 mutations by differential isoform usage36. Indeed, a differential 

exon usage analysis using DEXSeq 28 showed that UQCC1 had both differential expression and 

differential exon usage (Supplemental Figure S5A and S5B, Supplemental Table S3). There were 

also instances of genes that had differential exon usage, but for which no gene-level differential 
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expression was detected (Supplemental Figure S5C and S5E). These included BRD9, a tumor 

suppressor whose splicing has also been reported to be regulated by SF3B137,38. A recent 

proteomic study in CLL confirmed the down-regulation of BRD9 in samples with SF3B1 

mutations 38. A potential explanation is that the SF3B1 mutation leads to a mis-spliced version of 

the BRD9 transcript whose level is not detectably altered in gene-level RNA-Seq analysis but 

whose translation is impaired. Conversely, there were genes detected by gene-level differential 

expression analysis but not by differential exon usage analysis, including PSD2, SRRM5 and 

TNXB (Supplemental Figure S4C-E).  

TP53 mutations are recurrent in CLL and are associated with poor prognosis2
. Differentially 

expressed genes in samples with TP53 mutation were enriched in “Oxidative phosphorylation” 

and “p53 signaling pathway” (Supplemental Figure S6A). The transcriptional regulator CDK12 

is upregulated in TP53 mutated samples (Supplemental Figure S6C). To understand the overlap 

of genes deregulated by 17p deletion and p53 mutation we analyzed the overlap between those 

two variants (Supplemental Figure S6B). In total, 76 of 272 differentially expressed genes 

associated with TP53 mutation were also differentially expressed in samples with del(17)(p13). 

As del(17)(p13) includes the region of the TP53 gene, the overlap is to be expected. Further 

associations with TP53 include PGBD2 and HYPK (Supplemental Figure S6D-E). 

 

IGHV mutation status is linked to distinct gene expression changes 

The second highest number of differentially expressed genes was found in the comparison 

between IGHV-mutated (M-CLL) and U-CLL: 3410 genes. This result is in agreement with the 

PCA of Figure 1C and shows that IGHV mutation status is the main determinant of gene 
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expression variability in CLL. It implies a much larger impact of IGHV status on the 

transcriptome than previously detected (11.3% variance instead of 1.5% 13 explained by the 

associated principal component in PCA) is in line with the key impact of IGHV mutation status 

on clinical course and biology of disease 10–12. Our observation is also consistent with recent 

reports that IGHV status is one of the major determinants of the protein expression landscape in 

CLL38,39. Genes previously found to be markers related to IGHV mutation status, including 

CD38, LPL, ZAP70, SEPT10 and ADAM2940–42, were also detected in our analysis 

(Supplemental Table S4).  

To understand which pathways were differentially engaged between U-CLL and M-CLL, we 

performed gene set enrichment analysis. Differentially expressed genes between IGHV groups 

were enriched in BcR signaling, T-cell receptor signaling and chemokine signaling pathways 

(Figure 2A). Within the BcR signaling gene set, we identified cell surface molecules (CD19, 

CD22, CD81) and NFAT and NF-κB to be downregulated in U-CLL. From the “T cell receptor 

signaling” gene set, ZAP70, PAK2 and MAPK12 were upregulated in U-CLL, while IL10 and 

MAP3K8 were downregulated. Within chemokine signaling pathways, we found downregulation 

of CXCR3 and CXCR5 in U-CLL, while a set of cytokines (CCL24, CCL25) were upregulated.  

IGHV genes were also found among the most differentially expressed genes, but showed 

heterogeneous expression within the U-CLL and M-CLL groups. As expected, commonly used 

IGHV genes (IGHV1-69 or IGHV4-34) were associated with U-CLL and M-CLL, respectively. 

Gene expression showed a strong relation to IG gene usage and its variant’s expression (Figure 

2B). These data show that RNA-sequencing can be used to assess IG gene usage. Further genes 

associated with IGHV groups were BCAT1, EGR3 and ZAP70 (Figure 2C-E)  
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In summary, our data are in line with the major biological role of IGHV mutation status in CLL  

and provide a resource to identify deregulated pathways in the disease. 

 

Intermediate programmed methylation group forms an independent gene 

expression cluster  

Based on the global DNA methylation pattern, the stratification of CLL by IGHV mutation status 

has been refined by introducing a categorization into LP, IP, and HP programmed samples, 

which are thought to represent the cell of origin 23,24. Based on gene expression data, we found 

these three groups along the first principle component. The IP group was placed between the LP 

and HP groups (Figure 1E). Thus, even though the groups were discovered on the basis of DNA 

methylation, a strong separation was found on the basis of unsupervised PCA of the gene 

expression data. Previous analysis of methylation groups in CLL suggested a disease-specific 

role of the transcription factors EGR, NFAT, AP1 and EGF by establishing aberrant methylation 

patterns23,43. In line with this, we found NFATC1 and EGR1 among genes whose expression 

patterns were associated with methylation groups (Supplemental Figure S7A-B). A detailed 

analysis of the intermediate methylated subgroup revealed multiple genes including SOX11, that 

were specific for this subgroup (Supplemental Figure S7C). SOX11 is a transcription factor 

whose expression has been associated with adverse prognostic markers in CLL44.  
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Expression signature in CLL with trisomy 12 

We identified over 5000 differentially expressed genes (with adjusted P-value <0.05) in CLL 

with trisomy 12 (Figure 1B). Even though chromosome 12 harbours many upregulated genes, the 

majority of differentially expressed genes were on other chromosomes and therefore cannot be 

ascribed to a simple gene dosage effect (Figure 3A).  

Among the differentially expressed genes, we found numerous genes involved in chemokine 

signaling such as VAV1 (Figure 3B,C). Chemokine signaling pathways are induced by 

chemokine binding and activate MAPK signaling45,46. In line with this, we identified 

differentially expressed genes enriched in MAPK signaling. We also detected an enrichment for 

the mTOR-signaling pathway, a known modulator of chemokine signaling47 (Figure 3B). 

Consistent with previous reports, integrins like ITGAM, ITGB2 and ITGA4 were also upregulated 

in trisomy 12 samples16 (Supplemental Table S4). We also found the immune checkpoint gene 

CTLA4 (Figure 3D) downregulated in trisomy 12 samples. CTLA4 has previously been linked to 

CLL and is associated with increased proliferation and tumor progression48,49. By comparison 

with published protein expression data, we found the protein expressions of VAV1 and ITGB2 

were also strongly up-regulated in trisomy 12 CLLs (Supplemental Figure S8). Chemokine 

signaling and mTOR-signaling pathways in trisomy 12 CLLs have also been shown to be up-

regulated on protein level 39.   

A known mechanism of tumor cells to escape the immune system is to inhibit tumor-specific T 

cells, and support the conversion of anti-tumor type 1 macrophages to pro-tumor type 2 

macrophages by upregulation of ecto-5′-nucleotidase (NT5E), which is necessary to convert 

extracellular ATP into adenosine. A previous study on gene expression in trisomy 12 patients 
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inferred NT5E to be an important element in a trisomy 12 expression network model16. This 

inference was indirect, as the microarray-based study only quantified selected transcripts, 

excluding NT5E. Here, we directly observed higher expression of NT5E in trisomy 12 and thus 

can confirm the hypothesis of Abruzzo et al.16 (Figure 3E). Another study of Tsagiopolou et al. 50 

studied epigenetic regulatory elements in CLL with trisomy 12 and found several transcription 

factors in particular RUNX3, which is a master regulator of gene expression during development 

and oncogene in cancer, to be up regulated. We tested differentially expressed genes in trisomy 

12 for enrichment of transcription factor target genes sets and found target genes of RUNX3 to 

be among the top enriched genes sets (Supplemental Figure S9). 

Altogether, these results confirm and expand on the results of existing studies. They suggest that 

modulation of MAPK-signaling through chemokine signaling and mTOR-signaling are 

important mechanisms in trisomy 12 tumorigenesis. 

 

Epistatic interaction of IGHV and trisomy 12 

Epistasis describes a phenomenon where the effect of a genetic variant depends on the presence 

or absence of another genetic variant51. There is almost no data on epistasis between cancer 

mutations. Because of the large effects of each of these variants individually, we asked whether 

and to what extent epistatic interactions existed between IGHV mutation status and trisomy 12. 

We fit a generalized linear model (DESeq2, see Methods) with main and interaction effects for 

these covariates. Significant interactions were detected for 893 genes at 10% FDR (Figure 4A, 

Supplemental Table S5). For these genes, the effect of trisomy 12 was different in U-CLL and 

M-CLL. We observed four distinct types of epistatic interactions 52,53 and classified the 893 
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genes into according categories: synergy, where the samples with both variants, i.e. M-CLL 

samples with trisomy 12, showed a stronger up-regulation than expected from the single variants; 

buffering, when the presence of both variants led to a strong reduction of gene expression; 

inversion, when the effects in the single variants were reversed in the double variant; 

suppression, when a strong expression change (up or downregulation) of a gene in a single 

variant was absent in samples with both variants (Figure 4B). Figure 4C-F shows the count data 

for exemplary genes. EMAP like 6 (EML6) is up-regulated in all trisomy 12 cases, but this effect 

is on average about 1000 times stronger in M-CLL patients compared to U-CLL patients 

(synergy) (Figure 4C). While fibroblast growth factor 2 (FGF2) is consistently upregulated in 

trisomy 12 cases with U-CLL, this effect is reversed in M-CLL (suppression) (Figure 4D). SYBU 

shows an inverse expression pattern in M-CLL cases with trisomy 12 compared to U-CLL cases 

with trisomy 12 (Figure 4E). Lymphoid enhancer binding factor 1 (LEF-1) shows a stable gene 

expression across samples and has been suggested and tested as a clinical marker for CLL54. 

While the presence of either one of the genetic variants (IGHV-M or trisomy 12) does not seem 

to have an effect, samples with both of them express consistently lower levels of LEF1 

(buffering) (Figure 4F). These effects cannot be explained by looking at the genotypes 

independently or by modeling an additive effect of the variants.  

We next asked about the biological functions underlying the epistatic interaction between IGHV 

status and trisomy 12. We used gene set enrichment analysis on the combined set of all 893 

genes. The overall set of genes with an epistasis expression pattern was enriched in TNF alpha 

signaling via NF-κB, MYC targets,  IL2/STAT5 signaling and G2M checkpoint pathway (Figure 

4G). A recent study linked NF-κB expression with reduced levels of B-cell signaling 55. Both 

IGHV status and trisomy 12 are known to affect BcR signaling, but the above data may 
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suggest that signaling in IGHV mutated CLL is mediated by BcR plus additional survival 

signals. To further investigate these findings, we used an independent cohort of samples from 47 

patients with known trisomy12 and IGHV status assayed on an Illumina microarray with 47,231 

probes16 and again screened for epistatic by testing for interaction effects in the linear model. In 

line with our results, we found multiple probes (100 probes with adjusted p.value ≤ 0.17) 

that show the same epistatic interaction patterns in their expression for each of the four 

types of epistasis (Supplemental Figure S10A). Furthermore, we investigated the expression 

of the above mentioned genes with epistatic interaction (EML6, FGF2, SYBU, LEF-1) in 

particular (Supplemental Figure S10B-E). We found significant epistatic expression patterns for 

FGF2, SYBU and could assign both genes to the same epistasis groups as in our cohort. While 

there was no significant epistatic interaction in the expression pattern of EML6 and LEF-1 their 

expression trends were in line with the expression of the epistatic groups (synergy, buffering) 

these genes were assigned to in our cohort. The protein expressions of two of those genes, FGF2 

and LEF-1, could also be detected in our proteomics dataset 39 and were found to have epistatic 

interactions (Supplemental Figure S11).  

 

The epistatic interaction between IGHV status and trisomy 12 affects ex vivo 

drug response in CLL 

Ex vivo sensitivity to drugs reflects pathway dependencies of CLL cells. We asked whether the 

epistatic interaction between IGHV mutation status and trisomy 12 on expression level also 

affected the drug response phenotype. Previously, we measured the ex vivo sensitivity, as 
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measured by cell viability, of our 184 CLL samples towards 63 compounds 25. Again using two-

way ANOVA with an interaction term, we identified 6 drugs for which there was a significant 

(10% FDR) interaction between IGHV mutation status and trisomy 12 (Figure 5). For four drugs, 

namely, vorinostat, NU7441, fludarabine and AZD7762, we observed a suppression effect, 

where trisomy 12 led to increased drug sensitivity in the U-CLL, but not the M-CLL samples. 

For the other two drugs, chaetoglobosin A and BIX02188, the samples with trisomy 12 showed 

decreased sensitivity particularly in M-CLL, but not in U-CLL. The four drugs with the 

suppression phenotype directly or indirectly target DNA: NU7441 inhibits DNA-dependent 

protein kinase (DNA-PK) and therefore potentiate DNA double-strand breaks56; AZD7762 is a 

checkpoint kinase (CHEK) inhibitor, which can impair DNA repair and increases cell death57; 

fludarabine directly inhibits DNA synthesis and disrupt cell cycle58; vorinostat, a histone 

deacetylase (HDAC) inhibitor, was also reported to induce reactive oxygen species and DNA 

damage in leukemia cells59. As 42 out of 161 patients in the drug screening dataset were treated 

prior to the acquisition of the samples, we also repeated these analyses only in untreated patient 

samples. We found consistent results (Supplemental Figure S12), suggesting no substantial effect 

of prior treatment on our findings.  

 

Discussion 

We analyzed 184 CLL transcriptomes and identified gene expression signatures for the most 

prevalent genetic aberrations. We show that these can be used to capture underlying pathways. 

The IGHV mutation status, the three DNA methylation subgroups and trisomy 12 were found as 

the main drivers of gene expression variability in CLL. This is evident both in unsupervised 
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analyses (clustering, PCA) and in supervised differential expression analysis. We revealed a 

much higher impact of IGHV mutation status on the CLL transcriptome than previous reports 13. 

A further refinement of the disease stratification by IGHV status is provided by the three DNA 

methylation subgroups. We identified genes whose expression follows an apparent continuum 

from LP, IP to HP in CLL. This finding supports the biological relevance of these three groups 

and suggests that although they were discovered based on DNA methylation, they are similarly 

evident at the level of gene expression. These results highlight the potential of gene expression 

profiling to increase our understanding of CLL. 

To avoid potential confounding effects of multiple aberrations, other studies have focused on 

samples with single abnormalities. While this approach was successfully used to understand 

trisomy 12 specific gene expression, it is limited to only a subset of the disease and to selected 

variants 16. Here, we demonstrate an improved approach that employs differential expression 

analysis with multivariate generalized linear models and blocking factors, and that is able to use 

the full range of CLL and to investigate a larger number of genetic aberrations.  

Genetic interactions, or epistasis, where the effect of one mutation depends on the presence or 

absence of another mutation, is a well known concept in genetics. However, there is surprisingly 

little data on such phenomena in cancer. Hence, we used the opportunity to study the 

combinatorial effects of trisomy 12 and the IGHV mutation status on gene expression variability. 

We identified numerous genes (~900) whose expression depended on the presence or absence of 

these two aberrations in a non-additive manner. We categorized these genes into four categories: 

buffering, synergy, suppression and inversion, each of which contained dozens to hundreds of 

genes. This means that there is not a single, simple epistasis phenotype between these two 

aberrations, but a complex, “mixed” pattern. Mixed epistasis of the gene expression phenotypes 
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of pairs of gene alterations has been described in a yeast model system53. We employed the 

genetic interactions between IGHV mutation status and trisomy 12 on gene expression 

phenotypes to identify pathways, including TNF alpha signaling via NF-κB and the G2M 

checkpoint pathway, that mediate the effects of these variants. We reproduced this finding in an 

independent cohort of 47 patients 16.  

Our results raise the question whether the pathobiology of trisomy 12 may be different between 

U-CLL and M-CLL. Based on previous studies, the additional copy of chromosome 12 in CLL 

cells seems to directly enhance B-cell receptor signaling, especially in IGHV unmutated CLL 

samples: for example, Abruzzo et al. found that NFAT is overexpressed in trisomy 12 CLL, 

indicating the hyper-activation of calcineurin/NFAT signaling, which is central to BCR signaling 

16. On proteomic levels, our previous study suggested  proteins up-regulated in trisomy 12 CLLs 

are enriched in BCR signaling pathway 39. In addition, genes on chromosome 12 and up-

regulated on trisomy 12 CLL can also give rise to proteins that form protein complexes with 

BCR components 39. This evidence indicates that trisomy 12 status directly or indirectly 

modulates BCR signaling. As IGHV status is also a determinant of BCR signaling in CLL, it is 

reasonable that trisomy 12 regulate the downstream of BCR signaling differentially in IGHV 

mutated and unmutated CLL cells, i.e. epistasis.  

We also observed that the epistatic interaction between trisomy 12 and IGHV had an impact on 

the ex vivo responses to drugs, including those targeting DNA damage response. The effect on 

drug response levels is currently unclear, but may be in line with the observation on 

transcriptomic levels that the G2M checkpoint pathway is affected by the epistatic interaction.   

Further mechanistic studies are needed to clarify the combinatorial effects of IGHV status and 

trisomy 12 on the transcriptome, on drug response phenotypes, and the links between these. For 
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studies on CLL biology, the interaction of IGHV and trisomy 12 status need to be considered 

when gene expression profiles are investigated.   

This study  provides evidence of epistatic interactions in human cancer. Both the phenomenon of 

epistasis between cancer drivers, and the observation that it can be ‘mixed’ (follow different 

patterns) for different phenotypes form a new layer of complexity in CLL and in tumor biology 

more generally. Hence, our study highlights the inherent limitations of studying individual 

cancer genetic lesions, and points to the need to also map out and understand how they interact 

and modify each other’s effects.    
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Figure legends 

Figure 1. Gene expression variability in CLL: A) Heatmap of the gene expression counts. 

Samples (columns) are ordered in agreement with the hierarchical clustering based on the 500 

most variable genes. Gene (rows) counts are row-centered log transformed (base 2) and split into 

the three main hierarchical clusters. IGHV mutation status, methylation subgroups and trisomy 

12 align with the clustering result. B) Number of differentially expressed genes (adjusted P-

values < 0.01) for genomic markers in CLL. Lighter colors indicate genes located on the same 

chromosome as the respective genetic lesion (potential dosage effects). C) IGHV status is 

associated with the first principal component, which explains 11.3% of the variance. D) Trisomy 

12 is associated with the second principal component, which explains 5.1% of the variance. E) 

Methylation subgroups split up along principal component 1. 

Figure 2, Gene expression changes between IGHV subgroups: A) Differentially expressed 

genes in enriched KEGG pathways for IGHV. B) IGHV1-69 expression by corresponding 

IGHV1-69 gene usage determined by IG gene analysis. C-E) Normalized gene counts for 

BCAT1, EGR3 and ZAP70 separated by IGHV mutation status.  

Figure 3, Gene expression in CLL with trisomy 12: A) Role of dosage effect: chromosomal 

distribution of DE genes in CLL with trisomy 12. Chromosome 12 has the highest number of DE 

genes, but the majority of DE genes is distributed across all chromosomes and cannot be ascribed 

to a dosage effect. B) DE genes in enriched KEGG pathways of trisomy 12. C-E) Normalized 

gene counts of VAV1, CTLA4 and NT5E.  
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Figure 4. Mixed epistasis of trisomy 12 and IGHV mutation status: A) Heatmap showing the 

expression of genes affected by the epistatic interactions between trisomy 12 and M-CLL 

(adjusted P-value < 0.1). B) Schematic classification of epistasis. C-F) Types of gene expression 

epistasis: EML6 (synergy),  FGF2 (suppression), SYBU (inversion), LEF1 (buffering). G) 

Enriched pathways in genes with epistasis expression pattern.  

Figure 5. Ex vivo drug response phenotype related to the epistatic interaction between 

IGHV status and trisomy 12, A) Heatmap plot showing the responses of CLL samples (rows) 

towards the six drugs (columns) for which there was a significant interaction between IGHV 

mutation status and trisomy 12. The coloring encodes the column-wise z-scores of sample 

viabilities after drug treatment. B) Boxplots of the viabilities (normalized to DMSO controls) of 

CLL samples, stratified by their IGHV and trisomy 12 status, towards the six drugs shown in the 

heatmap. The IGHV-U and IGHV-M groups contain U-CLL and M-CLL samples, respectively, 

without trisomy 12. The IGHV-U+tri12 and IGHV-M+tri12 groups contain U-CLL and M-CLL 

samples, respectively, with trisomy 12. 













Supplement

Supplementary Methods

RNA sequencing

We selected 184 CLL patient samples for RNA-sequencing. Patients were recruited from 2011 to 2017 
with informed consent. We used data from 123 of these patients in a prior study [5]. The current 
study is an extension, designed specifically t o i ncrease s ample s izes o f m ajor m olecular subgroups 
and focus on gene expression. The population was broadly representative of a tertiary referral center. 
The majority of patients (177 out of 184) showed the typical CLL phenotype, and 5 patients were 
diagnosed with atypical CLL. 92 patients had undergone prior treatment. Patient characteristics 
are shown in Supplemental Table S1. Total RNA was isolated from blood samples (CD19+ purified 
n=161) using the RNA RNeasy mini kit (Qiagen). RNA quantification was performed with a  Qubit 
2.0 Fluorometer. RNA integrity was evaluated with an Agilent 2100 Bioanalyzer, and samples with 
RNA integrity number (RIN) ¡8 were excluded. Sequencing libraries were prepared according to 
the Illumina TruSeq RNA sample preparation v2 protocol. Samples were paired-end sequenced at 
the DKFZ Genomics and Proteomics Core Facility. Two to three samples were multiplexed per 
lane on Illumina HiSeq 2000, Illumina HiSeq3000/4000 or Illumina HiSeqX machines. Raw RNA-
sequencing reads were demultiplexed, and quality control was performed using FastQC [13] version 
0.11.5. STAR [6] version 2.5.2a was used to remove adapter sequences and map the reads to the 
Ensembl human reference genome release 75 (Homo sapiens GRCh37.75). All 184 samples passed 
quality control thresholds and were retained for analysis. STAR was run in default mode with internal 
adapter trimming using the clip3pAdapterSeq option. Mapped reads were summarized into per 
gene counts using htseq-count [3] version 0.9.0 with default parameters and union mode. Thus, 
only reads unambiguously mapping to a single gene were counted. The count data were imported 
into R (version 3.6) for subsequent analysis.

Somatic variants

Mutation calls for 66 distinct gene mutations and 22 structural variants had been generated in 
a previous study for 143 out of the 184 CLL samples through targeted sequencing, whole-exome 
sequencing and whole-genome sequencing [5]. For the remaining 41 samples, we generated additional 
targeted and whole-genome sequencing data and called variants using the same pipeline.

Exploratory data analysis: PCA and clustering

Statistical analyses were performed using R version 3.6. The exploratory data analysis was performed 
on data normalized and transformed using the variance stabilizing transformation (VST) provided by 
the DESeq2 package [10]. The 500 most variable genes were used in a principal component analysis 
(PCA) and hierarchical clustering. PCA was performed using the prcomp function with scale. 
Hierarchical clustering with the ward.D2 method was performed on sample Euclidean distances 
computed on the scaled gene expression values. The complexHeatmaps package [7] was used to 
visualize results.

Batch effect estimation

Transcriptome data were generated over a period of four years and platforms were changed with 
technological development during the period of sequencing, which led to changes in sequencing depth 
and read length (101, 125 and 151 nucleotides). Therefore, we considered the possibility of batch 
effects i n t he d ata d ue t o p latform d ifferences [8 ]. Be fore ad apter tr imming we  fo und a higher 
fraction of reads that contained adapter sequences in batches with longer reads. These resulted in 
batch dependent mapping to pseudogenes. After adapter trimming we did not detect differences in 
mapping towards pseudogenes or any associations between the top 10 principal components or the 
investigated genetic variants and different batches (Supplemental Figure S1).
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Differential expression analysis

For each of the 23 genetic alterations (14 gene mutations, 9 CNAs) and the IGHV mutation status,
differentially expressed genes were identified us ing the Gamma-Poisson generalized linear modeling
(GLM) approach of DESeq2, version 1.16.129, [10, 2]. Because of the large effects of IGHV mutation
status and trisomy 12 on gene expression (as seen in the exploratory data analysis), these two
variables were used as blocking factors in the models for each of the 22 remaining variants. In the
model for IGHV mutation status, trisomy 12 was used as a blocking factor, and vice versa. In
addition, pretreatment status was included as a blocking factor in all models.

Epistatic interaction testing

Genetic interactions were identified by testing for an interaction term in the regression of the gene ex-
pression data on the two variables IGHV mutation status and trisomy 12 using DESeq2. DESeq2 uses
a generalized linear model of the Gamma-Poisson family that includes a logarithmic link function.
Hence, the additive null-model (no interaction) of the two variables corresponds to a multiplicative
effect o n t he s cale o f t he o bserved c ounts ( log(a)+log(b)=log(ab)). For t he v alidation s tudy, we
used the dataset of Abruzzo et al. [1], which reports data from an Illumina microarray with 47,231
probes on samples from 47 patients with known IGHV hypermutation and trisomy12 status. The R
package limma version 3.50.1 [11] was used to perform probewise tests using the same model with
an interaction term as above.

Multiple testing

Separately, in each of these 25 DESeq2 analyses, the method of Benjamini and Hochberg [4] was
applied to account for multiple testing and control FDR of 0.05.

Gene set enrichment analysis

Gene set enrichment analysis34 was performed using the R package clusterProfiler [14] version
3.12.0 based on ranked gene statistics from DESeq2. Hallmark and KEGG gene set collections version
4.0 were downloaded from MSigDB [9]. Transcription factor target genes sets were downloaded from
Harmonizome [12]. The significance of gene sets was determined using a permutation null (B=1000).
P-values were adjusted for multiple testing using the method of Benjamini and Hochberg [4].

Additional Files as Excel files
Supplement Table S1. Table S1 patient information.xlsx 

Supplement Table S2. Table S2 genomic information.xlsx 

Supplement Table S3. Table S3 SF3B1 differential exon 

usage.xlsx Supplement Table S4. Table S4 de genes all 

pretreatment.xlsx Supplement Table S5. Table S5 epistasis.xlsx
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Supplemental Figures
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Supplemental Figure S1: Effect of adapter trimming on sequencing batches: A) The number
of reads with a part of their sequence mapping to the adapter sequences increases by read length.
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adapter trimming.
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Supplemental Figure S4: Gene expression associated with SF3B1 : A) Differentially expressed
genes in enriched KEGG pathways of SF3B1. B-E) Normalized gene counts of UQCC1, PSD2,
SRRM5 and TNXB.

5



5000

7000

10000

0 1
SF3B1

no
rm

al
ize

d 
co

un
ts

SF3B1 0 1
BRD9

10

100

1000

N
or

m
al

ize
d 

co
un

ts

E001 E004 E007 E010 E013 E016 E019 E022 E025 E028 E031 E034 E037 E040 E043 E046 E049 E052 E055

850406 855132 859858 864584 869310 874035 878761 883487 888213 892939

ENSG00000028310 − 0 1
Differential exon usage Differential gene expression

253
(35.7%)

421
(59.5%)

34
(4.8%)

10

100

1000

N
or

m
al

ize
d 

co
un

ts

E001 E003 E005 E007 E009 E011 E013 E015 E017 E019 E021 E023 E025 E027

33890369 33902544 33914719 33926894 33939069 33951244 33963419 33975594 33987769 33999944

ENSG00000101019 − 0 1

UQCC1 (ENSG00000101019)

BRD9 (ENSG00000028310)

B

D C

Differential exon 
usage (1% FDR)

A
Differential gene 

expression (1% FDR)

Supplemental Figure S5: Differential exon usage related to SF3B1 mutations: A) A Venn
diagram showing the overlap between genes with significant differential exon usage and significant
differential gene expression. B,C) Differential exon usage for UQCC1 (C) and BRD9 (E) detected
by DEXSeq. The upper panels show the normalized counts for each sample. Samples with SF3B1
mutations are colored in yellow. The lower panels show the flattened gene model. Each block is an
exonic region and the ones colored in purple are significantly differentially expressed (1% FDR). D)
Beeswarm plots showing the normalized RNAseq counts of BRD9 in samples with SF3B1 mutations
(yellow) or without SF3B1 mutations (blue).
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Supplemental Figure S6: Gene expression associated with TP53 : A) Differentially expressed
genes in enriched KEGG pathways of TP53. B) Overlap of differentially expressed genes associated
with del17p13 and TP53. C-E) Normalized gene counts of CDK12, PGBD2, HYPK.

7



p.adj = 0.118

3000

5000

10000

HP IP LP
Methylation

no
rm

al
iz

ed
 c

ou
nt

s

Methylation HP IP LP

NFATC1
A

p.adj = 0.00271

1e+02

1e+03

1e+04

1e+05

HP IP LP
Methylation

no
rm

al
iz

ed
 c

ou
nt

s

Methylation HP IP LP

EGR1
B

p.adj = 0.627

1

10

100

1000

HP IP LP
Methylation

no
rm

al
iz

ed
 c

ou
nt

s

Methylation HP IP LP

SOX11
C

p.adj = 3.29e−34

5000

10000

30000

50000

HP IP LP
Methylation

no
rm

al
iz

ed
 c

ou
nt

s

Methylation HP IP LP

MSI2
D
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Normalized gene counts of NFATC1, EGR1, SOX11 and MSI2.
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A Gene interactions:IGHV−trisomy12
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Supplemental Figure S10: Epistatic interaction in gene expression data from Abruzzo
et al.15 A) Gene expression of the top 100 probes with epistatic interaction. In line with the
expression data from the cohort presented in this paper probes can be grouped by epistasis type.
B-E) Types of gene expression epistasis: EML6 (synergy), FGF2 (suppression), SYBU (inversion),
LEF1 (buffering). Types are stable between cohorts (see Figure 4)
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Supplemental Figure S11: Epistatic protein expression in Meier-Abt et.al.,2021: Protein
expression of FGF2 and LEF-1 showed significant epistatic expression pattern.
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Supplemental Figure S12: The impact of previous treatments on the IGHV-trisomy12
epigenetic interaction at the drug response level. Same plots as Figure 5B, but only for the
samples from treatment-naive patients.
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