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A global map of human gene expression

To the Editor:

Although there is only one human genome
sequence, different genes are expressed

in many different cell types and tissues,

as well as in different developmental

stages or diseases. The structure of this
‘expression space’ is still largely unknown,
as most transcriptomics experiments

focus on sampling small regions. We have
constructed a global gene expression

map by integrating microarray data from
5,372 human samples representing 369
different cell and tissue types, disease states
and cell lines. These have been compiled

in an online resource (http://www.ebi.
ac.uk/gxa/array/U133A) that allows the
user to search for a gene of interest and
find the conditions in which it is over- or
underexpressed, or, conversely, to find
which genes are over- or underexpressed in
a particular condition. An analysis of the
structure of the expression space reveals
that it can be described by a small number
of distinct expression profile classes and
that the first three principal components of
this space have biological interpretations.
The hematopoietic system, solid tissues
and incompletely differentiated cell types
are arranged on the first principal axis;

cell lines, neoplastic samples and non-
neoplastic primary tissue—derived samples
are on the second principal axis; and
nervous system is separated from the rest of
the samples on the third axis. We also show
below that most cell lines cluster together
rather than with their tissues of origin.

The widely used GNF Gene Expression
Atlas"? includes a variety of normal tissue
and cell types as well as certain disease states.
Many more different biological states, such
as rare diseases or particular cell subtypes,
exist. It is impractical for a single dedicated
experiment to generate a comprehensive
expression data set covering all biological
conditions, partly owing to cost, but also
because some conditions are studied only
in specialized laboratories. Even so, we can
use computational approaches to integrate
the wealth of experiments that already have
been performed.

Integration of independent microarray
studies is challenging, as microarrays do not
measure gene expression in any absolute
units. Several studies have integrated
single-platform? and cross-platform*-°
data from single-channel oligonucleotide
arrays yielding consistent results. It has
been generally accepted, however, that
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Figure 1 Principal component analysis. Each dot represents one of the 5,372 samples in a
multidimensional gene expression space projected on the principal plane formed by the first
(hematopoietic) and second (malignancy) principal axes. The dots are colored semitransparently
according to the biological group the sample belongs to. (a) The first principal component separates
hematopoietic system—derived samples from the rest of the samples, with connective tissues and
incompletely differentiated cell-based samples forming a relatively compact group on the right. The
cyan dots among the blood samples on the right side represent samples from bronchoalveolar lavage
cells (a possible sample contamination with blood) and kidney. The dark green dots at the center
include embryonic stem cells. (b) The second principal axis predominantly arranges cell line samples
at the bottom, neoplasm samples in the middle and a mixture of nonneoplastic disease and normal

samples at the top.

only data from the same platform can be
reliably integrated on a quantitative level’.
Integration is also challenging because

of the unavoidable complexity of sample
descriptions. The Unified Medical Language
System has been used to re-annotate free
text-based sample descriptionsg; however,
extracting information from published
data sets and representing it suitably for
statistical analysis is a time-consuming
process that is difficult to automate and
requires expert curation’.

We collected over 9,000 raw data files
generated on the human gene expression
array Affymetrix U133A from the public
databases Gene Expression Omnibus!'® and
ArrayExpress!!. After we removed duplicate
files and applied strict quality controls
(Supplementary Methods), data on 5,372
samples from 206 different studies generated
in 163 different laboratories remained.
Using text mining and curation, we binned
the samples in 369 biological groups, each
representing a particular cell or tissue type,
disease state or cell line (Supplementary
Fig. 1a). Of these, 96 groups contained
at least ten biological replicates. We also
introduced ‘meta-groups’ such as cell lines,
neoplasms, non-neoplastic diseases, and

normal, as well as groups by tissue of origin
(Supplementary Figs. 1c—e). The raw data
were normalized jointly, producing a gene
expression matrix of ~22,000 probe sets
(mapping to ~14,000 genes) times 5,372
samples (the complete annotated data set is
available from the ArrayExpress repository,
accession number E-MTAB-62).

To enable exploration of these data,
we have implemented an online query
interface (http://www.ebi.ac.uk/gxa/array/
U133A). After selecting a particular sample
binning (e.g., by tissue of origin), the user
can find all genes up- or downregulated
in a particular sample class (such as liver).
Alternatively, choosing a gene of interest
will produce box plots showing the gene’s
expression across the samples within each
of the groups. The coloring of each box
plot indicates the outcome of a statistical
test for over- or underexpression. Probe
set—level queries are also permitted.

As these data were generated in different
laboratories, and as laboratory effects are
known to be stronglz, it is important to
assess the impact of these effects on the
analysis. Most laboratories predominantly
work with particular types of samples, which
makes the lab effects hard to assess. Even so,
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51 of the 96 larger biological groups (with
ten replicates or more) contain assays from
at least two different laboratories. In total,
100 different laboratories contributed 3,133
samples to these multi-laboratory biological
groups. For each of these biological groups,
we computed the average similarity between
the assays from different laboratories within
the same group. We also computed the
average similarity between assays from the
same laboratory, but representing different
biological groups. The comparison of the
two similarity distributions showed that the
biological effects were significantly

(P < 2.2716) stronger than the laboratory
effects (Supplementary Fig. 2). For sample
classes to which only one laboratory
contributed, we cannot distinguish directly
between the laboratory and biological effects.
However, we can analyze our data from

a biological perspective and compare the
results to existing knowledge.

We applied principal component analysis
(PCA) to the expression matrix, and produced
visualizations in which each sample was
represented by a point in the plane formed by
two principal axes, and colors were assigned
to each point according to the biological
class (Fig. 1 and Supplementary Fig.
3a—e). We found that the first three principal
components have biological interpretations;
we named them the hematopoietic,
malignancy and neurological axes. Three
groups—hematopoietic system, solid tissues
and a mixture of incompletely differentiated
cell types and connective tissues—were
consecutively arranged on the hematopoietic
axis. The malignancy axis differentiates three
other groups: cell lines, neoplasms and a
mixture of normal tissues and non-neoplastic
disease tissues. The neurological axis separates
nervous system from other samples. The
fourth principal component correlates
with an array quality metric RLE (relative
log expression). The first three principal
components explain ~37% of variability in
the data (Supplementary Fig. 3f). Note that
the full expression space consists of thousands
of dimensions.

We also used hierarchical clustering
to investigate the expression space from
a different perspective. We first clustered
the 96 larger biological groups (with 210
replicates), representing each group by its
mean expression profile. Six major clusters
emerged: (i) cell lines derived from solid
tissues, (ii) incompletely differentiated cell
types and connective tissues, (iii) solid normal
and neoplastic tissues, (iv) hematopoietic
system, (v) brain, and (vi) muscle and heart
(Supplementary Fig. 4a). This clustering

is robust: we obtained similar results when
samples from different laboratories were
kept in separate groups (Supplementary Fig.
4b) and by clustering all 369 sample groups
(Supplementary Fig. 4¢). To see how each

of the 273 smaller groups relates to the six
original clusters, we computed the pairwise
distances between the members of the 96
and 273 groups and applied hierarchical
clustering (Supplementary Fig. 4d). The
smaller-group clusters correspond well to the
six original clusters, although an additional
small cluster of liver and small-intestine
samples emerged. This analysis is driven

by the original clustering; nevertheless, if
there were new major expression pattern
groups, we would expect to observe them. We
conclude that the large-scale structure of our
data can be explained by six major sample
expression profile groups, corresponding

to transcriptional states, and some smaller
outliers.

Various observations can be made by
examining the sample annotations in more
detail. For instance, skeletal and heart muscle
cluster together, whereas smooth muscle
belongs to the incompletely differentiated
cell type cluster, which is dominated by
fibroblasts. This cluster includes bone-
marrow mesenchymal stem cells, but not
the hematopoietic bone-marrow stem cells,
which are located in the hematopoietic
cluster together with other blood-cell
precursors. The embryonic stem cell line
(HES2; ref. 13) does not belong to the cluster
of incompletely differentiated cell types; its
expression profile is similar to those of both
fibroblasts and neoplastic cell lines.

Next, we studied which genes are
expressed in various biological conditions.
We applied hierarchical clustering to gene
expression profiles across the 96 larger
groups, representing the expression of a gene
in each group by its mean. We visualized the
1,000 most variable probe sets mapping to
907 different genes and visually identified
50 gene clusters (Supplementary Fig. 5a).
As our data set represents a wide range
of biological conditions, we can study
the overall variability of gene expression.
For the majority of genes, the normalized
signal is largely constant across the 5,372
samples; there are only 1,034 probe sets with
a standard deviation >2 (Supplementary
Fig. 6a,b). The sample clustering obtained
using only the 350 most variable probe sets
produced similar results to that based on
all data and is retained to some extent even
when only the 30 most variable probe sets
are used (Supplementary Figs. 4e and 5b).
Although it is not surprising that only a
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small number of genes are needed to define
six transcriptional states, it is worth noting
that the highest expression variance can
identify these genes.

To identify genes differentially expressed
in specific biological groups, we performed
one-way analysis of variance (Supplementary
Methods). For instance, we found 243 genes
differentially expressed in 567 samples
grouped under ‘leukemia’. Many of these
are known to be implicated in leukemia
(for example, BCR, ETV6, FLT3, HOXA9,
MYST3, PRDM2, RUNX1 and TALI),
and we confirmed many others through
literature searches. Similarly, 1,217 genes
are differentially expressed in all cell lines:
the upregulated genes are most over-
represented in gene ontology categories
related to M phase, cell division, mitosis,
cell cycle and primary metabolic processes,
and downregulated genes are most over-
represented in immune and defense response.

Our study demonstrates that analysis
of a large microarray data set compiled
from many laboratories can reveal the
overall structure of gene expression space,
which could not be observed in any of
the contributing studies individually.

A particularly important finding is that
solid-tissue cell lines form a distinct

group, clustering with each other rather
than with their respective tissues of origin
(Supplementary Figs. 4a,i). Moreover, they
show high similarity to blood cell lines.

An exception to this rule is incompletely
differentiated cell types, for which cell lines
cluster with the primary cells. Note that

on the PCA’s malignancy axis, neoplasm
samples are located between the cell line
and the normal and non-neoplastic disease
samples, characterizing neoplasm as an
intermediate state between normal samples
and immortalized cell lines.

When interpreting these results, several
limitations concerning the data set must
be taken into account. First, there may be
gaps in our data; for instance, there are few
normal solid-tissue samples besides muscle,
heart and brain. More data may reveal other
major transcriptional classes. Second, it is
possible that the laboratory effects are too
strong to achieve resolution beyond the
six major classes. Although the PCA shows
samples from more specific groups (such as
leukemia) located together (Supplementary
Fig. 3¢), and supervised analysis reveals
that genes specific to such sample classes
are often known to be involved in the
relevant biological conditions, the results of
hierarchical clustering did not conclusively
reveal finer structures.
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To summarize, we have constructed a
global map of human gene expression from
a large microarray data set. Our analysis
reveals six major ‘continents’ on the map.
We acknowledge that there may be more
continents that we were not able to find
owing to incompleteness of the data, and it
is to be expected that finer structures exist
within the six we found.

Note: Supplementary information is available on the
Nature Biotechnology website.
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