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normal, as well as groups by tissue of origin 
(Supplementary Figs. 1c–e). The raw data 
were normalized jointly, producing a gene 
expression matrix of ~22,000 probe sets 
(mapping to ~14,000 genes) times 5,372 
samples (the complete annotated data set is 
available from the ArrayExpress repository, 
accession number E-MTAB-62).

To enable exploration of these data, 
we have implemented an online query 
interface (http://www.ebi.ac.uk/gxa/array/
U133A). After selecting a particular sample 
binning (e.g., by tissue of origin), the user 
can find all genes up- or downregulated 
in a particular sample class (such as liver). 
Alternatively, choosing a gene of interest 
will produce box plots showing the gene’s 
expression across the samples within each 
of the groups. The coloring of each box 
plot indicates the outcome of a statistical 
test for over- or underexpression. Probe 
set–level queries are also permitted.

As these data were generated in different 
laboratories, and as laboratory effects are 
known to be strong12, it is important to 
assess the impact of these effects on the 
analysis. Most laboratories predominantly 
work with particular types of samples, which 
makes the lab effects hard to assess. Even so, 

To the Editor:
Although there is only one human genome 
sequence, different genes are expressed 
in many different cell types and tissues, 
as well as in different developmental 
stages or diseases. The structure of this 
‘expression space’ is still largely unknown, 
as most transcriptomics experiments 
focus on sampling small regions. We have 
constructed a global gene expression 
map by integrating microarray data from 
5,372 human samples representing 369 
different cell and tissue types, disease states 
and cell lines. These have been compiled 
in an online resource (http://www.ebi.
ac.uk/gxa/array/U133A) that allows the 
user to search for a gene of interest and 
find the conditions in which it is over- or 
underexpressed, or, conversely, to find 
which genes are over- or underexpressed in 
a particular condition. An analysis of the 
structure of the expression space reveals 
that it can be described by a small number 
of distinct expression profile classes and 
that the first three principal components of 
this space have biological interpretations. 
The hematopoietic system, solid tissues 
and incompletely differentiated cell types 
are arranged on the first principal axis; 
cell lines, neoplastic samples and non-
neoplastic primary tissue–derived samples 
are on the second principal axis; and 
nervous system is separated from the rest of 
the samples on the third axis. We also show 
below that most cell lines cluster together 
rather than with their tissues of origin.

The widely used GNF Gene Expression 
Atlas1,2 includes a variety of normal tissue 
and cell types as well as certain disease states. 
Many more different biological states, such 
as rare diseases or particular cell subtypes, 
exist. It is impractical for a single dedicated 
experiment to generate a comprehensive 
expression data set covering all biological 
conditions, partly owing to cost, but also 
because some conditions are studied only 
in specialized laboratories. Even so, we can 
use computational approaches to integrate 
the wealth of experiments that already have 
been performed.

Integration of independent microarray 
studies is challenging, as microarrays do not 
measure gene expression in any absolute 
units. Several studies have integrated 
single-platform3 and cross-platform4–6 
data from single-channel oligonucleotide 
arrays yielding consistent results. It has 
been generally accepted, however, that 

only data from the same platform can be 
reliably integrated on a quantitative level7. 
Integration is also challenging because 
of the unavoidable complexity of sample 
descriptions. The Unified Medical Language 
System has been used to re-annotate free 
text-based sample descriptions8; however, 
extracting information from published 
data sets and representing it suitably for 
statistical analysis is a time-consuming 
process that is difficult to automate and 
requires expert curation9.

We collected over 9,000 raw data files 
generated on the human gene expression 
array Affymetrix U133A from the public 
databases Gene Expression Omnibus10 and 
ArrayExpress11. After we removed duplicate 
files and applied strict quality controls 
(Supplementary Methods), data on 5,372 
samples from 206 different studies generated 
in 163 different laboratories remained. 
Using text mining and curation, we binned 
the samples in 369 biological groups, each 
representing a particular cell or tissue type, 
disease state or cell line (Supplementary 
Fig. 1a). Of these, 96 groups contained 
at least ten biological replicates. We also 
introduced ‘meta-groups’ such as cell lines, 
neoplasms, non-neoplastic diseases, and 

A global map of human gene expression

Figure 1  Principal component analysis. Each dot represents one of the 5,372 samples in a 
multidimensional gene expression space projected on the principal plane formed by the first 
(hematopoietic) and second (malignancy) principal axes. The dots are colored semitransparently 
according to the biological group the sample belongs to. (a) The first principal component separates 
hematopoietic system–derived samples from the rest of the samples, with connective tissues and 
incompletely differentiated cell–based samples forming a relatively compact group on the right. The 
cyan dots among the blood samples on the right side represent samples from bronchoalveolar lavage 
cells (a possible sample contamination with blood) and kidney. The dark green dots at the center 
include embryonic stem cells. (b) The second principal axis predominantly arranges cell line samples 
at the bottom, neoplasm samples in the middle and a mixture of nonneoplastic disease and normal 
samples at the top.
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small number of genes are needed to define 
six transcriptional states, it is worth noting 
that the highest expression variance can 
identify these genes.

To identify genes differentially expressed 
in specific biological groups, we performed 
one-way analysis of variance (Supplementary 
Methods). For instance, we found 243 genes 
differentially expressed in 567 samples 
grouped under ‘leukemia’. Many of these 
are known to be implicated in leukemia 
(for example, BCR, ETV6, FLT3, HOXA9, 
MYST3, PRDM2, RUNX1 and TAL1), 
and we confirmed many others through 
literature searches. Similarly, 1,217 genes 
are differentially expressed in all cell lines: 
the upregulated genes are most over-
represented in gene ontology categories 
related to M phase, cell division, mitosis, 
cell cycle and primary metabolic processes, 
and downregulated genes are most over-
represented in immune and defense response.

Our study demonstrates that analysis 
of a large microarray data set compiled 
from many laboratories can reveal the 
overall structure of gene expression space, 
which could not be observed in any of 
the contributing studies individually. 
A particularly important finding is that 
solid-tissue cell lines form a distinct 
group, clustering with each other rather 
than with their respective tissues of origin 
(Supplementary Figs. 4a,i). Moreover, they 
show high similarity to blood cell lines. 
An exception to this rule is incompletely 
differentiated cell types, for which cell lines 
cluster with the primary cells. Note that 
on the PCA’s malignancy axis, neoplasm 
samples are located between the cell line 
and the normal and non-neoplastic disease 
samples, characterizing neoplasm as an 
intermediate state between normal samples 
and immortalized cell lines.

When interpreting these results, several 
limitations concerning the data set must 
be taken into account. First, there may be 
gaps in our data; for instance, there are few 
normal solid-tissue samples besides muscle, 
heart and brain. More data may reveal other 
major transcriptional classes. Second, it is 
possible that the laboratory effects are too 
strong to achieve resolution beyond the 
six major classes. Although the PCA shows 
samples from more specific groups (such as 
leukemia) located together (Supplementary 
Fig. 3c), and supervised analysis reveals 
that genes specific to such sample classes 
are often known to be involved in the 
relevant biological conditions, the results of 
hierarchical clustering did not conclusively 
reveal finer structures.

is robust: we obtained similar results when 
samples from different laboratories were 
kept in separate groups (Supplementary Fig. 
4b) and by clustering all 369 sample groups 
(Supplementary Fig. 4c). To see how each 
of the 273 smaller groups relates to the six 
original clusters, we computed the pairwise 
distances between the members of the 96 
and 273 groups and applied hierarchical 
clustering (Supplementary Fig. 4d). The 
smaller-group clusters correspond well to the 
six original clusters, although an additional 
small cluster of liver and small-intestine 
samples emerged. This analysis is driven 
by the original clustering; nevertheless, if 
there were new major expression pattern 
groups, we would expect to observe them. We 
conclude that the large-scale structure of our 
data can be explained by six major sample 
expression profile groups, corresponding 
to transcriptional states, and some smaller 
outliers.

Various observations can be made by 
examining the sample annotations in more 
detail. For instance, skeletal and heart muscle 
cluster together, whereas smooth muscle 
belongs to the incompletely differentiated 
cell type cluster, which is dominated by 
fibroblasts. This cluster includes bone-
marrow mesenchymal stem cells, but not 
the hematopoietic bone-marrow stem cells, 
which are located in the hematopoietic 
cluster together with other blood-cell 
precursors. The embryonic stem cell line 
(HES2; ref. 13) does not belong to the cluster 
of incompletely differentiated cell types; its 
expression profile is similar to those of both 
fibroblasts and neoplastic cell lines.

Next, we studied which genes are 
expressed in various biological conditions. 
We applied hierarchical clustering to gene 
expression profiles across the 96 larger 
groups, representing the expression of a gene 
in each group by its mean. We visualized the 
1,000 most variable probe sets mapping to 
907 different genes and visually identified 
50 gene clusters (Supplementary Fig. 5a). 
As our data set represents a wide range 
of biological conditions, we can study 
the overall variability of gene expression. 
For the majority of genes, the normalized 
signal is largely constant across the 5,372 
samples; there are only 1,034 probe sets with 
a standard deviation >2 (Supplementary 
Fig. 6a,b). The sample clustering obtained 
using only the 350 most variable probe sets 
produced similar results to that based on 
all data and is retained to some extent even 
when only the 30 most variable probe sets 
are used (Supplementary Figs. 4e and 5b). 
Although it is not surprising that only a 

51 of the 96 larger biological groups (with 
ten replicates or more) contain assays from 
at least two different laboratories. In total, 
100 different laboratories contributed 3,133 
samples to these multi-laboratory biological 
groups. For each of these biological groups, 
we computed the average similarity between 
the assays from different laboratories within 
the same group. We also computed the 
average similarity between assays from the 
same laboratory, but representing different 
biological groups. The comparison of the 
two similarity distributions showed that the 
biological effects were significantly  
(P < 2.2–16) stronger than the laboratory 
effects (Supplementary Fig. 2). For sample 
classes to which only one laboratory 
contributed, we cannot distinguish directly 
between the laboratory and biological effects. 
However, we can analyze our data from 
a biological perspective and compare the 
results to existing knowledge.

We applied principal component analysis 
(PCA) to the expression matrix, and produced 
visualizations in which each sample was 
represented by a point in the plane formed by 
two principal axes, and colors were assigned 
to each point according to the biological 
class (Fig. 1 and Supplementary Fig. 
3a–e). We found that the first three principal 
components have biological interpretations; 
we named them the hematopoietic, 
malignancy and neurological axes. Three 
groups—hematopoietic system, solid tissues 
and a mixture of incompletely differentiated 
cell types and connective tissues—were 
consecutively arranged on the hematopoietic 
axis. The malignancy axis differentiates three 
other groups: cell lines, neoplasms and a 
mixture of normal tissues and non-neoplastic 
disease tissues. The neurological axis separates 
nervous system from other samples. The 
fourth principal component correlates 
with an array quality metric RLE (relative 
log expression). The first three principal 
components explain ~37% of variability in 
the data (Supplementary Fig. 3f). Note that 
the full expression space consists of thousands 
of dimensions.

We also used hierarchical clustering 
to investigate the expression space from 
a different perspective. We first clustered 
the 96 larger biological groups (with ≥10 
replicates), representing each group by its 
mean expression profile. Six major clusters 
emerged: (i) cell lines derived from solid 
tissues, (ii) incompletely differentiated cell 
types and connective tissues, (iii) solid normal 
and neoplastic tissues, (iv) hematopoietic 
system, (v) brain, and (vi) muscle and heart 
(Supplementary Fig. 4a). This clustering 
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To summarize, we have constructed a 
global map of human gene expression from 
a large microarray data set. Our analysis 
reveals six major ‘continents’ on the map. 
We acknowledge that there may be more 
continents that we were not able to find 
owing to incompleteness of the data, and it 
is to be expected that finer structures exist 
within the six we found.

Note: Supplementary information is available on the 
Nature Biotechnology website.
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