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KEY PO INT S

� The protein landscape of
CLL is governed by
trisomy 12 and IGHV
mutational status.

� Reduced protein
abundance buffering
implicates the PI3K-
AKT-MTOR pathway in
the tumorigenic
function of trisomy 12.

Many functional consequences ofmutations on tumor phenotypes in chronic lymphocytic leu-
kemia (CLL) are unknown. This may be in part due to a scarcity of information on the prote-
ome of CLL. We profiled the proteome of 117 CLL patient samples with data-independent
acquisition mass spectrometry and integrated the results with genomic, transcriptomic, ex
vivo drug response, and clinical outcome data.We found trisomy12, IGHVmutational status,
mutated SF3B1, trisomy 19, del(17)(p13), del(11)(q22.3), mutated DDX3X and MED12 to
influence protein expression (false discovery rate [FDR] 5 5%). Trisomy 12 and IGHV status
were the major determinants of protein expression variation in CLL as shown by principal-
component analysis (1055 and 542 differentially expressed proteins, FDR 5 5%). Gene set
enrichment analyses of CLL with trisomy 12 implicated B-cell receptor (BCR)/phosphatidyli-
nositol 3-kinase (PI3K)/AKT signaling as a tumor driver. These findings were supported by

analyses of protein abundance buffering andprotein complex formation, which identified limited protein abundance buff-
ering and an upregulated protein complex involved in BCR, AKT,MAPK, and PI3K signaling in trisomy 12CLL. A survey of
proteins associatedwith trisomy 12/IGHV-independent drug response linked STAT2 protein expressionwith response to
kinase inhibitors, including Bruton tyrosine kinase and mitogen-activated protein kinase kinase (MEK) inhibitors. STAT2
was upregulated in unmutated IGHV CLL and trisomy 12 CLL and required for chemokine/cytokine signaling (interferon
response). This study highlights the importance of protein abundance data as a nonredundant layer of information in
tumor biology and provides a protein expression reference map for CLL.

Introduction
Chronic lymphocytic leukemia (CLL) is marked by genetic and
clinical heterogeneity.1-5 The relationship between genetic
and epigenetic changes in CLL and clone expansion and evo-
lution is complex. Recently, integrated omics profiling includ-
ing genomics (somatic mutations and copy-number
variations), epigenomics (DNA methylation), transcriptomics
(RNA expression), and ex vivo drug response (viability) phe-
notypes in large cohorts of patients has provided insight
into CLL biology.6-8 Nonetheless, the relations of molecular
layers of biology to tumor phenotypes remain partially
unknown due to missing data on protein expression. Initial
studies of the proteome landscape of CLL using mass spec-
trometry (MS)–based quantitative proteomics involved
smaller patient sets (n 5 6-18).9-12 Nevertheless, clear signa-
tures of CLL were found, including overexpression of B-cell
receptor (BCR) signaling components,9 dysregulation of spli-
ceosome proteins,9 repression of protein kinase C signaling

members,10 and distinct proteomic profiles for IGHV-
unmutated CLL (U-CLL) and IGHV-mutated CLL (M-CLL)11,12.
Studies in larger cohorts in the context of epigenetic, tran-
scriptomic, drug response, and clinical outcome data, which
could provide a multilayered understanding, have been miss-
ing. To address this, we analyzed 117 CLL patient samples
with data-independent acquisition (DIA) MS using 2 different
measurement platforms (Lumos and timsTOF [trapped ion
mobility spectrometry coupled with quadrupole time-of-flight
MS]).

Methods
CLL patient samples
Blood samples from CLL patients were obtained with informed
consent and ethics approval (S-206/2011; S-356/2013).6 Selection
criteria for the main cohort included (1) overall balanced sample
numbers with respect to major genetic disease drivers, (2) suffi-
cient proportion of lymphocytes in the peripheral blood (white
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blood cell counts .20000 cells per mL), and (3) multiomics data
availability. Additional patient samples were collected at the Hos-
pital Clinic of Barcelona with informed consent and approval of

the Institutional Ethics Committee. The distribution of mutations
and patient characteristics are shown in Figure 1 and supplemen-
tal Tables-3 (available on the Blood Web site).
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Figure 1. Overview. (A) Study outline.66 (B) Characteristics of patient samples included. Numbers shown in parentheses with each genetic aberration indicate the number
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Cell preparation for MS
Blood was separated by Ficoll gradient centrifugation (GE
Healthcare), and mononuclear cells (MNCs) were viably frozen.
For patient samples 1 to 49 (batch 1) of the main cohort, MNCs
were thawed and washed 3 times with phosphate-buffered
saline. For patient samples 50 to 91 (batch 2) of themain cohort,
CD191 CLL cells were selected fromMNCs usingmagnetic acti-
vated cell sorting following manufacturer’s instructions (Miltenyi
Biotec). In both scenarios, 1 million cells per sample were pel-
leted and snap frozen in protein low-binding microcentrifuge
tubes (Eppendorf). For patient samples 92 to 117 (batch 3) of
the additional cohort, malignant B cells were isolated by
fluorescence-activated cell sorting. A total of 100000 CD191,
CD51, light-chain restricted cells per patient sample were iso-
lated into protein low-binding microcentrifuge tubes (Eppen-
dorf), pelleted, and snap frozen. Further processing was
performed as previously described,13 with small adjustments
as outlined in supplemental Methods.

MS analysis
MS analysis was performed as described previously,13,14 with
minor modifications. Details are given in supplemental Methods.

Raw data processing and quality control
For Lumos MS analysis, DDA and DIA files were imported
into Spectronaut (Biognosys) v.13.415 (batch 1 of main
cohort) or v.14.5 (batch 2 of main cohort and batch 3 of
additional cohort) to create a hybrid library, which was
used to search the DIA data against the SwissProt-
reviewed subset of the human UniProt database (version
2019-07-09, 20 913 entries) with decoy sequences gener-
ated by sequence reversal. For timsTOF MS data analysis,
the library was constructed from DIA files only using Spec-
tronaut v14.4 and used to search the DIA data against
SwissProt-reviewed data (version 2020-01-01, 20 367 entries)
with decoys generated using “mutation”. Details on the
Spectronaut settings are provided in supplemental Meth-
ods. The Spectronaut reports were exported and further
processed in R (version 3.6.0). Normalization, quality control
and transformation of raw protein abundance data were
done with the R/Bioconductor package DEP.16 Proteins
were selected for analysis if they showed ,50% missing val-
ues across patient samples. The 50% cutoff choice follows
similar previous studies.17-19 The protein abundance data
were background corrected, scaled, and transformed using
the variance stabilizing transformation approach of Huber
et al and Karp et al.20,21

Integrative data analysis
To detect associations between protein abundance and categor-
ical variables (gene mutations and copy-number variations), the
proDA package was used.22 For the associations between protein
abundance and continuous variables such as RNA expression and
drug responses, the limma package was used, omitting missing
values.23 For principal-component (PC) analysis and hierarchical
clustering, missing values were imputed using the quantile regres-
sion imputation of left-censored data method.24 Gene set enrich-
ment analysis was performed usingCAMERA (correlation adjusted
mean rank gene set test)25 from the limma package against gene
sets from the Molecular Signature Database (MSigDB).26 Survival
analysis was performed using the coxph package.27 Batch

information was included as a covariate (“blocking factor”) in all
regression models and hypothesis tests to avoid confounding
effects. For exploratory analyses and visualizations, the comBat
function implemented in the sva R package was used with the
aim of removing batch effects.28 Differential RNA expression anal-
ysis was performed with DESeq229 and differential exon usage
analysis with DEXSeq.30 We included IGHV mutation status and
trisomy 12 as blocking factors in regression models for differential
RNA and protein expression analyses. All association P values
were adjusted for multiple testing using the Benjamini-
Hochberg (.5 tests) or Bonferroni procedure (#5 tests).

DNA-sequencing/RNA-sequencing/drug
screen data
Multiomics profiling, including DNA sequencing and RNA
sequencing, were previously performed, and these data are avail-
able in the R data package BloodCancerMultiOmics2017 from the
Bioconductor project (http://bioconductor.org).6 The drug-
sensitivity phenotypes, including the sensitivities of 45 patient
samples to a panel of 63 small-molecule compounds at 5 concen-
trations, were characterized and processed as described
previously.6

Western blot analysis for STAT2 expression in CLL
Western blots were performed on whole-cell protein lysates of
patient MNC pellets according to standard techniques. Antibody
details are provided in supplemental Methods. Western blots
were developed using Clarity Western ECL Substrate (1705061;
Bio-Rad). Chemiluminescence was detected using the imager
machine ECL ChemoStar (INTAS). Signal intensities were
recorded by densitometry (ImageJ software, version 1.53).

Generation of transgenic cell lines (CRISPR-Cas9)
The human CLL cell lines MEC-1, MEC-2, CII, HG-3, and PGA-1
(DSMZ) were transduced to stably express Cas9 and plasmids con-
taining a nontargeting control or hSTAT2-targeting single guide
RNA (34A and 36D) by transfection with lentiCas9-Blast vector
(52962; Addgene), single guide RNA expressing vector
(U6gRNA5 (BbsI)-PKGpuro2ABFP-W), lentiviral packaging plas-
mids pCMV-VSVg (8454; Addgene), and psPAX2 (12260;
Addgene). Sequences and transfection details are provided in
supplemental Methods.

Interferon a stimulation assay
Onemillion cells of STAT2 wild-type and STAT2 knockout MEC-1,
MEC-2, CII, HG-3, and PGA-1 cell lines were cultured in RPMI
supplemented with 10% fetal calf serum, 50 U/mL penicillin,
50 mg/mL streptomycin, 1 mg/mL puromycin, 2 mM glutamine
(all from Gibco) and stimulated with 500 IU/mL human interferon
a A (Enzo Life Science) or maintained unstimulated. Cells were
harvested after 6 hours for RNA isolation and quantitative poly-
merase chain reaction.

Quantitative polymerase chain reaction
RNA was isolated according to manufacturer’s instructions using
the RNeasy Plus Mini Kit (Qiagen). Isolated messenger RNA
(mRNA) was reverse transcribed using the SuperScript IV VILO
Master Mix with ezDNase enzyme (SuperScript IV Vilo Master
Mix with ezDNase Enzyme; Thermo Fisher Scientific) following
the manufacturer’s instructions. We used TaqMan probes and
master mix (TaqMan Fast Advanced Master Mix; Thermo Fisher
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Scientific) for quantitative analysis of complementary DNA. Details
are provided in supplemental Methods.

Results
To study the consequences of gene mutations on protein expres-
sion in CLL, we measured protein abundances with DIA-MS on a
total of 117 CLL samples and integrated it with genomic and tran-
scriptomic data. A total of 91 patient samples constituted themain
cohort, and 26 patient samples formed an additional cohort proc-
essed differently and enriched for individual genetic drivers (Fig-
ure 1). Only proteins identified by $2 proteotypic peptides
were considered. A total of 3314 proteins were quantified in the
main cohort, and 49 samples from themain cohort were alsomea-
sured with an independent DIA-MS technology (timsTOF).14

To explore relationships between proteome and transcriptome,
we computed Pearson correlation coefficients between RNA
and protein levels for each gene. These varied widely, with a
median of 0.18 (Figure 2A). There was no discernible influence
of protein or RNA abundance on the protein-RNA correlation
coefficient (supplemental Figure 1). While individual proteins
showed high correlation, including ZAP70 (0.71), CD22 (0.74),
and CD79a (0.51) (Figure 2B), the overall low correlation between
RNA and protein abundance suggests that proteome abundance
profiles contain independent information not implied by other
omics data.

Association of protein expression with disease
drivers of CLL
To obtain a global overview of the proteome variation in CLL, we
performedprincipal component (PC) analysis. PC1 and PC2, which
explained 9.16% and 7.61% of the total variance of protein
expression, showed strong associations with trisomy 12, while
PC3 showed association with IGHV status (Figure 2C). Proteins
associated with PC1 were enriched, for example, in phosphatidy-
linositol 3-kinase [PI3K]-AKT-MTOR and MTORC1 signaling (sup-
plemental Figure 2). Unsupervised clustering based on protein
expression showed that patient samples were grouped by the
presence of trisomy 12 and IGHV mutational status (Figure 2D).
Our data suggest that trisomy 12 and IGHV mutational status
are main determinants of protein expression variability in CLL.

We next characterized the impact of genetic disease drivers on
protein expression in CLL. We considered mutations and copy-
number variations with $5 occurrences among the 91 patient
samples of the main cohort (Figure 1). We found trisomy 12,
IGHV mutational status, mutated SF3B1, trisomy 19,
del(17)(p13), del(11)(q22.3), mutated DDX3X, and mutated
MED12 associated with variable protein expression (method of
Benjamini and Hochberg for false discovery rate (FDR) 5 5%, P
values were assessed by proDA package as described in
“Methods”) (Figure 2E). We did not identify significant associa-
tions at the 5% FDR cutoff for del(13)(q14), mutated NOTCH1,
mutated EGR2, mutated BRAF, ATM and TP53. Previously
reported associations for del(13)(q14) (CD22 and CD72)33 did
not reach discovery thresholds in the multiple testing setting,
but were reproduced with individual P values of 0.02 and 0.04
(supplemental Figure 3). The results can be queried at http://
mozi.embl.de/public/proteomExplorer.

For del(11)(q22.3), 24 differentially regulated proteins (FDR5 5%)
were detected (Figure 2E). Among encoding genes, 11 were
located on chromosome 11, including ATM, a gene commonly
deleted in cases with del(11)(q22.3), and CUL5, a protein involved
in proteasomal degradation of p53 (supplemental Figure 4).34,35

We detected 52 proteins whose expression was associated with
mutated splicing factor SF3B1, among these the splicing factor
SUGP1 (supplemental Figures 5A-B), which showed differential
splicing (supplemental Figure 5C). Differential protein expression
was also observed for CLL with trisomy 19 (Figure 2E). Since tri-
somy 19 cases were limited to CLL withmutated IGHV and trisomy
12,36 we restricted this analysis to CLL with mutated IGHV and tri-
somy 12 (n 5 15). We found 47 differentially abundant proteins
(FDR 5 5%), of which 27 were on chromosome 19. Upregulated
proteins in trisomy 19 CLL included the metabolic protein GPI,
the unfolded protein response chaperone CALR,37 the negative
regulator of transforming growth factor beta signaling RANBP3,
and the BCR signaling–associated transcription factor POU2F2
(supplemental Figure 6). Independent proteomic measurements
on a different instrument platform (timsTOF)14 confirmed the
above findings (supplemental Figure 7). The 26 CLL patient sam-
ples of the additional cohort were specifically selected for the
genetic disease driver of mutated spliceosomal RNA U1
(g.3A.C mutation38 and mutated TP53). For CLL with mutated
U1, we observed upregulation of splicing factors, including SF1
and downregulation of the tumor suppressor TES (supplemental
Figure 8). For mutated TP53, we observed upregulation of the
DNA damage response protein BCAS2 (supplemental Figure
9).39,40 Upregulated BCAS2 in CLL with mutated TP53 was con-
firmed in the main cohort (supplemental Figure 9).

Trisomy 12 CLL
We identified 1055 proteins differentially abundant in CLL with tri-
somy 12 (516 upregulated and 539 downregulated; FDR 5 5%)
(Figure 3A). Of these, 115 (9.5%) were encoded on chromosome
12. We performed pathway enrichment analysis using the cancer
hallmark gene sets (FDR5 5%)41 and found upregulation of PI3K-
AKT-MTOR,MTORC1, interferon a, and BCR signaling in CLL with
trisomy 12 (Figure 3B-C; supplemental Figure 10). Upregulated
proteins encoded on chromosome 12 were enriched in PI3K-
AKT-MTOR signaling, whereas upregulated proteins encoded
elsewhere were enriched in BCR signaling (supplemental Figure
11). Upregulated proteins included signal transducer and activator
of transcription STAT2 and protein phosphatase PTPN11 (both on
chromosome 12), as well as SMAD2, a mediator of transforming
growth factor beta signaling, and the inflammasome protein
PYCARD (Figures 3D-3E). CD72 and BCL10 (involved in BCR sig-
naling) also showed higher abundance in trisomy 12 CLL. The
RNA expression of STAT2, PTPN11, PYCARD, and CD72 was
upregulated in trisomy 12 as well and showed good correlations
with protein levels (supplemental Figures 12 and 13). Higher
expression of SMAD2 and BCL10 was only evident at the protein
level (supplemental Figure 12). Differential protein expression of
STAT2, PTPN11, SMAD2, PYCARD, CD72, and BCL10 was vali-
dated in independent proteomic measurements (timsTOF)14 (sup-
plemental Figure 14) and with western blot analyses for STAT2
(supplemental Figure 15).

We visualized RNA and protein expression along chromosomal
coordinates (Figure 3F; supplemental Figure 16). This showed
chromosomal regions with consistent changes in abundance of
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the encoded RNAs and proteins, regions with no or little changes,
and few regions with changes in RNA, but not in protein expres-
sion (Figure 3F; supplemental Figure 16). Since many proteins
function in complexes, we examined the proteome data for pro-
tein complexes using the CORUM and REACTOME databases
of protein interactions.42,43 Gene-dosage effects of trisomy 12
may propagate to proteins encoded on other chromosomes
through complex formation and protein stabilization. We con-
nected upregulated chromosome 12 proteins in trisomy 12 CLL
to upregulated non-chromosome 12 proteins, if the protein pairs
were annotated to form stable complexes in CORUM or REAC-
TOME (Figure 4A). This identified several complexes of potential
relevance for trisomy 12 CLL, including STAT2-JAK1-PTPN6-
CD79A-PTPN11-PIK3CD, a complex involved in BCR, AKT,
MAPK, and PI3K signaling.

Protein abundance buffering
For trisomy 12 and trisomy 19, gene-dosage effects were
detected on RNA and protein levels, with greater expression
change for RNA than for protein (Figure 4B-C). We divided pro-
teins and transcripts encoded on chromosomes 12 and 19 into
buffered (significant upregulation on RNA but not protein level),

nonbuffered (significant upregulation both on RNA and protein
level), enhanced (significant upregulation on protein but not
RNA level), and other genes (no differential abundance on RNA
and protein level, or differential abundance in opposite directions)
(Figure 4D). For trisomy 12 CLL, the nonbuffered group was the
largest (107 out of 171). The signal transducer STAT2 and the
phosphatase PTPN11 were among the least buffered proteins
for trisomy 12 CLL. Gene set enrichment analysis identified
PI3K-AKT-MTOR signaling as enriched among nonbuffered pro-
teins, suggesting that this pathway may be involved in mediating
the fitness advantage of cells with trisomy 12 during tumorigenesis
(Figure 4E). No significant enrichment was observed in the buff-
ered group. Chromosome 12–encoded proteins known to be
part of stable protein complexes had significantly higher levels
of buffering compared with others (Figure 4F). This suggests
that formation of protein complexes may help maintain the stoi-
chiometric balance of protein levels in CLL cells. In contrast, for tri-
somy 19 CLL, nonbuffered gene products were rare (12 out of
185) (Figure 4D). Significantly more buffering was observed for tri-
somy 19 compared with trisomy 12 CLL (P5 .0002, Kolmogorov-
Smirnov test) (Figure 4G). The different degrees of protein abun-
dance buffering in trisomy 12 and trisomy 19 CLL highlight the
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nonredundant information in protein expressionmeasurements as
compared with gene dosage or RNA expression.

IGHV mutational status
IGHV mutational status was associated with 542 differentially reg-
ulated proteins (273 upregulated and 269 downregulated in
M-CLL; FDR 5 5%) (Figure 5A). As expected, the expression of
the ZAP70 protein was higher in CLL patient samples with

U-CLL (Figure 5A).44 Differentially regulated proteins included
BANK1 (which functions in BCR-induced calcium mobilization),
CASP3, and the transcription factor STAT2 (Figure 5C; supple-
mental Figure 17). CASP3 was previously linked to enhanced
CLL cell viability by stimulation through myosin-exposed apopto-
tic cells.45 STAT2 demonstrated altered expression only on the
protein level and not on the RNA level (Figure 5C; supplemental
Figure 17). We validated these findings by independent proteo-
mic measurements using timsTOF14 (supplemental Figure 18).
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Protein biomarkers for clinical outcome and
drug responses
To identify protein markers that might add predictive power to
current risk factors, we used multivariate Cox regression models
using known risk factors (age, sex, IGHV status, trisomy 12, and
TP53/del(17)(p13); supplemental Figure 19) and the expression
level of one of the quantified proteins in turn, to predict time-to-
next-treatment (TTT) and overall survival. PRMT5 (protein arginine
methyltransferase 5), an enzyme responsible for histone methyla-
tion,46 the telomerase component PES1,47 and glycogen phos-
phorylase B (PYGB) were found to be significant predictors for
TTT (FDR 5 5%, method of Benjamini-Hochberg) (Figure 6A).

We next examined the role of protein expression as a predictor of
the response to anticancer drugs, as measured by drug response
profiling ex vivo.6 We blocked for trisomy 12 and IGHVmutational
status to identify independent proteins. For 28 drugs (of 63, 44%),
we found significant (FDR 5 5%) relationships between protein
expression and drug response. The highest number of protein
associations was observed for MEK/ERK inhibitors, such as cobi-
metinib (n 5 150, FDR 5 5%) and trametinib (n 5 111, FDR 5

5%) (Figure 6B). For cobimetinib, the most significant associations
were with STAT2, ANP32E, DOCK10, KLHL14, and GRB2
(adjusted value of P , .001). Other examples included the
response to the MEK inhibitor trametinib and expression of

PTPN11 (Figure 3), response to the Bruton tyrosine kinase inhibitor
ibrutinib and expression of the lymphoma survival factor
ANXA2,48 as well as response to p53 destabilizing Nutlin-3a and
expression of p53-suppressing USP5 (Figure 6C).49 We observed
strong responses of trisomy 12 CLL patient samples to PI3K
inhibitors such as duvelisib (Figure 6D). We tested the ability of
protein expression to add to the explanatory power of gene
mutations for drug response using multivariate linear regression
models. STAT2 expression added to the explanatory power of
genomics (Figure 6E) for responses toward MEK/ERK inhibitors,
including cobimetinib, trametinib, and SCH772984, based on
multivariate tests (FDR5 5%). STAT2 regulates several signaling
pathways, including interferon signaling, JAK-STAT, and Ras/
MEK,50,51 and our data indicate a role of STAT2 in the response
to MEK inhibitors.

Factors affecting STAT2 expression in CLL
To understand factors associated with STAT2 expression further,
we used multivariate linear regression with L1 regularization.
STAT2 protein expression was determined by trisomy 12 and
IGHV mutational status with additional determinants from protein
expression and RNA expression (Figure 7A-C; supplemental Fig-
ure 20). STAT2 protein expression was associated with interferon
pathway activation, irrespective of IGHV and trisomy 12 status
(Figure 7D; supplemental Figures 21 and 22). Higher STAT2 pro-
tein levels were associated with increased expression of interferon
target genes, includingOAS2 and IFI44 (Figure 7E; supplemental
Figure 23). Similar to STAT2, the RNA expression of OAS2 and
IFI44was highest in U-CLL patient samples with trisomy 12 (Figure
7F). We measured interferon target gene expression (STAT2,
OAS1, andOAS2) in wild-type and STAT2 knockout cells of 5 dif-
ferent CLL/non-Hodgkin lymphoma B-cell lines. In all of these,
STAT2 knockout led to reduced expression of interferon target
genes in unstimulated state and impaired induction after inter-
feron a stimulation (supplemental Figure 24).

In summary, STAT2was upregulated in U-CLL and trisomy 12 CLL,
associated with drug response independently of these disease
drivers, and required for chemokine/cytokine signaling (interferon
response).

Discussion
We used mass spectrometry (MS) to quantify protein abundance
in 117 patient samples covering the range of genetic and clinical
heterogeneity of the disease. The study provides a protein expres-
sion landscape of CLL. We identified trisomy 12 and IGHV status
as the strongest determinants of protein expression in CLL and
found evidence that the tumor driver role of trisomy 12 is linked
to BCR/PI3K/AKT signaling.

Previous proteomic studies in CLL patients were restricted to rel-
atively small cohorts (n5 6-18).9-12,52-55 Our study confirms 11 (tri-
somy 12) and 8 (U-CLL) out of the 20 strongly differentially
expressed subtype-specific proteins highlighted by Johnston
et al.9 Diez et al10 reported 4 differentially regulated proteins for
IGHV mutational status, 2 of which are confirmed by our study
(PTK2 and PRKCG).10 Eagle et al12 reported downregulation of
the lymphocyte chemotaxis pathway in U-CLL.12 Our study con-
firms 3 (GNAI2, RASGRP2, and ARF6) out of 9 differentially regu-
lated proteins of this pathway reported by Eagle et al.12 A more
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recent publication by Eagle and colleagues11 in U-CLL and
M-CLL addressed more technical aspects.11 Six out of the 20
most significantly changed proteins (adjusted P value) reported
for IGHV mutational status are confirmed in our study (TFRC,
LGALS9, PFKP, SERPINH1, AHCY, and MSI2).11 None of the
proteins reported as differentially expressed between U-CLL
and M-CLL in small prior studies (n 5 6-12) were confirmed by
our data.52-55 This highlights the importance of high resolution
technologies and large cohorts for discovery of new protein
markers.

Protein abundance is regulated by multiple mechanisms and
cannot be inferred merely from DNA copy number or RNA abun-
dance.56,57 Whereas most copy-number variants in HeLa cells and

colon cancer patient samples drove mRNA abundance changes,
few translated into consistent changes in protein abundance.
This phenomenon, termed protein abundance buffering,56-58

relies on posttranslational mechanisms such as protein degrada-
tion counteracting effects of gene dosage.59-61 Here we studied
the phenomenon of protein abundance buffering in CLL. The
amount of buffering we observed for trisomy 12 was less than
may have been expected from prior studies in colon cancer.57

The relative absence or reduction of protein abundance buffering
seen in trisomy 12 CLL highlights the functional relevance. STAT2
and PTPN11 were upregulated in trisomy 12 CLL, and the PI3K-
AKT-MTOR pathway was enriched in nonbuffered proteins. The
same proteins correlated with drug response in an ex vivo system,
including response to inhibitors of the PI3K-AKT-MTOR pathway
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(Figure 6). Lack of buffering combined with functional relevance
for chromosome 12 proteins in CLL is consistent with the specific
occurrence of trisomy 12 in B-cell cancers.

STAT2 has not been linked to the pathogenesis of CLL. Our find-
ings suggest that STAT2 levels are dependent on IGHV mutation
status and trisomy 12 and mediate CLL response to chemokines
and cytokines such as interferon a. Interferon a has been shown
to be produced bymonocytes (cells known to protect CLL survival)
in peripheral blood.62,63 Once activated, interferon a signaling
prevents apoptosis of CLL cells in vitro and in vivo.64,65 Our data
support a model in which high STAT2 levels (in case of trisomy
12 due to gene dosage) render CLL cells more receptive to che-
mokines and cytokines. Future studies are required to understand
whether chemokines and cytokines other than interferon a are
implicated. We further identified STAT2 protein expression as a
determinant of drug response to Bruton tyrosine kinase and
MEK inhibitors.

Our study provides a high-resolution map of the protein land-
scape of CLL integrated with genetics, RNA expression,

methylation, and drug response data. This study represents a
comprehensive basal analysis of CLL and will serve as a valuable
resource for the research community.
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Figure 7. IGHV and trisomy 12 jointly affect interferon signaling through STAT2. (A) Visualization of fitted adaptive L1 (lasso) regularization multivariate models using
IGHV status, mutations, and copy-number variations. The z scores of STAT2 protein expression are shown in the scatterplot at the bottom. The heatmap in the middle shows
the predictor values, with black indicating the presence of mutation or copy-number variation. The model coefficients (averaged over 50 bootstrap samples) are shown by
horizontal bars on the left. Only the features that were selected in all bootstrap samples are shown. (B) Analogous to A, for multivariate models using RNA and protein
expression values, which are shown in the heatmap. (C) STAT2 protein and RNA expression stratified by IGHV and trisomy 12 status. (D) Cancer hallmark pathways enriched
for RNAs and proteins associated with STAT2 protein expression after blocking for trisomy 12 and IGHV mutational status. (E) Associations between STAT2 protein expres-
sion and 2 interferon-induced genes, OAS2 and IFI44. (F) OAS2 and IFI44 RNA expression stratified by IGHV and trisomy 12 status.
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