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Abstract 
Summary: Highly multiplexed immunofluorescence imaging is a recent method to 
characterize tissues at single-cell resolution on the protein level, offering low cost, high 
scalability, and the ability to analyze paraffin-embedded tissue samples. However, the 
analysis of these data involves a sequence of steps, including segmentation, image 
processing, marker quantification, cell type classification, and neighborhood analysis, each 
of which involves a multitude of method and parameter choices that need to be adapted to 
the data and analytical objective at hand. Moreover, variations in data quality can be high 
and unpredictable, which necessitates further flexibility and interactivity. While individual 
components exist, there is an unmet need for a coherent toolbox that offers end-to-end 
coverage of the workflow, flexibility, and automation. 
 
We present spatialproteomics, a Python package that addresses these challenges. Built on 
top of xarray and dask, spatialproteomics can process images that are larger than the 
working memory. It supports synchronization of shared coordinates across data modalities 
such as images, segmentation masks, and expression matrices, which facilitates easy and 
safe subsetting and transformation.  
 
We demonstrate spatialproteomics on a set of images of reactive lymph nodes or different 
forms of B cell Non-Hodgkin lymphomas (BNHL) from 132 patients. We showcase an 
end-to-end analysis from raw images to statistical characterization of cell type composition 
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and spatial distribution across indolent and aggressive lymphomas. Furthermore, we show 
how spatialproteomics can process gigapixel whole slide images. Altogether, we propose 
spatialproteomics as an easy-to-install, easy-to-learn, comprehensive toolbox for 
constructing powerful end-to-end image analysis solutions for highly multiplexed 
immunofluorescence imaging. 
 
Availability and Implementation: The source code for spatialproteomics is freely available 
at https://github.com/sagar87/spatialproteomics under the MIT license. 
 
Contact: wolfgang.huber@embl.org, Peter-Martin.Bruch@med.uni-duesseldorf.de  
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Introduction 

Recent advances in spatial proteomics, such as co-detection by indexing (CODEX) (Black et 
al., 2021), MACSima imaging cyclic staining (MICS) (Kinkhabwala et al., 2021), or imaging 
mass cytometry (IMC) (Giesen et al., 2014), enable highly-multiplexed molecular and 
morphological profiling of tissues at single-cell resolution on a large scale. These techniques 
generate multi-channel images, where each channel represents the spatial distribution of a 
distinct protein. Since these assays operate on formalin fixed paraffin embedded (FFPE) 
tissues, the standard-of-care for archiving diagnostic biopsies, they have found broad 
adaptation in oncology, where they  have been used to characterize the tumor 
microenvironment (TME) in entities including lymphomas (Roider et al., 2024; Phillips et al., 
2021), colorectal (Li et al., 2023), and head and neck cancers (Punovuori et al., 2024). 

Following Kuswanto et al. (Kuswanto et al., 2023), we here consider the following workflow 
consisting of cell segmentation, image processing, protein quantification and cell 
phenotyping (Fig. 1). This workflow requires the creation of additional data objects, such as 
segmentation masks and protein expression matrices. While these, as well as the primary 
imaging data itself, could be represented simply as an unstructured collection of 
multidimensional arrays, many of them share common dimensions (Sup. Fig. 1). For 
example, the multiplexed imaging data (channels, x, y) share spatial dimensions with their 
corresponding segmentation masks (x, y). Similarly, the instance labels in a segmentation 
mask can be viewed as a dimension that aligns with the expression matrix (cells, channels) 
quantifying protein expression for each cell, or with a morphology matrix (cells, shape 
features) of shape and texture descriptors for each cell. Therefore, a desirable data structure 
for multiplexed imaging data should keep such shared dimensions consistent, ensuring that 
changes to one component automatically update the others to maintain consistency. For 
example, when subsetting a region of an image, the segmentation mask should be subset 
accordingly, and the expression matrix should only retain cells within this region. Similarly, it 
should be possible for users to select specific cell types and forward the resulting subset 
object to downstream methods for the computation of spatial statistics. 

We introduce spatialproteomics, a Python package that leverages xarray (Hoyer and 
Hamman, 2017) to provide a consistent representation of multiplexed imaging data and 
associated data types across shared dimensions. The package offers a unified API for 
image processing, segmentation, marker quantification, cell type classification, 
neighborhood analysis and visualization. Functions in spatialproteomics are endomorphisms 
on the xarray class, which facilitates the “piping” of the data through a series of such 
operations by function composition (Bird, 1998). Furthermore, spatialproteomics can process  
high-dimensional larger-than-memory imaging datasets in parallel via dask (Rocklin, 2015).  
 
Scverse is an open-source ecosystem of interoperable data structures and tools for 
analyzing single-cell omics data (Virshup et al., 2023). Spatialproteomics integrates 
seamlessly into the scverse framework by supporting import and export to both the anndata 
and spatialdata formats (Virshup et al., 2021; Marconato et al., 2024). Additionally, by 
working directly with spatialdata objects, spatialproteomics can be incorporated into 
established workflows within the scverse ecosystem. As one of the first domain-specific 
packages to integrate with both anndata and spatialdata, it contributes to expanding the 
ecosystem toward spatial proteomics and facilitates adoption through standardized 
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interfaces and community-aligned design. The package is available at 
https://github.com/sagar87/spatialproteomics. 
 

Results 
Spatialproteomics streamlines the processing of highly multiplexed 
fluorescence images 

We considered a dataset of lymph node biopsies from patients diagnosed with B cell 
Non-Hodgkin lymphoma (BNHL). Tissue microarrays (TMAs) and whole slides were imaged 
using a set of 56 antibodies selected for specific binding to proteins important in B, T and 
myeloid cell biology (Roider et al., 2024). We obtained 250 TMA tiles with a size of 9 
megapixels (3000x3000 pixels) each, and five whole slide images (WSIs) with sizes roughly 
between 1 and 2 gigapixels (Sup. Table 1). We designed spatialproteomics as a toolbox to 
rapidly put together and adapt end-to-end analysis workflows for large scale datasets from 
different tissues and using different antibody panels and methods. 
 
To load the data into Python, spatialproteomics requires tiff files and a mapping from each 
channel to its corresponding protein, as is the standard output of many of the above listed 
techniques. For visualization, users can select which channels to show and assign custom 
colors to each channel (Fig. 1a). After data import, we performed quality control by visually 
inspecting the images. To facilitate interactive work and conserve memory, users can subset 
or downsample images. 
 
Functions in spatialproteomics follow an endomorphic design pattern, allowing commands to 
be chained seamlessly and eliminating the need for intermediate variables or tedious data 
structure conversions. This improves code readability, reduces memory usage, and ensures 
consistent synchronization of related data. Since all functions in the package adhere to this 
pattern, complex analysis pipelines can be constructed in just a few lines of code. 
 
The assessment of data quality is followed by cell segmentation (Fig. 1b). Spatialproteomics 
offers wrappers for stardist (Schmidt et al., 2018), mesmer (Greenwald et al., 2022), and 
cellpose (Stringer et al., 2021), enabling rapid experimentation with different segmentation 
methods. All of these employ neural networks that were pre-trained on thousands of images, 
and provide segmentation of nuclei and optionally also of whole cells. Users can also load 
their own segmentation mask directly into the spatialproteomics object, making the workflow 
adaptable to new methods. 
 
External tools can have incompatible dependencies, sometimes rendering it impossible to 
install all of them within the same virtual environment. While spatialproteomics offers the 
option to install all external tools during the installation process, users can also choose to 
install only a subset to minimize potential version conflicts. 
 
In some cases, segmentation on a nuclear or a universal membrane marker does not 
provide satisfactory results, and more elaborate approaches are required. For example, 
segmentation of macrophages or dendritic cells can be hampered by their large size beyond 
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the imaged tissue’s thickness and irregular shape. To counteract this problem, we can 
perform independent segmentation on several markers, e.g., DAPI (nuclei), CD68 
(macrophages) and CD11c (dendritic cells). The resulting masks can then be merged to 
obtain an improved segmentation. 
 
Antibody-based imaging can suffer from high background (low signal-to-noise ratio) and high 
variability of binding efficiency and specificity across samples or even within the same 
image. To address such issues, users can apply predefined or custom-written image 
processing steps, such as thresholding, filtering, and morphological operations (Russ, 2006) 
(Fig. 1c).  
 
Following segmentation and optional image processing, an expression matrix is computed 
by summarizing intensities over each cell mask (Fig. 1d). Spatialproteomics allows different 
summarization functions, including average, sum, median, percentage of non-zero pixels; 
users can also provide their own summary functions. To facilitate downstream analysis and 
comparisons across markers and samples, transformations such as min-max normalization, 
z-score or arcsinh-transform can be applied to the resulting expression matrix (Hickey et al., 
2021). 
 
Many downstream analysis approaches benefit from annotating the observed cells with cell 
type labels. Such cell type classification is, however, a bespoke task for which there are no 
general or “out-of-the-box” solutions. It is contingent both on the scientific goals of the study, 
which can direct the granularity of the cell type classification, and on technological 
limitations. Spatialproteomics facilitates the creation of such custom-made cell type 
annotation workflows. We advocate a decision tree approach (Fig. 1e). This requires the 
user to define a set of mutually exclusive marker proteins for each of the cell types or states 
they want to distinguish and annotate. The approach is analogous to gating methods used in 
multi-dimensional flow cytometry (Verschoor et al., 2015). After thresholding the image for 
those markers to remove unspecific background signal, we predict cell types based on 
identifying the cell type whose corresponding marker expression is largest.  
 
This has two advantages: 

1.​ A particularly challenging technical artefact is so-called spillover, in which protein 
expression signals from a neighbouring cell are counted towards the expression 
profile of the currently considered cell. A prominent reason for spillover is 
segmentation errors, or more fundamentally, uncertainties in the assignment of 
particular pixels to one cell or another. 

2.​ With unsupervised clustering methods, the identified clusters need to be annotated 
post hoc based on marker expression profiles. Techniques that incorporate prior 
knowledge about existing cell types and their corresponding markers a priori 
circumvent this step, so that such associations only need to be defined once. 

 
The second step of cell phenotyping consists of partitioning the major cell types into 
subtypes. Some proteins, such as the proliferation marker Ki-67, can be expressed by 
multiple different cell types. To enable the partitioning of major cell types into a more 
fine-grained classification scheme, such markers can be binarized, resulting in each cell 
being “positive” or “negative” for a given marker. 
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Spatialproteomics allows users to define a hierarchical cell type gating tree, which partitions 
the previously predicted major cell types into more fine-grained subtypes. This scheme also 
enables more complex marker combinations. Next to single marker positivity or negativity, a 
cell subtype can also be defined by a combination of both positive and negative expression, 
or by a set of alternative markers (e. g. a cytotoxic T cell could be predicted to be exhausted 
if it expresses either PD1 or TIM3). 
 
Next to our hierarchical gating method, we also implement a wrapper around assignment of 
single-cell proteomics (astir) (Geuenich et al., 2021). This method offers a probabilistic 
approach to cell type prediction and also provides uncertainty estimates about its 
predictions. 
 
A commonly used approach to detect changes in tissue structure when comparing 
conditions is the definition of cellular neighborhoods (Schürch et al., 2020; Kim et al., 2022; 
Varrone et al., 2024; Kuswanto et al., 2023; Nirmal and Sorger, 2024) (Fig. 1f). In this 
approach, a neighborhood profile gets computed for each cell, which consists of the relative 
cell type abundances surrounding the center cell. These neighborhoods can be defined via 
Delaunay triangulation, the k nearest neighbors or a circle with a fixed radius centered at 
each cell. Having obtained one neighborhood profile per cell, unsupervised clustering such 
as k-means clustering can reveal condition-specific tissue composition.  
 
Spatialproteomics allows users to investigate neighborhoods in more detail. Since the 
neighborhood of a cell can be modeled as a network, where each cell is connected to all 
cells within its vicinity, a variety of features can be computed for each cell. Measures such as 
homophily (the fraction of cells in the neighborhood with the same cell type as the center 
cell) and Shannon’s diversity index can provide information about how homogeneous the 
tissue is around any cell. The definition of cellular neighborhoods also enables users to 
subset cells, for example only selecting cells belonging to a tumor region or cells with a 
homogeneous microenvironment. Further investigation of the neighborhood composition and 
heterogeneity allows for a more detailed description of the tissue. 
 
Putting everything together, spatialproteomics provides static plotting methods to not only 
visualize marker intensities, but also segmentation masks, cell type labels and 
neighborhoods. On disk, objects are stored as zarr files, so that users can load images, 
segmentation masks, quantifications, cell type predictions and other possibly interesting data 
without needing to store the whole object in memory. Additionally, we implemented export 
functions to AnnData (Virshup et al., 2021) and spatialdata (Marconato et al., 2024) (Fig. 
1g), which can in turn be used with spatial analysis tools such as squidpy (Palla et al., 2022), 
SCIMAP (Nirmal and Sorger, 2024), and Multiomics and Ecological Spatial Analysis (MESA) 
(Ding et al., 2025). This interoperability also enables interactive analysis using tools such as 
napari (Sofroniew et al., 2024). 
 

Spatialproteomics enables the large scale analysis of a diverse 
dataset of B cell Non-Hodgkin lymphomas 

To demonstrate the capabilities of spatialproteomics, we performed spatial profiling on 250 
samples of 132 patients with B cell Non-Hodgkin lymphomas (BNHL) or non-neoplastic 
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controls. Lymph node biopsies were extracted from the patients, and tissue microarrays 
(TMA) were created using 1mm diameter cores and a median of two replicates per patient. 
The samples were grouped into three distinct categories based on their condition: reactive 
lymph nodes (LN), indolent lymphomas with retained tissue structure (marginal zone 
lymphoma (MZL), follicular lymphoma (FL)), and aggressive lymphomas with diffuse 
structure (diffuse large B cell lymphoma (DLBCL), primary mediastinal large B cell lymphoma 
(PMBCL), Burkitt’s lymphoma, B cell lymphoblastic lymphoma (BLBL)). We imaged 56 
markers with the purpose of inferring cell types and states from their expression patterns 
(Sup. Table 2). In total, more than 3.5 million cells were segmented, with the average 
number of cells detected per core being 14,273. 
 
BNHL consist of malignant B cells along with various other cell types within the tumor 
microenvironment (TME). Although the composition of the TME is heterogeneous across 
disease subtypes, several major cell types, such as T cells, macrophages, and endothelial 
cells, are commonly present (Scott and Gascoyne, 2014). These can be subdivided further 
according to the expression of additional lineage-specific or functional markers. Previous 
studies showed that the frequencies of specific T cell subpopulations vary across BNHL 
subtypes - partly due to differences in clonal expansion - and can be associated with survival 
(Roider et al., 2024). To explore this, we constructed a hierarchical gating tree that focused 
specifically on the classification of T cell subsets (Fig. 2a). 
 
We predicted the cell type of each individual cell according to this gating tree (Fig. 2b). A 
comparison of cell type composition showed that lymphoma samples had a significantly 
higher content of B cells (Fig. 2e, Sup. Fig. 2), which is expected due to accumulation of 
malignant B cells. Furthermore, we noted an increase in macrophages and stromal cells 
pointing towards  increased vascularization of the tumor samples (Sup. Fig. 2). A principal 
component analysis based on relative cell type abundances corroborated this finding, 
showing that the main axis of variation was driven by B, T, and stromal cells (Sup. Fig. 3). 
 
Next to the cell type composition, we investigated cell areas in the different conditions. 
Aggressive lymphomas showed larger cells, while the average cell area in indolent 
lymphomas was closer to the reactive lymph nodes (Fig. 2f), in line with the blast-like 
morphology of aggressive lymphoma (Alaggio et al., 2022). As a consequence, cores from 
aggressive lymphoma contained fewer cells in the same tissue area. 
 
Beyond looking at individual cell types, we collected the cell type composition within a radius 
of 25 µm around each cell and clustered them across samples to obtain shared 
neighborhood profiles (Fig. 2c,g). We identified seven distinct neighborhoods, including a B 
cell rich neighborhood (B (NH)) and one enriched in proliferating B cells (Bprol/Tfh). Another 
neighborhood consisted mainly of myeloid cells and macrophages (Myeloid/Macro), and one 
showed enrichment in T helper and regulatory T cells (Th/Treg). The “T/Dendritic” 
neighborhood predominantly captured T cells that could not be further classified due to 
limited CD8 signal. While this reflects a limitation of the hierarchical cell type classification in 
low signal-to-noise settings, we observed this neighborhood in only a few samples (Sup. 
Fig. 6). 
 
Given cell type abundances, neighborhood abundances, as well as morphological 
information such as the mean homophily of every patient, we were interested to see which of 
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these metrics could be used to differentiate between lymph nodes, indolent and aggressive 
lymphomas. We performed a linear discriminant analysis on the three groups, which showed 
a clear trajectory from reactive lymph nodes over indolent to aggressive lymphomas (Fig. 
2h). To see which features were most important for the classification, we considered the 
scaling of each feature in the space spanned by the class centroids (Fig. 2i). Aside from cell 
type abundances, one major driving factor was homophily, which is in line with observed 
diffuse architecture in most aggressive lymphomas, showing that there is merit to obtaining 
features in addition to cell type abundances. 
 

Spatial statistics reveal clustering of cell types and cell-to-cell 
interactions 

While cellular neighborhoods provide one perspective into the spatial distribution of cell 
types, there are many more spatial statistics methods to further investigate and characterize 
tissue architectures,  cell-to-cell interactions, and higher-order patterns. We set out with the 
goal of identifying which cell types occurred more frequently in clusters and which ones were 
randomly spatially distributed. To achieve this, we computed Ripley’s K function with a 
maximum radius of 150 µm and looked at the area between the observed curve and the 
theoretical distribution that would emerge if the spatial point pattern was generated by a 
homogeneous Poisson process. Fig. 3a shows that B cells, proliferating B cells, and T 
follicular helper cells occur in clusters in reactive lymph nodes, corresponding to germinal 
centers. As tissue structure becomes more dispersed in aggressive lymphomas, the spatial 
clustering of these cell types becomes less prevalent.  
 
Next to cells of the same cell type clustering together, we wondered if there are certain 
combinations of cell types which co-occur frequently. To investigate this, we considered  a 
distance of less than 70 µm between cell centroids and computed the neighborhood 
enrichment score using squidpy (Palla et al., 2022). We applied this to the level 0 cell types, 
which showed that the structure becomes more diffuse with aggressiveness of the 
lymphomas (Fig. 3c). 
 
To consider the fine-grained cell type annotations, we computed the areas between the 
observed and theoretical Ripley’s Cross-K function for each pair of cell types, and compared 
them between lymph nodes and aggressive lymphomas (Fig. 3d). As before, the majority of 
significant differences were interactions that were present in lymph nodes and disappeared 
in the lymphoma samples. While most of these interactions were between cells of the same 
cell types, some interactions reminiscent of germinal centers were also observed, such as 
between proliferating B cells and T follicular helper cells. On the flipside, an interaction 
between M2 macrophages and T follicular helper cells seemed to be enriched in aggressive 
lymphomas. 
 

Validation using five DLBCL whole-slide images 

TMA cores only show a small part of the underlying tissue, and it is typically assumed that 
they show a representative excerpt of the whole tissue. To see how well our TMAs 
recapitulate the overall tumor architecture, we performed whole slide imaging on five 

 

https://paperpile.com/c/0Cm7uG/554a


9 

samples from patients with diffuse large B cell lymphoma (DLBCL), for which we had two 
matched TMA cores each. After segmentation with cellpose and the removal of cells which 
were not part of the main tissue of interest, we obtained a dataset of over 6.6M cells, which 
is almost twice as much as all of the previous TMAs had together. 
 
Despite Akoya’s built-in illumination correction using the BaSiC algorithm (Peng et al., 2017), 
we still observed differences in marker intensities across tissues, hampering the application 
of our thresholding approach. To adjust for these, we leveraged spatialproteomics’ ability to 
apply arbitrary image processing methods to the multi-channel images. For each channel, 
we constructed a second image that was a Gaussian blur of the original image, with a kernel 
size of 51 pixels, and subtracted it from the original one (Fig. 4a). This reduced the 
image-wide gradients, making it possible to apply thresholding again and use the processed 
images to predict cell types as previously described (Fig. 4b). 
 
Next, we were interested in comparing  cell type abundances between the WSIs and their 
corresponding TMA samples (Fig. 4c). While the general trend in cell type composition with 
many B and T cells held true in the whole slide dataset, there were some discrepancies to 
the TMA results. For example, the WSI for patient 2 contained some connective tissue, 
which was mostly classified as myeloid cells and therefore skewed the ratio of cell types. 
 
To make use of the spatial context, we again applied the neighborhood enrichment method 
from squidpy (Fig. 4d). For clarity, we only considered interactions between different cell 
types, since self-interactions were frequently most enriched. In accordance with our TMA 
results, B cells and T cells had a negative interaction score. We also found several enriched 
interactions such as Myeloid-Endothelial, Stromal-Endothelial, and T-Macrophage (Fig. 4e). 
While these interactions were computed without taking into account a negative control, they 
do show that there are interactions between specific cell types in DLBCL, providing 
opportunities for future research. 

Discussion 
Highly multiplexed immunofluorescence imaging enables molecular profiling of cells in their 
native spatial organization in tissues. Analyzing such data requires multiple processing steps 
that generate additional, derived layers of data – such as segmentation masks, marker 
intensities, and cellular annotations – all of which share some common dimensions, but may 
also introduce new ones. Each step can build upon a rich diversity of established methods 
and existing software implementations. A main task of the analyst is to construct end-to-end 
workflows that seamlessly chain the steps together, adapting and optimally tuning each of 
them. Here we present spatialproteomics, an open-source Python package that provides a 
comprehensive toolkit based on a unified data structure that maintains synchronization 
across dimensions throughout. 
 
We have drawn inspiration and used experience from several existing tools. In the R 
ecosystem, cytomapper and imcRtools (Windhager et al., 2023) build upon the 
SpatialExperiment data structure (Righelli et al., 2022) for spatial single-cell data. In Python, 
Spatial Omics Pipeline and Analysis (Sopa) (Blampey et al., 2024) and Structured Spatial 
Analysis for Codex Exploration (SPACEc) (Tan et al., 2024) offer similar functionality for 
processing and analyzing highly multiplexed fluorescence images. Additionally, pipelines 
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such as Multiple Choice MICROscopy (MCMICRO) (Schapiro et al., 2022) and Single-cell 
Identification from MultiPLexed Images (SIMPLI) (Bortolomeazzi et al., 2022) provide 
Nextflow-based solutions. 
 
The package presented here, spatialproteomics, wraps widely used implementations of 
methods for segmentation, marker quantification, cell type prediction, neighborhood 
analysis, and visualization. By unifying these methods under a consistent application 
programming interface (API), spatialproteomics enables researchers to experiment with 
different method choices and parameters when they adapt a workflow to their data and 
scientific questions of interest. A standardized syntax further facilitates exploration of diverse 
analytical approaches. Importantly, spatialproteomics automatically manages shared 
dimensions between data layers. This relieves the user of tedious book-keeping and 
eliminates a frequent source of – sometimes hard-to-find – errors. The package is designed 
for easy installation, and integrates seamlessly with the scverse ecosystem. 
 
We showed an application  of spatialproteomics to a dataset of BNHL biopsies and found 
that some of the derived features could effectively differentiate between non-malignant 
lymph nodes, indolent lymphoma, and aggressive lymphoma. The results recapitulated the 
loss of germinal centers and overall tissue structure in diseased lymph nodes. We validated 
some of the results on whole slide images, further demonstrating the scalability of 
spatialproteomics for handling large datasets. 
 
Spatialproteomics provides access to a range of spatial processing and analysis methods. It 
seamlessly integrates into the existing single-cell data analysis infrastructure of the scverse 
ecosystem. By lowering technical barriers and aligning with familiar idioms from single-cell 
analytics, we hope that our package will help spread and increase the utility of spatial 
proteomics in biomedical and basic biology research. 
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Methods 
Sample Preparation 

Microscopy slides with 5 µm sections of the BNHL TMAs and DLBCL whole-slide images 
were prepared by the  National Center for Tumor Diseases (NCT)  tissue bank in Heidelberg 
(ethics vote S-686/2018). Multiplex immunofluorescence was performed as previously 
described (Schniederjohann et al., 2025). In brief, the tissue samples were deparaffinized 
and re-hydrated. Heat-induced antigen retrieval was performed for 20 min at 155-160°C 
using Tris-EDTA buffer at pH 9. To reduce autofluorescence, tissue samples were bleached 
two times for 45 min using hydrogen peroxide (H2O2). Tissue samples were incubated with 
a cocktail of 56 DNA oligonucleotide-conjugated antibodies overnight at 4°C (Sup. Table 2). 
For antibody conjugation, DNA oligonucleotide sequences previously published were used 
(Schürch et al., 2020). The next day, a three-step fixation followed including incubation with 
1.6 % paraformaldehyde (PFA), 100 % methanol and bissulfosuccinimidyl suberate (BS3).  
 
Tissue samples were imaged using the Phenocycler Fusion System (Akoya Biosciences) 
according to the manufacturer’s instructions. For cyclic imaging, Atto550 and Atto647N 
labelled complementary DNA-barcodes were used. Acquired raw files were processed into a 
single qpTIFF file by the Fusion software (version 1.0.7 for TMAs, version 2.2.0 for WSI). 
Details on the raw data processing are available in the manufacturer's technical 
documentation (https://help.codex.bio/codex/processor/technical-notes/). Briefly, for each 
cycle, the nuclear stain pattern was compared to the reference cycle - by default, the DAPI 
signal from the second cycle. The calculated offsets were used to align all cycles through 
rigid translation.  
 
Background subtraction was performed using “blank” cycles at the beginning and end of 
each experiment. Deconvolution was carried out using the Microvolution package, while 
shading correction was applied with BaSiC. Image registration of adjacent tiles was 
performed using the Microscopy Image Stitching Tool (MIST) library. 
 

TMA Cropping 

A grid defining the locations of the cores within the tissue microarrays was manually 
constructed in QuPath using the built-in TMA de-arrayer. The coordinates were exported to a 
csv, and crops of size 3,000 by 3,000 pixels were extracted around the centroid of each 
crop. 
 

Segmentation 

For the TMAs, cells were segmented on the DAPI channel using the cyto3 model from 
cellpose 3.0.7, and filtered to exclude cells with an area below 50 pixels or above 300 pixels. 
Subsequently, masks were expanded into each direction by two pixels. 
 

 

https://paperpile.com/c/0Cm7uG/iTK8
https://paperpile.com/c/0Cm7uG/jaOO
https://help.codex.bio/codex/processor/technical-notes/
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Quality Control 

We manually excluded 28 samples from the original dataset due to artefacts such as tissue 
dissociation, marker spillage, or other contamination of the image. We also only kept 
samples for which clinical annotations were available. For samples where only part of it was 
corrupted by an artefact, we manually drew in masks and removed all cells within those 
masks from downstream analysis. 
 
On the cell level, cells which were too isolated from other cells were removed. We achieved 
this by running a binary dilation of 25 pixels on the segmentation masks, finding connected 
components and removing components which contained less than five cells. 
 

Image Processing and Cell Phenotyping 

For the classification of major cell types, we first thresholded the different markers by 
quantiles, depending on the specificity and overall signal intensity of each marker. We 
started with the following default values: {PAX5: 0.8, CD3: 0.7, CD11b: 0.8, CD11c: 0.9, 
CD68: 0.9, CD31: 0.95, CD34: 0.95, CD90: 0.95, Podoplanin: 0.95}. We then manually 
cross-checked the images with the cell type predictions, and adjusted the thresholds where 
we deemed necessary (Sup. Table 3). The thresholding itself consisted of computing the 
corresponding quantile value, subtracting it from the original image, and then clipping the 
result to 0 to remove negative values. 
 
After thresholding on the pixel level, we aggregated the marker intensities by taking the 
mean over each segmentation mask. We then applied an arcsinh transform with a cofactor 
of 5 to the resulting expression matrix. Finally, we assigned the cell type whose 
corresponding marker had the largest expression. The correspondence between cell types 
and markers is shown in Fig. 2a (level 0). 
 
For the functional markers, we once again thresholded the markers manually, and then 
computed the percentage of positive pixels which remained within each segmentation mask 
after thresholding. Using a second threshold t, cells with t% or more positive pixels were 
assigned as “positive”, while all others were considered “negative” (Sup. Table 3). 
 
In some samples, certain markers were too unspecific to enable reliable thresholding. In 
such cases, we stopped classification at the corresponding node of the gating tree (Fig. 2a). 
For example, when we were not able to binarize CD8, we simply called all T cells as “T 
cells”, and did not traverse the gating tree further. The advantage of this was that we could 
retain samples even if an individual marker did not exhibit specific staining characteristics. 
 

Neighborhood Analysis 

To define neighborhoods, we considered cells whose centroids were within 25 µm from one 
another. After quantifying the cell type abundances within the 25 µm radius around each cell, 
we applied k-means clustering with k = 7 to obtain neighborhood labels. The numerical 
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labels were then manually substituted by more informative names based on the composition 
of each cluster (Fig. 2g). 
 

Morphological Profiling of Niches 

We implemented various metrics to quantify the heterogeneity of the environment around 
each cell. These metrics include: 
 

1.​ Degree: the number of cells connected to each cell 
2.​ Homophily: the fraction of neighboring cells which have the same cell type as the 

center cell 
3.​ Inter-Label Connectivity: the fraction of neighboring cells which have a different cell 

type than the center cell 

4.​ Shannon’s diversity index: , where  are the cell type 𝐻' =  −
𝑖=1

𝑆

∑ 𝑝
𝑖
 𝑙𝑛(𝑝

𝑖
) 𝑝

𝑖

proportions. 
 

To compare these between samples, we computed the mean across all cells within a 
sample. 
 

Spatial Statistics 

To investigate the clustering behaviour of individual cell types, we used the spatstat package 
in R to compute Ripley’s K function in each sample on each cell type. We then limited the 
distance to 150 µm and computed the area between the observed distribution and the 
theoretical distribution that would emerge if the point pattern was generated by a 
homogeneous Poisson process. 
 
To show the average lines in a single plot (Fig. 3b), we interpolated the data along 100 
points between the distances of 0 and 150 µm using one-dimensional linear interpolation. 
 
For squidpy, we used a radius-based definition of neighborhoods, defining two cells to be 
interacting if their centroids were less than 70 µm apart. 
 
To further investigate cell-cell interactions, we also computed Ripley’s K cross using the 
spatstat package. We then computed the area between the observed and theoretical curves 
between 0 and 150 µm, and performed an independent T-test to evaluate the differences 
between lymph nodes and aggressive lymphomas (Fig. 3d). We used Benjamini-Hochberg 
correction with a family-wise error rate of 0.05 to adjust the p-values. Interactions were 
deemed significant if their FDR-corrected p value was below 0.05, and the effect size was 
above 20M (Fig. 3d). 
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Analysis of Whole Slide Images 

We segmented the whole slide images using the cyto3 model from cellpose 3.1.0 and 
removed cells whose area was outside of the range between 50 and 600 pixels. In addition, 
we drew regions of interest around the main tissue to remove outlying or irrelevant cells. 
 
To avoid marker gradients skewing the cell type prediction, we applied a background 
correction by creating a copy of the original image, applying a Gaussian blur with a kernel 
size of 51 pixels, and subtracting the result from the original image. Cell type prediction was 
performed as before by setting a threshold for each marker and assigning the cell type with 
the highest expression per cell (Sup. Table 3). 

Code Availability 
Spatialproteomics can be installed via pip, and the code is publicly available on GitHub at 
https://github.com/sagar87/spatialproteomics under the MIT license. Documentation can be 
found under https://sagar87.github.io/spatialproteomics. 
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Figure 1: An exemplary workflow orchestrated with spatialproteomics. a-b, After raw images 
are obtained, segmentation is performed either on the nuclear or whole cell level, or on 
multiple markers independently. c, Image processing tools such as thresholding can boost 
the signal-to-noise ratio of the image. d, Fluorescence intensities are quantified for each 
segmented cell. e, The resulting expression matrix serves as input for cell type prediction, 
both of major cell types and subtypes. f, These cell type predictions can then be used to 
perform neighborhood analysis or find areas of tissue heterogeneity. g, Export into data 
formats like anndata and spatialdata ensures interoperability with the scverse ecosystem. 
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Figure 2: Analysis of a diverse selection of B cell Non-Hodgkin lymphomas. a, A hierarchical 
gating tree used for cell type and subtype prediction. b-d, Cell types, neighborhoods, and 
Shannon’s diversity index of a single lymph node core. Only coarse cell types are shown in 
the visualization. Cell type colors correspond to the ones shown in panel a. e, Overview of 
patients and their cell type compositions, cell type colors as specified in panel a. f, More 
aggressive lymphomas tend to have larger cells than lymph nodes. g, Clustered 
neighborhoods (NH) capture distinct cell type compositions. h, Linear discriminant analysis 
(LDA) of samples based on cell type abundances, neighborhood abundances, and 
morphological information. i, LD1 scalings of the individual features in the space spanned by 
the class centroids from the LDA. Only features with an absolute scaling above 0.5 are 
shown. 
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Figure 3: Spatial analysis of the BNHL cohort. a, Area between theoretical and observed 
Ripley’s k. Significance determined via ANOVA. Some cell types (B cells, Bprol, Tfh, …) cluster 
more in lymph nodes and lose structure in lymphomas. b, Ripley’s K for B cells, resolved by 
entity class. The black line shows the expected distribution if the point distribution followed a 
homogeneous Poisson process (HPP). c, Mean interaction z-scores from squidpy on the 
level 0 of the gating tree. Interactions diminish in more aggressive lymphomas. d, Ripley’s K 
cross on the fine-grained cell types. Differences between LN and aggressive, p-values 
determined with an independent t-test. e, Representative cores for LN and aggressive 
lymphomas show that spatial organization gets lost. 
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Figure 4: Analysis of five DLBCL whole slide images. a, Spatialproteomics enables the 
application of arbitrary image processing algorithms to multi-channel images, allowing us to 
correct for differences in marker intensities across whole slide images (WSIs). b, Predicted 
cell types. c, Comparison of cell type abundances between whole slide images and 
corresponding TMA cores. d, Interaction scores from squidpy’s neighborhood enrichment 
function, excluding self-interactions. e, Example of an interaction between myeloid cells and 
endothelial cells.  
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Supplementary Information 
 

 
 
Supplementary Figure 1: Spatialproteomics ensures synchronization of data with shared 
dimensions. Users can subselect data based on spatial coordinates, channels, cell types, 
and more. 
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Supplementary Figure 2: Cell type abundances quantified at different granularities of the 
gating tree. Statistical significance was assessed using ANOVA. Significance levels are 
indicated as follows: p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***).  
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Supplementary Figure 3: PCA of the patients in the BNHL cohort computed on the relative 
cell type abundances. a, PC1 vs PC2, colored by entity class and abundance of the major 
cell types. b, Loadings of the first two principal components show that PC1 is dominated by 
differences in B, T, and stromal cell composition. PC2 distinguishes based on B, myeloid, 
endothelial cells and macrophages. 
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Supplementary Figure 4: Coarse cell type predictions for all samples, stratified by entity. 
Replicates are shown above one another. 
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Supplementary Figure 5: Shannon’s diversity index of a cell’s microenvironment. Due to T 
cells being predicted at higher granularity, T cell rich zones tend to look more heterogeneous 
than B cell rich zones. 
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Supplementary Figure 6: Neighborhood assignments for all samples, stratified by entity. 
Replicates are shown above one another. 
 

 supplementary_tables
 
Supplementary Table 1: Overview of the TMA and WSI datasets (entity, size, number of 
cells per sample).  
 
Supplementary Table 2: Overview of the marker panel for the TMAs.  
 
Supplementary Table 3: Overview of the thresholds used for image processing and cell 
type classification for the TMAs. 
 
Supplementary Table 4: Overview of the marker panel for the WSIs. 
 
Supplementary Table 5: Overview of the thresholds used for image processing and cell 
type classification for the WSIs.  

 

https://docs.google.com/spreadsheets/d/1miGKrO9_vaMmDUwiy3av5pX3tzkW6cI9D4u1vFpNzHg/edit?usp=sharing
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