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Discovery of RNA-binding proteins and
characterization of their dynamic responses
by enhanced RNA interactome capture
Joel I. Perez-Perri 1, Birgit Rogell1, Thomas Schwarzl 1, Frank Stein 1, Yang Zhou1,2,3, Mandy Rettel 1,

Annika Brosig 1,2,3,4 & Matthias W. Hentze 1,2

Following the realization that eukaryotic RNA-binding proteomes are substantially larger

than anticipated, we must now understand their detailed composition and dynamics.

Methods such as RNA interactome capture (RIC) have begun to address this need. However,

limitations of RIC have been reported. Here we describe enhanced RNA interactome capture

(eRIC), a method based on the use of an LNA-modified capture probe, which yields

numerous advantages including greater specificity and increased signal-to-noise ratios

compared to existing methods. In Jurkat cells, eRIC reduces the rRNA and DNA con-

tamination by >10-fold compared to RIC and increases the detection of RNA-binding proteins.

Due to its low background, eRIC also empowers comparative analyses of changes of RNA-

bound proteomes missed by RIC. For example, in cells treated with dimethyloxalylglycine,

which inhibits RNA demethylases, eRIC identifies m6A-responsive RNA-binding proteins

that escape RIC. eRIC will facilitate the unbiased characterization of RBP dynamics in

response to biological and pharmacological cues.
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RNA-binding proteins (RBPs) play essential roles in gene
expression and other cellular functions. Thus their identi-
fication and the understanding of their mechanisms of

action and regulation is key to unraveling physiology and disease.
Recent approaches for the proteome-wide identification of RBPs,
especially RNA interactome capture (RIC)1,2 and modifications
developed on its basis3, have emerged as powerful tools to identify
and study RBPs. RIC is based on the irradiation of living cells
with ultraviolet (UV) light to generate covalent bonds between
RNA and proteins that are in direct contact with each other.
Subsequently, cells are lysed under denaturing conditions, and
polyadenylated RNAs are isolated using deoxythymidine oligo-
nucleotides (oligo(dT))-coupled beads. After extensive washes,
the crosslinked proteins are eluted and identified by quantitative
mass spectrometry1,2. RBP hits are defined as those proteins that
are enriched in irradiated samples compared to controls that
have not been irradiated but otherwise treated identically.

RIC has been applied to different eukaryotic systems,
including mammalian cell lines, yeast, Drosophila embryos, and
plant seedlings1,2,4–7, successfully recovering many well-known
RBPs. In addition, RIC has led to the identification of hundreds
of new RBPs that were not previously related to RNA biology
and that lack known RNA-binding domains (RBD)4. Never-
theless, it has been reported that RIC proteomes can be con-
taminated with DNA-binding and other proteins that could
falsely be assigned as RBPs3.

To unravel RBP function, we need to understand how RBPs
respond to environmental and pharmacological cues. While RIC

has successfully been employed toward this aim7–9, experimental
variability and technical noise limit its utility for such a chal-
lenging application.

Here we describe enhanced RIC (eRIC), which combines the
use of a locked nucleic acid (LNA)-modified capture probe and
more stringent capture and washing conditions. The performance
of the eRIC and RIC protocols was directly compared using
Jurkat cells. eRIC markedly increases capture specificity, reduces
material requirement, and improves signal-to-noise ratios com-
pared to precedent techniques. eRIC is particularly suitable for
the detection of unconventional RBPs and the identification of
dynamic changes among the RNA-bound proteome.

Results
Polyadenylic acid (poly(A)) tail-mediated capture of RBPs:
considerations. With suitable tools for de novo RBP discovery
now in hand, we wanted to build on the principle of RIC and
develop a method that is highly performant in comparative stu-
dies. To reach this goal, we aimed to reduce DNA and ribosomal
RNA (rRNA) contaminations that could contribute inadvertently
co-purifying proteins and increase background RBPs.

To minimize protein–protein interactions that resist the
denaturing capture conditions, we preincubated cell lysates at
60 °C for 10–15 min7, followed by centrifugation to remove
insoluble material (Fig. 1a). By using a modified probe with LNA,
which positions oligonucleotides optimally for hybridization with
RNA, we profoundly increased the melting temperature between
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Fig. 1 Schematic representation of the eRIC method. RBPs are crosslinked to RNAs in vivo by irradiating cells with 254 nm UV light. Crosslinked proteins
are isolated under denaturing conditions employing a LNA-modified probe and stringently washed under high temperature conditions using high salt
concentrations first (to eliminate contaminants primarily based on hydrophilic protein–protein interactions) and low salt concentrations afterwards
(to eliminate contaminants based on nucleic acid base pairing). Captured proteins are then eluted with RNase, concentrated to 100 μL to apply the Single‐
Pot Solid‐Phase‐enhanced Sample Preparation protocol (SP3, see main text: Analysis of RBPs identified by RIC versus eRIC), and identified by mass
spectrometry. A comparison with the previous RIC protocol is included on the right. Green pentagon/line: native/denatured RBP; in red: contaminant
protein. Black line with stretch of As: poly(A) RNA. Black line: contaminating non-poly(A) RNA/DNA. Light blue circle with stretch of T: capture
probe coupled to magnetic beads (black and green Ts symbolize the alternation of DNA and LNA nucleotides; note that capture probe has actually
20 bases). LC-MS/MS: liquid chromatography–tandem mass spectrometry
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the capture probe and poly(A) tails (from ~44 °C to ~77 °C),
permitting more stringent purification conditions. A 20-mer
bearing an LNA-thymine at every other position (LNA2.T) had
previously been shown to effectively capture messenger RNA
(mRNA)10. The probe design also includes a flexible C6 linker
and a primary amino group at the 5’ end, used to couple the LNA
oligo to carboxylated magnetic beads (see Methods for detailed
procedure). With this probe, all steps of the protocol, including
capture and all washes, could be executed at 37–40 °C instead
of 4 °C (Fig. 1a). Since salt stabilizes RNA–RNA and RNA–DNA
duplexes, and hence favors contaminating nucleic acid pull down,
we exploited the stability of LNA2.T–poly(A) RNA duplexes and
incorporated a pre-elution step with pure water at 40 °C (Fig. 1a).
This step proved instrumental for the efficient elimination of
contaminant nucleic acids, such as rRNA and genomic DNA,
without interfering with poly(A) capture (see below).

In RIC, the RNA pull down and the washes are performed at
4 °C to avoid interference with the oligo(dT)/poly(A) hybridiza-
tion. This is followed by temperature-mediated elution at
50–55 °C (Fig. 1a). The increase in elution temperature could
cause the co-elution of contaminants, including proteins directly
associated with the beads employed for the pull down. To
improve the specificity of the elution and to decrease background
contaminants, we substituted the heat elution by RNase treatment
at 37 °C (Fig. 1a). This elution strategy is more specific for RNA-
bound proteins and is executed at a lower temperature than the
washes. We termed this approach, which involves the use of
the LNA2.T probe, increased capture and wash temperatures,
the pre-elution, and the specific RNase-based elution, eRIC.
We directly compared the performance of RIC and eRIC using
Jurkat cells, a cell type characterized by a large nuclear volume
compared to a relatively modest cytoplasmic volume. All
experiments were performed in parallel.

Reduction of rRNA and genomic DNA contamination by
eRIC. We first compared the RNA capture characteristics of the
two protocols. Although the eRIC elution per se is RNase-
mediated, an aliquot of purified eRIC material was heat-eluted to
allow RNA analyses. Aliquots of the RIC and eRIC heat eluates
were assessed in a bioanalyzer or reversely transcribed and sub-
jected to quantitative polymerase chain reaction (qPCR) using
intron-sensitive primers that amplify complementary DNA
(cDNA) but not genomic DNA. Pull down of poly(A) RNA by
eRIC is specific and capture probe-mediated, because no RNA is
detected when uncoupled beads are used (Fig. 2b). Compared to
RIC, eRIC exhibits a profoundly different RNA elution profile
(Fig. 2a, b). While about 30% of the total RNA eluted by RIC
corresponds to rRNA, it is only around 3% in the eRIC samples.
Indeed, the bioanalyzer pattern for eRIC is dominated by an
evenly distributed smear between ~500 and 4000 nucleotides that
we attribute to polyadenylated RNAs, whereas RIC eluates pre-
dominantly show the rRNA bands (Fig. 2a). Capture of rRNA is
UV-independent, and, interestingly depletion of the 28S rRNA is
more drastic than of the 18S rRNA (Fig. 1b, c). These data suggest
that 18S rRNA co-purifies with poly(A) RNA either by means of a
sufficiently long poly(A) stretch that is bound by the capture
probe, or by hybridization of the rRNA to complementary
sequences within poly(A) RNA. In line with these considerations,
efforts to further reduce 18S rRNA contamination were met by
decreased poly(A) RNA yields. The qPCR results show that the
higher temperature used in the eRIC protocol is not associated
with RNA degradation (Fig. 2b).

DNA contamination was then estimated by qPCR analysis for
multiple genes on aliquots of RIC and eRIC eluates without prior
reverse transcription. The results demonstrate that eRIC
dramatically reduces the contamination with genomic DNA by

10–100-fold (Fig. 2b, lower panel). By contrast, DNA contamina-
tion in RIC can reach the level of the cDNA for genes with low
expression levels, as indicated by the levels of genomic DNA and
cDNA for ZNF80 (Fig. 2b).

Overall these results highlight that eRIC leads to a profound
reduction in rRNA and genomic DNA contamination without
compromising and possibly enhancing the capture of poly(A)
RNA. Since the RNA analyses required heat rather than RNase
elution of the eRIC samples for obvious reasons, the purity of
eRIC samples may be even higher following the RNase-based
elution of the original eRIC protocol.

Analysis of RBPs identified by RIC versus eRIC. We then
subjected the proteins eluted according to the two protocols to
downstream analysis. Following eRIC, the eluates are vacuum-
concentrated using a SpeedVac, instead of the Amicon filters that
RIC employs and that are commonly associated with protein loss
and size bias. To exclude technical bias, SpeedVac-mediated
concentration was also applied to RIC samples (see below).
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) and silver staining of eluted proteins shows patterns that
differ profoundly from the input samples and that are absent
from the non-irradiated controls, indicating the enrichment of
specific RBPs after UV crosslinking by both RIC and eRIC
(Fig. 2c). The band pattern of the eRIC and RIC eluates differs
substantially (Fig. 2c), including proteins captured more effi-
ciently by eRIC compared to RIC and vice versa. We also noticed
that heat (re-)elution after the RNase-based elution of the eRIC
samples yielded some proteins with similar migration as proteins
eluted from the RIC samples (Fig. 2c), suggesting that these
proteins are not RNA-bound. Therefore, RNase-mediated elution
appears to be more specific for bona fide RBPs.

Specific enrichment for the known RBPs UnR, Nono, and HuR
was confirmed in both the RIC and the eRIC samples by western
blotting. Pull down of the RBPs by eRIC was at least equally
efficient than for RIC (Fig. 2d).

To minimize pre-analytical sample loss, we introduced the
highly sensitive Single-Pot Solid-Phase-enhanced Sample Pre-
paration (SP3) protocol11. SP3 maximizes recovery of peptides for
mass spectrometry and is compatible with the use of detergent
throughout the procedure until the final wash. To facilitate the
comparison between all other aspects of the RIC and eRIC
protocols, and as described for the concentration step, SP3 was
applied to both eRIC and RIC samples. Consequently, we used
equal cell numbers for both methods, focusing on the differences
in ribonucleoprotein (RNP) capture per se.

Protein eluates from two independent biological experiments
each following the two different protocols were labeled by
10-plex tandem mass tag (TMT) and subjected to liquid
chromatography–tandemmass spectrometry (LC-MS/MS) (Fig. 3a).
Proteins that were significantly enriched in the crosslinked sample
compared to the −UV control (false discovery rate (FDR) 0.05
(moderated t test) and fold change (FC) > 2) were considered as
“hits.” Applying this criterion, we identified 683 and 588 RBPs in
eRIC and RIC samples, respectively (Fig. 3b, d–e and Supplemen-
tary Data 1). We had anticipated that the more stringent eRIC
purification procedure might reduce the number of identified RBPs,
but the contrary was observed. Detailed data analysis reveals that
the unique eRIC hits were also detected in the RIC samples, but that
higher background levels in the −UV controls precluded their
enrichment in +UV RIC samples and excluded them as statistically
significant hits (Fig. 3c). When we compared the intensities of
irradiated and non-irradiated samples of the 97 hits unique to
eRIC, the normalized signal sum of these 97 proteins was
significantly lower in the −UV control of eRIC in relation to
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RIC, while the opposite was observed in the irradiated samples
(Fig. 3f). Thus eRIC yields a dual benefit, reducing background
and enhancing the specific pull down after crosslinking.

We then investigated the ontology of the RIC and eRIC hits.
While classical RBPs (as defined by Gerstberger et al.12) were
similarly identified by the two approaches (Fig. 3g), eRIC recovers
more unorthodox RBPs, including enzyme and especially
metabolic enzyme RBPs4,5 (Fig. 3g). This enrichment is

particularly striking for enzymes of carbon metabolism, including
the glycolytic pathway and the tricarboxylic acid cycle (Supple-
mentary Fig. 1a), and enzymes involved in lipid, estrogen, and
inosine 5’-phosphate metabolism (Supplementary Fig. 1b). The
RNA-binding activity of at least some of these enzymes has
previously been validated4,13.

To evaluate whether eRIC detected new RBPs, we compared
the list of eRIC hits with those of previous RIC experiments
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conducted in human cells1–4,14,15. eRIC yielded 30 candidate
RBPs that were not detected either in the previous experiments
nor in the RIC dataset from the Jurkat cells analyzed here
(Fig. 3h). Overall, we identified 144 hits (Fig. 4 and Supplemen-
tary Data 1) that differ significantly between eRIC and RIC
(comparison of enrichment over −UV controls, FDR 0.05
(moderated t test) and FC > 2). Unsupervised clustering and
posterior Gene Ontology (GO) analysis of these proteins revealed
a high enrichment for terms associated with mRNA, such as
“mRNA-processing,” “mRNA splicing,” and “mRNA transport”
among the proteins preferentially recovered by eRIC (Fig. 4a). In
contrast, RIC enriches for proteins that are mostly associated with
rRNA-related terms, such as “ribosome biogenesis” and “rRNA
processing” (Fig. 4a). Representative examples of RBPs differen-
tially captured by eRIC and RIC are shown in Fig. 4b. Thus the
pattern of RBPs recovered by eRIC and RIC reflects the nature of
the RNAs captured with each method (Fig. 2).

eRIC improves the detection of biological responses of RBPs. A
major motivation for the development of eRIC was the need for
an optimized method to detect dynamic biological responses of
the RNA-binding proteome to different experimental conditions,
and we chose to evaluate the response of Jurkat cells to the

α-ketoglutarate antagonist dimethyloxalylglycine (DMOG) as a
test case, because α-ketoglutarate is required as a co-factor by
RNA demethylases16,17 and we were curious to explore DMOG-
induced changes in the RNA-bound proteomes. To reduce the
influence of secondary effects, we incubated proliferating Jurkat
cells with a modest concentration (0.5 mM) of DMOG for only
6 h. After crosslinking and lysis, we compared eRIC and RIC
using two complete sets of biological replicates (Fig. 5a). eRIC led
to the identification of 716 and 710 RBPs in dimethyl sulfoxide
(DMSO; vehicle)- and DMOG-treated cells, respectively, while
673 and 662 RBPs where identified under identical treatment
conditions by RIC (Supplementary Data 2), confirming the
enhanced detection of RBPs by eRIC.

DMOG-responsive RBPs were defined in samples from UV-
treated cells at an FDR of 0.05 (moderated t test) and a consistent
FC of at least 10% in each replicate. eRIC recovered a specific
group of 20 RBPs with increased and of 41 RBPs with decreased
RNA-binding after DMOG treatment (Fig. 5b and Supplementary
Table 1), compared to 13 and 24 responsive RBPs, respectively,
identified by RIC (Fig. 5b). The hits obtained by the two protocols
display striking differences and only modest overlap (Fig. 5c and
Supplementary Data 2). To better understand these differences,
we compared the distribution of the differential ion intensities in
eRIC and RIC eluates. These analyses showed reduced signal
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scatter and higher experimental reproducibility for the RBPs
captured by eRIC (Fig. 5d–f), which increased the detection
sensitivity for changes of the RNA-bound proteome.

For the 22 differential hits that were only recovered by RIC
(Fig. 5c), we were struck by their complete lack of response in the
eRIC samples (Fig. 5g and Supplementary Data 2). GO analysis
revealed enrichment for rRNA-related terms and for constituents
of the ribosome, pre-ribosome, and nucleolus (Fig. 6a), suggesting
that they do not directly bind to poly(A) RNA and potentially co-
purify with the contaminating rRNA (Fig. 2). GO analysis of
DMOG-responsive hits shared between RIC and eRIC showed
association with mRNA translation, especially for eukaryotic
initiation factor 3 (eIF3) and eIF4 (Fig. 6a, b). By contrast,
eRIC-specific DMOG-responsive hits were enriched for mRNA-

related functions such as mRNA transport and mRNA splicing or
belong to complexes/structures that regulate mRNA metabolism,
such as the spliceosomal complex and stress granules (Fig. 6a, b).

Taken together, eRIC facilitates sensitive comparative analyses
of changes of the mRNA-bound proteome that escape RIC.

eRIC implicates inhibition of the mammalian target of rapa-
mycin (mTOR) pathway by DMOG. DMOG treatment pro-
foundly diminished the RNA binding of several translation
initiation factors, especially of eIF3 and eIF4 (Fig. 6b and Sup-
plementary Fig. 2a). Since DMOG has been reported to negatively
affect the activity of the mTOR kinase18, which phosphorylates
the inhibitory protein 4EBP, we examined western blots for 4EBP
phosphorylation. Indeed, following treatment with 0.5 mM
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DMOG for 6 h, phosphorylation of 4EBP is severely reduced
(Supplementary Fig. 2b). In addition, we observe reduced phos-
phorylation of the mTOR targets S6K and ULK1, as well as of the
serine 2448 of TOR itself (associated with TOR activation)
(Supplementary Fig. 2b). These results indicate that DMOG
inhibits mTOR and thus activates 4EBP, inhibiting translation
initiation and explaining the reduced RNA binding of eIF3 and
eIF4. These findings exemplify the value of the eRIC data to shed
light on a biological process.

eRIC identifies N6-methyladenosine (m6A)-responsive RBPs
that escape RIC. RNA demethylases are α-ketoglutarate-
dependent dioxygenases that can be inhibited by DMOG19.
Such inhibition would be expected to increase the steady-state
levels of m6A. We tested this possibility using dot blot assays on
poly(A) RNA purified from Jurkat cells treated with 0.5 mM
DMOG (or DMSO) for 6 h. This analysis indicated that DMOG
incubation indeed increased the m6A modification of poly(A)
RNA (Fig. 7a). We were thus curious to see whether RBPs
associated with m6A biology also responded to the DMOG
treatment, especially since m6A was recently shown to affect the
RNA binding of different RBPs20,21. Strikingly, m6A-sensitive
RBPs are significantly enriched among the eRIC hits (Fisher’s
exact test, p value= 0.00016). Of the 61 DMOG-regulated RBPs
that we identified by eRIC, at least 18 (30%) were previously
shown to be affected by m6A20,21 (Fig. 7b and Supplementary
Table 1). By contrast, only two of these were found by RIC
(Fig. 7b). The direction of DMOG-induced changes corresponds
well with predictions based on previous reports20,21 (numbers in
brackets in Fig. 7b). Representative examples of previously
reported m6A readers (YTHDF3, CPSF6, PUF60, SRSF7) and
m6A-repelled proteins (CAPRIN1, HDLBP, EIF4A1, G3BP2), as
well as of proteins expected to be insensitive to m6A, are shown
in Fig. 7c.

These results show that eRIC identifies changes of the poly(A)
RNA-bound proteome concordant with the increase in steady-
state m6A levels that are missed by RIC, further supporting the
superior performance of eRIC in comparative studies.

Discussion
RBPs are central to every aspect of gene regulation and many
other processes in cell biology5,22. We describe a method devel-
oped on the basis of existing approaches, which fills a critical void
in the available repertoire: a robust, highly reproducible, and
sensitive method to detect biologically relevant changes in the
RNA binding of RBPs in response to biological cues.

During the past few years, different methods have been
developed to uncover and study the proteome-wide repertoire of
RBPs5. Especially methods applied to living cells and organisms
based on covalent RBP–RNA crosslinking have received much
attention1–3,23,24. Taken together, these methods have revealed
that the biological repertoire of RBPs is at least twice as large as
previously anticipated, posing challenges and yielding opportu-
nities for future discovery.

RIC derived its popularity from the stringency of purification
enabled by the poly(A) tail–oligo(dT) hybridization. However,
this method is by definition limited to RBPs bound to poly-
adenylated RNAs. To address this, new approaches that also
capture non-polyadenylated RNAs have been developed23–25.
These strategies involve the in vivo incorporation of nucleotide
analogs (such as 4-thiouridine or 5-ethynyluridine) into cellular
RNA. However, metabolic labeling of RNA can inhibit rRNA
synthesis and cause nucleolar stress26, which is expected to cause
significant secondary effects. Furthermore, the preferential
labeling of newly synthesized RNAs, especially for those with high
turnover rates, can bias RBP-binding analyses. Most recently, the
discovery that silica-based matrices not only retain nucleic acids
but also proteins that are covalently bound to these has added a
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simple and powerful approach to the methodological repertoire
for the discovery and isolation of RBPs, which is applicable to all
classes of RNA27. However, this simple new method may offer
limited selectivity especially against DNA-binding proteins, since
silica matrices can bind both classes of nucleic acid28.

In addition to the above considerations, the advantages of
global RNA purification may be offset by disadvantages in the
detection of poly(A) RNA-bound RBPs23–25. Poly(A) RNA
represents only a small fraction of the total cellular RNA, and the
absolute levels of many regulatory RBPs bound to this minority
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fraction are also low. By contrast, RBPs bound to non-poly(A)
RNA such as ribosomal proteins, rRNA processing factors, and
ribosome-associated proteins represent a large fraction of MS/MS
peptides and can mask the detection of poly(A) RNA-associated
RBPs. For this reason, methods based on global RNA purification
are expected to underperform in comparative studies aimed to
identify responses of RBPs bound to poly(A) RNAs such as
mRNAs and long non-coding RNAs.

Although RIC is principally limited to polyadenylated RNAs,
problems with contamination by rRNA and DNA have been
reported1–3. This problem is particularly evident with cells with a
relatively small volume (e.g., lymphocytes and leukocytes that can
be 20-times smaller than HeLa cells) (Fig. 2), where the content of
genomic DNA relative to mRNA is shifted disfavorably for the
study of RBPs. For reasons that are not entirely clear, rRNA
contamination has also been noted in RIC studies1–3.

Our data show that eRIC practically excludes DNA con-
tamination even under challenging conditions and reduces
rRNA contamination by at least one order of magnitude. These
improvements, largely based on a further increase in the strin-
gency of purification compared to RIC, shed an interesting
light on many of the unorthodox RBPs that were identified in
previous RIC studies. The observation that the more stringent
purification protocol of eRIC yields even higher enrichments of
these so-called enigmRBPs4 (Fig. 3g and Supplementary Fig. 1)
strongly supports their assignment as legitimate RBPs. This
notion is consistent with the growing number of enigmRBPs for
which RNA-related biological functions have been experimentally
demonstrated4,13,29,30.

We developed eRIC largely to provide a method for studies
aimed to identify proteome-wide responses of RBPs to biological
stimuli. Although RIC has been successfully used in this way7–9,
our comparative data clearly demonstrate the superior perfor-
mance of eRIC. In DMOG-treated Jurkat cells, we found that
eRIC yields a more consistent capture of RBPs within and
between experiments (Fig. 5d–f), enhancing the sensitivity for
the detection of significant changes by increasing the reproduci-
bility (Fig. 5f) and statistical power (Fig. 5d). The lower signal
scatter in eRIC experiments likely results from the elimination of
contaminants.

Of the 721 proteins detected in our comparative experiments,
61 RBPs proved responsive to DMOG by eRIC, of which only 15
(less than one quarter) were identified by RIC (Fig. 5c). The 22
RIC-specific hits (Fig. 5c, g) largely correspond to non-poly(A)
RNA binders (Fig. 6a, b), and thus were appropriately omitted by
eRIC. We consider the depletion of contaminant rRNA/DNA and
their associated proteins as one of the key elements explaining the
reduced technical noise and overall improved performance of
eRIC in comparative experiments, which allows the detection
of biologically meaningful changes in mRNA–RBP interactions
(see below).

Methylation of adenosine at the nitrogen-6 position (m6A) is
one of the most abundant posttranscriptional modifications on
mRNAs. The m6A modification of mRNAs responds to envir-
onmental cues and appears to be relevant in, e.g., stem cell dif-
ferentiation, T cell function, and tumorigenesis17,31. The identity
of the RBPs that are involved is still largely unknown. Two recent
studies discovered RBPs with altered binding to m6A compared
to unmodified RNA in vitro20,21. To the best of our knowledge,
no equivalent proteome-wide studies have been performed on
living cells. Remarkably, among the RBPs that eRIC identified to
respond to DMOG treatment, we found a significant enrichment
for proteins previously linked to m6A (Fisher’s exact test, p value
= 0.00016; 18 of 61 RBPs) (Fig. 7b, c)20,21. Most of these (11 of
18) display the responses that would be expected based on
prior knowledge of their modes of interaction with m6A (Fig. 7c).

Since some RBPs can be recruited or repelled by m6A in a
context-dependent manner21, one would expect less than com-
plete concordance.

Having used DMOG treatment as a proof of concept for the
use of eRIC for comparative analyses, this work provides a first
in vivo analysis of the changes of the RNA-bound proteome in
response to the inhibition of RNA demethylases and constitutes
the first attempt to characterize the repertoire of m6A-regulated
RBPs in vivo. Our datasets also implicate mTOR signaling in
DMOG-induced effects on translation initiation factors and
translation (Fig. 6a, b and Supplementary Fig. 2). Thus, while
these findings are correlative, they demonstrate the utility and
immediate practical relevance of eRIC for the discovery of post-
transcriptional response pathways and mechanisms to biological
or pharmacological cues. We expect that eRIC will also be broadly
useful to study disease mechanisms (e.g., infection, malignant
transformations, metabolic disorders) and the modes of action of
therapeutic interventions.

Methods
Cell culture. Jurkat cells (DSMZ, ACC-282) were maintained as a suspension
culture in 175 cm2 flasks (Falcon, 353028) in RPMI 1640 medium (Thermo Fisher
Scientific, 21875034) supplemented with 10% heat-inactivated Fetal Bovine Serum
(Gold, GE Healthcare) and penicillin/streptomycin (Sigma-Aldrich, P4333) in a
humidified incubator at 37 °C and 5% CO2.

Coupling of the capture probe to beads. The capture probe (HPLC purified;
Exiqon) is composed of a primary amine at the 5’ end, a flexible C6 linker, and 20
thymidine nucleotides in which every other nucleotide is a LNA: /5AmMC6/+TT
+TT+TT+TT+TT+TT+TT+TT+TT+TT (+T: LNA thymidine, T: DNA thy-
midine)10. The probe was resuspended in nuclease-free water (Ambion) to a final
concentration of 100 μM and coupled in DNA low binding tubes (Eppendorf) to
carboxylated magnetic beads (Perkin Elmer, M-PVA C11) through the 5’ amine as
follows or kept at −20 °C until coupling. Bead slurry (50 mg/mL) was washed 3
times with 5 volumes of 50 mM 2-(N-morpholino)ethanesulfonic acid (MES)
buffer pH 6. A 20mg/mL solution of N-(3-dimethylaminopropyl)-N′-ethylcarbo-
diimide hydrochloride (EDC-HCl; Sigma-Aldrich) in MES buffer was freshly
prepared. Five volumes were combined with 1 volume of 100 μM probe solution
and this was added to pelleted washed beads originated from 1 volume of bead
slurry (for one capture: 1.5 mL EDC solution+ 300 μL probe solution+ 300 μL
bead slurry). Coupling was performed for 5 h at 50 °C and 800 rpm, with occasional
pelleting. Beads were then washed twice with phosphate-buffered saline (PBS) and
then incubated with 200 mM ethanolamine pH 8.5 for 1 h at 37 °C 800 rpm to
inactivate any residual carboxyl residue. Coupled beads were finally washed three
times with 1 M NaCl and stored in 0.1% PBS–Tween at 4 °C.

Recycling of LNA2.T-coated beads. Coupled beads can be reused several times.
To do so, the poly(A) stretches interacting with the LNA probe, expected to be
resistant to the RNA digestion, have to be eluted by other mean. Also, any trace of
RNases from the elution has to be eliminated. Beads were reused a few times in this
work and at least eight times in other works, with optimal results.

Coupled beads employed for a capture (300 μL) were resuspended in 400 μL of
nuclease-free water (Ambion), transferred to a 1.5 mL tube, and incubated for
5–10 min at 95 °C 800 rpm. Immediately afterwards, before bead slurry cool down,
beads were collected by magnetic force, and the supernatant discarded. Beads were
then washed 3 times with 5 volumes of water and 3 times with 5 volumes of lysis
buffer and stored in 0.1% PBS–Tween at 4 °C until use.

Cell lysis in eRIC/RIC. In all, 1.0–1.3 × 108 proliferating Jurkat cells at a density of
about 1–1.5 × 106 cells/mL were employed per sample. Where stated, 0.5 mM
DMOG (Cayman Chemical Company, 71210) or an equivalent volume of DMSO
(vehicle, Merck 1.02950.0500) was added to the culture medium for 6 h prior to
processing. DMSO concentration in the medium was 0.023% v/v. Cells were col-
lected by centrifugation at 400 × g for 5 min at 4 °C, resuspended in 40 mL of cold
PBS, and split into two 145 × 20 mm2 petri dishes (Greiner Bio-One, 639102),
which were deposited on a metal plate pre-cooled on ice and irradiated with
150 mJ/cm2 at 254 nm UV light in a Spectrolinker XL-1500 (Spectronics Cor-
poration). Irradiation was omitted in −UV controls. While constantly maintaining
4 °C, cells were transferred to 50 mL conical centrifuge tubes, pelleted at 400 × g for
5 min, and lysed in 7.5–10 mL of ice-cold lysis buffer (see composition below)
supplemented with cOmplete Protease Inhibitor Cocktail (Roche, 11873580001).
To enhance homogenization, samples were passed 3–5 and 6–10 times through
syringes with 22-Gauge (0.7 mm diameter) and 27-Gauge needles (0.4 mm dia-
meter), respectively, snap frozen in liquid nitrogen, and kept at −80 °C for several
days until further processing.
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Capture of RNP complexes using eRIC. Cell lysates were thawed in a 37 °C water
bath, incubated for 15 min at 60 °C, quickly cooled down on ice, and clarified 5 min
at max speed and 4 °C. Dithiothreitol (DTT) extra (5 mM) was added to the
samples. LNA2.T-coupled beads were equilibrated in lysis buffer (3 buffer
exchanges with 3 volumes of lysis buffer each). After saving 100 μL as input, lysates
were incubated with 300 μL of equilibrated LNA2.T-coupled beads for 1 h at 37–40
°C (inside an incubator) with gentle rotation to capture RNA–protein complexes.
Beads were collected with a magnet, and the supernatant was transferred to a fresh
tube for a second round of capture. Beads were subjected to successive rounds of
washes, each of them performed for 5 min with gentle rotation at 37–40 °C (inside
an incubator) with 10 mL of the corresponding buffer pre-warmed to 37–40 °C. We
performed 1 wash with lysis buffer and 2 successive washes with each of the buffers
1, 2 and 3 (see composition below). Pre-elution was performed in 220 μL of
nuclease-free water (Ambion) for 5 min at 40 °C and 800 rpm. Afterwards, the bead
suspension was divided into two aliquots, one of 200 μL for the RNase-mediated
elution for protein analysis and one of 20 μL that was heat-eluted for RNA/DNA
analyses. For the RNase-mediated elution, beads were resuspended in 150 μL of 1×
RNase buffer (see composition below), 5 mM DTT, 0.01% NP40, ∼200 U RNase T1
(Sigma-Aldrich, R1003–100KU), and ∼200 U RNase A (Sigma-Aldrich, R5503)
and incubated at 37 °C 800 rpm for 30–60 min. Beads were then collected with a
magnet, and the supernatant transferred to a fresh tube, which was placed again on
a magnet (to fully remove any trace of beads) before saving the supernatant. Eluates
were maintained on ice until finishing the second round of capture. Then com-
bined eluates were supplemented with 2 μL 10% SDS and concentrated using a
SpeedVac until reaching a volume of <100 μL (30–45 min at 37 °C), snap frozen,
and stored at −80 °C. Heat elution was performed on the beads reserved ad hoc
with 15 μL of elution buffer (see composition below) at 95 °C 800 rpm for 5 min.
Beads were immediately collected, and the supernatant quickly recovered (before
temperature drops). Any trace of beads was eliminated by a second round of
collection as explained before.

Lysis buffer: 20 mM Tris-HCl (pH 7.5), 500 mM LiCl, 1 mM EDTA, 5 mM
DTT, 0.5% (w/v) LiDS.

Buffer 1: 20 mM Tris-HCl (pH 7.5), 500 mM LiCl, 1 mM EDTA, 5 mM DTT,
0.1% (w/v) LiDS.

Buffer 2: 20 mM Tris-HCl (pH 7.5), 500 mM LiCl, 1 mM EDTA, 5 mM DTT,
0.02% (v/v) NP40.

Buffer 3: 20 mM Tris-HCl (pH 7.5), 200 mM LiCl, 1 mM EDTA, 5 mM DTT,
0.02% (v/v) NP40.

10× RNase buffer: 100 mM Tris-HCl(pH 7.5), 1.5 mM NaCl
Elution buffer: 20 mM Tris-HCl (pH 7.5), 1 mM EDTA.

Capture of RNP complexes using RIC. Lysates were thawed in a 37 °C water bath,
and after taking 100 μL as input, they were incubated with 300 μL of equilibrated
oligo(dT)25 magnetic beads (NEB) at 4 °C for 1 h with gentle rotation. Beads were
washed with 10 mL of ice-cold buffers. RNP complexes were eluted in 165 μL of
elution buffer for 5 min at 55 °C and 800 rpm. An aliquot of 15 μL was taken and
used for RNA/DNA analyses. The remaining 150 μL were combined with 10×
RNase buffer, 1 M DTT, and 1% NP40 (final concentrations: 1× RNase buffer,
5 mM DTT, 0.01% NP40) and ∼200 U RNase T1 and RNase A (Sigma-Aldrich).
RNA was digested for 60 min at 37 °C. Two rounds of capture were performed and
combined eluates were concentrated and stored as described for eRIC. Final
volume of RIC eluates was adjusted to the volumes of the corresponding eRIC
eluates.

Sample preparation for mass spectrometry and TMT labeling. Captured pro-
teins were reduced in 10 mM DTT in 50 mM HEPES pH 8.5 at 56 °C for 30 min
and alkylated with 20 mM 2-chloroacetamide in 50 mM HEPES pH 8.5 for 30 min
at room temperature in the dark. Samples were prepared using the SP3 protocol11.
Proteins were digested by trypsin (Promega) at 37 °C overnight using an enzyme-
to-protein ratio of 1:50. Peptides were labeled with TMT10plex Isobaric Label
Reagent (Thermo Fisher Scientific) according to the manufacturer’s instructions.
For further sample clean up, an OASIS HLB µElution Plate (Waters) was used.
Offline high pH reverse phase fractionation was carried out on an Agilent 1200
Infinity high-performance liquid chromatography system, equipped with a Gemini
C18 column (3 μm, 110 Å, 100 × 1.0 mm2, Phenomenex).

Mass spectrometric data acquisition. An UltiMate 3000 RSLC nano LC system
(Dionex) fitted with a trapping cartridge (µ-Precolumn C18 PepMap 100, 5 µm,
300 µm i.d. × 5 mm, 100 Å) and an analytical column (nanoEase™ M/Z HSS T3
column 75 µm × 250 mm C18, 1.8 µm, 100 Å, Waters) was employed. Trapping was
carried out with a constant flow of solvent A (0.1% formic acid in water) at 30 µL/
min onto the trapping column for 6 min. Subsequently, peptides were eluted via the
analytical column with a constant flow of 0.3 µL/min with increasing percentage
of solvent B (0.1% formic acid in acetonitrile) from 2 to 4% in 4 min, from 4 to 8%
in 2 min, from 8 to 28% in 96 min, and finally from 28 to 40% in 10 min. The outlet
of the analytical column was coupled directly to a QExactive plus mass spectro-
meter (Thermo Fisher Scientific) using the proxeon nanoflow source in positive ion
mode.

The peptides were introduced into the QExactive plus via a Pico-Tip Emitter
360 µm OD × 20 µm ID; 10 µm tip (New Objective) applying a spray voltage of
2.3 kV. The capillary temperature was set at 320 °C. Full mass scan was acquired
with mass range 350–1400m/z in profile mode in the FT with resolution of 70,000.
The filling time was set at maximum of 100 ms with a limitation of 3 × 106 ions.
Data-dependent acquisition was performed with the resolution of the Orbitrap set
to 35,000, with a fill time of 120 ms and a limitation of 2 × 105 ions. A normalized
collision energy of 32 was applied. The instrument was set to alternate between MS
and data-dependent MS/MS-based acquisition with up to a maximum of 10 MS/
MS events per cycle. A minimum AGC trigger of 2e2 and a dynamic exclusion time
of 30 s were used. The peptide match algorithm was set to “preferred” and charge
exclusion to “unassigned,” charge states +1 and +5 to +8 were excluded. MS/MS
data was acquired in profile mode.

Mass spectrometric data analysis. IsobarQuant32 and Mascot (v2.2.07) were
used to process the acquired data, which was searched against the Uniprot
Homo sapiens proteome database UP000005640, which contains common con-
taminants and reversed sequences. The following modifications were included into
the search parameters: Carbamidomethyl (C) and TMT10 (K) (fixed modifica-
tions), Acetyl (N-term), Oxidation (M), and TMT10 (N-term) (variable mod-
ifications). A mass error tolerance of 10 ppm and 0.02 Da was set for the full scan
(MS1) and the MS/MS spectra, respectively. A maximum of two missed cleavages
were allowed and the minimal peptide length was set to seven amino acids. At least
two unique peptides were required for protein identification. The FDR on peptide
and protein level was set to 0.01. The R programming language (ISBN
3–900051–07–0) was used to analyze the raw output data of IsobarQuant. Potential
batch effects were removed using the limma package33. A variance stabilization
normalization was applied to the raw data using the vsn package34. Individual
normalization coefficients were estimated for crosslinked and non-crosslinked
conditions. During the DMOG versus DMSO comparison, an additional blocking
factor for the protocol (RIC or eRIC) was chosen. Normalized data were tested for
differential expression using the limma package. The replicate factor was included
into the linear model. For comparisons between crosslinked versus non-cross-
linked, hits were defined as those proteins with an FDR <5 % and an FC > 2. In
eRIC/RIC comparative experiments, proteins were first tested for their enrichment
over −UV controls, and the intensity of the proteins enriched in at least one
condition were compared in the corresponding +UV samples. The R package
fdrtool35 was employed to calculate FDRs using the t values from the limma
output. Proteins with an FDR < 5% and a consistent FC of at least 10% in each
replicate were defined as hits. The ggplot2 R package36 was used to generate the
graphical representations.

Hit classification and GO analysis. In the “single point” eRIC/RIC
experiments, enzymes were defined as those proteins listed in the six enzyme
commission groups (EC 1–6) in the IntEnz database (release May 2017). Metabolic
enzymes were defined as those enzymes that map to Metabolism in Reactome, plus
the subunits of the ATP synthase and the respiratory chain complexes. enigmRBPs
are defined as those eRIC/RIC hits that do not have a known RNA-binding domain
(based on Hentze et al.5) and that lack known RNA-binding functions (based on
Gerstberger et al.12). Overlaps with other RIC data sets were displayed in UpSet
plots37.

Comparison of DMOG-responsive hits identified by eRIC and RIC with
previously reported m6A-regulated RBPs20,21 was conducted using Venny 2.1.0
(Oliveros, J.C. (2007–2015), http://bioinfogp.cnb.csic.es/tools/venny/index.html).
Analysis were restricted to those proteins detected by the eRIC/RIC comparative
experiments. Fisher’s exact tests were used to calculate enrichment of m6A-
responding proteins among eRIC and RIC samples.

GO-term enrichment analysis were performed with AmiGO 2 (powered by
PANTHER), using the following parameters: analysis type: PANTHER
overrepresentation test; reference list: Homo sapiens (all genes in database);
annotation data set: GO biological process complete or GO cellular component
complete, as indicated; test type: Fisher’s exact with FDR multiple test
correction. Overrepresented GO terms were manually curated, and only
selected terms were included in the main figures due to space constrains. The
full lists of GO-enriched terms are provided in Supplementary Data 3 and
Supplementary Data 4. The ggplot2 R package36 was used to generate the graphical
representations.

Bioanalyzer and real-time PCR. The concentration of captured RNA (heat-eluted)
was estimated using a NanoDrop spectrophotometer (Thermo Fisher Scientific).
To determine the profile of captured RNA, 1 µL of each sample was diluted to
5–10 ng/µL and analyzed in an Agilent 2100 Bioanalyzer System using the RNA
6000 Pico Kit, following the manufacturer’s indications. Where stated, total RNA
from whole-cell lysates was purified using the Quick-RNA MicroPrep Kit (Zymo)
and analyzed similarly.

In all, 2–5 µL of the undiluted captured RNA were reverse transcribed into
cDNA using SuperScript II (Life Technologies) and random hexamers (Life
Technologies), according to the manufacturer’s instructions. Real-time qPCR was
performed using SYBR Green PCR Master Mix (Life Technologies, 4309155) in a
QuantStudio 6 Flex system (Life Technologies) with the following primers (all from
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5′ to 3′, forward: f, reverse: r): 28 S rRNA (f: TTACCCTACTGATGATGTGTTG
TTG, r: CCTGCGGTTCCTCTCGTA), RPS6 (f: TGAAGTGGACGATGAACGCA,
r: CCATTCTTCACCCAGAGCGT), ZNF80 (f: CTGTGACCTGCAGCTCATCCT,
r: TAAGTTCTCTGACGTTGACTGATGTG). From ref. 2: β-actin (f: CGCGAGA
AGATGACCCAGAT, r: TCACCGGAGTCCATCACGAT), GAPDH (f: GTGGAG
ATTGTTGCCATCAACGA, r: CCCATTCTCGGCCTTGACTGT) and 18 S rRNA
(f: GAAACTGCGAATGGCTCATTAAA, r: CACAGTTATCCAAGTGGGAGAG
G). From ref. 3: L1.3 (f: TGAAAACCGGCACAAGACAG, r: CTGGCCAGAACT
TCCAACAC).

Western blotting and silver staining. Proteins co-purified by eRIC or RIC or
present in whole-cell lysates (inputs) were separated by SDS-PAGE and subjected
to silver staining following standard procedures or transferred onto a nitrocellulose
membrane and analyzed by western blotting. Primary antibodies against the
following proteins at the indicated dilutions were used: Cold shock domain-
containing protein E1 (CSDE1)/UNR (Proteintech, 13319–1-AP, 1:5000), Non-
POU domain-containing octamer-binding protein (NonO) (Novus Biologicals,
NBP1–95977, 1:1000), and ELAV-like protein 1 (ELAVL1)/Hu-antigen R (HuR)
(Proteintech, 11910–1-AP, 1:5000). As a secondary antibody, a Goat anti-rabbit
immunoglobulin G (IgG) horseradish peroxidase (HRP) (Santa Cruz Biotechnol-
ogy, sc-2030, 1:5000) was employed. Uncropped scans are provided in Supple-
mentary Fig. 3a.

Proliferating Jurkat cells at a density of about 1 × 106 cells/mL were
incubated with 0.5 mM DMOG (Cayman Chemical Company, 71210) or an
equivalent volume of DMSO (vehicle, Merck 1.02950.0500) for 6 h. Subsequently,
cells were pelleted (400 × g 5 min 4 °C), washed with ice-cold PBS, and lysed in
ice-cold RIPA buffer (50 mM Tris-HCl, pH 7.4, 1% NP-40, 0.5% Na-deoxycholate,
0.1% SDS, 150 mM NaCl, 2 mM EDTA, 50 mM NaF) supplemented with
proteinase inhibitors (Roche, 11873580001) and phosphatase inhibitors (Sigma-
Aldrich, 04906845001). After clarification, proteins were separated by SDS-PAGE
and transferred onto a nitrocellulose membrane. Primary antibodies to the
following proteins at the indicated dilutions were used: anti-GAPDH (Sigma-
Aldrich, G9545, 1:100,000), all the rest from Cell Signaling: phospho-4EBP1
(Ser65) (9451 S, 1:10,000), 4EBP1 (9644 S, 1:50,000), phospho-p70 S6 Kinase
(Thr389) (9205, 1:2000), p70 S6 Kinase (2708, 1:50,000), phospho-ULK1
(Ser757) (14202, 1:10,000), and ULK1 (8054, 1:5000), phospho-mTOR(Ser2448)
(5536 P, 1:5000). A Goat anti-rabbit IgG HRP (Santa Cruz Biotechnology, sc-2030,
1:5000) was used as secondary antibody. Uncropped scans are provided in
Supplementary Fig. 3b.

m6A dot blotting. Aliquots of the heat-eluted RNA of the same eRIC samples
analyzed by MS (−UV controls) were used to estimate m6A levels. RNA was
incubated for 10 min at 65 °C and immediately placed on ice. Concentration was
estimated with a NanoDrop spectrophotometer (Thermo Fisher Scientific) and
serial dilutions were prepared in order to obtain 100, 50, 25, and 12.5 ng/µL. One
microliter of each dilution was directly pipetted onto a Zeta Probe membrane (Bio-
Rad), air dried for ~10 min, and crosslinked twice with 120 mJ/cm2 at 254 nm in a
Spectrolinker XL-1500 (Spectronics Corporation). The membrane was washed with
0.05% PBS–Tween (PBS-T) and blocked for 1 h with 5% skimmed milk in PBS-T.
Primary antibodies were incubated in blocking solution overnight at 4 °C, followed
by 3 rinses with PBS-T, secondary antibody incubation in blocking solution for 1 h
at room temperature, 3 washes with PBS-T, and development using ECL (Milli-
pore, WBKLS0500). Antibodies used were: anti-m6A (Abcam, ab151230, 1:2000
and Synaptic Systems, 202 003, 1:2000) and Goat anti-Rabbit IgG-HRP (Abcam,
1:20,000).

Data availability
All data generated during this study are included in this published Article (and its
Supplementary Information files). The mass spectrometry proteomics data have
been deposited to the ProteomeXchange Consortium via the PRIDE38 partner
repository with the dataset identifiers PXD010941 (eRIC and RIC of Jurkat cells)
and PXD010942 (eRIC and RIC of Jurkat cells exposed to 0.5 mM DMOG or
vehicle (DMSO) for 6 h).
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