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Summary

A three-dimensional field-based similarity search and alignment method for flexible molecules is introduced. The
conformational space of a flexible molecule is represented in terms of fragments and torsional angles of allowed
conformations. A user-definable property field is used to compute features of fragment pairs. Features are general-
izations of CoMMA descriptors [1] that characterize local regions of the property field by its local moments. The
features are invariant under coordinate system transformations. Features taken from a query molecule are used to
form alignments with fragment pairs in the database. An assembly algorithm is then used to merge the fragment
pairs into full structures, aligned to the query. Key to the method is the use of a context adaptive descriptor scaling
procedure as the basis for similarity. This allows the user to tune the weights of the various feature components
based on examples relevant to the particular context under investigation. The property fields may range from
simple, phenomenological fields, to fields derived from quantum mechanical calculations. We apply the method to
the dihydrofolate/methotrexate benchmark system, and show that when one injects relevant contextual information
into the descriptor scaling procedure, better results are obtained more efficiently. We also show how the method
works and include computer times for a query from a database that represents approximately 23 million conformers
of seventeen flexible molecules.

Introduction

The problem of aligning a group of flexible molecules
to a particular query conformation (molecular super-
position) remains an important problem in computer-
assisted drug design. Many approaches to this com-
mon end have been reported [2–16]. In the absence of
structural information regarding the ligand-receptor or
ligand-enzyme complex, structural alignment is a way
of both elucidating important features responsible for
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activity [17, 18] and a means of finding new molecules
with similar or better activity [3, 19, 11].

When one is attempting to elucidate spatial and
chemical information about the nature of the host-
ligand interaction, one often begins with the alignment
of a series of active compounds based on some kind of
alignment rule. Unfortunately, this process is riddled
with difficulties and assumptions about the relevant
conformations, relevant features, importance of inter-
nal strain, the role of hydrogen bonds, electrostatics,
solvation, hydrophobicity, as well as more profound
concerns such as whether compounds in a data set
even bind at the receptor site via the same mecha-
nism (for an enjoyable discussion, see [20]). It is clear
that no single method for alignment will settle these
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issues across widely varying contexts. Our interest, ac-
cordingly, is in a system that allows the incorporation
of context-specific information to balance the above
considerations in a manner suitable to the problem at
hand. A consequence is that one-time calibrations of
similarity measures are inappropriate. We hold that the
basis of a similarity search should be tunable to the
particular context being considered.

Several superposition methods reported are field-
based [3, 4, 9, 13]. An attractive aspect of field-based
approaches is the potential for incorporating high lev-
els of electronic structure theory into the description of
the field. Apart from the difficulties and expense of de-
ploying high level quantum mechanical calculations,
we regard the design of a system that can utilize the
results of such calculations for use in similarity analy-
sis as, at the very least, forward looking. The method
we describe is aimed at providing a systematic way
of treating field-based similarity searching, without
being confined to a particular field definition. In the
property field section, we describe a very simple ex-
ample property field that we have chosen for this initial
study. The point we would like to emphasize is that our
method allows for fields ranging from simplistic, phe-
nomenological fields, like the one employed here, to
fields derived from quantum mechanical calculations.

Having said that, we turn to concerns of conforma-
tional space and the expense of quantum mechanical
calculations. In general, the conformational space for
drug-like molecules can become quite appreciable.
Some methods represent the conformational space of
a molecule as a collection of rigid fragments with
preselected torsions [21]. Other approaches prepare a
database of representative conformations [22, 23], or
compute conformations on the fly [12]. The Fragment
pairs section introduces our approach, based on frag-
menting molecules into more manageable partitions.
We introduce and motivate our choice for the small-
est irreducible unit of characterization as the fragment
pair rather than the fragment. We show how confor-
mational space becomes more manageable with our
treatment.

Setting out to address flexible superposition via po-
tentially sophisticated property fields, we must give
special attention to reducing the number of similarity
evaluations that are to be performed, while maintain-
ing some degree of confidence that the space has been
covered. We have attempted to preprocess as much
as possible, while still leaving enough tunability to
adapt to the context of the investigation. We seek a
practical tradeoff of the size of conformational space,

and the need for fragment pairs as large as possible
to maximize the relevance of the computed property
fields.

Our approach [24] decomposes the conformational
space of molecules to fragments. Then, to minimize
boundary effects, we compute the property field on
pairs of fragments. From the computed property fields
of the fragment pairs, several features are sampled
and stored. Features are generalizations of CoMMA
descriptors [1] that characterize local regions of the
property field by its local moments. They are invariant
under coordinate system transformations. To query the
database for molecules that are similar to a particular
molecule, the query molecule, features are calculated
for the query molecule, and fragment pairs that contain
a sufficient number of similar features are retrieved.
The key point is that, due to the coordinate system
invariance of the features, the retrieval can happen
without any alignment, or optimization over rotational
and translational degrees of freedom. The alignment
of retrieved fragment pairs on the query is determined
by a pose clustering procedure from the individual
feature-feature-correspondences. Finally, to construct
full aligned candidate molecules, the retrieved frag-
ment pairs are assembled by an incremental buildup
procedure, similar in principle to ones used in dock-
ing [25] and de novo design [26]. Our goal in this
paper is to outline the method and provide proof of
concept of the algorithm by applying it to a small data-
base of seventeen molecules, representing 23 million
conformations.

Fragment pairs

There are two types of complexity in a database of
three-dimensional molecular structures: first, the con-
formational variety of individual molecules, and sec-
ond, in the case of a virtual combinatorial library, the
combinatorial variety that results from the possibility
of synthesizing a large number of different molecules
from a small number of reagents. Generally, the total
number of three-dimensional structures grows expo-
nentially both with the number of rotatable bonds and
the number of reagents. In this section we discuss how
to efficiently represent and store such a database.

A molecule can be partitioned into a fragment
graph. This is an acyclic graph that consists of frag-
ment nodes connected by rotatable bond edges. Within
a fragment node, there may be zero, one or several
rotatable bonds, as well as other degrees of freedom
such as ring conformations. Given a molecule, there
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Figure 1. Fragmentation and conformational expansion of
methotrexate. Single bonds are sampled with a resolution of
�ϕ = 60◦, the aniline bond with �ϕ = 180◦. The molecule is
partitioned into three fragments.

Figure 2. Schematic representation of a fragment graph.

are in general multiple possible ways of partitioning it
into a fragment graph. Typically, we have in mind that
a fragment node consist of about 10 heavy atoms, for
example an aromatic ring plus some substituents. A
sample partition is shown in Figure 1. The substruc-
ture represented by a fragment node can in general
assume several different conformations. We call a spe-
cific conformation of a fragment node a fragment. A

fragment pair consists of two neighboring fragments
connected by a rotatable bond at a specific dihedral
angle. A schematic representation of a fragment graph
is depicted in Figure 2.

Fragment pairs are the fundamental entities of our
approach: property fields are defined and calculated
on fragment pairs, and the similarity search is based
on rotationally invariant features that are calculated
from those property fields. Property fields will be dis-
cussed in The property field section. The assumption
that underlies our use of fragment pairs is that a prop-
erty field calculated from an isolated fragment pair is
a good local approximation of the property field of the
corresponding region of the composite molecule.

Conceptually, the use of fragment pairs is equiva-
lent to using overlapping fragments, with the overlap
being about half their size. This has advantages both
for the recognition and for the assembly steps. First,
the fragmentation locally distorts the property field
in those places where the molecule is cut. By us-
ing fragment pairs, the regions around the fragment
joints are always in the interior of at least one frag-
ment pair, such that meaningful local descriptors can
be calculated for them. Further, an aligned database
molecule is constructed by assembling fragment pairs
that have one fragment in common, and which both
locally match the query with compatible orientations.
Thus, the relevant dihedral range of the connecting ro-
tatable bonds – determined, e.g., from steric and ener-
getic criteria – is already available in the precomputed
fragment pairs.

Obviously, this approach is suitable both for
conventional molecule libraries, as well as for vir-
tual libraries supporting combinatorial chemistry ap-
proaches. The efficiency of the fragment pair repre-
sentation is best discussed by way of an example. As
indicated in Figure 1, the conformational space of
methotrexate is spanned essentially by six rotatable
bonds. If five of them are sampled in steps of 60◦, and
one at 180◦, the total number of conformations is

Cmol = 65 × 2 = 15552. (1)

In practice, fewer conformations have to be considered
because some are sterically forbidden. Similar to (1),
Cfp1, the number of fragment pairs from the lower and
middle fragment node, and Cfp2, the number of frag-
ment pairs from the middle and upper fragment node
are

Cfp1 = 6 × 6 × 2 = 72,

Cfp2 = 2 × 6 × 36 = 432. (2)
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The total number of fragment pairs is therefore 72 +
432 = 504. Furthermore, the size of a fragment pair is
in this example only about 2

3 of the size of the whole
molecule, with a corresponding smaller number of lo-
cal descriptors, so that the fragment pair representation
in this case needs about 50 times less storage than the
brute force enumeration.

More generally, for a molecule consisting of n
fragments, each of which has Cfrag conformations,
and which are connected by rotatable bond edges
that are sampled in Crbe steps, the total number of
conformations is

Cmol = Cnfrag × Cn−1
rbe , (3)

where n− 1 is the number of rotatable bond edges. In
comparison, the total number of fragment pairs is

Cfp = (n− 1)× C2
frag × Crbe (4)

Note that (3) grows exponentially with n, whereas (4)
only depends linearly on n.

The property field

The basis for the three-dimensional similarity search-
ing and alignment are two property fields µ(r) and
ρ(r). The method makes no assumptions about these
fields, except for the requirement that µ(r) is scalar
and positive. The following presentation will also
assume that ρ(r) is a scalar field, but this can be
straightforwardly extended to multiple scalar, vector
or tensor fields.

Both fields µ(r) and ρ(r) are used to identify sim-
ilar regions in query and database molecules. Their
geometrical alignment however is performed solely on
the basis of the field µ(r).

A simple property field can be defined as:

µ(r) = 1(√
2πσ

)3

Natoms∑
j=1

Aj exp
− (

r − aj
)2

2σ2 ,

ρ(r) = µ(r)− µ. (5)

Here, the j th atom is located at aj , and its electroneg-
ativity, Aj is given according to the Allred scale [27].
We used the following values: AC = 2.6, AO = 3.4,
AN = 3.0, AH = 2.2, AP = 2.2, AS = 2.6, AF = 4.0,
ACl = 3.2. σ is a parameter that controls the range
of the Gaussian smearing function. Throughout the
present work, σ = 0.5 Å was used. The rationale
was to choose a value as big as possible, but small
enough for the property field not to be too uniform and

nonspecific, µ is the average of µ(r) over all space.
µ(r) is positive and ρ(r) is analogous to a neutral
charge distribution.

Another possible choice of a property field is [1]

µ(r) = 1(√
2πσ

)3

Natoms∑
j=1

Mj exp
− (

r − aj
)2

2σ2

ρ(r) = 1(√
2πσ

)3

Natoms∑
j=1

Qj exp
− (

r − aj
)2

2σ2 ,(6)

where Mj is the atomic mass and Qj is the atomic
charge computed by considering the ‘fraction of ionic
character’ of each bond in the molecule, a model
described, for example, in reference 28.

These example fields are by no means intended
to offer new insight into processes that underlie the
chemistry of the presented applications. We have
chosen the property field defined by Equation 5 for
the application presented in the application section.
Purely because of its simplicity, in order to exemplify
and prototype the method. Still, despite its simple-
mindedness, it performs adequately for the present
application, and thus may serve in the future as a
base level, against which more elaborate fields may
be benchmarked.

Obviously, the choice of the property fields will
have a great effect both on the selectivity and on the
efficiency of the search. The point is that the preferred
choice depends on the application and on the questions
asked. The exploration of different alternative fields
is intended to be part of the process of adapting the
method to a certain domain.

Possible fields are by no means restricted to
‘smeared out’ atomic properties. The following
method is prepared and intended to make use of fields
derived from quantum mechanical calculations.

Descriptors and feature generation

Given the property fields µ(r) and ρ(r), we now
construct a set of local, rotationally invariant, moment-
based descriptors. If the property fields of the query
molecule and a database fragment pair are similar,
then these descriptors will have similar values. Since
the descriptors are rotationally invariant, no alignment
is necessary, and the comparison can be performed
very quickly.

The similarity of the descriptors alone is a neces-
sary, but not a sufficient criterion for the similarity of
the fields. However, together with the descriptors we
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store information on their relative positions and orien-
tations within the query and database structures. When
a database structure has enough descriptors similar to
the query, the relative positions and orientations of
the descriptors are compared. Only if these are also
consistent, the two structures are considered similar,
and an approximate alignment is deduced from this
information. Note that in order to obtain the alignment,
no explicit (and costly) optimization of a property
field overlap function with respect to translation and
rotation operators has to be performed. However, if
desired, such an optimization can afterwards be ap-
plied to a small set of promising candidates, starting
from near-optimal initial conditions. These ideas will
be explained in more detail later.

The first step in the construction of the descrip-
tors is the partitioning of the volume occupied by the
structure into overlapping scoops. If the property fields
are defined by smearing out atomic properties Aj , as
is the case in the two examples in the Property field
section, then this is done as follows: Let {	sk} be a set
of points within or around the structure, such that the
spheres with radius R around these points provide a
highly overlapping coverage of the relevant regions of
the property fields. We call each of these spheres a
scoop. Define a ramping function

�(a) =
{

1 − a/R a ≤ R,

0 a > R
(7)

and a window function

h(r) =
{

1 r ≤ R,

0 r > R.
(8)

Then the ‘attenuated atomic properties’ that contribute
to the kth scoop are given by

A
(k)
j = �

(∣∣aj − sk
∣∣) · Aj . (9)

and the k-th scoop’s property field is

µk(r) = h (|r − sk|) · 1(√
2πσ

)3

Natoms∑
j

A
(k)
j

exp
− (

r − aj
)2

2σ2
, (10)

and correspondingly for ρk(r), as in Equation 5. The
intention of the ramping function 7 is that the prop-
erty fields µk and ρk (and therefore the descriptors)
are continuous functions of the location of the scoop
center sk .

For general property fields µ(r) and ρ(r), that are
not obtained by smearing out atomic properties, scoop
property fields can simply be obtained by setting

µk(r) = h (|r − sk |) · µ(r), (11)

and correspondingly for ρk(r).
In the present work, the set of points sk was the set

of all atom positions, and R = 3 Å. With this choice,
the scoops are objects of intermediate size, larger
than a functional group, but smaller than a fragment
pair. Typically, a scoop contains 6 to 8 non-hydrogen
atoms.

Having defined a set of scoops and their associ-
ated local property fields µk and ρk , we now construct
rotationally invariant descriptors. There will be a de-
scriptor consisting of 16 real numbers for each scoop.
To simplify the notation, in the following we drop the
index k that numbers the scoops, and replace the con-
tinuum fields by the discretized versions µi and ρi ,
defined on a grid of points {ri | i = 1, . . . , N}. For the
grid, we use a face-centered cubic lattice [29] of unit
cell length�R = R/18 within each scoop of radiusR.
The grid spacing �R has been determined by varying
the grid orientation with respect to the atoms in the
scoop, and making sure that the resulting descriptors,
as described below, do not significantly depend on the
orientation.

The zeroth moments of the fields are

M =
N∑
i=1

µi , Q =
N∑
i=1

ρi . (12)

In the case of the property field defined by Equation 6,
M and Q correspond to total mass and total charge
within the scoop.

The center of the µ-field is defined by

cµ = 1

M

N∑
i=1

µiri , (13)

and the center of the ρ-field by

cρ =




1
Q

b if |Q| > εQ,

1
3b2

(
Bb − btBb

4b2 b
)

otherwise,

(14)

where b and B are dipole and quadrupole moment of
the ρ-field with respect to the origin of the laboratory
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coordinate system,

b =
N∑
i=1

ρi ri , B =
N∑
i=1

ρi

(
3ri ri t − r2

i 11
)
.

(15)

and the superscript t stands for transposition. In the
case of the property field defined by Equation 6, cµ is
the center of mass, and the first line of Equation 14
is the center of charge. The center of charge is only
defined if the scoop has a net charge, i.e., if the charge
is larger than the threshold εQ. Otherwise, the second
line of Equation 14 calculates the center of dipole [1].

The inertial tensor J and a cubic vector j with
respect to cµ, the center of µ, are defined as

J =
N∑
i=1

µi

(
r ′i

2 11 − ri ′ ri ′t
)

(16)

j =
N∑
i=1

µi r
′
i
2 ri ′, (17)

where ri ′ = ri − cµ. Similarly, we define dipole mo-
ment 	p and quadrupole moment Q of the ρ-field with
respect to cρ, the center of ρ:

	p =
N∑
i=1

ρi ri ′′ (18)

Q =
N∑
i=1

ρi

(
3ri ′′ ri ′′t − r ′′i

211
)
, (19)

where ri ′′ = ri − cρ. The point is now that we
express the quantities 17–19 in a uniquely defined
scoop-internal coordinate system, so that they no
longer depend on the arbitrary choice of the laboratory
frame. Therefore, the descriptors of different scoops
can be compared without prior alignment. The axes of
the scoop-internal coordinate system are given by the
eigenvectors of the inertial tensor J:

Jvn = Jnvn, n = 1, 2, 3. (20)

The positive numbers Jn are the inertial moments.
The vectors vn can be arranged into the columns of
an orthonormal matrix V. An arbitrary vector is then
transformed from the laboratory frame to the internal
frame by left-multiplying it with Vt .

In order to uniquely define the internal coordinate
system, we need to fix (i) the ordering, and (ii) the
sensing (i.e., the signs) of the coordinate axes.

The ordering is defined by J1 ≤ J2 ≤ J3. If
two or three of the eigenvalues of J are degener-
ate, then there are no unique eigenvectors, but rather
two- or three-dimensional eigenspaces, there is no
well-defined inertial coordinate system, and the cor-
responding scoop is not used to generate a descriptor.
Degeneracy in this context means that two eigenvalues
are equal to within some threshold that may depend on
the choice of property field. The degeneracy condition
is

J2/J1 < 1 + εJ or J3/J2 < 1 + εJ . (21)

To fix the sensing, we define the asymmetry vector

α = Vt j, (22)

where j is the cubic vector from Equation 17, and
choose the signs of the axes according to the following
table:

|α1| ≥ |α2| ≥ |α3|V is replaced by (sgn α1 · v1, sgn α2 · v2, s · v3)

|α1| ≥ |α3| > |α2|V is replaced by (sgn α1 · v1, s · v2, sgn α3 · v3)

|α2| ≥ |α1| ≥ |α3|V is replaced by (sgn α1 · v1, sgn α2 · v2, s · v3)

|α2| ≥ |α3| > |α1|V is replaced by (sgn α1 · v1, s · v2, sgn α3 · v3)

|α3| ≥ |α1| ≥ |α2|V is replaced by (s · v1, sgn α2 · v2, sgn α3 · v3)

|α3| ≥ |α2| > |α1|V is replaced by (s · v1, sgn α2 · v2, sgn α3 · v3)

The sign s ∈ {−1, 1} is determined by requiring right-
handedness,
i.e. det V = 1. The table above represents a unique
choice of the axes sensing depending only on the cubic
vector j.

If two, or three components of α are within some
chosen threshold of zero, one is left with two or even
four different equally admissible choices for the axes
sensing. For descriptors stored in the database, we
simply take an arbitrary choice. For the query features
that are to be matched against the database, a descrip-
tor is generated for each admissible choice of axes
sensing. For the present data, we used the duplication
condition αn/RJn < 0.02.

As a result, the CoMMA descriptor Xk for
the kth scoop, which we call a feature, con-
sists of the following d = 16 real numbers:

Quantity Components

Total ‘mass’ M 1

Total ‘charge’ Q 1

Sorted eigenvalues J1 < J2 < J3

of the inertial tensor J 3

Dipole vector Vt 	p 3

Quadrupole tensor VtQV 5

Spatial vector between the centers Vt
(
cµ − cρ

)
3
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If the ρ-field is more complex than a scalar field,
e.g., a combination of several scalars, or a vector or
a tensor field, then the first and second moments p
and Q will have a correspondingly greater number of
components, and d , the number of components of the
descriptorXk is larger than 16.

Since the vector and tensor quantities in the de-
scriptor are expressed in the internal coordinate sys-
tem, which only depends on local properties of the
molecule, the descriptor is completely independent of
the laboratory frame. This has two crucial implica-
tions: first, two scoop descriptors can be compared
against each other without prior alignment, and sec-
ond, if two descriptors are found to be similar, the
two corresponding molecules can be locally aligned
by simply overlaying the internal coordinate systems
of the two scoops.

Descriptor scaling and quantization

The scoop descriptors Xk = (Xk1, . . . , Xkd) can-
not be used straightforwardly to define similarity be-
tween scoops. This is both because the components
Xk1,Xk2, . . . have different physical units, and be-
cause the different components may be more or less
important for the similarity search at hand.

For example, it may be important in a particular
application of this method to recognize and distin-
guish between some specific set of structural motifs
or chemical functional groups in identifying fragment
pairs from a database to align on a query molecule. In
a different application of the method, it may be more
important instead to recognize and distinguish a dif-
ferent set of motifs, or regions of electrical polarity.
Clearly, a useful method should be able to adapt to
what is meaningful to the user in assessing similarity.

We therefore define a distance measure that
weights the different descriptors according to their im-
portance as derived from a training set of descriptors.
The training data consists of a number of sample de-
scriptors that are categorized into groups. From this,
the method ‘learns’ two types of descriptor variation:
important variations are those that occur systemati-
cally between descriptors from different groups. They
are used to define the distance measure. The descrip-
tors within a group are considered similar, and the
distance measure is made to ignore this type of varia-
tions. While there is a vast repertoire of methods from
the disciplines of classification and pattern recognition
to address this task, we presently simply use Fisher’s
linear discriminant analysis [30]. It provides a linear

mapping from the d-dimensional descriptor space into
a lower-dimensional space:

Yk = WtXk, (23)

where W is a d × p matrix with p ≤ d . The discrim-
inant matrix W is calculated from the user-supplied
classification of a sample of descriptorsXk , into p+ 1
groups. The within-group scatter matrix Sw is the
average covariance matrix of descriptors that are in
the same group, and the between-group scatter ma-
trix Sb is the covariance of the group centroids [30].
The discriminant matrix W is defined through the
maximization of the criterion function

J(W) =
∣∣WtSbW

∣∣
|WtSwW | , (24)

This optimization criterion selects W such that the
distance between the Yk within the same group are
minimized, whereas the distances between the groups’
centroids are maximized. Numerically, W is calcu-
lated using a generalized eigenvalue routine [31].

To allow for a fast database lookup of stored de-
scriptors that are similar to a query, we quantize
descriptor space. Descriptors that fall within the same
compartment are considered similar, and are matched.
Those that fall into different compartments do not
match. Presently, the compartments are defined by a
rectilinear grid in discriminant space, i.e., in the space
of the Yk . The grid spacings sj are chosen such that
a grid cell can accommodate the typical scatter within
a group. This is done by a heuristic that sets the bin
width sj to four times the largest standard deviation
of the j -th component (j = 1, . . . , p) within an indi-
vidual group, and the right end of the leftmost bin to
the minimum over all groups. A sample distribution of
features in discriminant space is shown in Figure 5.

The present scaling and quantization method is
fairly simple and robust, but it has a number of short-
comings. The main restrictions are the linearity of the
mapping (23), the fact that the quantization cells all
have the same size and shape, and the possibility of
missing scoop similarities because the descriptors hap-
pen to fall across a cell boundary. Improved methods
will be investigated in future work.

Nevertheless, the present method does accomplish
a context-adapted descriptor calibration and similarity
measure, utilizing a user-defined training set of de-
scriptors. Missed matches as a consequence of cell
boundaries are not as likely in the low dimension
in which the grid is defined as they would be for
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higher-dimensional situations. Since there is redun-
dancy in the set of scoops characterizing a molecule, a
meaningful alignment will be recovered if just a frac-
tion of them are actually matched. A virtue of linear
mappings, like (23), in comparison to, for example,
neural networks, is that they have a limited number of
parameters and require only a relatively small train-
ing set, which is important for practical applications.
Furthermore, the mapping (23) and the subsequent dis-
cretization are exactly invariant under overall linear
transformations of the descriptors. This means that the
calibration and quantization scheme does not depend
on whether, for example, length is measured in meter
or in Angstrom, and mass in gram or amu.

Group definition
The training set is chosen according to the follow-
ing criteria: the different groups should be selected
to contain examples of structural or functional units
that are relevant for the similarity search. Within the
individual groups, members should represent the kinds
of variation that occur in the descriptor database, like
experimental uncertainty in bond lengths and angles,
different environments of functional groups, and dif-
ferent conformations deemed irrelevant for the prob-
lem at hand. An example for this is presented in
the Application to Dihydrofolate and Methotrexate
section.

The feature database

The previous section gave us a context-adapted map-
ping from descriptor space to an integer set of feature
keys. These keys are simply the indices that label the
cells in discriminant space. The use of a hash table
and fast integer key lookup methods supports effi-
cient queries against large databases, with access times
largely independent of database size.

In principle, compared to a method that would use
a detailed, fully continuous distance metric, the quan-
tization of the descriptors to produce the keys causes
a loss of sensitivity (more false negatives), and a loss
of selectivity (more false positives) in the similarity
search. This is because true positives could be ly-
ing just across the bin boundaries and similarly true
negatives could still be in the same bin but almost a
bin width away. However, the set of descriptors that
describe a molecule is highly redundant, so that an in-
complete set of scoop matches still leads to a complete
alignment of the molecules. Furthermore, false posi-
tive matches are reduced in the subsequent clustering

step (see Feature correspondence section), since they
do not occur consistently.

The feature database is the product of two in-
puts: a set of descriptors, generated from all confor-
mations of a selection of fragment graphs, and the
context-adapted descriptor-to-key mapping. The fea-
ture database is a hash table, whose keys are given
by evaluating the mapping on the descriptors. An en-
try in the hash table consists of a reference back to a
fragment pair, and a description of the internal frame
associated with the descriptor. The explicit values of
the descriptors are not stored in the feature database.
The thrifty use of memory by the feature database is
crucial for the scaleability of our method.

The calculation of the descriptor set for all the frag-
ment pairs of the fragment graphs is generally the most
expensive part of the method, however the descriptor
set needs to be computed only once, in a preprocessing
step, and is then stored. Application of the descriptor-
to-key mapping is fairly cheap and quick. As the
domain context is varied, the descriptor-to-key map-
ping will change, and different feature databases can
be created to query against. Finally, a given feature
database can be queried very rapidly from the keys of
query features, with any number of queries, including
differing conformations of the same molecule, as well
as differing molecules.

Feature correspondence

Having prepared the feature database, we now de-
scribe how it is used to align fragment pairs to the
query molecule. The basic idea is to calculate scoops,
descriptors, and keys for the query in the same way
as for the fragment pairs stored in the database. Each
query key then accesses the matching entries in the
feature database. Each pair of query and database
scoops that have the same key is called a correspon-
dence. By overlaying the internal coordinate axes of
such a scoop pair, each correspondence implies a cer-
tain alignment of a stored fragment pair onto the query.
Whereas such a single correspondence might be co-
incidental, a significant alignment – which we call
a hypothesis – is inferred when several independent
correspondences from different regions of the query
and fragment pair support the same relative orientation
of the two. This assumption is the basis of pose-
clustering methods [32]. A selected number of the
strongest hypotheses will be passed on to the next step,
the assembly, described in the Assembly section.
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The feature correspondence process therefore con-
sists of three steps: construction of all correspon-
dences by keyed access from the query to the feature
database, clustering of the correspondences, and con-
struction of the hypotheses as average alignments of
the significant clusters.

The internal coordinate system that is associated
with a feature is specified by its origin cµ and an
orthonormal system of inertial eigenvectors V, see
Equations 13 and 20. The transformation of laboratory
frame coordinates x into internal coordinates is given
by

T : x �→ Vt (x − cµ). (25)

Given a correspondence between a query feature Xq
and a stored feature Xs , and the two associated trans-
formations Tq and Ts , the transformation that aligns
the stored fragment pair coordinates onto the query is

Tqs = T −1
q ◦ Ts : x �→ cµ,q + VqVts (x − cµ,s).

(26)

This is a putative alignment of the fragment pair repre-
sented in the database onto the query molecule, based
on a single feature correspondence. It would be im-
practical and prohibitively expensive to evaluate and
score each such alignment separately. In the next step,
therefore, the set of all putative alignments is divided
into clusters. In order to perform clustering, a metric
in the space of transformations 26 is required. We are
using

d(Tqs, Tq ′s ′) = ∣∣Tqs(x0)− Tq ′s ′(x0)
∣∣

+2α tan
(

1
2drot

)
(27)

drot = acos
(

1
2 (Tr{Vq ′Vts ′VsV

t
q} − 1)

)
(28)

if s and s′ are from the same fragment pair, and
d(Tqs, Tq ′s ′) = ∞ if they are from different fragment
pairs. x0 is the center of geometry of the fragment pair
coordinates, and the first term on the right hand side of
Equation 27 is simply the Euclidean distance between
the transformed fragment pair centers. Vq ′Vt

s ′VsV
t
q is

the rotation part of the transformation Tq ′s ′ ◦ T −1
qs that

maps a set of coordinates transformed by Tqs onto the
one transformed by Tq ′s ′ , and drot is the magnitude of
the angle of that rotation. The function f (x) = 2 tan x

2
is close to zero for small angles, but becomes large
when x approaches π. We use it to make sure that
transformations with very different rotations are con-
sidered very far apart. The parameter α provides a

measure of the relative weighting of orientation and
translation for the transformation distance. Here, we
chose α = 3 Å for all fragment pairs.

Having defined a metric, we can now proceed
to the clustering step. We use the hierarchical clus-
tering method G03ECF implemented in the NAG
library [33], with the complete-linkage distance updat-
ing method. Hierarchical clustering was chosen over
partitional, because the latter is cumbersome for non-
Euclidean metrics like (27), and the complete-linkage
method because it produces the most compact clusters,
which is desirable for the subsequent averaging [34].
The only parameter of the clustering step is the dis-
tance level dclust at which the dendrogram is cut. For
the data presented in Application to Dihydrofolate and
Methotrexate, after some investigation [35], dclust =
3 Å was used. Note that if dclust is too large, what
should be distinct clusters will be merged and the av-
erage transformation will not be representative of any
transformation of these distinct clusters. On the other
hand, if dclust is too small, the number of members
in each cluster is small and no clusters emerge with
sufficient signal.

In the hypothesis building step, the largest and
therefore most significant clusters are selected, and
average transformations are calculated. Consider a
cluster of n transformations T1, . . . , Tn, each one
represented by

Ti : x �→ ti + Rix, i = 1, . . . , n. (29)

Representations (29) and (26) are related by R =
VqVts and t = cµ,q − Rcµ,s . The average rotation is
calculated as

Rav = UW, where UDW =
N∑
i=1

Ri (30)

is a singular value decomposition (SVD) of
∑
i Ri

[36]. This is well-defined as long as the rotations in
the cluster are not too different. In the situation where
rotations vary widely, the notion itself of an average
rotation becomes disputable. The average translation
vector tav is calculated by requiring that the fragment
pair center x0 under the average transformation is the
arithmetic average of the fragment pair center under
the individual transformations in the cluster,

tav = 1

n

n∑
i=1

[ti + Rix0] − Ravx0. (31)

The average transformation for the cluster is therefore
T : x �→ tav + Ravx.
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In the present work, all feature correspondences
carry an equal weight both in the clustering and
averaging steps. The consideration of some corre-
spondences being more significant than others will be
picked up in future work.

Summing up, for each query feature, the
descriptor-to-key mapping forms a correspondence
with all stored features that have the same key value.
The set of all such pairs is clustered according to the
metric in transformation space. There might be corre-
spondences involving many different stored fragment
pairs, but the correspondences within one cluster only
refer to the same fragment pair. The largest clusters,
according to a user-defined minimum cluster size nclust
are selected. For each of them, the average transforma-
tion is calculated and applied to the coordinates of the
fragment pair whose features it was derived from. The
result is a set of hypotheses, that is, fragment pairs
aligned on the query.

Assembly

The assembly process begins with this set of hypothe-
ses, i.e., fragment pairs positioned in the query frame
according to the transformations derived in the clus-
tering procedure. These fragment pairs may belong
to any molecule in the database. The objective is to
merge these fragment pairs into complete, aligned
structures. The assembly algorithm was designed to
be able to process as much in parallel as possible. A
detailed discussion and analysis, however, will be the
subject of another paper.

For the present application, we allow only frag-
ment pairs belonging to the same fragment graph to
be merged. The structures that result from the as-
sembly process will therefore be conformers of those
molecules that were used to build the database. How-
ever, if fragment pairs from different fragment graphs
are allowed to merge, new structures may be created
through the assembly. We shall take up this issue when
we apply the approach to de novo design methods and
focused library design. Furthermore, we can also al-
low pieces of larger structures to qualify as matches to
the query.

The assembly is an iterative process, where each
iteration step begins with a set of fragment pairs and/or
partially assembled structures, and produces a set of
partially or fully assembled structures that have in-
creased in size by one fragment. Whereas the overall
iteration loop runs sequentially, within a step, many

fragment pairs or partial structures can be processed
in parallel.

At the beginning of each step, fragment pairs and
any partial structures from previous steps are grouped
together and referred to as bases. In other words,
a base is a group of adjacent fragments, that have
been aligned to the query, and connected with specific
torsional angles of the rotatable bonds. All atom coor-
dinates are expressed in the query frame. In addition,
a base carries a record of which fragment nodes it con-
tains, and which rotatable bondedges may be used for
growth.

The first phase of an assembly step is termed the
base expansion phase. In this phase, the list of poten-
tial merges of fragment pairs with bases is determined.
It results from consideration of the fronts of the grow-
ing bases. The front of a base is defined as the set of
rotatable bond edges between a matched and an un-
matched fragment node on the fragment graph. Any
fragment pair from the set of hypotheses that includes
both a frontal rotatable bond edge and matches the
fragment conformer present in the base can potentially
merge with the base. A merge between a base and
fragment pair may occur if the root mean square dis-
tance computed between corresponding atoms in the
fragments that are common to the base and the frag-
ment pair is less than a threshold. Note that during the
assembly process a hypothesis fragment pair can be
used for merges many times, onto multiple growing
bases.

There are different ways to merge a base and a
fragment pair that have close, but not identical atom
positions of the common fragment. First, one could
leave the base fixed and superpose the fragment pair
onto the base’s fragment. In the other extreme, one
could leave the fragment pair fixed and superpose the
base onto the fragment in the fragment pair. We are
using an intermediate option, which is constructed
by joining the base and the fragment pair, and then
determining the least-squares alignment [37] of the
unique corresponding atoms in the original base and
the grown one, and in the fragment pair and the grown
base. The atoms of the common fragment are not in-
cluded in in this calculation. Note that, due to the
merging, the orientation and position of a base de-
pends not only on the fragment pairs that went into
it, but also on the order in which they were merged.
Therefore, multiple identical bases can be produced
with slightly different positions and orientations rela-
tive to the query molecule.
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After each merge, a bump check is performed,
which checks whether atoms from the newly added
fragment are too close to those that were in the base
before. We presently use a threshold of 1.7 Å for
non-bonded atom-atom distance [38].

After that, a shape screen is applied, which pre-
vents the base from growing too far outside the query’s
volume. The screen is performed simply by verify-
ing that no atom in the base is more than a threshold
distance from the closest atom in the query. This
threshold presently defaults to 3.5 Å (see Table 1).

Bases that pass the shape screen are then scored
against the query. The default scoring function is a
simple Carbo function [39],

Q =
∫

R3

(
Nq∑
j=1

h(	x − 	aj )
)(

Nb∑
j=1

h(	x − 	bj )
)
d3 	x


 ∫

R3

(
Nq∑
j=1

h(	x − 	aj )
)2

d3 	x



1
2

 ∫

R3

(
Nb∑
j=1

h(	x − 	bj )
)2

d3 	x



1
2

(32)

where aj is the atom coordinate of the j th query atom,
bj is the atom coordinate of the j th atom in the base,
and h(x) = exp(−x2/2τ2) is a normalized three di-
mensional Gaussian density with τ = 1 Å. Nq and
Nb are the numbers of atoms in the query molecule
and the base, respectively. Scoring functions can vary
widely in their sophistication [40]. We have chosen
(??) for its simplicity.

A base that passes certain criteria qualifies as a
candidate, meaning that it is considered a successful
match to the query. A base is considered a candidate
if it has some minimum number of fragments, passes
all applicable checks and/or has a sufficient score with
respect to the scoring function in use.

Bases that have no opportunities for growth are re-
moved from consideration in subsequent iterations of
the assembly process. The bases remaining are used
as input to the next iteration of the assembly phase.
The assembly process is terminated when there are no
bases left for consideration, i.e., when there are no
bases left to grow. Note that the procedure is exhaus-
tive in that all candidate alignments are produced if
they qualify with respect to the the bump check, shape
screen and scoring criteria. The method is designed
to attempt to produce the better candidates early. In
the application of the method that is described be-
low, all possible qualifying candidate alignments were
produced that could be constructed from the aligned
fragment pairs submitted to the assembly phase.

Table 1. Experimental parameters

Parameter Value Equation

Scoop center placement nuclear locations (9), (11)

Scoop radius R 3 Å (7), (8)

Smearing parameter σ 0.5 Å (10)

Scoop internal grid spacing �R R/18

Asymmetry threshold for αn/RJn 0.02 (22)

Degeneracy threshold εJ 0.04 (21)

Transformation metric parameter α 3 Å (27)

Cluster distance threshold dclust 3 Å

Assembly bump check 1.7 Å

Assembly merge threshold 3.0 Å

Assembly shape screen 3.5 Å

Application to dihydrofolate and methotrexate

In this section we will explore applications of the
present method to the case of dihydrofolate (DHF)
and methotrexate (MTX). This system has been the
subject of study for numerous methods of superpo-
sition [3, 41, 6] as well as docking [25, 42]. It has
become a benchmark for such methods, as it ex-
hibits an interesting aspect that the most reasonable
superposition from the perspective of topology is dif-
ferent from the superposition that can be deduced from
aligning the enzyme parts of the crystal structures of
ligand-enzyme complexes of DHF and MTX bound
to dihydrofolate reductase (DHFR) [16]. The latter
superposition can be understood in terms of electrosta-
tics and hydrogen-bonding sites [20]. The MTX-DHF
system thus serves as a probe to characterize how such
methods weight the importance of topological similar-
ity, electrostatic similarity, and potential non-bonded
interactions. We chose it as our case study to charac-
terize how our method performs, using the very simple
property field detailed in the Property field section.

To this end, we describe two experiments, which
will illustrate the importance of feature classification.
The first considers the alignment of a rigid conforma-
tion of MTX on a rigid conformation of DHF. Both
conformations are extracted from the crystal struc-
tures of the molecules bound to DHFR. Features are
computed at atom centers and grouped according to
a classification scheme derived with knowledge of the
respective binding modes observed in the crystal struc-
tures. This functional-based grouping (see Figure 3)
is compared to the case where all features are clas-
sified equally, and every query feature is compared
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Figure 3. The definition of the three groups for the descriptor scaling, cf. Descriptor scaling and quantization. The first group consists of
the descriptors derived from scoops around the guanidine of the pteridine system. There are four such scoops for DHF, and four for MTX,
therefore the first group consists of 8 descriptors. Similarly, the second group is made up of 8 descriptors from the chain linking the pteridine
and benzamide rings, and the third group of 16 descriptors from around the p-amino-benzamide ring.

to every stored feature. Taking DHF as the query,
MTX is then aligned under the two conditions of clas-
sification, and the results are compared. We should
emphasize up front, that knowledge of the particular
binding mode is not a requirement for application of
the present method. If, however, one has such informa-
tion, one should be able to use it to better characterize
the meaning of similarity in a similarity search.

As a second experiment we use DHF as a query
molecule on a database that represents the full con-
formational space of MTX. The features are classified
using two schemes. The first scheme is the functional-
based grouping described above. The second scheme
assumes no knowledge of the binding modes and sim-
ply groups features by the element type (C, N, or O)
of the central atom. Comparison of the results of using
these two schemes will illustrate the value of injecting
relevant context into the feature classification scheme.
We compare the workload consequent from these two
feature classification schemes. We then conclude with
the top scoring alignments assembled from the frag-
ment pairs of MTX. As we shall see, reasonable results
are obtained with both grouping schemes. However,
when features are classified with the functional-based,
i.e., context-derived, scheme, the results are obtained

Figure 4. The Fisher discriminant matrix W , see Equation 23. W
represents the linear mapping from the 16-dimensional local scoop
descriptors, described in the Descriptors and feature generation sec-
tion , to the 2-dimensional discriminant space in which the similarity
measure is defined. In order to make the components Wkj compara-
ble, they have been multiplied by the standard deviation σk of the kth
descriptor (k = 1, . . . , 16), sampled over the total pool of features.

more efficiently and are of higher quality, as assessed
by the Carbo scoring function or by examination of the
resulting alignments on DHF.
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Rigid Body Superposition

Structures of DHF and MTX were extracted from the
crystal structures with PDB identifiers 1dhf and 4dfr
respectively. 1dhf provides the coordinates of DHF
bound to the human form of the enzyme DHFR [43].
4dfr provides the coordinates of MTX bound to an
E. Coli strain [44] of DHFR. No attempts were made
to optimize the structures with quantum or classi-
cal methods. Thus, the ring distortion and out-of-
plane bending as observed in the crystal structures
were left intact. Hydrogen atoms were added using
Cerius2 [45].

Features were computed according to the para-
meters in Table 1. Placing scoops at atomic nuclei
produced 53 scoops for DHF and 56 for MTX. Feature
groups were defined using the functional-based classi-
fication scheme illustrated in Figure 3. These group
definitions are somewhat similar to those defined in a
QSAR study of DHFR inhibitors by Hopfinger [46].
They emphasize regions of the molecule important for
binding and avoid features from parts of the structures
that appear unessential for activity.

The loadings of the two Fisher discriminants de-
rived from the functional grouping are shown in Fig-
ure 4. The first discriminant has dominant loadings
in Qxx and Qyy , as well as the inertial Jy and Jz
components of the feature. Large Q components with
the present property field arise when the differences in
electronegativity with respect to the average lie further
from their center of dipole. The second discriminant is
most sensitive toM , the integral of the electronegativ-
ity property field over the scoop, and differences in Jz
from Jx and Jy , which may be seen as a crude mea-
sure of planarity of field within the scoop. Differing
training sets will lead to a different feature weighting
in discriminant space.

The atom-centered features of both DHF and
MTX, once projected onto the Fisher discriminants
resulting from the functional grouping, are partitioned
into bins. The size of the bins in each dimension is
set to four times the standard deviation of the largest
group. The resulting partitioning scheme is shown in
Figure 5 and Table 2. The feature labels refer to the
atoms on which the feature scoops were centered. Fig-
ure 6 shows the atom labels for DHF (1) and MTX
(2). Inspection of the grouping reveals the features
of the designated groups are in fact clustered in the
same region of discriminant space. However, rectilin-
ear quantization has its problems. There is no easy way

with this method to segregate all of the desired features
together in distinct bins.

DHF has 53 atoms, so with scoops located on
atomic centers, this results in 53 features. However,
6 features fail to pass the threshold for sufficient non-
degeneracy and are removed. For the construction of
correspondences between the query and database fea-
tures, multiple features are generated (see Descriptors
and feature generation) for scoops in the query mole-
cule (DHF) that lack sufficient asymmetry to define
the sense of their internal axes. This results in the ad-
dition of 25 more features for DHF, for a total of 72.
Of the 56 scoops for MTX, 10 fail to pass the thresh-
old for sufficient non-degeneracy, leaving 46 features.
The total number of correspondences without group-
ing is therefore the product of the number of features
in DHF and MTX, or 72×46 = 3312, as shown in Ta-
ble 3. With the functional grouping, the total number
of correspondences is only 194.

We see that in spite of its problems, a partitioning
of discriminant space is necessary. A brute force com-
parison of all query features with all candidate features
will become prohibitively expensive from a compu-
tational perspective when applied to larger problems.
Furthermore, examination of the large clusters in the
full correspondence case (see Table 3) indicates that
noise from spurious members in these clusters con-
taminates the average transformation of the clusters.
Ill-defined transformations from such clusters lead to
alignments where few structural elements are aligned
well.

In both groupings, when one passes the clusters to
the assembler (which in this case only applies shape
screens and scoring since the molecules are already as-
sembled), essentially the same alignments result. This
will not be the case when considering the flexibility of
MTX. The important point to emphasize here, is that
by injecting relevant knowledge into the feature clas-
sification scheme, one arrives at the answer with less
work. This point becomes critical when larger data-
bases of molecules with more conformational degrees
of freedom are considered. This is more than a timing
issue: in practice, one often must apply cutoffs and
limits to the search. Arriving at an answer efficiently
at a small scale may sometimes translate into whether
one sees it at all at a larger scale.

A result that is fairly robust with respect to choice
of clustering parameters is the production of two align-
ments, one where the benzamide rings are aligned, and
the other with the observed crystallographic alignment
of the pteridine rings indicating superposition of the
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Table 2. To define similarity, the discriminant space depicted in Figure 5 is partitioned into rectangular bins. Each bin corresponds to a cell in
the table. The features are labeled by the name of the central atom of the corresponding scoop (1 = DHF, 2 = MTX), as shown in Figure 6

regions of the molecules that bind to DHFR. The pres-
ence of these two alignments stems from two origins
in conflict. One alignment arises from the strength
of an exact substructural match, namely the p-amino-
benzamide. The other, which is the experimentally
observed alignment of the pteridine rings, is due to the
similarity in locations of chemical functional groups.

Balancing how exact substructural matches should
be weighted with respect to similarity in functional
group definition is an issue that must be dealt with
in any superposition algorithm or similarity scoring
function. Exact substructure matches are sometimes
relevant, even if trivial. One certainly could not fault
an algorithm for scoring such a correspondence high.
Rather, one must balance the relative importance ex-

act substructural matches have with respect to similar
substructures. Since there is no universal answer, this
should be addressed by the context. In the present case,
the two form separate and distinct clusters in trans-
formation space, and are thus presented as alternative
alignments.

Flexible Superposition

To query DHF against a database that represents the
full conformational space of MTX, the MTX struc-
ture was fragmented, and the conformations of each
fragment and fragment pair were tabulated. The frag-
mentation is illustrated in Figure 1, which also shows
that the conformational resolution was 60◦ for the five
single bonds and 180◦ for the aniline bond. Fragment
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Figure 5. The distribution of features after mapping into a 2-D space by way of discriminant analysis, with the functional grouping (see Figure 3
and text). The features marked with diamonds, triangles, and circles represent the three groups. The remaining features are marked with plus
symbols. The query is represented by 53 features, and a single conformation of the database molecule (the crystallographic one) is represented
by 56 features.

conformers and fragment pairs that are produced using
these angle resolutions were analysed for the pres-
ence of non-bonded atom pairs that are closer than
1.7 Å, and these conformations were eliminated from
the tabulation [38]. The non-bonded atom threshold
reduces the number of conformers of fragment C from
36 to 27, the number of A–B fragment pairs from 72
to 48, and the number of B–C fragment pairs from
324 to 234. The list of inter-fragment torsion angles
is appended to the original angle present before frag-
mentation. The results are shown in Table 5. Thus, one
of the 49 A–B fragment pairs and one of the 235 B–
C fragment pairs has the original angle found in the
crystal structure.

The cluster distributions in Table 4 show the im-
portance of injecting relevant context into the classifi-
cation scheme. As can be seen from the total number
of correspondences constructed in each case, the work
load of the correspondence step is markedly higher
for the elemental grouping scheme than in the func-
tional grouping scheme. Inspection of the partitioning
of the elemental grouping revealed a decidedly less ra-
tional distribution. Bins were occupied with more ran-
dom groupings of features compared to the functional
scheme.

Furthermore, there is a difference in the types of
alignments of the fragment pairs containing the p-
amino-benzamide ring and the pteridine ring that are
produced by the two schemes. In the functional group-
ing scheme we see three types of alignments: one with
the p-amino-benzamide ring of MTX tightly aligned
onto that of the DHF; one with the pteridine ring of
MTX tightly aligned onto that of DHF in a way com-
patible with the DHFR binding implied by the crystal
structures; and one with the pteridine ring of MTX
tightly aligned onto that of DHF in a way compatible
with good steric overlap of the rings. In contrast, with
the element grouping scheme we see only alignments
where the p-amino-benzamide ring of MTX is tightly
aligned onto that of the DHF. With the set of parame-
ters shown in Table 1, tight alignments of the pteridine
rings are not observed, although they can be produced
by varying the parameters of the clustering. Not sur-
prisingly, it appears that with the element grouping
scheme, the ability to recognize an exact substruc-
tural match on the p-amino-benzamide ring is greater
than the ability to recognize either a functional group
or steric match of the pteridine rings. It should be
added, however, that even with the element grouping
scheme, although alignments based on superposition
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Figure 6. Dihydrofolate 1 and methotrexate 2 with atom numbers shown. Table 2 refers to feature scoops centered on the atoms indicated by
the labels.

Table 3. Distribution of the correspondence cluster sizes for
rigid body superposition of the crystal structure of MTX onto
that of DHF. Left column: features were not grouped, all query
features were corresponded to all database features. Right
column: functional feature grouping (see text), only similar
features were corresponded. The total number of correspon-
dences with grouping is only about one twelfth of the number
without grouping, resulting in a significant decrease in com-
puter time. While the cluster size distribution suggests that
the grouping eliminates a number of those correspondences
that went into the large clusters in the all-to-all case, detailed
inspection of the individual high-voting clusters shows that the
same alignments are produced in both cases

Full Functional

correspondence grouping

Votes Occurrences Occurrences

16 1

11 4

10 1

9 6 1

8 7 -

7 16 -

6 34 -

5 70 -

4 123 4

3 272 13

2 414 27

1 330 76

Total clusters 1278 121

Total correspondences 3312 194

Table 4. Distribution of the correspondence cluster sizes
for flexible superposition of MTX onto the crystal structure
of DHF. Middle column: features were grouped according
to the element of the atom at the center of the scoop (C,
O or N). Right column: features were grouped according
to the chemical function of the molecular region in which
the scoop is defined. The two grouping schemes imply
different similarity measures. The importance of a cluster
is given by the number of its members, a larger number
indicating more correspondences consistently supporting
the same alignment. The total number of correspondences
following from functional grouping is only about half
the number of correspondences from elemental grouping,
which results in a significant decrease in workload by the
clustering algorithm

Element Functional

grouping grouping

Votes Occurrences Occurrences

11 14

10 9

9 15 85

8 126 19

7 129 43

6 210 235

5 410 249

4 448 600

3 1358 1466

2 6635 6391

1 31157 11340

Total clusters 40488 20451

Total correspondences 55649 35037
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Table 5. Statistics for the fragment and fragment pair parti-
tioning of MTX. The 35 fragment conformers and 284 rotat-
able bond edge records allow for the representation of more
than 15,500 full molecular conformations, see Equation 1

Fragment Fragment Rotatable Number of

node conformers bond edge fragment pairs

A 6 A–B 49

B 2 B–C 235

C 27

Total 35 Total 284

of the pteridine ring of MTX onto that of DHF are not
observed, we do see both the binding mode and steric
overlap orientations of the pteridine ring, but these
alignments are produced by correspondences from re-
gions of the molecules away from the pteridine ring
and happen to survive shape screening in the assembly
phase.

Table 6. The number of bases that survive each assembly phase
for the flexible superposition of MTX onto the crystal structure of
DHF. The assembly step constructs candidate alignments from the
local fragment pair alignments. For both grouping schemes, all
clusters with five or more votes are considered for the assembly

Assembly phase Functional Elemental

grouping grouping

Selected correspondence clusters 654 890

Potential merge pairs 91092 103128

Actual merges 13886 25816

After bump check 11194 21576

After shape screen 436 428

All clusters with votes of five or more are used to
produce the starting bases of the assembly step. Since,
for this example, completed molecules of MTX are
produced when two fragment pairs are merged, the
assembly process completes after one iteration. Ta-
ble 6 shows the work load of the different phases of
the assembly process. While the work load is similar
for the two grouping schemes, it will turn out that the
quality of the produced candidate set is better with the
functional grouping scheme.

The assembly process produced 428 candidate
alignments with the element grouping scheme and
436 with the functional grouping scheme. All align-
ments were scored using the function of Equation 32
and clustered into sets based on similarity of score

Figure 7. A flexible alignment of MTX onto the crystal structure
of DHF generated with FLASHFLOOD. Most of the feature corre-
spondences that led to this alignment are around the aromatic rings,
therefore this substructure is almost exactly aligned. The conforma-
tion of MTX is different from the one found in the crystal structure.
Using the scoring function from Equation ??, this is the highest
scoring alignment, Q = 0.95.

Figure 8. A flexible alignment of MTX onto the crystal structure
of DHF generated with FLASHFLOOD. This alignment is mainly
based on the aromatic ring substructure match. In contrast to Fig-
ure 7, where the pteridine ring alignment agrees with the crystal
structure, here the pteridine ring is flipped by 180◦. Q = 0.90.

and similarity of binding mode. The scores ranged
from 0.42 to 0.95. Figures 7–9 show three notable
alignments from the three highest scoring sets formed
from the 436 alignments that resulted from using the
functional grouping scheme.

Figure 7 shows the highest scoring of the 436
alignments, with a score of Q = 0.95. The p-amino-
benzamide rings are strongly aligned and the aliphatic
chains are actually aligned more closely than is found
from the two crystal structures. It is interesting to spec-
ulate about why the chains were not observed in this
conformation in the crystal structures. Perhaps it can
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Figure 9. A flexible alignment of MTX onto the crystal structure
of DHF generated with FLASHFLOOD. This alignment is based on
a similarity match of the pteridine ring, and it is the one closest to
that implied by comparison of the two crystal structures. Note that
this is not a substructure match. The planes of the aromatic rings are
skewed with respect to each other. Q = 0.74.

be attributed to the fact that 4dfr is an E. Coli form
and 1dhf is the human form of DHFR, and the two
sequences differ in a nontrivial way, resulting in a
different site geometry. Another reason might be that
these chains are solvent exposed, and are thereby influ-
enced by packing interactions from crystallization of
the complex. Of course, these kinds of considerations
do not factor into a superposition analysis because the
enzyme is not considered.

While the alignments represented in Figures 7 and
8 both strongly align the p-amino-benzamide rings,
the pteridine rings are in opposite orientations. In
Figure 7, the pteridine alignment is indicative of the
observed binding, whereas in Figure 8, with a score
of Q = 0.90, the pteridine rings are in a sterically
similar orientation. Due to the strong effect the benza-
mide has on the average transformation that aligned
the respective fragment pairs, the correct hydrogen
bonding groups on the pteridine ring are not as inci-
dent to the corresponding groups on DHF as they are
in the alignment shown in Figure 9, with a score of
Q = 0.74. Of the three alignments shown, this one has
the best overlap of the pteridine ring, and is reasonably
close to the observed binding. This favorable pteridine
ring alignment comes at the cost of the overlap of the
benzamide ring.

The alignments produced by the element grouping
scheme were similar to those shown in Figures 7 and
8.

Selectivity

We now turn to the question of how well the method
works using these operating parameters when other
molecules are added to the database. Two groups of
molecules will be added to the database: a group of
DHFR inactives and a second group of DHFR in-
hibitors. By comparing the selectivity of MTX to the
eight DHFR inactives we will first examine selectivity
in a broad context. Examination of selectivity in a finer
context will be conducted by comparing MTX to the
eight DHFR inhibitors.

Table 7 gives information about the sixteen ad-
ditional molecules that were added to the database
containing MTX. The set for this experiment is com-
prised of eight inhibitors of DHFR [47] and eight in-
hibitors of other enzymes indicated below, referred to
collectively as the DHFR inactives. The eight DHFR
inhibitors are labeled according to the compound num-
ber in Crippen’s original work [47]. The initial co-
ordinates for the eight DHFR inhibitors shown in
Figure 10 were obtained by energy minimization [48].
The eight DHFR inactives shown in Figure 10, are
ligands whose coordinates were extracted from PDB
files of the ligand bound to a protein. Four are Ther-
molysin inhibitors (from the PDB files 1tlp, 1tmn,
3tmn, 5tmn), two are Carboxypeptidase inhibitors
(1cbx, 7cpa), and the remaining two are Glycogen
Phosphorylase inhibitors (3gpb, 4gpb).

Though small, this group exhibits important fea-
tures. The size on the inactives range from the small
and rigid sugars that are Glycogen Phosphorylase in-
hibitors, to the larger flexible Thermolysin inhibitors.
The size of the eight DHFR inhibitors are consistently
smaller than MTX, and their activity spans a wide
range [47], as shown in the last column of Table 11.

Using a torsion angle resolution consistent with
the methotrexate characterization described above, the
number of conformations represented ranges from a
few dozen to over 10 million for the DHFR inac-
tives. The number of conformations represented for
the DHFR inhibitors total under a thousand for the set,
due to their limited flexibility. Thus, with a fairly small
set of molecules, we have created a virtual conforma-
tional database where the DHFR inhibitors are highly
under-represented.

We used the same conditions as were described
in the Application to Dihydrofolate and Methotrexate
section. All single bonds were sampled at 60◦ inter-
vals. Terminal groups such as carboxy, isopropyl, and
phenyl were left rigid. Amides were left in a trans
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Table 7. Fragmentation statistics on the additional molecules added to the database

PDB Rotatable Approximate Fragment Fragment Total

source bonds conformers conformers pairs features

represented

DHFR Inactives

1cbx 3 216 12 103 2781

1tlp 8 1679616 54 3272 138866

1tmn 9 10077696 68 2922 107601

3tmn 4 1296 28 350 15050

5tmn 8 1679616 68 4219 174957

7cpa 9 10077696 144 1735 82231

3gpb 2 36 6 11 319

4gpb 2 36 7 19 532

4dfr 5 15552 35 284 10185

Total for

Inactives – 23531760 422 12915 532522

DHFR Inhibitors

1 2 36 7 21 798

2 2 36 7 21 756

4 2 36 4 9 360

6 3 216 8 53 2173

61 3 216 8 55 2475

64 3 216 8 51 2448

67 2 36 7 21 735

68 2 36 8 21 714

Total for

Inhibitors – 828 57 252 10459

Combined

Total – 23532588 479 13167 542981

configuration. All property field settings were used as
specified in Table 1.

Ligands from 1tlp, 1tmn, 7cpa, and 5tmn were
partitioned into four fragment nodes; and the lig-
ands from 3tmn, 1cbx, 3gpb, 4gpb, and the eight
DHFR inhibitors were partitioned into two fragment
nodes[49]. The fragmentation statistics for the sixteen
molecules are shown along with those for methotrex-
ate in Table 7. In this table, except for methotrexate
(4dfr) the approximate number of conformers rep-
resented is simply the number of torsional angles
represented for each bond (in this case 6, since the
torsional angle resolution is 60◦) raised to the number
of rotatable bonds. Ethyl groups in esters 61 and 64
were held fixed in an extended conformation. Note
that this represents only approximately the number
of conformers because some, that are sterically for-

bidden, are removed by the bump check, and others
are added, corresponding to the inter-fragment tor-
sion angles present in the original crystal or energy
minimized structures. For discussion on methotrexate
statistics, see the Fragment pairs section, Table 5 and
Equation 1.

The number of fragment pairs is the number that
have passed a bump check of 1.7 Å [38]. Features were
computed at each atom center for each fragment pair.
One can see from the data in the table that there is con-
siderable savings in breaking the larger structures up
and characterizing fragment pairs rather than molecu-
lar conformations. Due to the single partitioning of the
DHFR inhibitors, only the bump checks reduced the
number of fragment pairs used for feature extraction.

Feature computation can be expensive, but it is
done only once, when molecular information is added
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Figure 10. The sixteen additional structures added to the data-
base containing MTX. Each of the DHFR inactives structures were
extracted from the PDB source file indicated.

to the database. Its cost will vary widely depend-
ing on complexity of the field computation and grid
resolution, if the field is computed on a grid. Once
the features are computed, however, timings for the
alignment and assembly stages of a query are inde-
pendent of the field complexity. Feature computa-
tion with the present property field and operational
settings averaged about 4 features per second on a
workstation [50].

Selectivity During Alignment Stage

It is critical for the efficiency and scalability of the
method that the burden on the assembly stage is kept
to a minimum. The results shown in Tables 8–11 in-
dicate a considerable degree of selectivity before the

assembly stage for MTX and the eight DHFR in-
hibitors relative to the DHFR inactives. The feature
classification scheme selects which correspondences
will be made. There are a total of 542 981 features
in the database, and 72 features on the query mole-
cule. This gives 39 094 632 possible correspondences.
Using the functional grouping scheme, and screen-
ing out degenerate features, only 1 421 086 or about
3.7% of the total possible correspondences were con-
sidered for MTX and the eight inactives. If we include
the other eight inhibitors, this number only rises to
1 458 843. The correspondences of MTX and the eight
inhibitors are only 0.19% of the total. Each corre-
spondence has an associated transformation which
is clustered as described above. Clustering produced
1 053 312 transformation clusters in total. These trans-
formation clusters are ranked according to the number
of correspondences they contain. From this pool of
transformation clusters, each of which describes a
fragment pair aligned on the query molecule, one can
select for assembly either the top ranking clusters from
each molecule, or the top ranking clusters from the
entire pool of clusters. For either choice, one sees a
high degree of selectivity for MTX, which has been
achieved by the choice of property field and functional
grouping scaling scheme.

Table 8 and Figure 11 illustrate the selectivity of
DHF for MTX with respect to the eight inactives in the
database. Table 8 shows each molecule’s distribution
of correspondence cluster sizes for alignments of its
fragment pairs onto DHF. Figure 11 gives the corre-
sponding proportions from each of the eight inactives
and MTX for each cluster size. Excluding the set of
eight DHFR inhibitors, there were 1 421 086 feature
correspondences. Only 35 037, or 2.5%, of them were
from MTX. Similarly, this gives 1 036 401 transfor-
mation clusters, of which only 20 451, or 2.0%, were
from MTX. However, if one considers only the larger
clusters, which represent more significant alignments,
one sees that MTX quickly dominates the distribu-
tion. For example, if one selects clusters with six or
more transformations from the entire pool of trans-
formations, MTX represents 405 of the 533, or 76%;
seven or more gives 170 out of 190 or 89%; and eight
or more exclusively selects MTX. Even though MTX
represents a small fraction of the total correspon-
dences considered, clustering clearly reveals MTX
fragment pairs as the best ones to use in the assembly
stage. Subsequent assembly of these MTX fragment
pairs leads to the results seen in the previous sections.
The additional 23 million conformations represented
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Table 8. Each molecule’s distribution of correspondence cluster sizes for fragment pair alignments. Selectivity for MTX with
respect to the eight DHFR inactives is illustrated. This is a direct consequence of the choice of property field and contextual scaling
provided by the functional grouping scheme. Selecting the highest ranking transformation clusters, such as all those with at least
six correspondences, across all molecules almost exclusively selects MTX (4dfr) for assembly

DHFR Inactives

Cluster size 1cbx 1tlp 1tmn 3tmn 5tmn 7cpa 3gpb 4gpb 4dfr Total

11 − − − − − − − − 14 14

10 − − − − − − − − 9 9

9 − − − − − − − − 85 85

8 − − − − − − − − 19 19

7 − − 4 − 2 14 − − 43 63

6 1 15 21 8 0 63 − − 235 343

5 4 1224 743 194 10 1887 − − 249 4311

4 67 4574 1590 556 983 3380 − − 600 11750

3 245 15434 10231 1592 16655 7947 − − 1466 53570

2 1620 52362 42092 4667 72091 42599 41 61 6391 221924

1 5061 190624 132235 22714 248973 132622 225 519 11340 744313

Total clusters 6998 264233 186916 29731 338714 188512 266 580 20451 1036401

Total correspondences 9330 366156 257341 40066 447116 265092 307 641 35037 1421086

by the 13 000 fragment pairs of the molecules in Fig-
ure 10 do not affect the result that MTX is primarily
selected from the database.

Table 9 shows the corresponding results for the
DHFR inhibitors. Despite the low number of confor-
mations relative to the inactives, the DHFR inhibitors
scored consistently high (see Tables 10 and 11) and
were within the selection threshold of 6 votes or
higher, as seen in Table 9. If one selects clusters with 6
or more transformations from the entire pool of trans-
formations, the inhibitors (including MTX) represent
487 of the 606. Even with clusters representing 5 or
more transformations, the inhibitors (including MTX)
represent 1031 of the 5221 – and this is out of a total
of 1 061 703 transformation clusters. Selection of the
larger clusters for assembly therefore appears to be a
valid means of significantly reducing the aligned frag-
ment pairs prior to assembly. Given the elementary
level of consideration for medicinal chemistry, the dra-
matic reduction in the number of clusters to consider is
encouraging. It is clear that such specific pre-screening
is essential for larger datasets, particularly when the
final scoring function used is expensive.

Selectivity During Assembly Stage

If, however, we look at the top ranking transforma-
tion clusters from each molecule individually, will

there still be selectivity for MTX? Table 10 shows
the timing and load data for the assembly of the frag-
ment pairs MTX and the eight inactives. Table 11
gives the data for the eight inhibitors. Based on the
size of the transformation clusters, the top ranking
fragment pair alignments were selected for each mole-
cule separately. For each molecule, enough cluster
sizes were considered to yield at least 500 fragment
pair alignments. This resulted in the number of initial
alignments shown in Tables 10 and 11. For mole-
cules small enough to be defined by a single fragment
pair, the assemble stage will yield as candidates the
aligned fragment pairs, provided they pass the shape
screen. This is the case for 3tmn, 1cbx, 3gpb and
4gpb and the DHFR inhibitors (excluding MTX). For
larger molecules, both partial and full assemblies will
yield candidates, again aligned to the corresponding
region of the query molecule, provided they pass the
bump check, merge threshold and the shape screen.
However, most of the larger molecules did not have
sufficient similarity to DHF for a complete or partial
assembly of the molecule. In fact, only MTX showed
any merges of fragment pairs. Note that assembling
conformers requires the combination of high ranking
fragment pairs and their proximal placement. So, on
examination of Tables 10 and 11, we see that the bulk
of the time for the Thermolysin and Carboxypeptidase
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Table 9. Distribution of correspondence cluster sizes for the DHFR inhibitors. Selectivity for the DHFR
inhibitors with respect to DHFR inactives is illustrated by comparison with Table 8. Note that although
correspondences involving the inhibitors form larger clusters that inactives, they are still less favored
than MTX (4dfr). Inspection reveals that clusters greater than 6 are mainly due to the alignment of the
flexible chain. This part of DHF and MTX is mostly solvent exposed, as seen in the crystal structures.
Corresponding structure that would have occupied the same space as the flexible chain is not present in the
eight inhibitors

DHFR inhibitors

Cluster size 1 2 4 6 61 64 67 68 Total

7 − − − 1 − 1 − − 2

6 3 3 5 10 9 13 11 17 71

5 35 9 7 79 53 60 37 24 304

4 89 57 25 119 148 115 45 26 624

3 237 183 89 255 325 252 160 109 1610

2 638 559 254 1226 1152 1021 453 477 5780

1 1287 1319 662 4022 3762 3422 1248 1189 16911

Total clusters 2289 2130 1042 5712 5449 4884 1954 1842 25302

Total correspondences 3823 3277 1602 8177 7952 7065 3065 2796 37757

Figure 11. Shown here is a 100% stacked bar chart, derived from Table 8, for the proportion of transformation clusters for each cluster size for
each of the eight DHFR inactives and MTX (4dfr). One sees that for small cluster sizes, transformations of fragment pairs from MTX represent
a small fraction of the total number of clusters of that size. For the larger clusters, however, transformations involving MTX dominate. Selecting
the largest clusters for assembly, therefore, almost exclusively focuses resources on MTX.
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inhibitors is spent indexing features and clustering
transformations during the fragment pair alignment
stage, where most of the potential assembly load is
screened out. For MTX, however, most of the time is
spent on assembly due to the large number of fragment
pair alignments that could be merged, screened for
shape and scored. All assembly runs were exhaustive
for the selected fragment pairs.

From Tables 10 and 11 we see that four of the
DHFR inactives and all of the DHFR inhibitors had
alignments of conformers that met the criteria for
candidate selection, and, the assembly results again
strongly favor MTX over any of the other molecules
investigated.

The last column of Table 10 shows the highest
Carbo scores of the candidates. We can see, however,
that of the few candidate conformer alignments sub-
mitted for final evaluation, the Carbo score ranks MTX
well above the rest. The difference in size and shape of
the DHFR inactives, 3tmn, 1cbx, 3gpb and 4gpb from
DHF results in a much lower Carbo score.

Inspection of the alignments of the DHFR in-
hibitors reveal that in each case, alignments similar
to those exhibited by MTX in Figures 7, 8 and 9
were observed. Compounds 2 and 6 have an hydrogen
bond acceptor that allows a binding mode analogous
to DHF, which is also observed.

The scores for the eight DHFR inhibitors are given
in Table 11. These scores are on average higher than
for the DHFR inactives. In fact, only one of the
alignments of 3tmn has a Carbo score (0.66) that
is comparable to those of the DHFR inhibitors. In-
spection of this alignment of 3tmn to DHF however
reveals that 3tmn is aligned to the branched chain
of DHF – a similarity not important for binding to
DHFR. In fact, the highest scoring alignments of two
of the other DHFR inactives (3gpb and 4gpb) also
align along the branched chain of DHF. Such scores
could well be screened out by filters favoring the
known binding mode of DHFR inhibitors, since the
branched chain region is known from crystal struc-
tures to be solvent exposed. In terms of analyzing the
Carbo function scores, we should remember that these
scores are based entirely on shape similarity and do
not take into account any other considerations relevant
to medicinal chemistry (e.g., consideration of func-
tional group compatibility, as in SQ [3]). Given this,
we would not expect the Carbo scores to more than
qualitatively represent the difference between these
molecules in their chemical similarity to DHF, and
would certainly not expect the scores to mirror the

experimental binding affinities reported for the DHFR
inhibitors. Furthermore, we note that the Carbo func-
tion penalizes somewhat for mismatched shape. This
is particularly relevant for the DHFR inhibitors (ex-
cluding MTX) which have no structure to fill the
volume corresponding to the chain of DHF. This is
reflected in the scores of the best alignments, which
are around 0.6.

In summary, even though we selected the top
ranking fragment pair alignments for each molecule,
fragment pairs did not match across the entire volume
of the query, so there were no multiple fragment pairs
to be considered for merging to form more complete
conformers (and, therefore, higher scoring candidates)
for molecules other than MTX.

We did not use knowledge of the structure of
DHFR at any phase of the screening process, since our
aim was to develop a similarity searching application.
Furthermore, it was not our intention here to further
refine or optimize the binding mode. Our results show
that from a modest flexible dataset, we are able to re-
duce the number of conformation and alignments to a
few hundred to examine, from several million.

Summary

We have presented a method for the field-based align-
ment of flexible molecules. The method offers a sys-
tematic way to use arbitrary property fields for the
purposes of similarity search and alignment. Context
specific information can be used to scale the relative
importance of high dimensional descriptors derived
from the property field under study. The method is
designed to operate on overlapping parts, or fragment
pairs, of molecules, and utilizes an efficient method of
conformational space representation.

We applied the method to the benchmark
dihydrofolate-methotrexate system, and have demon-
strated that by injecting context specific knowledge
into the feature classification scheme, one arrives at
the reasonable alignments more efficiently. For the
present study we used a very simple property field.
Even with this simple property field the appropriate
inclusion of context in the definition of similarity al-
lowed the production of alignments consistent with the
binding modes present in the crystal structures in both
rigid and flexible treatments of conformational space.

Finally, we have looked in detail at how the method
works in performing a query for alignments on di-
hydrofolate from a database of seventeen molecules
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Table 10. This table shows the alignment and assembly timings [50], the top Carbo
scores, and the total number of candidates for each ligand investigated. The statistics
are for the case of flexible alignment of the eight DHFR inactives and MTX onto the
DHF query molecule. The initial alignments for each molecule represent those from the
largest clusters

PDB Alignment Assembly Initial Top

source time, s time, s alignments merges candidates score

1cbx 19 22 1399 - 450 0.48

1tlp 489 10 1773 - - -

1tmn 409 6 1095 - - -

3tmn 55 8 690 - 81 0.66

5tmn 571 9 996 - - -

7cpa 545 15 1964 - - -

3gpb 2 7 266 - 129 0.43

4gpb 3 12 580 - 180 0.42

4dfr 48 209 654 13886 436 0.95

Table 11. This table shows the alignment and assembly timings [50], the top Carbo scores, and the
total number of candidates for the eight DHFR inhibitors investigated. All structures in this series had
only one fragment pair, and so no merging was required. The last column is the experimental binding
energy [47]

Compound Alignment Assembly Initial Top �G binding [47]

number time, s time, s alignments candidates score (Kcal · mol−1)

1 60 8 1002 37 0.67 −5.8

2 50 6 811 26 0.65 −6.0

4 50 9 1034 33 0.66 −6.5

6 75 15 1690 44 0.66 −6.5

61 60 5 487 17 0.77 −12.8

64 70 16 1338 17 0.81 −13.1

67 46 5 706 30 0.63 −13.4

68 47 5 653 37 0.61 −13.4

representing approximately 23 million conformations.
The method exhibits a high degree of selectivity for
alignments of methotrexate as well as other dihydrofo-
late reductase inhibitors. The selectivity is apparent at
initial alignment and assembly stages, and is reflected
in the resulting Carbo scores.

Future work will investigate a broader range of
molecular systems, more sophisticated property fields
such as those derived from quantum mechanical calcu-
lations, a more detailed look at the effects of context
and the training set used to define context, more
optimal parameter settings, and will characterize scal-
ability and performance of the method with respect
to both the number of molecules and the size of their
respective conformational spaces.

Acknowledgements

The authors would like to acknowledge the significant
contributions of Daniel E. Platt to some of the early
embodiments of this work, and to B. David Silverman
for many insightful discussions. The contributions of
Blake G. Fitch and Robert S. Germain to the system
archetecture will prove to be essential for the scala-
bility of the method. The authors would like to thank
Andrea Califano for creating the context and support
for the initial work. The authors would also like to ac-
knowledge the referees for many helpful suggestions
made during the review process that helped complete
and clarify the presentation of the material.



611

References

1. Silverman, B.D. and Platt, D.E., J. Med. Chem., 39 (1996)
2129.

2. Lemmen, C., Lengauer, T. and Klebe, G., J. Med. Chem., 41
(1998) 4502.

3. Miller, M.D., Sheridan, R.P. and Kearsley, S.K., J. Med.
Chem., 42 (1999) 1505.

4. Lemmen, C., Hiller, C. and Lengauer, T., J. Comput. Aid. Mol.
Des., 11 (1997) 357.

5. Klebe, G., Mietzner, T. and Weber, F., J. Comput. Aid. Mol.
Des., 8 (1994) 751.

6. Kearsley, S.K. and Smith, G.M., J. Comput. Aid. Mol. Des., 8
(1994) 565.

7. McMartin, C. and Bohacek, R.S., J. Med. Chem., 42 (1999)
1505.

8. Handschuh, S., Wagener, M. and Gasteiger, J., J. Chem. Inf.
Comput. Sci., 38 (1998) 220.

9. Mestres, J., Rohrer, D.C. and Maggiora, G.M., J. Mol. Graph.
Modeling, 15 (1997) 114.

10. Martin Y.C., Bures, M.G., Danaher, E.A., DeLazzer, J., Lico,
J. and Pavlik, P.A., J. Comput. Aid. Mol. Des., 7 (1993) 83.

11. Willett, P., J. Mol. Recog., 8 (1995) 290.
12. Jones, G., Willett, P. and Glen, R.C., J. Comput. Aid. Mol.

Des., 9 (1995) 532.
13. Thorner, D.A., Wild, D.J., Willett, P. and Wright, P.M., J.

Chem. Inform. Comput. Sci., 36 (1996) 900.
14. Wild, D.J. and Willett, P., J. Chem. Inform. Comput. Sci., 36

(1996) 159.
15. Thorner, D.A., Willett, P., Glen, R.C., Wright, P.M. and

Taylor, R., J. Comput. Aid. Mol. Des., 1 (1997) 163.
16. Klebe, G., in Kubinyi, H. (ed.), 3D QSAR in Drug Design,

ESCOM, Leiden, 1993, pp. 173–199.
17. Kim, K.H., list of comfa references 1993–1997, In Kubinyi,

H., Folkers, G. and Martin, Y.C. (eds), 3D QSAR in Drug
Design, Vol. 3, Kluwer, Dordrecht, 1998, pp. 317–338.

18. Klebe, G., comparative molecular similarity indicies analysis,
in Kubinyi, H., Folkers, G. and Martin, Y.C. (eds), 3D QSAR
in Drug Design, Vol. 3. Kluwer, Dordrecht, 1998, pp. 87–104.

19. Good, A.C. and Mason, J.S., three-dimensional structure data-
base searches, in Lipkowitz, K.B. and Boyd, D.B. (eds),
Reviews in Computational Chemistry, Vol. 7, chapter 2. VCH
Publishers, New York, NY, 1996, pp. 67–117.

20. Kubinyi, H., similarity and dissimilarity: A medicinal
chemist’s view, in Kubinyi, H., Folkers, G. and Martin, Y.C.
(eds), 3D QSAR in Drug Design, Vol. 3.Kluwer, Dordrecht,
1998, pp. 317–338.

21. Klebe, G. and Mietzner, T., J. Comput. Aid. Mol. Des., 8
(1994) 583.

22. Kearsley, S.K., Underwood, D.J., Sheridan, R.P. and Miller,
M.D. J. Comput. Aid. Mol. Des., 8 (1994) 565.

23. Hahn, M., J. Chem. Inf. Comput. Sci., 37 (1996) 80.
24. Patents have been filed and are pending for several aspects of

the work described in this paper. Please refer to U.S. Patent
filing YOR8-1999-0949 and other references therein.

25. Rarey, M., Kramer, B., Lengauer, T. and Klebe, G., J. Mol.
Biol., 261 (1996) 470.

26. Böhm, H.J., J. Comput. Aided. Mol. Des., 6 (1992) 61.
27. Douglas, B.E., McDaniel, D.H. and Alexander, J., Concepts

and Models of Inorganic Chemistry. John Wiley & Sons, New
York, NY, 1983.

28. Karplus, M. and Porter, R.N., Atoms and Molecules. W. A.
Benjamin, Inc., Menlo Park, CA, 1971.

29. Other types of lattices can also be used.

30. Duda, R.O. and Hart, P.E., Pattern Classification and Scene
Analysis. John Wiley & Sons, New York, NY, 1973.

31. IBM, Poughkeepsie, NY. Engineering and Scientific Sub-
routine Library for AIX, Version 3, Guide and Reference,
1997.

32. Stockman, G., Comput. Vision Graphics Image Proc., 40
(1987) 361.

33. NAG Ltd., Oxford, UK, The NAG Fortran Library Manual,
Mark 16, 1993.

34. Jain, A.K. and Dubes, R.C., Algorithms for Clustering Data.
Prentice Hall, New York, NY, 1988.

35. The choice for dclust used in the present work was made based
on a number of experiments with the DHF-MTX system. How-
ever, results were relatively insensitive to values in the range
of 2.5 to 4.0 Å. This value is probably appropriate for studies
using the same clustering algorithm, tranformation distance
metric, with fragments that are approximately 10 heavy atoms
in size, and for nuclear placement of scoops.

36. Curtis, W.D., Janin, A.L. and Zikan, K., a note on averag-
ing rotations, in IEEE Virtual Reality Annual International
Symposium, pp. 377–385. IEEE, 1993.

37. Arun, K.S., Huang, T.S. and Blostein, S.D., Least–square
fitting of two 3-d point sets. IEEE Transactions on Pattern
Analysis and Machine Intelligence, PAMI-9 (5), 1987, pp.
698–700.

38. The value of 1.7 Å chosen for the bump check parameters
used in this work is rather small. Therefore, some high energy
conformations are used as fragment pairs and also some high
energy candidates are produced during assembly. The value
was chosen to screen out only the worst cases of steric over-
lap in order to assess the method with a larger work load.
The performance of the method improves if this parameter is
increased.

39. Carbo, R., Leyda, L. and Arnaua, M., Int. J. Quant. Chem., 17
(1980) 1185.

40. Good, A.C. and Richards, W.G., Explicit calculation of 3d
molecular similarity, in Kubinyi, H., Folkers, G. and Mar-
tin, Y.C. (eds), 3D QSAR in Drug Design, Vol. 2. Kluwer,
Dordrecht, 1996, pp. 321–338.

41. Lemmen, C. and Lengauer, T., J. Comput. Aid. Mol. Des., 11
(1997) 357.

42. Lorber, D.M. and Shoichet, B.K. Prot. Sci., 7 (1998): 938.
43. Prendergast, N.J., DeCamp, T.J., Smith, P.L. and Freisheim,

J.H., Biochemistry, 27 (1988) 3664.
44. Bolin, J.T., Filman, D.J., Matthews, D.A., Hamlin, R.C. and

Kraut, J., J. Biol. Chem., 257 (1982) 13650.
45. Program Cerius2, distributed by Molecular Simulations Inc.,

9685 Scranton Rd. San Diego CA 92121-3752.
46. Dunn, W.J. III, Hopfinger, A.J., Cantana, C. and Duraiswami,

C., J. Med. Chem., 39 (1996) 4825.
47. Crippen, G.M., J. Med. Chem., 23 (1980) 599.
48. The initial structures were generated using the FlashFlood user

interface and were Energy-minimized using the Dreiding force
field[51] with the Mulliken suite of programs[52].

49. The atom numbering for the non-hydrogen atoms was kept
the same as in the corresponding pdb files. For the nine mole-
cules studied, the bonds that were cut to define fragments are
as follows (pdb label: {(atom number)–(atom number),. . . }):
1cbx: {3–5} , 1tlp: {1–2, 15–16, 23–24} , 1tmn: {1–13, 14–
15, 22–25}, 3tmn: {8–9} , 5tmn: {12–13, 17–18, 24–25},
7cpa: {9–10, 18–41, 23–26}, 3gpb: {1–7}, 4gpb: {1–7},
and 4dfr: {11–12, 24–25}. The internal torsional angles that
were rotated are as folows: 1cbx: {2–3, 5–6} , 1tlp: {2–12,
16–17, 16–19, 27–28, 24–27} 1tmn: {1–2, 2–3, 13–14, 14–



612

17, 21–22, 25–26}, 3tmn: {12–13, 9–12, 2–3}, 5tmn: {3–4,
11–12, 16–17, 17–20, 25–28}, 7cpa: {23–24, 36–41, 18–
40, 10–11, 10–39, 2–32}, 3gpb: {5–6}, 4gpb: {5–6}, and
4dfr: {9–13, 14–19, 25–29, 29–30}. All angles were sam-
pled at 60◦ with the exception of 14–19 in 4dfr, which was
sampled at 180◦. For the additional DHFR eight inhibitors,
the structural parameters of C-S-C groups in molecules 2 and
67 were constrained to the experimental values of CS bond
lengths and CSC bond angles in dimethylsulfide [53]. Struc-
tural parameters of C-SO2-C groups in molecules 1, 4 and
68 were constrained to the experimental values of CS and
SO bond lengths and CSC, CSO and OSO bond angles in
dimethylsulfone [53].

50. The timings were produced running the program on an IBM
RS/6000 43P Model 260 workstation, which has a Power3
CPU running at 200 MHz and a 4MB L2 Cache.

51. Mayo, S.L., Olafson, B.D. and Goddard III, W.A., J. Phys.
Chem., 94 (1990) 8897.

52. Mulliken 2.0: Rice, J.E., Horn, H., Lengsfield III, B.H.,
McLean, A.D., Carter, J.T., Replogle, E.S., Barnes, L.A.,
Maluendes, S.A., Lie, G.C., Gutowski, M., Rudge, W.E.,
Sauer, P.A., Lindh, R., Andersson, K., Chevalier, T.S., Wid-
mark, P.-O., Bouzida, D., Pacansky, J., Singh, K., Gillan, C.J.,
Carnevali, P., Swope, W.C., Liu, B., IBM Almaden Research
Center, San Jose CA, 1996.

53. Lide, D.R., CRC Handbook of Chemistry and Physics, 75th
edition, 1994, pp. 9–31.


