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• T-PLL and other T-cell
lymphomas are
sensitive to drugs that
target autophagy,
nuclear export, and
IAPs.

• IAP inhibition induces
an upregulation of the
NF-κB pathway in
T-PLL, with subsequent
cell death being
primarily necroptotic.
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T-cell prolymphocytic leukemia (T-PLL) is an aggressive lymphoid malignancy with limited
treatment options. To discover new treatment targets for T-PLL, we performed high-
throughput drug sensitivity screening on 30 primary patient samples ex vivo. After
screening >2800 unique compounds, we found T-PLL to be more resistant to most drug
classes, including chemotherapeutics, than other blood cancers. Furthermore, we discov-
ered previously unreported vulnerabilities of T-PLL. T-PLL cells exhibited a particular
sensitivity to drugs targeting autophagy (thapsigargin and bafilomycin A1), nuclear export
(selinexor), and inhibitor of apoptosis proteins (IAPs; birinapant), sensitivities that were also
shared by other T-cell malignancies. Through bulk and single-cell RNA sequencing, we found
these compounds to activate the Toll-like receptor (bafilomycin A1), p53 (selinexor), and
tumor necrosis factor α (TNF-α)/NF-κB signaling pathways (birinapant) in T-PLL cells.
Focusing on birinapant for its potential in drug repurposing, we uncovered that IAP
inhibitor–induced cell death was primarily necroptotic and dependent on TNF-α. Through
spectral flow cytometry, we confirmed the absence of cleaved caspase-3 in IAP inhibitor–treated T-PLL cells and show
that IAP inhibition reduces the proliferation of T-PLL cells stimulated ex vivo, while showing only a limited effect on
nonmalignant T-cells. In summary, our study maps the drug sensitivity of T-PLL across a broad range of targets and
identifies new therapeutic approaches for T-PLL by targeting IAPs, exportin 1, and autophagy, highlighting potential
candidates for drug repurposing and novel treatment strategies.
Introduction
T-cell prolymphocytic leukemia (T-PLL) is an aggressive T-cell
lymphoma characterized by the proliferation of mature,
postthymic T-lymphocytes.1 Its clinical course is usually rapid,
with progressive lymphocytosis, splenomegaly, and lymph-
adenopathy.1 T-PLL response to conventional chemotherapy is
poor, and remissions induced with the monoclonal anti-CD52
antibody alemtuzumab are rarely maintained.1 With a median
overall survival of <20 months,1,2 there is an urgent need to
identify new treatment strategies. High-throughput ex vivo drug
screening enables the systematic assessment of drug sensitiv-
ities in blood cancers. Previous studies identified T-PLL
LUME 145, NUMBER 20
sensitivity to the B-cell lymphoma 2 (Bcl-2) homology 3 (BH3)
mimetic venetoclax, p53 activators, as well as inhibition of his-
tone deacetylase (HDAC) or the Janus kinase (JAK)–signal
transducer and activator of transcription (STAT) pathway.3-7

Early clinical data, however, suggest that these compounds
are insufficient to provide long-term control of the disease,
illustrating the need for additional treatment options.6,8,9 We
have previously reported on the ex vivo drug sensitivity of
several blood cancers, including T-PLL.5 Here, we present a
resource of 5 ex vivo drug screening data sets, along with a
reanalysis of the previous data. In total we capture T-PLL drug
response to >2800 unique compounds. We combine these data
with combinatorial drug perturbations, bulk RNA sequencing
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Figure 1. Overview and drug response landscape of T-PLL. (A) Schematic overview of the ex vivo drug screens. PBMCs with tumor cells were isolated from patient blood and
cultured with drugs for 48 hours ex vivo, before cell viability was measured based on adenosine triphosphate-dependent luminescence. (B) Overview of the patient samples and
drug libraries used for screens A through E. (C) Cell viability of 6 patient-derived primary T-PLL samples in screen A. Viabilities are relative to a DMSO negative control after
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(RNA-seq) and single-cell RNA-seq (scRNA-seq), as well as
spectral flow cytometry, to study previously undescribed T-PLL
pathway dependencies, including a particular sensitivity to
inhibitor of apoptosis protein (IAP) inhibition.

Methods
Ex vivo drug screens
Drug screens were conducted using viably frozen peripheral
blood mononuclear cells (PBMCs) following previously
described protocols.5 Details on the screens, the bulk RNA-seq,
scRNA-seq, and spectral flow cytometry experiments can be
found in the supplemental Methods, and supplemental
Tables 2 and 4, available on the Blood website. Targeted
sequencing of TP53 and western blots were performed using
previously published approaches and are detailed in the
supplemental Methods.10,11

Data analysis
The preprocessing and analysis of drug screen data, including
quality filtering, normalization, incubation effect correction,
drug-drug correlation, and the testing for synergistic or antag-
onistic drug combinations followed previously published
approaches and are detailed in the supplemental Methods.5,12

Study approval
The study was approved by the ethics committees in Heidel-
berg, Germany (University of Heidelberg; S-206/2011; S-356/
2013) and Zurich, Switzerland (2019-01744).

Results
Drug sensitivity of primary T-PLL cells
To capture T-PLL drug sensitivities, we measured the drug
response of 9 primary blood cancers in 5 drug screens ex vivo
(referred to as screens A, B, C, D, and E, respectively). This
included the previously published screen C, which we rean-
alyzed with a focus on T-PLL.5

For each screen, PBMCs were isolated from the blood and
cultured with drugs for 48 hours, before cell viability was
assessed by measuring adenosine triphosphate (Figure 1A).
Screen A used a library of 2516 drugs, including chemothera-
peutics, kinase inhibitors, and clinically used and investigational
compounds, and was performed on 34 patient samples
(nT-PLL = 6; Figure 1B). Screen B contained primarily small-
molecule inhibitors (n = 409) with multiple compounds per
drug class at a wider concentration range in 141 patient samples
(nT-PLL = 8). Screens C and D were performed with a subselection
of 63 compounds each, representing key drug classes, in a
greater number of patient samples (nPatients Total = 219 [screen C],
300 [screen D]; nPatientsT-PLL = 25 [screen C], 10 [screen D]).
Figure 1 (continued) treatment with 2516 drugs averaged over all concentrations (n = 2-6)
samples and concentrations) from most lethal (left) to mostly neutral (right). (D) Dose resp
represents a patient) to fludarabine relative to a DMSO negative control. Corresponding
(F). (G) Varying activity of different BH3 mimetics in 9 patient-derived T-PLL samples. Colo
antiapoptotic protein Bcl-2.13-17 A small KI indicates high binding affinity between an inhib
derived T-PLL samples to selinexor (n = 10) (H), bafilomycin A1 (n = 8) (I), and birinap
phoma; AKT, alpha serine/threonine kinase; BCR, B-cell receptor; BRAF, B-Raf proto-oncog
growth factor receptor; MAPK, mitogen-activated protein kinase; MEK, mitogen-activated
marginal zone lymphoma; PI3K, phosphoinositide 3-kinase; Prg., programmed; PTCL, per
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Finally, 50 drugs were chosen for the testing in a wider set of
T-PLL (n = 12) and T-cell malignancies (n = 10), referred to as
screen E (Figure 1B).

A full list of the compound libraries and the key screen char-
acteristics is provided in Table 1, and supplemental Tables 1
and 2.

We began our analysis by ranking drugs based on their effect
on viability. Of 2516 compounds in screen A, only a small
fraction (n = 253; 10%) decreased the mean viability (v) of T-PLL
patient samples by >10% and only 99 (3.9%) by >25%
(Figure 1C). This limited response to drugs was observed across
screens (supplemental Figure 1A-F).

Most tyrosine kinase inhibitors demonstrated little activity, even
when used at high concentrations (>10 μM). This included the
JAK1/2 inhibitor ruxolitinib and the phosphoinositide 3-kinase
inhibitor duvelisib, 2 drug candidates for the treatment of T-cell
lymphoma (mean viability [v]screen B = 0.95, 0.95; supplemental
Figure 2A-B).4,18,19 Chemotherapeutics were among the most
toxic drugs. This included drugs used to treat T-PLL such as the
antimetabolites cytarabine (vscreen B = 0.78) and fludarabine
(vscreen C = 0.55; Figure 1D; supplemental Figure 1F).1,20 Previous
studies reported T-PLL sensitivity to p53 activation, BH3-
mimetics, and HDAC inhibition.3,5,6 In line with this, the p53
activator nutlin-3a was highly active across screens
(vscreen C = 0.63); however, some patient samples appeared to be
resistant (Figure 1E). Because TP53 mutation is a common
mechanism of nutlin-3a resistance, we performed targeted
sequencing of the TP53 gene, but did not detect any mutations
(Table 1).5,21 The Bcl-2 inhibitor venetoclax induced a more pro-
nounced decrease in viability than other BH3 mimetics (navito-
clax, obatoclax, sabutoclax, and TW-37), which possess a broader
range of targets (Bcl-xl, Bcl-w), but lower binding affinity for Bcl-2
(screen B; adjusted P value <.001; Figure 1F-G).13-17 This is in line
with reports that describe T-PLL to primarily rely on the anti-
apoptotic signal of Bcl-2.4,6 We confirmed the sensitivity of T-PLL
to HDAC inhibitors (ie, panobinostat, vscreen B = 0.65), while also
uncovering a susceptibility to other classes of epigenetic modi-
fiers; specifically, histone demethylase (JIB04), histone methyl-
transferase (UNC0638), and BET inhibitors (OTX015, JQ1;
vscreen B = 0.68, 0.8, 0.85, and 0.86, respectively; supplemental
Figure 1E-F).3 Notably, we observed a high degree of correla-
tion when comparing the drug response between screens for
overlapping patient samples and compounds (R2 = 0.59-0.81;
supplemental Figure 2C).

We also uncovered previously undescribed pathway depen-
dencies. T-PLL was especially vulnerable to nuclear export
(selinexor and verdinexor), autophagy (thapsigargin and bafilo-
mycin A1), and IAP (birinapant and GDC-0152) inhibition
. Drugs were ranked based on their median decrease in cell viability (across all patient
onse curves showing the viability of patient-derived T-PLL samples (n = 25, each line
dose response for T-PLL samples to nutlin-3a (n = 25) (E) and venetoclax (n = 10)
r hues show the log2-transformed inhibitory constant (KI) of each compound for the
itory ligand and its receptor. Dose response curves showing the viability of patient-
ant (n = 8) (J). ATP, adenosine triphosphate; AITL, angioimmunoblastic T-cell lym-
ene, serine/threonine kinase; DLBCL, diffuse large B-cell lymphoma; EGFR, epidermal
extracellular signal-regulated kinase; mTOR, mammalian target of rapamycin; MZL,

ipheral T-cell lymphoma; ROS, reactive oxygen species; TCR, T-cell receptor.
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Table 1. Patient sample characteristics

Patient
ID Sex

Age at
diagnosis, y

Sample
ID

White blood
cell count
(×109/L)

Lymphocytes,
%

Treatment
naive

Immunophenotype
(CD4/CD8) Cytogenetics TP53 status Screens used

H358 M 72 13PB0031 65 92 No CD4+ wt Screen A, screen C, screen E

13PB0162 84 97 No Screen D, screen B

H371 M 61 12PB0258 114 92 Yes CD4+ 46,XY,del(11q22) wt Screen E

12PB0332 137 92 Yes Screen A, screen B, screen C

12PB0510 113 100 No Screen D

H382 M 68 13PB0135 Yes del(11)(q22.3),t(14;14) wt Screen C

H383 F 67 13PB0136 Yes inv(14) wt Screen C

H384 F 78 13PB0137 Yes del(11)(q22.3),inv(14) wt Screen C

H394 M 83 13PB0344 Yes inv(14) wt Screen C

H395 F 75 13PB0345 Yes del(11)(q22.3),inv(14) wt Screen C

H396 F 63 13PB0346 Yes inv(14) wt Screen C

H397 F 42 13PB0347 Yes del(6)(q21),del(11)(q22.3) wt Screen C

H398 F 52 13PB0348 No inv(14),t(14;14) wt Screen C

H399 F 65 13PB0349 Yes t(X;14) Screen C

H400 F 74 13PB0350 No del(11)(q22.3),inv(14) wt Screen C

H401 F 70 13PB0352 414 94 Yes CD4+, CD8+ 43-44,X,-X,der(6)t(X;6)(?q;p25),
i(8)(q10),del(11)(q13),
der(12)t(12;18)(p12;q1?2),
-13,der(14)t(14;14)(q11;q32),
ider(14)t(14;14)(q11;q32),
-18,t(21;22)(q21;q2?3)
[cp8]/46,XX[2]

wt Screen C

H402 M 83 13PB0356 43 81 Yes CD4+ 46,XY[4] wt Screen C

H403 M 45 13PB0326 87 90 Yes CD8+ 46, XY, der(2)t(2;22(p11)(q11) t(2;8),
inv(14)(q11q32), del20(q11q13),
der(22)t(2;22) WES

wt Screen B

13PB0335 99 91 Yes Screen E

13PB0391 101 91 Yes Screen A

13PB0567 161 96 Yes Screen C

13PB0623 167 95 Yes Screen D

H405 M 72 13PB0404 Yes add(8)(q24),inv(14) wt Screen A, screen C

H406 M 72 13PB0405 No wt Screen A, screen C

H408 M 76 13PB0421 Yes inv(14) wt Screen A, screen C

F, female; M, male.
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Table 1 (continued)

Patient
ID Sex

Age at
diagnosis, y

Sample
ID

White blood
cell count
(×109/L)

Lymphocytes,
%

Treatment
naive

Immunophenotype
(CD4/CD8) Cytogenetics TP53 status Screens used

H417 M 62 13PB0547 Yes inv(14),t(14;14) wt Screen D, screen C, screen E

H424 F 57 14PB0058 106 88 Yes CD4+, CD8+ 43~46,XX,del(2)(p23)[4],-3[5],add(6)(q13)
[4],-8 x2[10],-12[8],der(13;15)(q10;q10)
[4],-14 ×2[12],-15[7],-16[6],-18[12],-19
[5],-20 ×2[12],-21[6],+8~12mar,inc
[cp12]/46,XX[13]

wt Screen B, screen C

14PB0094 126 86 No Screen D, screen E

H426 F 49 14PB0110 Yes del(11)(q22.3),t(14;14) wt Screen C

14PB0113 Yes Screen C

H427 M 85 14PB0111 del(11)(q22.3),t(14;14) wt Screen C

H428 M 14PB0112 del(11)(q22.3),del(17)(p13) wt Screen C

H431 M 65 14PB0152 55 75 Yes CD4+ wt Screen C

14PB0282 88 Yes Screen D, screen B, screen E

H279 M 56 14PB0323 97 86 Yes CD4+ 46,XY wt Screen D, screen C, screen E

14PB0329 48 Yes Screen B

H453 M 67 15PB0242 6 81 CD8+ 46,XY [28] wt Screen B

H490 M 90 17PB0227 73 87 Yes 46,XY,del(11)(q14q22),
inv(14)(q11q32)[1]/46,XY,sl,
add(10)(q2?5),add(13)(p11),
add(16)(p1?2),add(21)(p11)[cp7]/
46-47,sdl1,der(6)ins(6;?)(p11;?)add(6)(p2?
5),+mar[cp6]/47,sdl2,
+add(8)(p1?2)[cp4]/46,XY[1]

Screen D

H492 M 65 17PB0229 55 77 Yes CD4+ 45-46,XY,add(7)(q3?2),i(8)(q10),+i(8)(q10),
-9,-11,add(12)(p1?1),?add(13)
(p1?1),inv(14)(q11q3?2),-16,-20,+marx3
[cp4]/46,XY[16]

Screen D

H498 F 75 19PB0007 119 93 Yes CD4+ inv(14)(q11;q32) Screen E

H507 M 77 21PB0017 52 74 Yes CD4+ 44~45,XY,der(1)t(1;17)(p36.1;q21),
add(4)(p16),del(6)(q13),del(8)
(p21),ins(11;?)(q13;?),der(11)
ins(11;?)(q13;?)t(11;12)(p12;q13),
-15,-16,-17,-18,der(21)
(q11.2;p11.1),add(22)(p11.2),+r,
+2~5mar[cp7]/46,XY[3]

Screen E

H519 F 73 23PB0445 29 66 Yes CD8+ Screen E

H521 F 62 23PB0453 35 82 No CD4+, CD8+ Screen E

H524 M 85 23PB0502 149 73 Yes CD4+ Screen E

F, female; M, male.
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(vscreen B = 0.74, 0.7, 0.76, 0.75, 0.72, and 0.83, respectively;
Figure 1H-J; supplemental Figures 1F and 2D).

Identification of T-PLL–specific drug response
We asked which of the drug effects were particularly pro-
nounced in T-PLL by comparing the drug response of T-PLL
with that of primary chronic lymphocytic leukemia and mantle
cell lymphoma (MCL) samples (2-sided t test; false discovery
rate [FDR] of <10%; and mean viability difference = Δ). We
found T-PLL to be significantly more resistant to most drug
classes, including the clinically used1 chemotherapeutic fludar-
abine (Δscreen D = 0.18; adjusted P value = .006), as well as
the BH3 mimetics venetoclax (Δscreen B = 0.18; adjusted
P value = .03) and navitoclax (Δscreen B = 0.17; adjusted
P value = .014; Figure 2A-C; supplemental Figure 3A-D). Only a
small set of compounds demonstrated a higher activity in T-PLL:
the p53 activator nutlin-3a (Δscreen A = −0.34; adjusted
P value = 3 × 10−5), thalidomide (Δscreen B = −0.052; adjusted
P value = .078), the autophagy inhibitors thapsigargin
(Δscreen C = −0.38; adjusted P value = 3.41 × 10−7) and bafilo-
mycin A1 (Δscreen B = −0.18; adjusted P value = .02), the IAP
inhibitor birinapant (Δscreen B = −0.22; adjusted P value = .007),
as well as the nuclear export inhibitor selinexor
(Δscreen D = −0.13; adjusted P value = .01; Figure 2A-C;
supplemental Figure 3A-D). To explore whether these sensi-
tivities are shared by other T-cell malignancies, we performed a
validation screen (screen E) using a selection of compounds
with T-PLL–specific activity, as well as a diverse range of 50
selective inhibitors and chemotherapeutics in 27 and 22 sam-
ples from patients with B-cell and T-cell lymphoma, respectively
(Figure 1B). T-cell lymphoma samples (n = 10) demonstrated a
response pattern similar to T-PLL (Figure 2D-E). This suggests
that key sensitivities are shared across T-cell malignancies.

Drug-drug correlation suggests distinct mode of
action of drug candidates
Based on their pronounced effect on viability and their T-PLL–
and T-cell lymphoma–specific activity, we selected birinapant,
selinexor, and bafilomycin A1 for further exploration. We
observed interpatient heterogeneity in the viability effects of
these compounds (Figure 2E-F). To test whether this heteroge-
neity was simply indicative of overall drug sensitivity, we clus-
tered drugs based on the similarity of their response in T-PLL and
T-cell lymphoma samples (Figure 2G-H; supplemental Methods).
We found distinct groups of compounds with similar pathway
dependencies (Figure 2G). For instance, birinapant showed sig-
nificant correlation with GDC-0152, a second, less potent IAP
Figure 2. T-PLL–specific drug response. (A) Differential drug sensitivity of T-PLL (n = 6) c
axis shows the average difference in viability; negative values indicate higher sensitivity in
across all concentrations was tested. Top associations are labeled, if the difference in vi
Corresponding plots for screen B (8 T-PLL and 124 CLL samples) (B) and screen D (10 T-PL
MCL (n = 15), T-PLL (n = 12), T-LGL (n = 3), PTCL (n = 2), and Sézary lymphoma (n = 4) sam
Drug response between diagnosis groups was compared via a t test (null hypothesis: no d
P values (red: less, blue: more sensitive than CLL). Values are shown for the 5 highest con
over all concentrations) for CLL (n = 10), MCL (n = 15), T-PLL (n = 12), T-LGL (n = 3), PTCL
bafilomycin A1, and nutlin-3a. Each dot is a patient, observations outside the plotting
viability of T-PLL (n = 12) and other T-cell lymphoma (n = 10) samples after treatment with
line indicates 1 patient. (G) Drug-drug correlation matrix for each pair of drugs used in sc
the 12 T-PLL and 10 T-cell lymphoma samples after drug treatment (averaged over all con
Key correlation pairs are indicated by color. (H) Correlation plots show the viability (aver
fludarabine, venetoclax, dacinostat, and nutlin-3a in 12 T-PLL and 10 T-cell lymphoma sa
areas. Avg., average; AITL, angioimmunoblastic T-cell lymphoma; NHL, non-Hodgkin lym

2342 15 MAY 2025 | VOLUME 145, NUMBER 20
inhibitor (R2 = 0.88; adjusted P value = 4.1 × 10−6; Figure 2G-
H).22 No correlation was observed between birinapant and
chemotherapeutics (fludarabine), p53 activators (nutlin-3a and
serdemetan), HDAC inhibitors (dacinostat), and BH3 mimetics
(venetoclax and navitoclax; Figure 2G-H). Selinexor demon-
strated significant correlation with nutlin-3a, serdemetan, ven-
etoclax, and navitoclax (R2 = 0.85, 0.64, 0.56, and 0.69; adjusted
P value = 2.6 × 10−5, .022, .061, and .009; respectively;
Figure 2G; supplemental Figure 3E-F). Bafilomycin A1, mean-
while, showed high correlation with the HDAC inhibitor dacino-
stat (R2 = 0.73; adjusted P value = .005; Figure 2G). Combined,
these findings indicate similarity in the mode of action of seli-
nexor and p53 activators and BH3 mimetics, as well as bafilo-
mycin A1 and HDAC inhibitors. IAP inhibitors, however, appear
to act in T-PLL and T-cell lymphoma via a unique mode of action.
Bulk RNA-seq reveals distinct transcriptional
responses to drug candidates in T-PLL
To further characterize the drug response to birinapant, seli-
nexor, and bafilomycin A1, we treated 9 samples from patients
with T-PLL and 1 samples from a patient with T-large granular
lymphocytic leukemia (T-LGL) with these compounds as well as 8
specific pathway inhibitors (nutlin-3a, pomalidomide, venetoclax,
ruxolitinib, ibrutinib, everolimus, dacinostat, and motolimod, or
dimethyl sulfoxide [DMSO]) for 24 hours and performed bulk
RNA-seq (Figure 3A; supplemental Figure 3G). To uncover drug
effects, we assessed differential gene expression by comparing
each condition to the DMSO control (FDR < 10%, |log2 fold
change [FC]| > 0.25; Figure 3B-C; supplemental Figure 4A). The
overall number of significantly differentially expressed genes
(DEGs) varied greatly between treatments with dacinostat and
pomalidomide displaying the highest number of DEGs
(n = 7884, 6569), whereas other treatments such as nutlin-3a or
birinapant showed more restricted expression changes (n = 682,
203) (Figure 3B-C; supplemental Figure 4A). This was also
reflected in the number of significantly upregulated or down-
regulated pathways as identified by DEG network and gene set
enrichment analysis (FDR < 10%; Figure 3D-E; supplemental
Figure 4A-F). As expected, treatment with nutlin-3a resulted in
a strong upregulation of p53 target genes (BAX, andMDM2, and
CDKN1A; Figure 3E-F). Notably, selinexor showed an overlap
with nutlin-3a in terms of DEGs as well as an upregulation of
DNA-damage response gene sets (Figure 3G; supplemental
Figure 4C-D). This included an upregulation of the TP53 gene
itself (log2FC = 0.99; adjusted P value = 6.89 × 10–19), demon-
strating that selinexor acts through the TP53 pathway in T-PLL
(Figure 3G). Treatment with the autophagy inhibitor bafilomycin
ompared with chronic lymphocytic leukemia (CLL; n = 27) samples in screen A. The x-
T-PLL than in CLL. The y-axis shows the −log10 P value. For each drug, the average
ability was >.05 and the P value <.05, as well as representatives of their drug class.
L and 275 CLL samples) (C). (D) Heat map showing the difference in drug response of
ples compared with that of CLL (n = 10) samples in screen E (supplemental Methods).
ifference), and 2-sided P values were computed. Hues of the color scale indicate raw
centrations (1, highest; 5, lowest). (E) Box plots showing the mean viability (averaged
(n = 2), Sézary (n = 4), and 1 AITL sample after treatment with birinapant, selinexor,

range are censored and shown as triangles. (F) Dose response curve, showing the
birinapant across 10 concentrations, normalized to a DMSO negative control. Each
reen E. The Pearson correlation coefficient (R2) was computed from the viabilities of
centrations). The rows and columns were arranged based on hierarchical clustering.
aged over all concentrations) after birinapant treatment and GDC-0152, ruxolitinib,
mples. A trendline is indicated; 95% confidence intervals are shown as shaded gray
phoma; p.adj., adjusted P value; PTCL, peripheral T-cell lymphoma.
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Figure 3. Bulk RNA-seq reveals the landscape of drug effects in ex vivo–treated T-PLL. (A) Schematic overview of the bulk RNA-seq experiment. T-PLL (n = 9) and T-LGL
(n = 1) samples were treated either with birinapant (200 nM), nutlin-3a (2500 nM), motolimod (200 nM), selinexor (200 nM), everolimus (200 nM), ruxolitinib (200 nM), ibrutinib
(100 nM), bafilomycin A1 (50 nM), pomalidomide (50 nM), dacinostat (5 nM), venetoclax (5 nM), or DMSO for 24 hours followed by RNA extraction, library preparation, and
sequencing. (B) Directed network of significantly DEGs (FDR < 10%, |log2FC| > 0.25) showing the upregulated and downregulated genes in T-PLL (n = 9) and T-LGL (n = 1)
samples after drug treatment relative to DMSO. In this network, each grey node (dot) corresponds to a DEG, with edges (lines) indicating the treatment(s) (colored nodes) that
significantly affected the expression (upregulation = red, downregulation = blue). DEGs that are affected by the same treatments (upregulated or downregulated) are grouped
together. Edge thickness indicates the adjusted P value. (C) Bar plot showing the number of significantly DEGs (FDR < 10%, |log2FC| > 0.25) after drug treatment relative to
DMSO. Upregulated genes are shown as red, downregulated genes as blue. (D) Corresponding bar plot showing the number of upregulated and downregulated
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A1 had a strong transcriptional effect on T-PLL cells as judged by
the number of DEGs (n = 4328). We observed a considerable
overlap with the DEGs induced by the Toll-like receptor 8 (TLR8)
agonist motolimod (Figure 3B; supplemental Figure 4A,G).
Notably, this included an upregulation of several tumor necrosis
factor α (TNF-α)/NF-κB signaling pathway members (TRAF2,
BCL3, and NFKBIZ) as well as the proinflammatory cytokine
interleukin 6 (IL6), which suggests that vacuolar-type adenosine
triphosphatase inhibition not only prevents lysosomal acidifica-
tion in T-PLL but also activates TLR signaling as has been
demonstrated for human monocytes (Figure 3I).28

Birinapant inhibits cIAP-1 and cIAP-2, 2 IAP family members
that promote apoptosis resistance and cell survival by blocking
prodeath signals through the TNF receptor 1, Fas receptor
(CD95), and TLR signaling pathways.29-32 Birinapant treatment
led to a marked upregulation of the TNF-α/NF-κB signaling
pathway (NFKBIA, NFKB1, NFKB2, TRAF1, TRAF2, and BIRC3;
Figure 3H-I). Notably, the effect was distinct from that of the
TLR8 agonist motolimod, because birinapant treatment only
had a limited effect on the expression of TLR-associated
proinflammatory cytokines (IL1A, IL1B, IL6, CXCL1, CXCL2,
and CXCL3; Figure 3I; supplemental Figure 4H). This is in line
with reports, which observed improved tolerability of bir-
inapant over other IAP inhibitors because of birinapant’s
limited effect on XIAP, a key regulator of inflammasome
activation.33,34

Combined, these findings suggest distinct pathway depen-
dencies of birinapant and selinexor on the TNF-α/NF-κB and
p53 pathways, whereas a broader transcriptional effect was
observed for bafilomycin A1.

Birinapant treatment uniformly affects T-PLL cell
transcriptomes
We were intrigued by the potent effects of birinapant on T-PLL
and T-cell lymphoma viability as well as the highly specific
transcriptional effect. Given birinapant’s manageable safety
profile in a phase 2 clinical trial,35 it represented a promising
treatment candidate, which led us to investigate it further. To
capture the effect of birinapant on healthy and malignant cell
subsets we treated patient-derived samples (3 T-PLL, 3 MCL, 2
hairy cell leukemia [HCL], and 1 T-LGL) with birinapant and 4
specific pathway inhibitors (nutlin-3a, ibrutinib, everolimus, and
2344 15 MAY 2025 | VOLUME 145, NUMBER 20
selumetinib, or DMSO) for 48 hours, followed by scRNA-seq
(Figure 4A). After quality control, we captured 49 664 cells.
For 32 301 (65.0%) cells we additionally retrieved the B- or
T-cell receptor sequences. Visualization by uniform manifold
approximation and projection embedding revealed a strong
separation of T-PLL, HCL, and MCL cells (monoclonal B- and
T-cell receptor) from healthy B- and T-cells (polyclonal B- and
T-cell receptor; Figure 4B-E; supplemental Figure 5A-F). To
assess the transcriptional effect of drug perturbations on
nonmalignant T-cells, we randomly sampled an equal number
of cells per cell type and treatment, comparing each condition
with the DMSO control (FDR < 10%, |log2FC| > 0.25).
Comparing the DEGs between cell types (HCL, MCL, T-PLL,
and healthy T-cells) demonstrated that the effects of birinapant,
ibrutinib, and everolimus were mainly restricted to the malig-
nant cells, whereas nutlin-3a affected both malignant and
healthy cell subsets (Figure 4F-J). As a control, we included the
BRAF inhibitor selumetinib, which has a strong effect especially
on HCL, given the dependency of these cells on a BRAF V600E
mutation (Figure 4F).36 We found that all lymphoma types and
patient samples responded similarly to birinapant, with an
upregulation of the TNF-α/NF-κB pathway, suggesting a
conserved transcriptional response to IAP inhibition across
lymphoma types (Figure 4K). We observed that this transcrip-
tional response was homogenous across different clusters of
malignant cells and did not identify a primary unresponsive
subset of T-PLL cells (Figure 4L; supplemental Figure 5G-I). This
homogenous pattern of TNF-α/NF-κB pathway activation con-
trasts the heterogeneous effects we previously observed for
birinapant on cell viability, prompting us to further investigate
the mechanisms of cell death in birinapant-treated T-PLL cells.

IAP inhibitors induce necroptosis in T-PLL
The pharmacological or genetic depletion of IAPs has been
shown to induce cell death in cancer cells through apoptosis
or a form of organized necrosis, termed necroptosis.31,37

This process has been linked to the formation of distinct
multiprotein signaling complexes, consisting amongst others of
FADD, FLIPS, FLIPL, caspase-8, RIPK1, RIPK3, and MLKL
(Figure 5A).31,38,39 To test whether the interpatient heteroge-
neity in birinapant response may be explained by differential
abundances in these proteins, we measured the expression of
key apoptotic and necroptotic proteins in samples from patients
POHLY et al
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Figure 4. scRNA-seq reveals a uniform transcriptional response across malignant cells. (A) Schematic overview of the scRNA-seq experiment. T-PLL (n = 3), T-LGL (n = 1),
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with T-PLL (n = 8; Figure 5B; supplemental Figure 6A). We
observed variable expression of cIAP1, cIAP2, cFLIPL, RIPK1,
RIPK3, and FADD across T-PLL samples (Figure 5B;
supplemental Figure 6A). Notably, we found a trend for asso-
ciation between birinapant response and cIAP2 (BIRC3) and
cFLIPL (CFLAR) expression, which was reflected both on the
protein and gene expression levels (protein: R2 = −0.41, −0.54;
RNA: R2 = −0.65, −0.62; Figure 5C; supplemental Figure 6B-E).
To explore the mode of birinapant-induced cell death in T-PLL,
we performed a combinatorial drug screen with specific inhib-
itors of the apoptosis and necroptosis cascades. For this, we
measured the viability of patient-derived samples (11 T-PLL
and 1 T-LGL) in response to birinapant at 5 concentrations
(0.016-10 μM) as single compound and in combination
with the caspase inhibitor, quinoline-val-asp-difluorophenoxy-
methylketone (Q-VD-OPh); the RIPK1 inhibitor, necrostatin-1;
the RIPK3 inhibitor, GSK-872; and the MLKL oligomerization
2346 15 MAY 2025 | VOLUME 145, NUMBER 20
inhibitor necrosulfonamide (NSA; Figure 5A). Drug combination
synergy and antagonism (cell death blockage) were analyzed
using a Bliss independence model (supplemental Figure 6F;
supplemental Methods). Necrostatin-1, GSK-872, and NSA but
not Q-VD-OPh prevented birinapant-induced cell death in
T-PLL (mean combination index [CI] = 1.7, 1.18, 1.37; adjusted
P value = .001, .021, .006; Figure 5D-H; supplemental
Figure 7A-C). In contrast, Q-VD-OPh addition seemed to
further sensitize individual T-PLL samples to IAP inhibitor–
induced cell death (CI = 0.94; adjusted P value = .116;
Figure 5G-H; supplemental Figure 7D). These findings indicate
that IAP inhibitors lead to RIPK1-dependent and necroptotic
cell death in T-PLL.31,37 Because of the similar transcriptional
response of the different lymphoma entities to birinapant
treatment in our scRNA-seq data, we asked whether there were
differences in the mode of cell death between lymphoma types.
For this, we repeated the experiment in a larger set of 49
POHLY et al
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lymphoma samples (nT-PLL = 12), testing birinapant at 10 con-
centrations (0.00076-15 μM) alone and in combination with
Q-VD-OPh and necrostatin-1. In both T-PLL and T-cell lymphoma,
birinapant-induced cell death was decreased upon the addition
of necrostatin-1 (CI = 1.35, 1.18; adjusted P value = 3 × 10−4,
0.058) but not Q-VD-OPh (CI = 0.89, 1.06; adjusted P value = .08,
.694; Figure 5I). In contrast, caspase inhibition prevented
birinapant-induced cell death in MCL and chronic lymphocytic
leukemia (CI = 1.21, 1.13; adjusted P value = .041, .016), whereas
necrostatin-1 had little effect (CI = 0.99, 0.98; adjusted P
value = .288, .076; Figure 5I; supplemental Figure 8A). Similar
results were obtained when using GDC-0152 instead of bir-
inapant and NSA instead of necrostatin-1 (Figure 5J;
supplemental Figures 7E and 8B-C). Combined, these findings
suggest that IAP inhibitors lead to RIPK1-dependent cell death by
necroptosis in T-PLL and other T-cell lymphomas but induce
RIPK1-independent apoptosis in B-cell entities.

Birinapant-induced cell death is TNF-α dependent
The antiapoptotic function of IAP proteins involves blocking of
prodeath signals through TNF receptor 1, Fas receptor (CD95),
and TLRs.29-32 Furthermore, autocrine production of TNF-α is
required for cell death upon IAP inhibition in many in vitro
models.40,41 To test the relevance of these pathways for IAP
inhibitor–induced cell death in T-cell lymphoma, we cultured
samples from patients with T-PLL and T-LGL with birinapant at 5
concentrations (0.016-10 μM) as a single compound as well as in
combination with the anti–TNF-α blocking antibody adalimu-
mab (n = 10); recombinant CD95L (n = 10); the TLR8 agonist,
motolimod (n = 12); and the Bruton tyrosine kinase/IL-2–
inducible T-cell kinase inhibitor ibrutinib (n = 12). The addition
of adalimumab and ibrutinib reduced birinapant-induced cell
death in T-PLL and T-LGL, whereas TLR8 stimulation promoted
T-PLL and T-LGL cell killing (CI = 1.75, 1.46, 0.9; adjusted
P value = .006, .011, .085; Figure 5K-M; supplemental
Figure 8D-F). Furthermore, CD95L binding sensitized individ-
ual patient samples to birinapant killing (CI = 0.93; adjusted
P value = .106; supplemental Figure 8G). This was correlated
with the CD95 cell surface expression levels of the malignant
cells, as assessed by spectral flow cytometry (R2 = −0.84;
adjusted P value = .009; Figures 5N and 6A). Combined, these
findings suggest that birinapant-induced cell death in T-PLL
and T-LGL requires the binding of TNF-α and the activity of
Figure 5. IAP inhibitor–induced cell death mode. (A) Schematic of thedifferent cell death
necrostatin-1,NSA, andGSK-872are indicated. (B)Heatmapshowing thescaledexpressionof
derived T-PLL (n = 8) samples with varying sensitivity to IAP inhibitors. The annotation bar sho
treatment. (C) Heat map showing the correlation between protein expression (measured by w
Pearson correlationcoefficient (R2)was computed from the viabilities of the 7T-PLL sampleswi
response), averaged over all concentrations. The rows and columns were arranged based on
T-LGL (n = 1) samples showing themean observed combination (AB) and expected combinat
birinapant in combination with the RIPK1 inhibitor necrostatin-1 (12.5 μM) (D), the MLKL oligo
caspase inhibitorQ-VD-OPh (12.5μM) (G). Error bars indicate the standarderror of themean. (H
and expected combination effect (A × B) based on the independent effect model (x-axis) for p
andQ-VD-OPh. (I)Heatmap showing the averagedcombinationeffect ofQ-VD-OPh (12.5μM)
CLL (n=10), andother T-cell lymphoma (n=10) samples.Colors showsynergy (blue) andantag
birinapant. (J) Corresponding heat map showing the combination effect of NSA (2 μM) with b
samples. Dose response curves of T-PLL (nT-PLL = 9) and T-LGL (nT-LGL = 1) samples showing t
effect model (A × B) for birinapant in combinationwith the anti–TNF-α antibody adalimumab
inhibitor ibrutinib (2μM;nT-PLL=11, nT-LGL=1) (L), and theTLR8agonistmotolimod(0.4μM;nT-P
protein expression levels (median over all malignant cells per patient) measured by spectral fl
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associatedXprotein; Bid, BH3 interacting-domaindeathagonist; Bik, Bcl-2-interacting killer;C
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IL-2–inducible T-cell kinase, whereas TLR, and possibly CD95
pathway signaling, sensitize malignant T-cells.

IAP inhibitors decrease T-PLL proliferation and
differentially affect healthy cell subsets
Next, we sought to study the effect of IAP inhibitors on pro-
liferation and cytokine expression in different cellular subsets
including nonmalignant cells. To this end, we treated 10
T-PLL, 1 T-LGL and 4 healthy age-matched PBMC samples
with either a sublethal concentration of birinapant (0.2 μM) or
DMSO for 40 hours, followed by 4 hours stimulation ex vivo.
We then performed spectral flow cytometry using a 30-marker
panel (Figure 6A-E; supplemental Figure 9A). In addition to
resolution of the T-cell compartment, and the major B-cell and
natural killer (NK) cell types (supplemental Figure 9B-C), this
panel included 3 distinct cell death markers, Apotracker Green
(early and late cell death), LIVE/DEAD staining (late cell death),
and cleaved caspase-3 (apoptotic) to explore the mode of
birinapant-induced cell death. Birinapant treatment signifi-
cantly reduced the frequency of proliferating lymphoma cells
but not that of nonmalignant B, T, and NK cells (adjusted
P value = .076, .918, .12, .417; Figure 6F; supplemental
Figure 9D). The effect of birinapant on cytokine expression
was cell type dependent (linear mixed model, FDR < 10%).
Birinapant treatment significantly increased the expression of
TNF-α and granulocyte-macrophage colony-stimulating factor
in NK cells and showed a trend for increased IL-2 expression in
T cells (adjusted P value = .092, .073, .227; Figure 6G;
supplemental Figures 9E-J and 10A-B). Next, we sought to
explore the mode of birinapant-induced cell death. To this
end, we cultured 10 T-PLL, 1 T-LGL, and 4 healthy PBMC
samples with either selinexor, birinapant (1 μM) with and
without Q-VD-OPh, or DMSO, followed by spectral flow
cytometry using the same 30-marker panel (Figure 6H-K;
supplemental Figure 10C). Both selinexor and birinapant
significantly reduced the fraction of live T-PLL and T-LGL cells
compared with DMSO (2-sided paired t test, FDR < 10%;
Δ = −0.096, −0.234; adjusted P value = .009, .023;
supplemental Figure 10D). Although selinexor led to a signif-
icant enrichment of apoptotic cells, birinapant-induced cell
death was primarily nonapoptotic (apoptotic: adjusted
P value = .04, .801; nonapoptotic: adjusted P value = .023,
.003; Figure 6L-M). Notably, the addition of Q-VD-OPh greatly
complexes inducedby IAP inhibition. Cell deathexecution steps blocked byQ-VD-OPh,
keyapoptotic andnecroptoticproteinsmeasuredbywesternblot in cell lysatesofpatient-
ws the viability (averaged over all concentrations) of each patient sample after birinapant
estern blot) of key apoptotic and necroptotic proteins and IAP inhibitor response. The

thmatchingdrug response (aneighthpatient sample hadprotein expression, but nodrug
the hierarchical clustering. Dose response curves of patient-derived T-PLL (n = 11) and
ion effect according to the independent effect model (A × B, supplemental Methods) for
merization inhibitor NSA (2 μM) (E), the RIPK3 inhibitor GSK-872 (4 μM) (F), and the pan-
) Scatter plot showing the relationship betweenmeasured combinationeffectAB (y-axis)
atient-derived T-PLL (n = 11) and T-LGL (n = 1) samples for necrostatin-1, NSA, GSK-872,
andnecrostatin-1 (12.5 μM)withbirinapant in patient-derivedT-PLL (n=12),MCL (n=15),
onism (red), indicatedbyadjustedP values (2-sidedpaired t test) foreachconcentrationof
irinapant in T-PLL (n = 12), MCL (n = 13), CLL (n = 20), and other T-cell lymphoma (n = 10)
he mean observed (AB) and expected combination effect according to the independent
(5 μg/mL; nT-PLL = 9, nT-LGL = 1) (K), the Bruton tyrosine kinase/IL-2–inducible T-cell kinase

LL=11, nT-LGL=1) (M). (N)Scatterplot showing thepairwisecorrelationof theCD95surface
ow and the CI of recombinant humanCD95L (5 μg/mL) and birinapant (averaged over all
dence intervals are shown as shaded gray areas. Avg. Viab., average viability; Bax, Bcl-2-
I, combination index; FADD, Fas associated via death domain; FLIPS, FLICE-like inhibitory
L,mixed lineage kinase domain–like pseudokinase; PARP, poly(ADP-ribose)-polymerase;
ptor type 1 associated via death domain.
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Figure 6. Immune landscape of T-PLL, T-LGL, and healthy donor PBMCs upon IAP inhibition measured by spectral flow cytometry. (A) Schematic overview of the spectral
flow cytometry experiments and gating strategy. In the stimulated experiment T-PLL (n = 10), T-LGL (n = 1), and healthy age-matched PBMC (n = 4) samples were treated with either
birinapant (0.2 μM) or DMSO for 40 hours ex vivo, followed by 4 hours incubation with cytokine secretion block and stimulation with phorbol 12-myristate 13-acetate (PMA; 0.1 μg/mL)
and ionomycin (1 μg/mL). In the unstimulated experiment, the same patient samples were treated with either selinexor (1 μM), birinapant (1 μM) with and without Q-VD-OPh (12.5
μM), or DMSO for 40 hours ex vivo, followed by 4 hours incubation with cytokine secretion block. In both experiments, cells were subsequently stained with 30 fluorescently labeled
antibodies and dyes and processed for spectral flow cytometry. After acquisition, events were gated for single cells based on FSC-A and FSC-H. (B) UMAP representation of the
spectral flow cytometry data derived from patient and healthy donor samples treated with birinapant (0.2 μM) or DMSO followed by subsequent stimulation. Major cell types are
indicated by color. Corresponding UMAP representations colored by diagnosis (C), treatment (D), and cell death (E). (F) Box plot showing the fraction of proliferating cells per cell
type for birinapant (0.2 μM) or DMSO treatment followed by subsequent stimulation. (G) Heat map showing the effect of treatment with birinapant (0.2 μM) on median cytokine
expression per cell type compared with DMSO. Colors show increased (red) and decreased (blue) median expression, indicated by adjusted P values (linear mixed model; FDR <
10%). Significant effects are indicated with a star. (H) UMAP representation of the spectral flow cytometry data derived from patient and healthy donor samples treated with selinexor
(1 μM), birinapant (1 μM) with and without Q-VD-OPh (12.5 μM), or DMSO. Diagnosis is indicated by color. Corresponding UMAP representation colored by treatment (I), cell death
(J), and major cell types (K). (L) Box plot showing the fraction of apoptotic (cleaved caspase 3 positive) dying cells per cell type for patient and healthy donor samples treated with
selinexor (1 μM) or birinapant (1 μM) with and without Q-VD-OPh (12.5 μM) relative to the DMSO negative controls. Each dot represents a patient, observations outside the plotting
range are censored and shown as triangles. (M) Corresponding plot showing the fraction of nonapoptotic dying cells (cleaved caspase 3 negative). (N) Bar plot showing the mean
frequency of cell subtypes among all living cells in selinexor-treated (1 μM) healthy donor samples relative to DMSO. (O) Corresponding bar plot for birinapant (1 μM). FSC-A, forward
scatter area; FSC-H, forward scatter height; h, hour; p.adj., adjusted P value; Rel., relative.
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Figure 6 (continued)
increased birinapant killing of lymphoma cells but not of
nonmalignant B, T, and NK cells, a finding consistent with
necroptosis through caspase-8 inhibition (CI = 0.39, 1.38,
0.88, 0.95; adjusted P value = .065, .834, .898, .898;
supplemental Figure 10D).31,42,43 Among the nonmalignant
cells, selinexor treatment significantly decreased the viability
of B, T, and NK cells (Δ = −0.35, −0.22, −0.14; adjusted P
value = .006, .006, .013; supplemental Figure 10D). This effect
was pronounced for B and NK cells and resulted in a relative
depletion of B-cell and NK cell subtypes among the living cells
of the healthy PBMC donors (Figure 6N). Birinapant also
decreased the fraction of live B and NK cells but did not affect
the overall fraction of live nonmalignant T cells
(Δ = −0.14, −0.08, −0.08; adjusted P value = .023, .002, .124;
supplemental Figure 10D). We did, however, observe a trend
toward the enrichment of naive and central memory CD4 and
CD8 T cells among the living cells of healthy donor PBMCs,
suggesting that birinapant treatment might differentially affect
T-cell subsets (Figure 6O). In summary, spectral flow cytometry
demonstrated that birinapant reduces T-cell lymphoma pro-
liferation at sublethal concentrations and induces non-
apoptotic death, whereas showing only a limited effect on
nonmalignant immune cells.
Discussion
Here, we report on drug vulnerabilities of T-PLL to exportin 1
(selinexor), autophagy (bafilomycin A1), and IAP (birinapant)
inhibition, that were shared by other T-cell malignancies. To
characterize the biological processes behind these vulnerabilities,
we used spectral flow cytometry and bulk and scRNA-seq to
study T-PLL drug response. We found the response of selinexor
to be significantly correlated with that of nutlin-3a in our drug
screening data and could subsequently demonstrate the upreg-
ulation of TP53 and its target genes after selinexor treatment.
2350 15 MAY 2025 | VOLUME 145, NUMBER 20
Bafilomycin A1, a strong inhibitor of autophagy, demonstrated
considerable transcriptional overlap with the TLR8 agonist
motolimod. This suggests that in addition to its effects on cell
metabolism, bafilomycin A1 promotes TLR pathway activation in
T-PLL, as has been proposed for human monocytes.28 We
explored the sensitivity of T-PLL to the IAP inhibitor birinapant,
which is known to induce cell death through either apoptosis or
necroptosis.31,37 The dependence on RIPK1 and RIPK3 kinase
activity, as well as MLKL activation in our drug combination
experiments, combined with the lack of caspase-3 cleavage in our
spectral flow cytometry data indicate that birinapant-induced cell
death in T-PLL is primarily necroptotic. Indeed, the addition of the
pan-caspase inhibitor Q-VD-OPh further sensitized lymphoma but
not nonmalignant cell types to birinapant killing, likely by pro-
moting necroptosis through caspase-8 inhibition.31,42,43 The
opposite effect was observed in B-cell lymphomas, in which
birinapant-induced cell death was primarily RIPK1-independent
and apoptotic. This was surprising given that T-PLL, T-LGL,
MCL, and HCL cells showed a similar transcriptional activation of
the TNF-α/NF-κB pathway after birinapant treatment in our
scRNA-seq data and highlights the intricacy of the multiprotein
signaling complexes that form after IAP depletion. We observed a
limited effect of birinapant on nonmalignant T-cell transcriptomes
and viability. These findings are in line with reports that show a
limited impact of birinapant on healthy T-cell viability and even
enhanced tumor cell killing of chimeric antigen receptor T cells
after birinapant treatment.44,45 Combined, these findings suggest
that IAP inhibitors are not generally toxic for healthy T cells.

Previous studies havedescribedT-PLL sensitivity toBH3mimetics,
p53 activators, as well as HDAC and JAK-STAT inhibitors.3-7 Early
clinical data, however, suggest that these compounds are insuffi-
cient to provide long-term control of the disease.6,8 Recently, Jan
et al have reported synergistic drug combinations for the treat-
ment of T-PLL.9 By screening 8 drug classes with previously
POHLY et al



reported single-agent activity, the authors demonstrated
encouraging results for combinations involving the p53 activator
idasanutlin, the HDAC inhibitor romidepsin, and the ribonucleo-
tide reductase inhibitor cladribine, based on the superior ability of
these combinations to activate the p53 pathway.9 We now report
on T-PLL sensitivity to >2800 compounds and identify hitherto
unexplored drug vulnerabilities of T-PLL. Notably, each of the
compounds (birinapant, selinexor, and bafilomycin A1), demon-
strated distinct pathway dependencies, making them optimal
candidates to explore drug combinations to circumvent intrinsic
and acquired resistances (ie, TP53 escape mutations). Further-
more, birinapant and selinexor have demonstrated manageable
toxicity in phase 2 clinical trials, which could facilitate their further
clinical development in T-PLL and other T-cell malignancies.35,46
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