

Blocking the CD39/CD73 pathway synergizes with anti-CD20 bispecific antibody in nodal B-cell lymphoma

Clara Kolbe, ¹ Joseph Kauer, ^{1,2} Berit Brinkmann, ^{1,2} Peter Dreger, ¹ Wolfgang Huber, ^{2,3} Carsten Müller-Tidow, ^{1,2} Sascha Dietrich, ^{2,4} Tobias Roider ^{1,2,5}

To cite: Kolbe C, Kauer J, Brinkmann B, *et al.* Blocking the CD39/CD73 pathway synergizes with anti-CD20 bispecific antibody in nodal B-cell lymphoma. *Journal for ImmunoTherapy of Cancer* 2025;**13**:e009245. doi:10.1136/ jitc-2024-009245

► Additional supplemental material is published online only. To view, please visit the journal online (https://doi.org/10.1136/jitc-2024-009245).

CK and JK are joint first authors.

Accepted 14 January 2025

© Author(s) (or their employer(s)) 2025. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ Group.

For numbered affiliations see end of article.

Correspondence to

Dr Tobias Roider; tobias.roider@med.uniheidelberg.de

Professor Sascha Dietrich; sascha.dietrich@embl.de

ABSTRACT

Bispecific antibodies (BsAb) have emerged as a leading treatment modality in patients suffering from B-cell non-Hodgkin's lymphoma (B-NHL), However, treatment failure is common and may potentially be attributed to pre-existing or emerging T-cell exhaustion. CD39 catalyzes—together with CD73—the hydrolysis of immunogenic ATP into immunosuppressive adenosine and thus actively promotes an immunosuppressive micromilieu. Previously, we and others demonstrated that CD39⁺ T-cell subsets may have an adverse impact on the efficacy of T-cell-engaging immunotherapies. In this study, we applied an autologous ex vivo culture model of primary lymph node-derived T cells to investigate the potential of anti-CD39 or anti-CD73 blocking antibodies as T-cell enhancing combination partners of an anti-CD20 BsAb. Existing single-cell data of patient samples examined in this study were used to detect potential biomarkers predicting combination benefits. Combining anti-CD20 BsAb with anti-CD39 or anti-CD73 blocking antibodies induced synergistic effects on tumor cell killing, T-cell expansion and secretion of cytokines, including granzyme B, perforin, interleukin-10, interferon-γ, and tumor necrosis factor-α. We discovered that blockade of the CD39/CD73 pathway was particularly effective in patients with a high proportion of Programmed cell death protein 1 (PD-1)+ T-cell immunoglobulin and mucin-domain containing-3 (TIM3)⁺ exhausted T cells, Also, expression of CD39 in effector memory T cells indicated superior treatment benefit ex vivo. In summary, our study holds significant relevance as it introduces the combination of bispecific and anti-CD39 or anti-CD73 antibodies as a synergistic treatment approach in B-NHL, while also suggesting potential indicators to identify patients that might benefit from this treatment.

INTRODUCTION

Nodal B-cell non-Hodgkin's lymphomas (B-NHL) represent a heterogeneous group of hematological malignancies that originate mainly from the lymphoid compartment. While immunochemotherapy represents a powerful first-line treatment for most B-NHL entities, ^{1 2} a substantial number of patients become refractory to chemotherapy ^{3 4} and require further treatment

approaches. Bispecific antibodies (BsAb) have risen as an important treatment modality for patients with refractory and relapsed B-NHL, as they represent an off-the-shelf solution to redirect T cells against malignant B cells by simultaneously binding to both CD3 and a B-cell epitope.⁵ Recent data report response rates between 50% and 60% for refractory and relapsed patients, with a small subset of patients benefiting in the long-term. ⁶⁷ Failure of BsAb is commonly attributed to dysfunctional Tcells and an immunosuppressive microenvironment.8 Aiming to improve the efficacy of BsAb, T-cell enhancing combinations, for instance with checkpoint inhibitors (eg, NCT03533283) or cereblon modulators (eg, NCT05169515), are increasingly being investigated.

Previously, we identified a lymph nodederived CD39⁺ Helios⁺ expressing regulatory T-cell (T_{REG}) phenotype that was associated with inferior ex vivo response to BsAb in B-NHL. Beyond its expression in T_{REG} cells, we and others linked CD39 to advanced stages of T-cell exhaustion in solid tumors¹⁰ and B-NHL.¹¹ However, CD39 is not only a marker of inhibitory cell states but actively promotes an immunosuppressive micromilieu, as it catalyzes—together with CD73—the hydrolysis of immunogenic ATP into immunosuppressive adenosine. 12 13 While local ATP and adenosine levels are precisely regulated in healthy states, cancer cells actively promote ATP depletion and adenosine accumulation, thereby evading immune response.¹⁴ As CD39/CD73 blockade has previously been demonstrated to promote T-cell activation and antitumor immunity in models of solid cancers, 15-18 we evaluated combination treatments of anti-CD39 and anti-CD73 functional antibodies with anti-CD20 BsAb in B-NHL. Moreover, we harnessed existing single-cell data to identify potential indicators for the

efficacy of treatment involving anti-CD39 or anti-CD73 antibodies.

RESULTS

Using a flow cytometry-based autologous ex vivo model of BsAb treatment, we quantified responses to anti-CD20 BsAb (figure 1A) in 27 primary lymph node samples from patients diagnosed with follicular (FL) or diffuse large B-cell lymphoma (DLBCL) (online supplemental table 1). As most patient samples were included in reference data sets of B-NHL, 11 19 detailed transcriptomic and epitope profiles at the single-cell level were available. Consistent with previous data, anti-CD20 BsAb successfully induced concentration-dependent killing of B cells with a median reduction of 73.3% (figure 1B) and a median T-cell expansion of 13.6-fold at the highest concentration (figure 1C). Anti-CD39 or anti-CD73 blocking antibodies at two different concentrations (1 µg/mL, 10 µg/ mL) were combined with anti-CD20 BsAb at 0.1 μg/mL. Blockade of CD39, CD73 or both significantly enhanced BsAb-induced lysis of B cells (figure 1D). To assess synergy statistically, we used the Bliss independence model which compares the observed effect of a combination treatment with the predicted effect of individual compounds.²⁰ All combinations tested induced a stronger effect as the Bliss model predicted, characterizing them as synergistic. Interestingly, we did not observe that simultaneous blockade of CD39 and CD73 further improved responses compared with the use of each agent individually. The combination treatments also dramatically augmented T-cell expansion in all tested conditions compared with single agent treatment (figure 1E). Using anti-CD39 blocking antibody as a representative example, we observed significantly higher levels of granzyme B, perforin, interleukin (IL)-10, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α secreted by primary lymph node cells compared with BsAb alone (figure 1F). Next, we incubated primary lymph node samples with anti-CD39 blocking antibody at a concentration of 1 µg/mL or 10 µg/mL and added ATP at 20 µM. Indeed, we found that the addition of anti-CD39 antibody significantly increases ATP levels (figure 1G), thereby confirming previous results.¹⁵

To identify potential indicators for the efficacy of anti-CD39 or anti-CD73 combination treatment, we quantified the extent to which individual samples benefited from combinations compared with BsAb monotherapy (see Method section). The benefit from adding anti-CD39, anti-CD73, or both to anti-CD20 BsAb was higher in DLBCL (figure 2A) and patients at initial diagnosis (figure 2B) compared with FL and patients at relapse, respectively. Moreover, we used single-cell data of these samples¹¹ 19 to examine whether baseline data of T cells and B cells were associated with ex vivo response to combination treatment. In non-malignant B cells, we detected both CD39 and CD73, while malignant B cells spanning all investigated lymphoma entities exhibited a notably lower expression (figure 2C). Across 14 multimodally defined

T-cell subsets, 11 we found the highest levels of CD39 in T_{REC} subsets and exhausted T cells (figure 2D). Likewise, we observed CD73 to be present in T cells at moderate, but—in contrast to CD39—relatively consistent levels across all cell types (figure 2C and E). Merging single-cell data with ex vivo responses to CD39/CD73 blocking antibodies revealed that a higher proportion of exhausted T cells (alias Programmed cell death protein 1 (PD-1)⁺ T-cell immunoglobulin and mucin-domain containing-3 (TIM3)⁺ effector memory T cells), as previously defined at single-cell level, 11 correlated with greater benefits of the anti-CD20 BsAb/anti-CD39 combination treatment (figure 2F). No such association was observed with other T-cell subsets or when using anti-CD73 blocking antibody (figure 2F). Furthermore, we examined the expression of various exhaustion markers, namely PD-1, TIM3, Lymphocyte-activation gene 3 (LAG3), CD43, T-cell immunoreceptor with Ig and ITIM domains (TIGIT), and CD39 in lymph node-derived effector memory T cells. Interestingly, we noted increased levels of CD39 in effector T cells, including those displaying an exhaustion phenotype, were linked to pronounced benefits from the combination treatment of anti-CD39 and BsAb (figure 2G). In contrast, higher levels of PD-1 were associated with an inferior ex vivo response (figure 2G).

DISCUSSION

Our study demonstrates that blocking the CD39/CD73 pathway synergizes with BsAb by augmenting tumor cell killing, T-cell expansion, and cytokine secretion in B-NHL. Previously, we reported similar benefits when combining BsAb with cereblon modulators and checkpoint inhibitors, which are currently being evaluated in clinical trials for nodal B-cell lymphoma. Clinical studies investigating blocking antibodies against CD39 and CD73 are limited to advanced stages of solid cancers (eg, NCT05742607). However, our data strongly suggest their application and evaluation in nodal B-cell lymphoma in combination with BsAb. Notably, CD39 has also been detected in dysfunctional CAR T cells,²¹ implying that blocking the CD39/ CD73 pathway could be valuable for T-cell-engaging approaches in general.

Furthermore, we have used the sample overlap with existing single-cell data to identify potential determinants of the ex vivo response to BsAb when combined with anti-CD39 or anti-CD73 blocking antibodies. We discovered that targeting CD39 or CD73 was particularly effective in patients with higher numbers of PD-1⁺ TIM3⁺ cytotoxic T cells, commonly referred to as exhausted T cells. Levels of CD39 in exhausted T cells exhibited significant heterogeneity and showed a correlation with the benefits obtained by combining BsAb with anti-CD39 or anti-CD73 blocking antibodies. In B-NHL, T-cell exhaustion is considered to contribute to treatment failure and early relapses in a subset of patients receiving BsAb.²² Therefore, we speculate that these patients could benefit the most from antibodies targeting CD39 or CD73. While it may seem

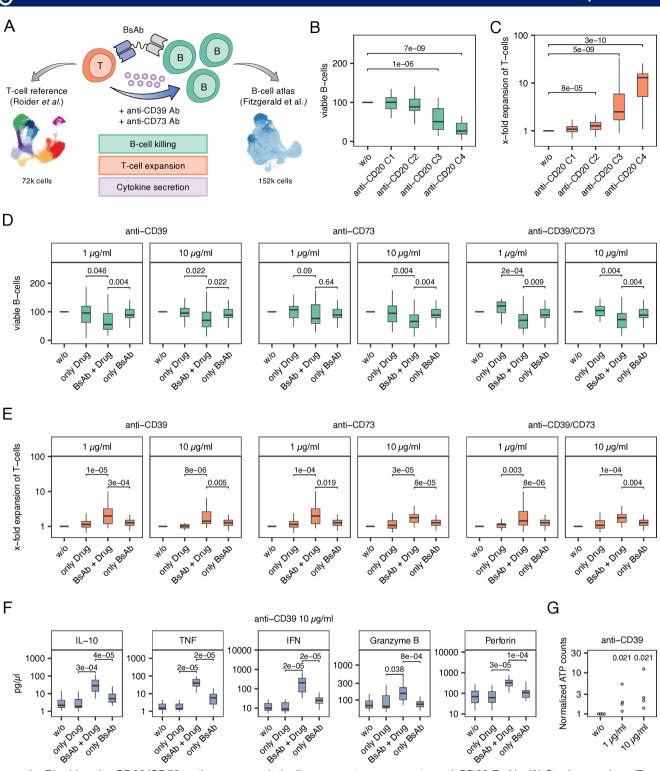


Figure 1 Blocking the CD39/CD73 pathway synergistically augments response to anti-CD20 BsAb. (A) Study overview. (B−F) Lymph node-derived lymphocytes were incubated with or without (w/o) a maximum of four concentrations of a CD20-BsAb (C1-C4) and/or a maximum of two concentrations of anti-CD39, anti-CD73, anti-CD39/CD73 blocking antibodies, as indicated. After 7 days, cells (B–E) or supernatants (F) were analyzed by quantitative flow cytometry or a bead-based immunoassay, respectively. Shown are the percentages based on the absolute numbers of viable B cells normalized to w/o (B, D), the x-fold expansion based on the absolute numbers of viable T cells normalized to w/o (C, E) or the cytokine levels in pg/µL (F) in n=27 biologically independent samples. (G) Lymph node-derived lymphocytes were incubated with or without the anti-CD39 blocking antibody at two different concentrations and then exposed to ATP at a concentration of 20 µM. Shown are ATP levels of n=4 biologically independent samples normalized to untreated control (w/o) after 60 min. (B–G) P values were calculated between w/o and every other condition using the two-sided Wilcoxon test and corrected for multiple testing using the Benjamini-Hochberg procedure. Only p values≤0.05 are shown. Box plots: center line, median; box limits, first and third quartile; whiskers, 1.5×IQR. BsAb, bispecific antibody; IFN, interferon; IL, interleukin; TNF, tumor necrosis factor.

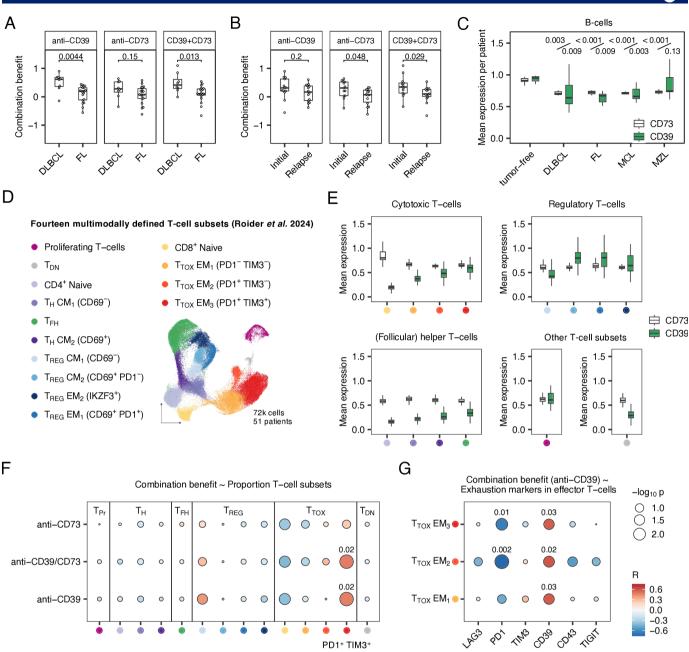


Figure 2 Benefit from anti-CD39/CD73 blockade is linked to the proportion of exhausted T cells and CD39 expression. (A-B) Box plots illustrating the associations of patient characteristics with benefits from three different combination treatments in n=27 biologically independent lymph node samples. P values were calculated using the Wilcoxon test. (C) Shown is the expression of CD39 and CD73 at the protein level based on publicly available single-cell data of in n=51 biologically independent lymph node samples. (D) Overview of 14 T-cell subsets defined by existing single-cell RNA and epitope sequencing in n=51 biologically independent lymph node samples. (E) Shown is the expression of CD39 and CD73 at the protein level based on previously mentioned T-cell reference data. (F) The proportion of fourteen specific T-cell subsets, defined in panel D (y axis), was correlated with the benefit from three different combination therapies (x axis) compared with BsAb monotherapy. Only p values≤0.05 are shown. High or low Pearson's R indicate direct or inverse associations of T-cell subset proportion and the extent of combination benefit. Only values ≤0.05 are shown. (G) The protein expression of six different exhaustion markers (x axis) across three effector memory T cells, defined in panel A, was correlated with the benefit when combining anti-CD39 blocking antibody with anti-CD20 BsAb compared with BsAb monotherapy. High or low Pearson's R indicates direct or inverse associations of marker expression and the extent of combination benefit. Only values ≤0.05 are shown. Box plots: center line, median; box limits, first and third quartile; whiskers, 1.5×IQR. BsAb, bispecific antibody; CM, central memory; DLBCL, diffuse large B-cell lymphoma; EM, effector memory; FL, follicular; LAG3, lymphocyte-activation gene 3; LN, lymph node; MCL, mantle cell lymphoma; MZL, marginal zone lymphoma; PD-1, Programmed cell death protein 1; T_{DN}, double negative T-cells; TF, transcription factor; T_{FH}, follicular helper T-cells; T_H, helper T cells; TIGIT, T-cell immunoreceptor with Ig and ITIM domains; TIM3, T-cell immunoglobulin and mucin-domain containing-3; T_{Pr} , proliferating T-cells; T_{REG} , regulatory T cells; T_{TOX} , cytotoxic T-cells.

PD1+ TIM3+ T_{TOX} EM₃

obvious that T cells play a significant role in the efficacy of anti-CD39 and anti-CD73 blocking antibodies, malignant or non-malignant B cells could be equally important. For example, Zhang *et al* and Bastid *et al* demonstrated in their studies that B cells can impair T-cell activity and expansion via the CD39/CD73 pathway.²³ ²⁴ Still, further research in the context of BsAb is necessary to clarify the exact role of each cell type.

In summary, our study is highly relevant as we introduce the combination of BsAb and anti-CD39 or anti-CD73 antibodies as a synergistic treatment approach in nodal B-cell lymphoma, while also suggesting potential biomarkers to identify patients eligible for this treatment.

MATERIALS AND METHODS Patient samples

The study was carried out according to the Helsinki protocol in its current version. Written informed consent was collected from all patients prior to sample processing. 29 consecutive patients undergoing lymph node biopsies that revealed B-NHL were included. The baseline clinical data of all patients is depicted in online supplemental table 1. Lymph node processing was performed as previously described by us. 25

Flow cytometric ex vivo assays

Cryopreserved lymph node cell suspensions were thawed at 37°C using a water bath and resuspended in Roswell Park Memorial Institute (RPMI) 1640 cultural medium supplemented with 10% heat-inactivated human AB serum (Sigma Aldrich, St. Louis, Missouri, USA). To remove cell debris, the cell suspension was kept on a rotating mixer for 3 hours. Cells were strained using a 70 µm strainer. Unsorted cells were plated at 200,000 cells/ well in a 96-well flat bottom plate containing 200 µL cell medium per well. The following antibodies were added: CD20×CD3 BsAb (BSFV-H226, Creative Biolabs, Shirley, New York, USA) at 10 ng/mL (C1), 100 ng/mL (C2), 1,000 ng/mL (C3), or 10,000 ng/mL (C4). The monoclonal anti-CD39 (clone: IPH5201) and anti-CD73 antibodies (clone: IPH5301, both Innate Pharma, Marseille, France, via material transfer agreement) were added at 1 μg/mL or 10 μg/mL. Cells were cultured at 37°C and 5% CO for 7 days. Afterwards, cells were washed and stained for flow cytometric analysis. The following surface antibodies and viability dye were used: anti-CD3-APC/ Cy7, anti-CD19-BV421, anti-CD4-PE/Dazzle, anti-CD8-FITC, anti-CD20-APC, anit-CD5-PE/Cy7 (all BioLegend), and fixable viability dye e506 (Thermo Fisher Scientific). Samples were analyzed using an FACSSymphony A3 (BD Biosciences, Heidelberg, Germany) and BD FACSDiva software (BD Biosciences).

Data analysis

Flow cytometric data was analyzed with FlowJo (BD Biosciences). Count Beads (BioLegend, San Diego, California, USA) were used to quantify absolute cell numbers. To

evaluate synergy statistically, we used the Bliss independence model which compares the observed effect y_{ab} of a combination treatment with the predicted effect, alias Bliss score, y_{ab} of two separate compounds. ²⁰ The calculation of the Bliss score is based on the formula:

$$\hat{y}_{ab} = y_a + y_b - y_a y_b$$

If the difference between the mean observed effect y_{ab} and the mean Bliss score across all patient samples is positive, alias excess over Bliss score, the combination treatment is considered synergistic.

The benefit from combination treatments for each individual patient was quantified by the difference in normalized number of B cells between monotherapy and combination therapy. Therefore, lower/negative numbers indicate stronger benefits from combinations.

Descriptive statistics were performed using R V.4.3.1 (R Foundation for Statistical Computing, Vienna, Austria). The correlation between continuous variables was calculated using Spearman's rank correlation. Means of independent variables were compared using the unpaired Wilcoxon signed-rank test. P values were adjusted for multiple tests using the Benjamini-Hochberg method.

Cytokine assays

Supernatants from primary human lymph node assays were analyzed. Granzyme B, perforin, IFN- γ , IL-10 and TNF- α levels were measured with a LEGENDplex assay kit as per manufacturer's protocol. Flow cytometric analysis was performed by using an LSRFortessa (BD Biosciences) and the LEGENDplex Data Analysis Software V.8.0 (BioLegend).

ATP assay

The effect of CD39 blockade on ATP levels in lymph node cell cultures was analyzed using the CellTiter Glo assay (Promega, Walldorf, Germany), as previously described. Lymph node samples were processed as described above and incubated with anti-CD39 antibody at $10\,\mu\text{g/mL}$ for $60\,\text{min}$. Next, ATP was added at a concentration of $20\,\mu\text{M}$. After $60\,\text{min}$, supernatants were analyzed using an EnSight multimode plate reader (PerkinElmer, Waltham, Massachusetts, USA). Inhibition of enzymatic activity was calculated as follows:

$$anti - CD39$$
: $\frac{(Cells + ATP + anti - CD39) - (Cells + ATP)}{(ATP) - (Cells + ATP)} \times 100$

Author affiliations

¹Heidelberg University Hospital Department of Hematology Oncology and Rheumatology, Heidelberg, Germany

²Molecular Medicine Partnership Unit (MMPU), Heidelberg, Heidelberg, Baden-Württemberg, Germany

 ³Genome Biology Unit, EMBL, Heidelberg, Baden-Württemberg, Germany
⁴University Hospital of Düsseldorf Department of Haematology Oncology and Clinical Immunology, Düsseldorf, Nordrhein-Westfalen, Germany
⁵Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, Germany

Acknowledgements The authors thank Carolin Kolb and Mareike Knoll for their excellent technical assistance. Likewise, we thank Innate Pharma (Marseille, France), particularly Carine Paturel, Lukas Vollmy, Nicolas Perny, Pascale Andre and Catherine Laporte, for providing the anti-CD39 (clone: IPH5201) and anti-CD73

antibodies (clone: IPH5301) via material transfer agreement). For the publication fee we acknowledge financial support by Heidelberg University.

Contributors Conceptualization TR, CK, JK; methodology TR, CK; formal analysis JK, TR, CK; investigation CK, resources SD, WH, CM-T; data curation, CK; writing—original draft preparation JK, TR; writing—review and editing CK, WH, CM-T, SD; visualization TR; supervision TR, SD; project administration SD, TR; funding acquisition SD, TR; TR is responsible for the overall content as guarantor. All authors have read and agreed to the published version of the manuscript.

Funding T.R. was supported by a fellowship of the German Federal Ministry of Education and Research (BMBF, grant number 031L0263A) and a physician scientist fellowship of the Medical Faculty of University Heidelberg (Grant number: not applicable).

Competing interests No, there are no competing interests.

Patient consent for publication Written informed consent was collected from all patients prior to sample processing.

Ethics approval The study was approved by the ethics committee of the University of Heidelberg (ID number S254/2016) and carried out according to the Helsinki protocol in its current version.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available in a public, open access repository. Data are available upon reasonable request. Data generated specifically for this study will be provided upon request without further hurdles. Single-cell sequencing data used in this study have been previously published and are available for download as referenced in the original publications. ^{11 19}

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD

Tobias Roider http://orcid.org/0000-0002-6973-3531

REFERENCES

- 1 Tilly H, Morschhauser F, Sehn LH, et al. Polatuzumab Vedotin in Previously Untreated Diffuse Large B-Cell Lymphoma. N Engl J Med 2022;386:351–63.
- 2 Hiddemann W, Barbui AM, Canales MA, et al. Immunochemotherapy With Obinutuzumab or Rituximab for Previously Untreated Follicular Lymphoma in the GALLIUM Study: Influence of Chemotherapy on Efficacy and Safety. J Clin Oncol 2018;36:2395–404.
- 3 Crump M, Neelapu SS, Farooq U, et al. Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study. Blood 2017;130:1800–8.
- 4 Casulo C, Larson MC, Lunde JJ, et al. Treatment patterns and outcomes of patients with relapsed or refractory follicular lymphoma

- receiving three or more lines of systemic therapy (LEO CReWE): a multicentre cohort study. *Lancet Haematol* 2022;9:e289–300.
- 5 Sun LL, Ellerman D, Mathieu M, et al. Anti-CD20/CD3 T cell-dependent bispecific antibody for the treatment of B cell malignancies. Sci Transl Med 2015;7:287ra70.
- 6 Thieblemont C, Phillips T, Ghesquieres H, et al. Epcoritamab, a Novel, Subcutaneous CD3xCD20 Bispecific T-Cell-Engaging Antibody, in Relapsed or Refractory Large B-Cell Lymphoma: Dose Expansion in a Phase I/II Trial. J Clin Oncol 2023;41:2238–47.
- 7 Dickinson MJ, Carlo-Stella C, Morschhauser F, et al. Glofitamab for Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N Engl J Med 2022;387:2220–31.
- 8 Friedrich MJ, Neri P, Kehl N, et al. The pre-existing T cell landscape determines the response to bispecific T cell engagers in multiple myeloma patients. Cancer Cell 2023;41:711–25.
- 9 Roider T, Brinkmann BJ, Kim V, et al. An autologous culture model of nodal B-cell lymphoma identifies ex vivo determinants of response to bispecific antibodies. *Blood Adv* 2021;5:5060–71.
- 10 Canale FP, Ramello MC, Núñez N, et al. CD39 Expression Defines Cell Exhaustion in Tumor-Infiltrating CD8⁺ T Cells. Cancer Res 2018;78:115–28.
- 11 Roider T, Baertsch MA, Fitzgerald D, et al. Multimodal and spatially resolved profiling identifies distinct patterns of T cell infiltration in nodal B cell lymphoma entities. Nat Cell Biol 2024:26:478–89.
- 12 Robson SC, Sévigny J, Zimmermann H. The E-NTPDase family of ectonucleotidases: Structure function relationships and pathophysiological significance. *Purinergic Signal* 2006;2:409–30.
- 3 Allard B, Longhi MS, Robson SC, et al. The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets. *Immunol Rev* 2017:276:121–44
- 14 de Andrade Mello P, Coutinho-Silva R, Savio LEB. Multifaceted Effects of Extracellular Adenosine Triphosphate and Adenosine in the Tumor-Host Interaction and Therapeutic Perspectives. Front Immunol 2017:8:1526
- 15 Perrot I, Michaud H-A, Giraudon-Paoli M, et al. Blocking Antibodies Targeting the CD39/CD73 Immunosuppressive Pathway Unleash Immune Responses in Combination Cancer Therapies. Cell Rep 2019;27:2411–25.
- 16 Kashyap AS, Thelemann T, Klar R, et al. Antisense oligonucleotide targeting CD39 improves anti-tumor T cell immunity. J Immunother Cancer 2019;7:67.
- 17 Yang R, Elsaadi S, Misund K, et al. Conversion of ATP to adenosine by CD39 and CD73 in multiple myeloma can be successfully targeted together with adenosine receptor A2A blockade. J Immunother Cancer 2020;8:e000610.
- 18 Schäkel L, Mirza S, Winzer R, et al. Protein kinase inhibitor ceritinib blocks ectonucleotidase CD39 - a promising target for cancer immunotherapy. J Immunother Cancer 2022;10:e004660.
- 19 Fitzgerald D, Roider T, Baertsch M-A, et al. A single-cell multi-omic and spatial atlas of b-cell lymphomas reveals differentiation drives intratumor heterogeneity. Cancer Biology [Preprint] 2023.
- 20 Liu Q, Yin X, Languino LR, et al. Evaluation of drug combination effect using a Bliss independence dose-response surface model. Stat Biopharm Res 2018;10:112–22.
- 21 Good Z, Spiegel JY, Sahaf B, et al. Post-infusion CAR T_{Reg} cells identify patients resistant to CD19-CAR therapy. Nat Med 2022:28:1860-71.
- Philipp N, Kazerani M, Nicholls A, et al. T-cell exhaustion induced by continuous bispecific molecule exposure is ameliorated by treatment-free intervals. Blood 2022;140:1104–18.
- 23 Zhang F, Li R, Yang Y, et al. Specific Decrease in B-Cell-Derived Extracellular Vesicles Enhances Post-Chemotherapeutic CD8⁺ T Cell Responses. *Immunity* 2019;50:738–50.
- 24 Bastid J, Regairaz A, Bonnefoy N, et al. Inhibition of CD39 enzymatic function at the surface of tumor cells alleviates their immunosuppressive activity. Cancer Immunol Res 2015;3:254–65.
- 25 Roider T, Seufert J, Uvarovskii A, et al. Dissecting intratumour heterogeneity of nodal B-cell lymphomas at the transcriptional, genetic and drug-response levels. Nat Cell Biol 2020;22:896–906.