
Vol. 6/5, December 2006 12

$packages
0.31MB 17.16MB 1.64MB
"graph" "GO" "Biobase"
1.45MB 1.29MB 0.23MB

"annotate" "RBGL" "KEGG"
0.23MB 0.22MB 1.2MB

"genefilter" "Category" "GOstats"

$total.size
[1] 23.739

Wrap Up

We have shown how to generate package depen-
dency graphs and preview package installation us-
ing the pkgDepTools package. We have described in
detail how the underlying code is used and the pro-
cess of modeling relationships with the graph pack-
age.

These tools can help identify and understand in-
terdependencies in packages. A very similar ap-
proach can be applied to visualizing class hierarchies
in R such as those implemented using the S4 (Cham-
bers, 1998) class system or Bengtsson’s R.oo (Bengts-
son, 2006) package.

The graph, RBGL, and Rgraphviz suite of pack-
ages provides a very powerful means of manipulat-
ing, analyzing, and visualizing relationship data.

Bibliography

H. Bengtsson. R.oo: R object-oriented programming
with or without references, 2006. URL http://www.
braju.com/R/. R package version 1.2.3.

V. Carey and L. Long. RBGL: Interface to boost C++
graph lib, 2006. URL http://bioconductor.org. R
package version 1.10.0.

J. M. Chambers. Programming with Data: A Guide to
the S Language. Springer-Verlag New York, 1998.

R. Gentleman, E. Whalen, W. Huber, and S. Falcon.
graph: A package to handle graph data structures, 2006.
R package version 1.12.0.

J. Gentry. Rgraphviz: Provides plotting capabilities for R
graph objects, 2006. R package version 1.12.0.

E. Hartuv and R. Shamir. A clustering algorithm
based on graph connectivity. Information Process-
ing Letters, 76(4–6):175–181, 2000. URL citeseer.
ist.psu.edu/hartuv99clustering.html.

M. Kanehisa and S. Goto. KEGG: Kyoto encyclope-
dia of genes and genomes. Nucleic Acids Res, 28:
27–30, 2000.

Seth Falcon
Program in Computational Biology
Fred Hutchinson Cancer Research Center
Seattle, WA, USA
emailsfalcon@fhcrc.org

Image Analysis for Microscopy Screens
Image analysis and processing with EBImage

by Oleg Sklyar and Wolfgang Huber

The package EBImage provides functionality to per-
form image processing and image analysis on large sets
of images in a programmatic fashion using the R lan-
guage.

We use the term image analysis to describe the ex-
traction of numeric features (image descriptors) from
images and image collections. Image descriptors can
then be used for statistical analysis, such as classifi-
cation, clustering and hypothesis testing, using the
resources of R and its contributed packages.

Image analysis is not an easy task, and the defi-
nition of image descriptors depends on the problem.
Analysis algorithms need to be adapted correspond-
ingly. We find it desirable to develop and optimize
such algorithms in conjunction with the subsequent
statistical analysis, rather than as separate tasks. This

is one of our motivations for writing the package.

We use the term image processing for operations
that turn images into images, with the goals of
enhancing, manipulating, sharpening, denoising or
similar (Russ, 2002). While some image processing
is often needed as a preliminary step for image anal-
ysis, image processing is not the primary aim of the
package. We focus on methods that do not require in-
teractive user input, such as selecting image regions
with a pointer etc. Whereas interactive methods can
be extremely effective for small sets of images, they
tend to have limited throughput and reproducibility.

EBImage uses the Magick++ interface to the
ImageMagick (2006) image processing library to im-
plement much of its functionality in image process-
ing and input/output operations.

R News ISSN 1609-3631

http://www.braju.com/R/
http://www.braju.com/R/
http://bioconductor.org
citeseer.ist.psu.edu/hartuv99clustering.html
citeseer.ist.psu.edu/hartuv99clustering.html

Vol. 6/5, December 2006 13

Cell-based assays

Advances in automated microscopy have made it
possible to conduct large scale cell-based assays with
image-type phenotypic readouts. In such an assay,
cells are grown in the wells of a microtitre plate (of-
ten a 96- or 384-well format is used) under a condi-
tion or stimulus of interest. Each well is treated with
one of the reagents from the screening library and the
response of the cells is monitored, for which in many
cases certain proteins of interest are antibody-stained
or labeled with a GFP-tag (Carpenter and Sabatini,
2004; Wiemann et al., 2004; Moffat and Sabatini, 2006;
Neumann et al., 2006).

The resulting imaging data can be in the
form of two-dimensional (2D) still images, three-
dimensional (3D) image stacks or image-based time
courses. Such assays can be used to screen com-
pound libraries for the effect of potential drugs on
the cellular system of interest. Similarly, RNA inter-
ference (RNAi) libraries can be used to screen a set
of genes (in many cases the whole genome) for the
effect of their loss of function in a certain biological
process (Boutros et al., 2004).

Importing and handling images

Images are stored in objects of class Image which ex-
tends the array class. The colour mode is defined by
the slot rgb in Image; the default mode is grayscale.

New images can be created with the standard
constructor new, or using the wrapper function
Image. The following example code produces a
100x100 pixel grayscale image of black and white
vertical stripes:

> im <- Image(0, c(100,100))
> im[c(1:20, 40:60, 80:100),,] = 1

By using ImageMagick, the package supports
reading and writing of more than 95 image formats
including JPEG, TIFF and PNG. The package can
process multi-frame images (image stacks, 3D im-
ages) or multiple files simultaneously. For example,
the following code reads all colour PNG files in the
working directory into a single object of class Image,
converts them to grayscale and saves the output as a
single multi-frame TIFF file:

> files <- dir(pattern=".png")
> im <- read.image(files, rgb=TRUE)
> img <- toGray(im)
> write.image(img, "single_multipage.tif")

Besides operations on local files, the package can
read from anonymous HTTP and FTP sources, and it
can write to anonymous FTP locations. These proto-
cols are supported internally by ImageMagick and do
not use R-connections.

The storage mode of grayscale images is double,
and all R-functions that work with arrays can be di-
rectly applied to grayscale images. This includes the
arithmetic functions, subsetting, histograms, Fourier
transformation, (local) regression, etc. For example,
the sharpened image in Figure 1c can be obtained by
subtracting the slightly blurred, scaled in colour ver-
sion of the original image (Figure 1b) from its source
in Figure 1a. All pixels that become negative after
subtraction are then re-set to background. The source
image is a subset of the original microscopic image.
Hereafter, variables in the code are given the same
literal names as the corresponding image labels (e.g.
data of variable a are shown in Figure 1 a, b – in b,
and C – in c, etc).

> orig <- read.image("ch2.png")
> a <- orig[150:550, 120:520,]
> b <- blur(0.5 * a, 80, 5)
> C <- a - b
> C[C < 0] = 0
> C <- normalize(C)

One can think of this code as of a naive, but
fast and effective, version of the unsharp mask fil-
ter; a more sophisticated implementation from the
ImageMagick library is provided by the function
unsharpMask in the package.

Figure 1: Implementation of a simple unsharp mask
filter: (a) source image, (b) blurred colour-scaled im-
age, (c) sharpened image after normalization

Some of the image analysis routines assume
grayscale data in the interval [0, 1], but formally
there are no restrictions on the range.

The storage mode of RGB-images is integer, and
we use the three lowest bytes to store red (R), green
(G) and blue (B) values, each in the integer-based
range of [0, 255]. Because of this, arithmetic and
other functions are generally meaningless for RGB-
images; although they can be useful in some special
cases, as shown in the example code in the following
section. Support for RGB-images is included to en-
hance the display of the analysis results. Most anal-
ysis routines require grayscale data though.

Image processing

The ImageMagick library provides a number of image
processing routines, so-called filters. Many of those
are ported to R by the package. The missing ones

R News ISSN 1609-3631

Vol. 6/5, December 2006 14

may be added at a later stage. We have also imple-
mented additional image processing routines that we
found useful for work on cell-based assays.

Filters are implemented as functions acting on
objects of class Image and returning a new Image-
object of the same or appropriately modified size.
One can divide them into four categories: image en-
hancement, segmentation, transformation and colour cor-
rection. Some examples are listed below.

sharpen, unsharpMask generate sharpened ver-
sions of the original image.

gaussFilter applies the Gaussian blur operator to
the image, softening sharp edges and noise.

thresh segments a grayscale image into a binary
black-and-white image by the adaptive thresh-
old algorithm.

mOpen, mClose use erosion and dilation to en-
hance edges of objects in binary images and to
reduce noise.

distMap performs a Euclidean distance transform of
a binary image, also known as distance map. On
a distance map, values of pixels indicate how
far are they away from the nearest background.
Our implementation is adapted from the Scilab
image processing toolbox (SIP Toolbox, 2005)
and is based on the algorithm by Lotufo and
Zampirolli (2001).

normalize shifts and scales colours of grayscale im-
ages to a specified range, normally [0, 1].

sample.image proportionally resizes images.

The following code demonstrates how grayscale
images recorded using three different microscope fil-
ters (Figure 2 a, b and c) can be put together into
a single false-colour representation (Figure 2 d), and
conversely, how a single false-colour image can be
decomposed into its individual channels.

> files <- c("ch1.png","ch2.png","ch3.png")
> orig <- read.image(files, rgb=FALSE)
> abc <- orig[150:550, 120:520,]
> a <- toGreen(abc[,,1]) # RGB
> b <- toRed(abc[,,2]) # RGB
> d <- a + b + toBlue(abc[,,3])
> C <- getBlue(d) # gray

Figure 2: Composition of a false-colour image (d)
from a set of grayscale microscopy images for three
different luminescent compounds: (a) – DAPI, (b) –
tubulin and (c) – phalloidin

Displaying images

The package defines the method display which
shows images in an interactive X11 window, where
image stacks can be animated and browsed through.
This function does not use R graphics devices and
cannot be redirected to any of those. To redi-
rect display into an R graphics device, the method
plot.image can be used, which is a wrapper for the
image function from the graphics package. Since
each pixel is drawn as a polygon, plot.image is
much slower compared to display; also, it shows
only the first image of a stack:

> display(abc) # displays all 3
> plot.image(abc[,,2]) # can display just 1

Drawables

Pixel values can be set either by using the con-
ventional subset assignment syntax for arrays
(as in the third code example, C[C < 0] = 0) or
by using drawables. EBImage defines the fol-
lowing instantiable classes for drawables (de-
rived from the virtual Drawable): DrawableCircle,
DrawableLine, DrawableRect, DrawableEllipse
and DrawableText. The stroke and fill colours, the
fill opacity and the stroke width can be set in the
corresponding slots of Drawable. As the opportu-
nity arises, we plan to provide drawables for text,
poly-lines and polygons. Drawables can be drawn
on Images with the method draw; both grayscale and
RGB images are supported with all colours automat-
ically converted to gray levels on grayscale images.

R News ISSN 1609-3631

Vol. 6/5, December 2006 15

The code below illustrates how drawables can be
used to mark the positions and relative sizes of the
nuclei detected from the image in Figure 2a. It as-
sumes that x1 is the result of the function wsObjects,
which uses a watershed-based image segmentation
for object detection. x1 contains matrix objects with
object coordinates (columns 1 and 2) and areas (col-
umn 3). The resulting image is shown in Figure 3b.
This is just an illustration, we do not assume circular
shapes of nuclei. For comparison, the actual segmen-
tation boundaries are colour-marked in Figure 3a us-
ing the function wsPaint:

> src <- toRGB(abc[,,1])
> x <- x1$objects[,1]
> y <- x1$objects[,2]
> r <- sqrt(x1$objects[,3] / pi)
> cx <- DrawableCircle(x, y, r)
> b <- draw(src, cx)
> a <- wsPaint(x1, src)

Figure 3: Colour-marked nuclei detected with func-
tion wsObjects: (a) – as detected, (b) – illustrated by
DrawableCircle’s.

Analysing an RNAi screen

Consider an experiment in which images like those
in Figure 2 were recorded for each of ≈ 20,000 genes,
using a whole-genome RNAi library to test the ef-
fect of gene knock-down on cell viability and appear-
ance. Among the image descriptors of interest are the
number, position, size, shape and the fluorescent in-
tensities of cells and nuclei.

The package provides functionality to identify
objects in images and to extract image descriptors in
the function wsObjects. The function identifies dif-
ferent objects in parallel using a modified watershed-
based segmentation algorithm and using image dis-
tance maps as input. The result is a list of three ma-
trix elements objects, pixels (indices of pixels con-
stituting the objects) and borders (indices of pixels
constituting the object boundaries). If the supplied
image is an image stack, the result is a list of such
lists. Each row in the matrix objects corresponds
to a detected object, with different object descriptors
in the columns: x and y coordinates, size, perimeter,
number of pixels on the image edge, acircularity, ef-
fective radius, perimeter to radius ratio, etc. Objects

on the image edges can be automatically removed if
the ratio of the detected edge pixels to the perimeter
is larger than a given threshold. If the original image,
from which the distance map was calculated, is spec-
ified in the argument ref, the overall intensity of the
object region is calculated as well.

For every gene, the image analysis workflow
looks, therefore, as follows: load and normalize im-
ages, segment, enhance the segmented images by
morphological opening and closing, generate dis-
tance maps, identify cells and nuclei, extract image
descriptors, and, finally, generate image previews
with the identified objects marked.

Object descriptors can then be analysed statisti-
cally to cluster genes by their phenotypic effect, gen-
erate a list of genes that should be studied further in
more detail (hit list), e.g., genes that have a specific
phenotypic effect of interest, etc. The image previews
can be used to verify and audit the performance of
the algorithm through visual inspection.

A schematic implementation is illustrated in the
following example code and in Figure 4. Here we
omit the step of nuclei detection (object x1), from
where the matrix of nuclei coordinates (object seeds)
is retrieved to serve as starting points for the cell de-
tection. The nuclei detection is done analogously to
the cell detection without specifying starting points.

> for (X in genes) {
+ files <- dir(pattern=X)
+ orig <- read.image(files)
+ abc <- normalize(orig, independent=TRUE)
+ i1 <- abc[,,1]
+ i2 <- abc[,,2]
+ i3 <- abc[,,3]
+ a <- sqrt(normalize(i1 + i3))
+ b <- thresh(a, 300, 300, 0.0, TRUE)
+ C <- mOpen(b, 1, mKernel(7))
+ C <- mClose(C, 1, mKernel(7))
+ d <- distMap(C)
+ # x1 <- wsObjects(...) - nuclei detection
+ seeds <- x1$objects[,1:2]
+ x2 <- wsObjects(d, 30, 10, .2, seeds, i3)
+ rgb <- toGreen(i1)+toRed(i2)+ toBlue(i3)
+ e <- wsPaint(x2, rgb, col="white",fill=F)
+ f <- wsPaint(x2, i3, opac = 0.15)
+ f <- wsPaint(x1, f, opac = 0.15)
+ }

Note that here we adopted the record-at-a-time ap-
proach: image data, which can be huge, are stored
on a mass-storage device and are loaded into RAM
in portions of just a few images at a time.

Summary

EBImage brings image processing and image anal-
ysis capabilities to R. Its focus is the programmatic

R News ISSN 1609-3631

Vol. 6/5, December 2006 16

(non-interactive) analysis of large sets of similar im-
ages, such as those that arise in cell-based assays for
gene function via RNAi knock-down. Image descrip-
tors can be analysed further using R’s functionalities
in machine learning (clustering, classification) and
hypothesis testing.

Our current work on this package focuses on
more accurate object detection and algorithms for
feature/descriptor extraction. Image registration,
alignment and object tracking are of foreseeable in-
terest. In addition, one can imagine many other
useful features, for example, support for more
ImageMagick functions, better display options (e.g.,
using GTK) or interactivity. Contributions or collab-
orations on these or other topics are welcome.

Figure 4: Illustration of the object detection algo-
rithm: (a) – sqrt-brightened combined image of nu-
clei (DAPI from Figure 2a) and cells (phalloidin from
Figure 2c); (b) – image a after blur and adaptive thresh-
olding; (c) – image b after morphological opening fol-
lowed by closing; (d) – normalized distance map gen-
erated from image c; (e) – outlines of cells detected
using wsObjects drawn on top of the RGB image
from Figure 2d; (f) – colour-mapped cells and nuclei
as detected with wsObjects (one unique colour per
object)

Installation

The package depends on ImageMagick, which needs
to be present on the system to install the package.

Please refer to the ‘INSTALL’ file.

Acknowledgements

We thank F. Fuchs and M. Boutros for providing
their miscroscopy data and for many stimulating
discussions about the technology and the biology,
R. Gottardo and F. Swidan for testing the package on
MacOS X and the European Bioinformatics Institute
(EBI), Cambridge, UK, for financial support.

Bibliography

M. Boutros, A. Kiger, S. Armknecht, et al. Genome-
wide RNAi analysis of cell growth and viability in
Drosophila. Science, 303:832–835, 2004.

A. E. Carpenter and D.M. Sabatini. Systematic
genome-wide screens of gene function. Nature Re-
views Genetics, 5:11–22, 2004.

ImageMagick: software to convert, edit, and com-
pose images. Copyright: ImageMagick Studio LLC,
1999-2006. URL http://www.imagemagick.org/

R. Lotufo and F. Zampirolli. Fast multidimensional
parallel Euclidean distance transform based on
mathematical morphology. SIBGRAPI-2001/Brazil,
100–105, 2001.

J. Moffat and D.M. Sabatini. Building mammalian
signalling pathways with RNAi screens. Nature
Reviews Mol. Cell Biol., 7:177–187, 2006.

B. Neumann, M. Held, U. Liebel, et al. High-
throughput RNAi screening by time-lapse imag-
ing of live human cells. Nature Mathods, 3(5):385–
390, 2006.

J. C. Russ. The image processing handbook – 4th ed.
CRC Press, Boca Raton. 732 p., 2002

SIP Toolbox: Scilab image processing toolbox.
Sourceforge, 2005. URL http://siptoolbox.
sourceforge.net/

S. Wiemann, D. Arlt, W. Huber, et al. From ORFeome
to biology: a functional genomics pipeline. Genome
Res. 14(10B):2136–2144, 2004.

Oleg Sklyar and Wolfgang Huber
European Bioinformatics Institute
European Molecular Biology Laboratory
Wellcome Trust Genome Campus
Hinxton, Cambridge
CB10 1SD
United Kingdom
osklyar@ebi.ac.uk; huber@ebi.ac.uk

R News ISSN 1609-3631

http://www.imagemagick.org/
http://siptoolbox.sourceforge.net/
http://siptoolbox.sourceforge.net/
mailto:osklyar@ebi.ac.uk
mailto:huber@ebi.ac.uk

