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Abstract

Cell-to-cell variability in gene expression is important for many
processes in biology, including embryonic development and stem
cell homeostasis. While heterogeneity of gene expression levels
has been extensively studied, less attention has been paid to
mRNA polyadenylation isoform choice. 30 untranslated regions
regulate mRNA fate, and their choice is tightly controlled during
development, but how 30 isoform usage varies within genetically
and developmentally homogeneous cell populations has not been
explored. Here, we perform genome-wide quantification of poly-
adenylation site usage in single mouse embryonic and neural stem
cells using a novel single-cell transcriptomic method, BATSeq. By
applying BATBayes, a statistical framework for analyzing single-cell
isoform data, we find that while the developmental state of the
cell globally determines isoform usage, single cells from the same
state differ in the choice of isoforms. Notably this variation
exceeds random selection with equal preference in all cells, a find-
ing that was confirmed by RNA FISH data. Variability in 30 isoform
choice has potential implications on functional cell-to-cell hetero-
geneity as well as utility in resolving cell populations.
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Introduction

Cell-to-cell differences in gene expression are crucial to many

processes in biology. Fluctuations in gene expression in single cells

constitute symmetry-breaking cues in development (Ohnishi et al,

2014), affect the tolerance of cancer cells to chemotherapy (Spencer

et al, 2009; Gupta et al, 2011), and allow microbes to thrive in

alternating environments (Acar et al, 2008). On a molecular level,

an important cause of variability in gene expression is the inherently

noisy nature of biochemical reactions, where mRNA synthesis is an

extreme case due to the low abundance of molecules involved in

transcription (Raj & van Oudenaarden, 2008). In eukaryotes, the

bursty nature of gene expression further increases the amount of

noise. In a widely accepted model, eukaryotic genes of intermediate

expression level typically switch between chromatin states that are

prohibitive or permissive for transcription, leading to large differ-

ences in mRNA levels over time and across cells (Raser & O’Shea,

2004; Friedman et al, 2006; Sanchez & Golding, 2013). While it is

well known that factors other than mRNA level, such as choice of

mRNA untranslated regions (UTR), regulate protein expression and

RNA function, it is not known to what extent UTR choice varies

between single cells from genetically and developmentally homoge-

neous populations.

In mammalian cells, 30 UTR sequence signatures on average

exert a larger effect on protein levels than 50 UTRs (Vogel et al,

2010). The 30 UTR contains binding sites for miRNAs and RNA-

binding proteins involved in control of mRNA translation, stability,

and localization (Di Giammartino et al, 2011). 30 UTR length is

determined during transcription termination through alternative

polyadenylation (APA), which affects about two-thirds of all human

genes and thereby provides a mechanism to regulate gene expres-

sion independently of transcription level (Derti et al, 2012). 30 UTRs
globally lengthen during differentiation, but shorten during dediffer-

entiation and cancer formation (Ji & Tian, 2009; Ji et al, 2009; Mayr

& Bartel, 2009). In many examples, it has been shown that APA

alters transcript stability and translation rate, thereby affecting

protein levels and cellular functions (Sandberg et al, 2008; Mayr &

Bartel, 2009). While one recent genome-wide study in mouse

embryonic fibroblasts has found that globally, such cases are

relatively rare (Spies et al, 2013), two studies in yeast have shown

that even single-nucleotide differences in 30 UTR length can often

lead to drastic changes in transcript stability and translation

efficiency (Geisberg et al, 2014; Gupta et al, 2014). It is therefore

possible that cell-to-cell variation in 30 UTR choice contributes to

phenotypic diversity.
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Single-cell transcriptomics can provide important insights into

cellular heterogeneity, and technology has rapidly advanced since it

was first described (Tang et al, 2009). The use of cellular barcodes

allows processing of multiple cells in single reaction tubes and has

increased throughput to thousands of cells (Islam et al, 2011; Jaitin

et al, 2014), while the use of microfluidics, especially in combina-

tion with molecular barcodes, has considerably decreased technical

noise (Islam et al, 2013; Wu et al, 2014). Single-cell transcriptomics

is therefore increasingly being used to chart the diversity of cell

types within tissues (Jaitin et al, 2014; Treutlein et al, 2014) and

during developmental transitions (Shalek et al, 2014), but investiga-

tion of heterogeneity within developmentally homogeneous cell

populations has only recently started (Kumar et al, 2014). Following

the availability of methods to determine the use of exons in single

cells (Ramsköld et al, 2012), a recent study has investigated splice

isoform heterogeneity in single dendritic cells (Shalek et al, 2013).

Variability in 30 UTR choice has so far, however, not been addressed,

in part because of the lack of polyadenylation-site-specific single-cell

transcriptomic protocols. Of equal importance, statistical methods

have been developed to analyze gene expression heterogeneity over

the background of technical noise in single-cell transcriptomic data

(Brennecke et al, 2013; Grün et al, 2014), but approaches for analyz-

ing isoform usage variability are currently lacking.

We characterized the extent of 30 UTR choice variability in single

cells on a genome-wide scale using BATSeq, a polyadenylation-site-

specific single-cell transcriptomic protocol, and BATBayes, a compu-

tational framework for analyzing single-cell isoform data. Applied to

three genetically and developmentally homogeneous stem cell popu-

lations, we find that individual cells differ in their preferences for

polyadenylation (PA) sites. Random isoform choice with equal

preference in all cells cannot explain the large observed variance.

We show that especially in the case of low abundance transcripts,

RNA 30 isoform proportions are highly variable between cells, which

may result in increased variations in post-transcriptional regulation.

We further demonstrate that cell identity can be retrieved using

information on 30 end usage alone.

Results

BATSeq allows mapping and quantification of polyadenylation
sites in single cells

To measure polyadenylation site usage in single cells, we combined

the use of unique molecular identifiers (UMI) (Islam et al, 2013)

with a highly accurate polyadenylation site mapping protocol

(Pelechano et al, 2012) to develop a BArcoded, Three-Prime specific

Sequencing method (BATSeq).

In short, UMI and a cell barcode were incorporated during

reverse transcription at the 30 end of the mRNA poly-A tail (Fig 1).

cDNA amplification was performed with a limited number of PCR

cycles following a published protocol (Sasagawa et al, 2013) and

in vitro transcription. 30 ends were captured using a biotinylated

tag, followed by 30 specific library construction (Pelechano et al,

2012). A short first sequencing read was used to obtain the UMI

and cell barcode, whereas a longer (280 bases) second read was

used to determine gene identity and polyadenylation site (Fig 1

and Materials and Methods).

We applied BATSeq to 48 mouse embryonic stem cells main-

tained in medium with FCS and LIF (called ESC-FCS in the follow-

ing), 48 ESCs maintained in medium containing LIF and the two

selective inhibitors Chiron99021 and PD0325901 (called ESC-2i in

the following) and 48 neural stem cells (NSC). To reduce large

extrinsic fluctuations dependent on cell cycle state and cell growth

(Snijder & Pelkmans, 2011), we FACS-sorted all cell populations by

DNA content and size to include only small cells in G0/G1 (Appendix

Fig S1). The libraries were sequenced on an Illumina MiSeq

platform to a total depth of 42.3 million read pairs, 10.3 million of

which passed computational filters as polyadenylation events (see

Appendix Fig S2A and Materials and Methods for detail on read

processing and filtering). We noted that sequencing existing

libraries deeper did not substantially increase the number of

observed barcodes, but that library complexity could be increased

by repeating the final library amplification step directly from the

magnetic beads (Appendix Fig S2B). We observed 869,000 unique

transcript molecules (UMI-gene combinations) across the 144

sequenced cells. After discarding cells with fewer than 1,000
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Figure 1. Scheme of the BATSeq protocol.
Reverse transcription was performed using an oligo-dT primer containing a
unique molecular identifier (UMI), a cell identifier, and a common sequence.
Following second-strand synthesis and limited PCR amplification, linearized RNA
was produced by means of in vitro transcription (IVT). RNA was then captured at
the very 30 end using a biotinylated oligonucleotide, and libraries were produced
on magnetic beads, followed by high-throughput sequencing.
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observed transcript molecules, 107 cells were included in the further

analysis (Appendix Fig S2C).

To gauge the accuracy of BATSeq in mapping 30 ends, we utilized

spiked-in in vitro transcripts with known polyadenylation (PA) sites

(ERCC RNA spike-ins). We observed that 95% of all identified poly-

adenylation events lay within 12 nucleotides of the annotated PA

site (Appendix Fig S3); we therefore collapsed all observed putative

polyadenylation events to the highest peak within 12 nt distance

and excluded putative PA sites of very low observed frequency.

Following this filtering strategy, all PA sites of the ERCC spike-ins

were identified correctly, with no false positives.

Of all putative polyadenylation events identified in the mouse

genome, 56% lay within 10 nt of annotated polyadenylation sites;

of the remainder, most events aligned to terminal exons or up to

2 kb downstream of annotated PA sites (Fig 2A and B). Note that

the current annotations cover many frequently used PA sites, but

any specific tissue uses approximately 50% unannotated PA sites

(Derti et al, 2012).

In order to avoid biases introduced during cDNA amplification,

we counted UMIs instead of reads, thereby increasing the average

pairwise Pearson correlation between samples to R = 0.95 for the

spiked-in in vitro transcripts and to R = 0.72 for the transcripts

produced by the different cells (Appendix Fig S2D, average pairwise

correlation of read counts: R = 0.92 and R = 0.6). The mean capture

efficiency of BATSeq was estimated to be 5.4% by regressing the

observed number of UMIs on the known concentration of the ERCC

spike-ins (Fig 2C). We observed a mean of 6,980 UMIs (transcript

molecules) per cell, stemming from an average of 2,800 genes

observed per cell. These benchmarks were similar to the values

reported in a recently published single-cell transcriptomic method

(Grün et al, 2014) which, unlike BATSeq, does not provide the abil-

ity to map polyadenylation sites. The frequency of UMI template

switching was negligible (Appendix Fig S2E).

As an additional measure to gauge the quantitative precision of

the BATSeq method, we generated libraries from a pool of 48 single

ESC-FCS cells and compared them to the in silico average of 48 addi-

tional single cells generated on the same day. We observe a Pearson

correlation of 0.86 for gene-level counts and 0.75 for isoform counts

between these technical controls (Fig 2D).

In the analyses presented below, we assume that technical noise

in UMI-based methods is due to binomial sampling of a pool of RNA

species with a known capture efficiency (Fig 5A). To confirm that

such a process accounts for all technical noise of BATSeq, we simu-

lated bulk-vs.-single cell correlations based on that assumption

(Fig 2D, Appendix Fig S2F; see Figure legend for details on how

simulations were performed). The obtained correlation of 0.88 for

simulated gene-level counts and 0.78 for simulated isoform-level

counts are very close to the measured values, and we therefore

conclude that the technical noise of BATSeq is well described by

binomial sampling. The small difference between experiment and

simulation may be due to residual biological variance between two

pools of 48 cells.

BATSeq identifies known and novel genes with highly variable
expression in stem cell models

To confirm that BATSeq can be used to derive single-cell gene

expression, we first analyzed expression levels without taking

isoform information into account. Expression of marker genes such

as Nanog, Sox2, and Nes followed expected patterns in ESC-FCS,

ESC-2i, and NSC populations (Fig EV1A), and cells readily clustered

into the three populations (Fig 3). We further confirmed that mean

molecule counts measured in this study were well correlated with

values published in two other studies, in which single-cell transcri-

ptomics of embryonic stem cells was performed (Fig EV1B, Pearson

correlation coefficients: Islam et al, 2013 – this study: 0.65, Grün

et al, 2014 – this study: 0.72, Islam et al, 2013 – Grün et al, 2014:

0.73).

By applying a statistical method which tests whether observed

gene expression variability exceeds what is expected from technical

noise by at least a given margin (Brennecke et al, 2013), we identi-

fied genes with highly variable expression within each population.

(Fig EV2, Table EV1). As expected, the transcription factors Rex1

and Nanog appeared variably expressed in the ESC-FCS population

(Chambers et al, 2007; Toyooka et al, 2008), but not in the ESC-2i

population, for which a more homogeneous signaling state is

expected (Wray et al, 2010). In ESC-FCS, the extent of expression

variability for several other development-related genes was even

higher; examples included the body-axis specifying signaling

molecule Lefty1 and the DNA methyltransferase regulator Dnmt3l.

Within the ESC-2i population, several genes displayed highly

variable expression; examples include the transcription factor Stella,

a regulator of the embryoid body/trophectoderm fate decision

(Hayashi et al, 2008), and the mesenchymal stem cell marker Sca-1.

The number of identified variable genes was smaller in ESC-2i than

in ESC-FCS (Fig EV2D), in line with what was expected from the

more homogeneous signaling state in this condition (Wray et al,

2010; Grün et al, 2014). NSCs again appeared to constitute a more

heterogeneous population, with highly variably expressed genes

enriched in the GO-term “cerebellum development” (P = 2.5 × 10�4,

6-fold enrichment compared to non-variably expressed genes).

We conclude that BATSeq can provide insight into gene expres-

sion of stem cell populations, and we confirm that some genes are

variably expressed in ES cells maintained in 2i medium, a condition

generally considered very homogeneous (Wray et al, 2010).

Bayesian modeling reveals variability in isoform preference
across single cells from homogeneous populations

We next sought to characterize variability in polyadenylation site

usage within the relatively homogeneous stem cell populations. For

some genes, such as the ribosomal protein Rps27l, observed ratios

between major and minor 30 isoform were similar in different cells

within the ESC-2i population, that is, a higher expression of the gene

was reflected by a proportional increase in the levels of both

isoforms (Fig 4A, upper panel). By contrast, for many other genes

such as the ubiquitin ligase Skp1a, observed isoform ratios were

highly variable within that population and expression levels of

major and minor isoform did not appear correlated (Fig 4A, lower

panel).

To gain a comprehensive view, we focused on those 493 genes

for which we observed at least two isoforms expressed at moderate

to high levels each, corresponding to an average expression level of

between 8 and 1,000 RNA molecules per cell and isoform (Table

EV2). We rarely observed more than 2 isoforms per gene at that

expression level, and we therefore restricted our analysis to the two
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most highly expressed isoforms of each gene. In the following, we

focus on the ESC-2i population as an illustrative example because

coverage for that population was highest (Appendix Fig S2C), but

conclusions drawn for the other populations were identical and are

included in the figures where appropriate.

At the level of the raw data, isoform ratios of highly expressed

genes appeared less variable than isoform ratios of lowly expressed

genes (Fig 4B). Obvious causes of variability are technical noise in

single-cell RNA sequencing (95% of RNA molecules are not

observed) and random partitioning of the set of mRNA molecules to

A

B D

C

Figure 2. BATSeq provides quantitatively accurate polyadenylation site mapping in single cells.

A Mapping to a sample genomic region demonstrates that reads from BATSeq align to known 30 ends of genes. Molecule counts from all cells were pooled, and
alignment to a region of chromosome 17 is shown. Surrounding known polyadenylation sites, reads scatter typically by < 10 nucleotides (insets)

B Global alignment statistics. Genes were aligned by transcript termination site (TTS). The distribution of barcodes mapped to different genomic features is shown.
C Quantification of BATSeq capture efficiencies using in vitro transcript spike-ins. For each cell, the number of RNA spike-in molecules observed after sequencing (inset,

y-axis) was regressed against the known number of molecules spiked into the reaction (inset, x-axis), thereby determining a molecular capture efficiency for each cell.
The inset shows the spike-ins for cell ESC-2i_G1 (red in main plot) with its regression line; the main plot shows the results of these regressions for all cells. In
reactions with higher capture efficiency, a higher number of cellular RNA molecules is observed (Pearson correlation 0.75).

D Correlation between 48 ESC-FCS cells pooled (bulk experiment, x-axes) and 48 single cells (in silico sum of gene expression values, y-axes). The right panels show the
measured correlations for gene counts (top) and isoform counts (bottom). The capture efficiencies of this experiment were somewhat lower (average of 0.04) than in
our main dataset (Fig 2C) due to less sequencing depth. To assess what correlations are expected from a noise model of binomial loss of RNA molecules (see Fig 5A),
we simulated two rounds of binomial subsampling from a distribution of “true” gene expression values, using measured capture efficiencies as success probabilities
(left panels). Log gene expression values for the simulation were sampled from a mixture of two normal distributions, fitted to match, after subsampling, the
measured distribution of the pooled cells. It is important to note that different strategies of selecting the distribution of “true” gene expression values had minimal
effect on the simulated correlation coefficient. See Appendix Fig S2F for an alternative strategy.
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isoforms (Fig 5A). Only if technical noise and random partitioning

cannot explain the observed variability in isoform ratios, one has

evidence of biological variability in the preference of single cells for

different isoforms.

We developed and compared two Bayesian statistical models

(“BATBayes”) to dissect the relative contribution of technical noise,

random partitioning, and putative variability in isoform preference

(see Fig 5B, Appendix Supplementary Text and Supplementary Code

EV1 for an explicit mathematical presentation of our model). In

these models, we describe PA site choice as a stochastic process, as

follows: Whenever a cell produces a transcript molecule for a gene

with several PA sites, the PA site used for the new molecule will be

chosen at random, with each of the available PA sites having a

certain probability of being chosen. We refer to this vector of proba-

bilities as the cell’s isoform preferences for the given gene. We then

ask whether all cells within a population have the same isoform

preferences (first model) or whether isoform preferences vary from

cell to cell (second model). Here, it is important to distinguish the

isoform preferences from the isoform proportions. By the latter, we

mean the proportions of a gene’s isoforms among the transcript

molecules that were actually present in the cell at the time of lysis.

Even in the first model (same isoform preferences in all cells), the

isoform proportions will differ from cell to cell, in the same way as

two runs of each ten times flipping a coin may result in two different

counts of heads. We refer to the latter effect as the random partition-

ing of the set of the transcript molecules present in a cell into poly-

adenylation isoforms (Fig 5A, blue box). If now, in our coin

analogy, two differently biased coins are used in the two runs, the

observed counts will tend to differ in a more extreme way; and in a

similar way, we will see stronger variability if the isoform prefer-

ences vary across cells (Fig 5A, red box). Note that not only isoform

preferences but also isoform proportions cannot be directly

observed: Due to the limited capture efficiency of single-cell

sequencing, a molecule is seen in the sequencing libraries only with

a certain probability, giving rise to further variation, which we

describe as technical noise (Fig 5A, green box).

In our first model, only technical noise and random partitioning

contribute to cell–cell variability in polyadenylation site usage,

whereas the second model allows for different cells to have different

isoform preferences. The second model shares information across

genes to infer the variability in isoform preference for the “typical”

gene (Fig 5B), but also infers gene-wise estimates of isoform prefer-

ence variability, which we discuss further below.

We found clear evidence for variability in isoform preference,

that is in favor of the second model, based on the following

analyses: We first used the deviance information criterion (DIC;

Spiegelhalter et al, 2002), which compares models based on good-

ness of fit and expected degree of overfitting and found that the DIC

evaluated in favor of the second model (Fig 5C, DDIC: 393). We

then fitted the second model to the data and found that the variance

in isoform preference (for the typical gene) was estimated to be

different from zero for all stem cell populations under study (Fig 5D,

see also Appendix Fig S4 for details on model fitting using Monte

Carlo Markov chains). In contrast, when we simulated a dataset

with no variability in isoform preference, we found an estimate that

was close to zero (Fig 5D, and Appendix Fig S5A for details on the

simulated dataset). When we simulated a dataset with a known

variance in isoform preference, the inferred posterior mean of the

variance parameter deviated from the value used for the simulation

by < 1% (Fig 5D). We further used simulations to verify that the

inferences made do not depend on accurate estimates of the capture

efficiency of BATSeq (Appendix Fig S5B and C). The conclusions

drawn from the model even hold if capture efficiencies differ for

different isoforms (Appendix Fig S5D). We finally compared

whether the variability in isoform preference differs in the different

cell types under study, and we found that it was quantitatively simi-

lar in all cell types under study.

We therefore conclude that BATBayes constitutes a useful frame-

work for disentangling different sources of cell–cell variability in

isoform choice, and we show that polyadenylation site usage is vari-

able across single cells. To confirm this finding by an independent,

more frequentist statistical approach, we compared the variance of

the observed isoform ratios for each gene to the expected variance

obtained by simulating the first model 1,000 times for each gene

(Appendix Fig S6A). We found a significant enrichment of genes

whose observed variance exceeded the variance predicted by the

first model (P = 4.6 × 10�8, Binomial test).

For the entire set of genes analyzed, lowly expressed genes had

more variable isoform proportions. This is because both technical

noise and also noise from random partitioning (Fig 5E, upper panel)

increase in strength for low transcript counts. Importantly, the

BATBayes model does not only infer a global parameter for isoform

choice variability, but does provide gene-by-gene estimates;

however, we found only evidence for relatively minor gene–gene

difference in isoform choice variability (Fig 5E, lower panel and

Appendix Fig S6B and C). Larger isoform-specific single-cell

sequencing datasets may in future help to more clearly disentangle

gene-wise differences in isoform choice variability.

Isoform choice variability is also evident from smFISH

To investigate single-cell isoform usage with an independent experi-

mental method, we performed RNA-isoform-specific smFISH in ESC-

FCS and NS cells (Waks et al, 2011). Two genes (Kpnb1 and Hdlbp)

were selected based on the following criteria: (i) length difference

between alternative isoforms over 500 nt; (ii) expression of both

Figure 3. Single cells cluster by cell populations.
Molecular gene count data were used for the clustering. See Jaitin et al (2014) for
the algorithm used for the projection.
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isoforms at approximately equal amounts; (iii) a total expression

level of between 30 and 100 molecules per cell to facilitate spot

counting. We designed Q570-labeled probes specific to the common

sequence and Q670-labeled probes specific to the optional region of

the 30 UTR. Specificity of the probes was confirmed by checking for

co-localization of signal from the alternative 30 UTR with signal from

the common sequence (Fig 6A; Appendix Fig S7). In all experi-

ments, we observed examples of cells using mostly either the long

or the short isoform (Fig 6A; Appendix Fig S7). We then quantified

the number of spots (Materials and Methods) and found that the

distribution of isoform ratios across cells was significantly broader

than what would be expected if only random partitioning, but no

variable isoform preference, were to determine isoform ratios

(Fig 6B). Tendencies of mean number of molecules per cell, average

isoform ratio, and also the variance of isoform proportions matched

between the BATBayes prediction and smFISH (Fig 6C). smFISH

therefore validates the qualitative and quantitative predictions of

the BATBayes model.

In single-molecule FISH, bright nuclear spots are interpreted as

active sites of transcription that contain several recently produced

mRNA molecules which have not yet diffused off their site of

synthesis (Raj et al, 2006; Waks et al, 2011). For the Kpnb1 gene in

ES cells, we found that such sites are dominated by a single isoform

(Fig EV3). This observation provides a first hint at the mechanism

behind isoform choice variability: Once set, an active polyadenyla-

tion site appears to remain active for several cycles of transcription.

Coordinated changes in 30 UTR length dominate isoform
preference in mixed populations

Large coordinated changes in 30 UTR length are frequently observed

across cell populations and during development (Sandberg et al,

2008; Ji et al, 2009). By pooling data from single cells of the three

different stem cell populations, we found evidence for the use of

longer 30 UTR isoforms in neural stem cells, and, interestingly, in

ESC-FCS compared to ESCs maintained in 2i medium (Fig 7A). To

investigate whether isoform preferences can be used to identify

single cells independently of gene expression, we fitted the BATBa-

yes model to the pool of all 107 cells included in this study. Cell

types were roughly separated based on the estimates of single-cell

isoform preference, but ESC-FCS cells did not form a distinct cluster

(Fig 7B). We improved the clustering by extending BATBayes to

include a component of correlated changes in 30 isoform preference

(Fig EV4A, Appendix Supplementary Text and Supplementary Code

EV2). When we fitted the extended model (BATBayes2) to all 107

cells, cell populations were separated completely (Fig 7C). The

observed clustering appeared to be predominantly due to coordinate

lengthening from ESC-2i to NSC of the 30 UTRs of almost all genes

under study (Fig 7D). The BATBayes2 algorithm was designed such

that only isoform choice, but not total gene expression levels, influ-

ences the clustering. Indeed, simulated datasets confirm that cluster-

ing by BATBayes2 is not affected by gene expression levels

(Fig EV4B); further, the cell types also separated well if using only

genes expressed at similar levels (average expression fold changes

of < 2, Fig EV4C). The 30 UTR usage pattern therefore contains all

the information required to identify cell types. We further note that

the 30-based clustering algorithm developed here separates cell types

comparable to circular a posteriori projection, a state-of-the art algo-

rithm based on total gene expression levels (Jaitin et al, 2014;

see Fig 3).

We then asked whether coordinate changes in 30 UTR choice

also govern isoform variability within homogeneous populations.

Importantly, the BATBayes2 model is not restricted to coordinated

30 UTR length changes, but designed to discover any correlations

in 30 UTR choice across single cells. When we fitted the extended

model to the individual cell populations, we found no evidence for

the presence of a correlated component. Simulations showed that

relatively strong correlations across at least half of the genes studied

are required for such an effect to be noticeable given the current

data (Fig EV4D). While we therefore cannot exclude the presence of

some correlated variation, for example, due to fluctuations in

miRNA expression, we conclude that effects affecting multiple genes

in a coordinate fashion do not dominate isoform choice variability.

Discussion

The major finding from our study is that even in homogeneous

populations, cells differ in their preferences for 30 RNA isoform

A

B

Figure 4. Raw isoform count data is noisy.

A Example genes. For some genes such as Rps27l, higher gene expression
appears to result in a proportional increase in both isoforms; for other
genes such as Skp1a, isoform usage appears not to be correlated at all. The
left panels show coverage tracks for pooled data of all ESC-2i cells and
three sample cells. The right panels show scatter plots summarizing data
from all ESC-2i cells. Up to 0.1 UMIs xy-jitter was added to reduce
overplotting.

B Global trend. Overall, the variance in observed (raw) isoform ratios is lower
in more highly expressed genes. The right panel illustrates hypothetical
densities for the 10th, 50th and 90th percentile of observed variance and an
assumed isoform ratio of 50:50.
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choice. This variability is beyond what can statistically be explained

by either technical noise or random partitioning of RNA molecules

to isoforms.

To investigate cell-to-cell heterogeneity in polyadenylation site

usage on a genome-wide scale, we developed BATSeq, the first

method for PA-site quantification in single cells. BATSeq accurately

identifies known PA sites and its quantitative accuracy is compara-

ble to recently published protocols that do not include 30 isoform
information (Grün et al, 2014). In future, the use of microfluidics

has the potential to increase quantitative accuracy further (Islam

et al, 2013; Wu et al, 2014). Like others, we found that the use of

molecular barcodes in single-cell transcriptomics is useful, not only

A

C E

D

B

Figure 5. Isoform preference is different in different cells.

A Three layers of noise can explain the observed variance in isoform ratios.
B Directed acyclical graph of the BATBayes model. The number of RNA molecules per cell, Qgc, is drawn from a negative binomial distribution with parameters lg (the

mean expression level of gene g), and cvg (the coefficient of variation). All other parameters and distributions are explained in the figure. See also Appendix
Supplementary Text and Supplementary Code EV1.

C A model with variable isoform preference is to be preferred according to the Deviance Information Criterion.
D Posterior of the variance in isoform preference is different from zero for real data. The posterior density of the variance in isoform preference was different

from zero for real data, but concentrated close to zero for data simulated under the assumptions of a model of identical isoform preference in all cells (i.e.,
all variability due to technical noise & random partitioning only). The model provides a quantitatively correct estimate of the variance in a dataset
simulated under the assumption of a specific variance in isoform preference (dashed light grey line indicates the value assumed during simulation, dark grey
line indicates the inferred value).

E Global distribution of inferred variance of isoform ratios. For lowly expressed genes, considerable variance in isoform proportion exists solely due to the effect of
binomial partitioning of RNAs to isoforms. Isoform preference is less variable. The level of variance is similar across genes and independent of gene expression level.
The right panel illustrates hypothetical densities for the 10th, 50th and 90th percentile of variance and an assumed isoform ratio of 50:50.
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because of reduced technical noise, but also because the availability

of molecular counts facilitates quantitative statistical modeling of

the biological processes that generate the observed data (Grün et al,

2014; Jaitin et al, 2014).

Polyadenylation requires the recruitment and binding of the

30 end processing machinery to the nascent pre-mRNA, where the

efficiency of recruitment depends on the affinity of the polyadeny-

lation signal to the processing machinery (Gil & Proudfoot, 1987).

The 30 end processing machinery is expressed in relatively limit-

ing amounts (Chuvpilo et al, 1999), and it may therefore be

expected that due to stochastic binding of PA factors to nascent

mRNAs, polyadenylation would for each nascent transcript occur

randomly at either site. While such a mechanism alone could

create considerable cell-to-cell heterogeneity in 30 isoform usage

ratios, our results demonstrate the presence of an additional

source of variability.

A

B

C

Figure 6. smFISH validates isoform choice variability.

A Raw smFISH data for a sample gene, Hdlbp. Shown are one NS cell with a low percentage of mRNA molecules using the long isoform (top row) and one cell with a
high percentage of mRNA molecules using the long isoform (bottom row). Left column: Red channel containing probes specific to the alternative 30 UTR. Central
column: Green channel with probes specific to the gene body. Dots identified in the red channel are superimposed in red to demonstrate that each red dot
colocalized with a green dot. Right column: Both channels merged.

B Distribution of isoform ratios observed by smFISH, contrasted to distributions expected assuming no variability in isoform choice. P-values shown are from a
Kolmogorov–Smirnov test comparing simulated and measured distributions.

C Quantitative comparison of different parameters inferred by the two methods. Error bars denote 66% confidence intervals.
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For mRNA levels, it has been shown that variability exceeds

molecular noise, both due to mechanisms acting at the level of indi-

vidual genes and due to mechanisms that collectively affect multiple

genes (Elowitz et al, 2002; Raser & O’Shea, 2004). In the case of

mRNA isoforms, a possible mechanism affecting multiple genes

would, for example, be variations in the expression of core poly-

adenylation machinery components or miRNAs. However, we found

no evidence for coordinated variation in polyadenylation site choice

(Fig EV4D). Mechanisms that affect genes individually are therefore

likely to contribute to the variability in isoform preference. In the

case of mRNA levels, transcriptional bursting greatly increases gene

expression noise (Raj & van Oudenaarden, 2008), and analogous

mechanisms might affect isoform preference. For one gene, we

observed that active sites of transcription are dominated by a single

30 isoform. Once chosen, an active polyadenylation site might

remain active for several cycles of transcription; however, this

proposed mechanism warrants further investigation.

In bulk data, it has previously been shown that PA site choice is

affected by nucleosome density and certain chromatin marks (Spies

et al, 2009; Khaladkar et al, 2011). Variability in chromatin states

between individual cells may therefore affect polyadenylation site

activity and be a mechanism that confers isoform choice variability.

While beyond the scope of this study, dynamic measurements

of isoform usage in single cells, for example, based on live RNA

labeling (Hocine et al, 2013), could provide further insights into the

molecular mechanisms involved.

In the case of mRNA levels, expression variability serves to diver-

sify cellular phenotypes (Acar et al, 2008; MacArthur & Lemischka,

2013). Our results show that especially for genes of moderate

expression, polyadenylation isoform ratios are highly variable across

cells solely because of random partitioning of mRNAs to isoforms.

In cases where isoforms differ in stability (Spies et al, 2013), it is

therefore conceivable that random isoform choice translates to

differences in protein expression, similar to examples known from

bulk studies, where altered isoform use of single genes can even

affect cell proliferation (Mayr & Bartel, 2009). Stochastic variations

in 30 isoform usage may therefore be an additional cause of pheno-

typic cell–cell heterogeneity, at least in the case of some genes.

Between the three stem cell populations investigated, 30 isoform
usage changes in a coordinated fashion for many genes, with more

pluripotent populations (ESC-2i, ESC-FCS) expressing shorter

30 UTRs. This finding is in line with previous work that found

30 UTRs to gradually lengthen during development, especially

neuronal development (Ji et al, 2009), and to shorten during dedif-

ferentiation to iPS cells (Ji & Tian, 2009). Interestingly, we found

that single cells from different populations of stem cells can be

clearly distinguished by 30 UTR usage, independently of gene

expression levels. This demonstrates that 30 UTR usage is under

A

B C D

Figure 7. Clustering of single cells based on 30 isoform usage.

A Molecule count data from pooled cells reveals a trend toward isoform lengthening from ESC-2i to ESC-FCS and NSC. Data from all cells of each population were
pooled. Red dots indicate genes for which the longer 30 isoform was significantly upregulated in the population under investigation; yellow dots correspond to
significant upregulation of the shorter 30 isoform. Significance was determined by Fisher’s test (P < 0.05), see also Hoque et al (2013).

B Clustering of cells based on isoform preference. BATBayes estimates for isoform preference were subjected to principal component analysis.
C BATBayes2 can be used to effectively cluster cells from different populations based exclusively on 30 isoform use. Posterior means of the inferred scores are shown;

each dot corresponds to a cell. For details on the model applied, see Appendix Supplementary Text, Fig EV4A and Supplementary Code EV2
D BATBayes2 reveals coordinate lengthening of 30 isoforms. Posterior means of the inferred loadings are shown; each dot corresponds to a gene. Mild jitter in y direction

was added to reduce overplotting.
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tight control during developmental changes or alterations in signal-

ing environment (ESC-2i vs. ESC-FCS). While earlier work demon-

strated that such isoform shortenings have clear phenotypic

consequences at least in some cases (Mayr & Bartel, 2009), the tran-

scriptome-wide consequences of global length changes are unclear

(Spies et al, 2013; Gruber et al, 2014). It would also be conceivable

that UTR length changes are just a consequence of epigenomic

alteration between ESC-2i, ESC-FCS, and NSC, which remains to be

further characterized. From a practical perspective, single-cell

RNA isoform preference clearly contains information useful for

distinguishing between cell types and may therefore increase resolu-

tion in single-cell transcriptomic studies aimed at charting tissue

heterogeneity.

Some recent work has investigated cell–cell variability in RNA

splicing. While a study using single-molecule FISH on two genes

found that variability in splice isoform ratio exceeds the variability

expected from random partitioning to a relatively modest level,

quantitatively similar to the level we observed for polyadenylation

isoforms (Waks et al, 2011), a single-cell transcriptomic study

reported much more widespread bimodality in splice isoform usage

(Shalek et al, 2013). BATBayes could help to reconcile these find-

ings by accounting for both technical noise of single-cell transcripto-

mics and the probabilistic distribution of RNA molecules to

isoforms.

In conclusion, the results presented here demonstrate that vari-

ability in 30 isoform use is a layer of transcriptomic heterogeneity

that has previously been overlooked, despite its potential implica-

tions on regulation of transcript isoform choice and its utility in

separating cell populations.

Materials and Methods

Stem cell culture

We used 46C mouse embryonic stem cells (Sox1-GFP ES cells) (Ying

et al, 2003), originally derived from the E14tg2a cell line. Cells were

grown at 37°C in a 5% (v/v) CO2 incubator on gelatin-coated (0.1%

v/v) dishes. For the ESC-2i samples, serum-free ES cell culture

medium (2i/LIF) was prepared by supplementing the 50%

Dulbecco’s modified Eagle’s minimal essential medium, 50% F12

(DMEM/F12, Invitrogen) medium with N2 and B27 (Gibco),

BSA (Gibco), HEPES (final concentration 4.5 mM), 0.1 mM beta-

mercaptoethanol and with PD0325901 (1 lM), CHIR99021 (3 lM),

and LIF (10 ng/ml, produced in-house). For the ESC-FCS samples,

the ES cells were grown in Glasgow modified Eagle’s medium

(GMEM, Invitrogen), supplemented with 10% (v/v) fetal bovine

serum (FBS) (Sigma), LIF (10 ng/ml, produced in-house), 1 mM

beta-mercaptoethanol, non-essential amino acids (Gibco), and sodium

pyruvate (Gibco). Accutase (Sigma) was used for cell dissociation.

Cells were passaged every second day at a seeding density of

3 million cells per 10-cm petri dish. Medium was exchanged daily.

Differentiation of ES cells to neural cells and culture of NS cells

To initiate monolayer differentiation into NS cells (Ying & Smith,

2003; Ying et al, 2003; Pollard et al, 2008), ES cells were plated at a

density of 2 million cells per gelatin-coated 10-cm petri dish in 50%

Dulbecco’s modified Eagle’s minimal essential medium, 50% F12

(DMEM/F12, Invitrogen) medium supplemented with N2 and B27

(Gibco), BSA (Gibco), non-essential amino acids (Gibco), glucose

(final concentration 0.03 M), HEPES (final concentration 4.5 mM),

and 0.1 mM beta-mercaptoethanol (differentiation medium).

Medium was exchanged after 24 and 48 h, and the cultures were

grown for additional 72 h. Cells were then gently dissociated using

Accutase (Sigma), the GFP+ cell fraction (corresponding to ca. 70%

of cells) was sorted by flow cytometry and seeded into a laminin

(Sigma)-coated 75-cm2 flask (final density of laminin: 10 lg/cm2 of

culture surface, coating time: minimum 4 h at 37°C). Subsequently,

cells were grown in differentiation medium supplemented with

10 ng/ml in-house-prepared recombinant murine EGF and bFGF

until loss of GFP expression and uniform up-regulation of Nestin

expression was observed. Cells were passaged at 80% confluence,

and medium was exchanged daily.

FACS sorting for single-cell transcriptomics

Cells were detached as described above, taken up in culture

medium, and stained with Hoechst 34580 (Life Technologies) at a

dilution of 1:10 for 15 min. Small cells with 1N DNA content were

then sorted by gating for Hoechst fluorescence and Forward/Side-

Scatter (Appendix Fig S1).

cDNA synthesis and amplification

For initial cDNA amplification, a modified version of the QUARTZ-

Seq protocol (Sasagawa et al, 2013) was used. During all steps

described in the following, reactions were kept on ice. Individual

cells were sorted in 0.6 ll of single-cell lysis buffer (for a list of all

buffers used in BATSeq, see Appendix Table S1) containing ERCC

spike-ins at a final dilution of 1:4,000,000. Primers were annealed by

addition of 0.8 ll priming buffer followed by 90 s of incubation at

70°C and 15 s of incubation at 35°C. Reverse transcription was

performed by addition of 0.8 ll barcoding RT buffer and 5 min of

incubation at 35°C, 20 min at 45°C, and 10 min at 70°C. The RT

primers contained barcodes for early multiplexing (see Appendix

Table S2 for a list of primers used); however, to avoid bead purifica-

tion steps that potentially compromise capture efficiency, only cells

from 4 neighboring wells were pooled at that stage. For digestion of

unbound primer, 4 ll of ExoI buffer was added and primer digestion

was performed by 30 min of incubation at 37°C, followed by 20 min

of inactivation at 80°C. Restricted poly-A tailing was performed by

addition of 10 ll polyA tailing buffer and incubation at 37°C for 50 s,

followed by enzyme inactivation for 10 min at 65°C. Second-strand

synthesis was performed by addition of 35 ll PCR Mix I and incuba-

tion at 98°C for 130 s, 40°C for 1 min, and 68°C for 5 min. The

primer used for second-strand synthesis contained a T7 promoter

that was later used to linearize the PCR product. Suppression PCR

was performed by addition of 50 ll PCR Mix II and 14 cycles of dena-

turing (98°C, 10 s), annealing (65°C, 15 s), and synthesis (68°C,

5 min), followed by a final synthesis step (68°C, 5 min).

PCR product was purified by addition of 0.6× HighPrepTM PCR

beads (MAGBIO) and elution to 10 ll elution buffer. The volume

ratio of magnetic beads to PCR was chosen to select against short

products, that is, by-products that formed from poly-A tailing of

remaining RT primer (see Tang et al, 2009; Sasagawa et al, 2013).
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Following bead purification, neighboring wells were pooled. Each

well then contained the amplified cDNA from 8 cells.

In vitro transcription

The PCR product was further amplified and prepared for 30 end

capture by in vitro transcription (IVT). Therefore, 10 ll IVT mix

(Appendix Table S1) were added to 20 ll of purified cDNA and

incubated at 37°C for 14 h, followed by enzyme inactivation for

10 min at 65°C. cDNA was digested using the Turbo DNA-free kit

(Life Technologies) according to the manufacturer’s instructions.

The amplified RNA was purified by addition of 1.3× the reaction

volume of HighPrepTM PCR beads (MAGBIO) and eluted into 10 ll
EB. Neighboring wells were pooled so that each well finally

contained the reaction product from 24 uniquely barcoded cells in

30 ll volume.

Library construction for poly-A site mapping

To map poly-A sites, a published protocol (Pelechano et al, 2012)

was modified. Amplified RNA was fragmented by addition of 7.5 ll
fragmentation buffer (Appendix Table S1) and incubation at 80°C

for 7 min. Cleanup was performed using 1.8× HighPrepTM PCR beads

and elution into 10 ll EB. Reverse transcription was performed

using a capture primer complementary to the 50 region of the primer

used in the first step of cDNA synthesis and amplification. First,

1.7 ll 1.57 M trehalose, 0.5 ll 1 lM biotinylated BATSeq capture

primer (Appendix Table S2), and 1 ll 10 mM dNTP mix (NEB) were

added. Samples were then incubated at 65°C for 5 min to disrupt

secondary structure, and subsequently, 7.3 ll library RT buffer was

added and samples were incubated at 42°C for 50 min, followed by

enzyme inactivation at 72°C for 15 min. Cleanup was performed

using 1.5× HighPrepTM PCR beads and elution into 39.5 ll EB.

Second strands were synthesized by addition of 10.5 ll of DNA

polymerase I and RNaseH-containing second-strand buffer, followed

by incubation at 16°C for 2.5 h. To remove primers and short prod-

ucts, cleanup was performed using 1× HighPrep PCR beadsTM and

eluted in 20 ll EB.
Libraries were then constructed on magnetic beads. 20 ll of

Dynabeads M-280 Streptavidin (Invitrogen) were washed two times

with 200 ll B&W buffer and resuspended in 20 ll 2× B&W buffer.

Purified cDNA was then added to the beads and incubated for

15 min at room temperature. Dynabeads were washed twice using

B&W buffer, once using EB and resuspended in 21 ll EB. End repair

was performed by addition of 2.5 ll end repair buffer and 1.25 ll
end repair enzyme mix (NEBNext DNA Sample Prep Master Mix Set

1, NEB) and incubation at 20°C for 30 min. The beads were washed

as before, and again resuspended in 21 ll EB. A-tailing was

performed by addition of 2.5 ll 10× NEBuffer 2 (NEB) supple-

mented with 0.2 mM dATP and 1.5 ll Klenow fragment (30-50- exo�,
NEB), followed by 30 min of incubation at 37°C. Beads were

washed as before, and resuspended in 10.2 ll EB. To each batch of

24 pooled cells, a sequencing adaptor containing a specific “batch”

barcode was annealed by addition of 0.8 ll of the corresponding

P7_T1_Mpx linker at a concentration of 0.5 lM (Appendix Table

S1), 1.5 ll 10× T4 DNA ligase buffer (NEB), and 2.5 ll T4 DNA

ligase (2,000 U/ml, NEB). Samples were incubated for 1.5 h at

16°C, and beads were washed 4 times in B&W buffer, once in EB,

and resuspended in 24 ll EB. Enrichment PCR was performed by

the addition of 0.5 ll of 10 lM PE2.0 primer, 0.5 ll 10 lM
PE1.BATSeq primer, and 25 ll 2× Phusion HF master mix (NEB);

30 s of incubation at 98°C; and 20 cycles of denaturing (98°C, 10 s),

annealing (68°C, 10 s), and synthesis (72°C, 10 s), followed by

a final extension step (72°C, 5 min). Supernatant containing

PCR product was taken off the Dynabeads and purified using

1.8× HighPrepTM PCR beads. Product was loaded on an E-Gel 2%

SizeSelect, and fragments of a length of 200–350 bases were selected.

cDNA sequencing

cDNA sequencing was performed on an Illumina MiSeq platform

using a custom sequencing primer for the first read, TATA-

GAATTCGCGGCCGCTCGCGAT. The first read was stopped after 20

cycles (sufficient to obtain cell & molecular barcode), and the

second read was continued for 280 cycles. To obtain deeper

sequencing, enrichment PCR was repeated two times from stored

beads. In total, four MiSeq runs were performed (see Appendix

Fig S2A).

Read pre-processing, alignment, and filtering

For processing the sequencing data, we made use of the HTSeq

Python package (Anders et al, 2014), and custom scripts written in

Perl and Python. The first seven bases of the second reads of the

fragments were trimmed off and used to demultiplex the sequencing

reads into batches; for each batch, the first six bases of the first read

were trimmed off and used to demultiplex the reads into reads stem-

ming from individual cells (see also Fig 1). The next eight bases of

the first read contain the molecular barcode, which was trimmed off

and stored. All further processing was exclusively on the second

read. Terminal As were trimmed off, and only reads with at least 10

terminal As were retained. By using GSNAP, version 2012-01-11

(Wu & Nacu, 2010), these reads were aligned to the Mus musculus

genome, assembly GRCm38 (downloaded from ENSEMBL, version

38.73), to which we had appended the sequence of the ERCC spike-

ins. Alignments were then filtered to exclude non-uniquely aligned

reads, alignments of low quality (below a mapping quality of 30),

short reads (below 20 bp length), and reads containing more than

80% A. To avoid signal stemming from false priming, reads were

further filtered to exclude all reads that stem from regions of the

genome containing more than 80% A in a window of 15 bases

downstream of the mapped 30 end, or more than 65% A in a

window of 50 bp downstream of the mapped 30 end. Reads mapping

to the mitochondrial genome or rRNAs were removed from all

further analyses, as these RNA species are polyadenylated during

degradation by processes that are independent of APA (Nagaike

et al, 2005; Slomovic et al, 2010).

Molecule counting and identification of polyadenylation sites

We first counted the number of reads for each unique combination

of 30 alignment position and molecular barcode. We then deter-

mined, for each 30 alignment position, whether it maps to a known

gene or downstream of a known gene within a window of 20 kb;

if so, the read was annotated as stemming from said gene. The

relatively large (20 kb) window was used to account for the recent
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finding that a considerable amount of transcription that was previ-

ously thought to stem from intergenic transcription actually stems

from 30 UTRs, especially in neural tissues (Miura et al, 2013);

however, in our dataset, long 30 UTRs are rather an exception

(< 2.5% of molecules mapped more than 2 kb downstream of an

annotated TTS, see also Fig 2B). If no gene could be identified,

reads were counted as antisense (if they were antisense to a

known gene) or intergenic. We thus obtained a table listing gene

identifier, alignment position, molecular barcode, and read count.

We split this table by gene identifier and used a published method

(Qu et al, 2009) to merge, for each gene, all molecular barcodes

that were not sufficiently distinct (Hamming distance of one or

less). We observed virtually no instances where the 30 ends of

reads with identical molecular barcodes were not in immediate

proximity (< 20 bp distance); any such instances were discarded.

We thus obtained a table listing gene identifier, polyadenylation

site position, barcode, and read count.

To define reference polyadenylation sites, the data from all cells

were merged and the number of unique molecular barcodes

mapping to each genomic position was counted. In the case of ERCC

spike-ins, we observed that estimated polyadenylation site positions

scattered within a window of 12 bp surrounding the expected site

(Appendix Fig S3). We therefore sorted, for the merged data of all

cells, polyadenylation site positions by barcode count and, starting

at the bottom of the list, checked whether we could identify a poly-

adenylation site with a higher barcode count within a 12-base pair

window. If so, the site was eliminated and its barcode count was

added to the identified polyadenylation site. We thus, over the

population of all cells, obtained a table of estimated polyadenylation

sites, the corresponding barcode count and assigned gene identifier.

For each individual cell, we then assigned each alignment position

to the position of the closest polyadenylation site identified over the

entire population. We thus obtained tables of gene identifiers, esti-

mated polyadenylation sites and barcode counts, with identified

polyadenylation sites being compatible across different cells. We

used these tables for all further analysis.

Isoform-specific smFISH

For the Hdlbp and Kpnb1 genes, 48 Q670-labeled probes specific to

the alternative 30 UTR and 48 Q570-labeled probes specific to the

common sequence were designed using the Stellaris probe designer

(Biosearch Technologies, CA). For cell fixation and hybridization of

probes, we followed the protocol provided by Biosearch Technolo-

gies. Z-stacks of 6 images at a z-distance of 0.4 lm were taken of at

least 80 cells per gene using a Zeiss CellObserver inverted fluores-

cence microscope.

Following maximum intensity projection, cells were segmented

manually; spots were identified using a Laplacian-of-Gaussian filter

and a threshold that was manually set to optimize the agreement

between computational and visual identification of spots. Noise was

removed using a morphological opening, and nearby spots were

separated using a morphological watershed.

Bayesian modeling

Models were fit to the data using JAGS (Plummer, 2003).

For detailed information and model formulation, please refer to

Appendix Supplementary Text. Model source code is supplied as

Supplementary Codes EV1 and EV2.

Data visualization

Data were visualized using the R programming language and the

packages ggplot2 (Wickham, 2009), LSD, NeatMap, and Gviz.

Data access

The data reported in this paper have been deposited in GEO under

accession number GSE60768.

Expanded View for this article is available online:

http://msb.embopress.org
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