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Human haematopoietic stem cell lineage commitment

IS @ continuous process

Lars Velten"'’, Simon FE. Haas>>*'°, Simon Raffel>*>'°, Sandra Blaszkiewicz>?, Saiful Islam®, Bianca P. Hennigl,
Christoph Hirche*’, Christoph Lutz’, Eike C. Buss’, Daniel Nowak’, Tobias Boch’, Wolf-Karsten Hofmann’,
Anthony D. Ho’, Wolfgang Huber', Andreas Trumpp>**'>'2, Marieke A. G. Essers>>'"'> and

Lars M. Steinmetz"%%11:12

Blood formation is believed to occur through stepwise progression of haematopoietic stem cells (HSCs) following a tree-like
hierarchy of oligo-, bi- and unipotent progenitors. However, this model is based on the analysis of predefined flow-sorted cell

populations. Here we integrated flow cytometric, transcriptomic and functional data at single-cell resolution to quantitatively map
early differentiation of human HSCs towards lineage commitment. During homeostasis, individual HSCs gradually acquire lineage
biases along multiple directions without passing through discrete hierarchically organized progenitor populations. Instead,
unilineage-restricted cells emerge directly from a ‘continuum of low-primed undifferentiated haematopoietic stem and progenitor
cells’ (CLOUD-HSPCs). Distinct gene expression modules operate in a combinatorial manner to control stemness, early lineage
priming and the subsequent progression into all major branches of haematopoiesis. These data reveal a continuous landscape of

human steady-state haematopoiesis downstream of HSCs and provide a basis for the understanding of haematopoietic

malignancies.

All mature blood and immune cells are thought to derive from
self-renewing and multipotent HSCs. According to the current
model, initiation of differentiation is associated with the loss of
self-renewal and generation of discrete multipotent, oligopotent
and subsequently unipotent progenitor cell stages"?. These lineage-
restricted progenitors are thought to be generated in a stepwise
manner by several subsequent binary branching decisions leading
to the classical hierarchical tree-like model of haematopoiesis'™.
However, this model is mainly based on analyses of fluorescence-
activated cell sorting (FACS)-purified cell populations. Even if

>47 such analyses derive average

followed up by single-cell assays
properties of predefined cell populations and thereby miss both
quantitative changes within gates as well as transition states falling
between often subjectively set gates.

Moreover, the lineage contribution associated with each population
is typically determined by assays such as colony formation or
transplantation. While these assays read out lineage potential, the

actual cell fate during homeostasis in vivo may be different®.

Depending on the assays and markers used, partly conflicting
branching points and hierarchies have been proposed'®-'4.

Recent studies based on novel single-cell approaches have chal-
lenged more fundamental aspects of this classical model. For instance,
unipotent progenitors can derive directly from HSCs without pro-

14,15

ceeding through oligopotent progenitors'"> and lineage commitment

was observed in progenitors proposed to be oligopotent”!®!. How-
ever, many of these studies focused on more differentiated compart-

7,10,16

ments or used predefined subpopulations to investigate single-

cell heterogeneity”’

, impeding the characterization of transitions be-
tween cell stages. Therefore, it remains unclear how individual HSCs
enter lineage commitment during homeostasis in vivo. To establish a
comprehensive model of haematopoiesis that can reconcile previous
findings, a combined view of transcriptomic and functional changes
along the developmental progression of individual cells is required.
Here we developed an approach that integrates the reconstruction of

18,19

developmental trajectories'®'” with the quantitative linkage between

transcriptomic and functional single-cell data!” and thus provides a
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detailed view on lineage commitment of individual haematopoietic
stem and progenitor cells (HSPCs) into all major branches of hu-
man haematopoiesis.

RESULTS

Healthy human bone marrow cells were labelled with a panel of up
to 11 FACS surface markers commonly used to characterize human
HSPCs™¢ (see Methods and Supplementary Table 1). All HSPCs,
defined by the absence of lineage markers (Supplementary Table 1)
and expression of CD34 (Lin~ CD34%), were individually sorted and
enriched for immature cells (see Methods). The surface marker
fluorescence intensities of all markers were recorded to retrospectively
reconstruct immunophenotypes (CD10, CD38, CD45RA, CD90,
CD135, and depending on the experiment CD2, CD7, CD49f,
CD71, CD130, FCER1A, ITGA5 and KEL, Supplementary Fig. 1a).
Such index-sorted HSPCs derived from the bone marrow of two
healthy individuals were subjected to RNA-seq analysis (‘index-
omics, 1,034 and 379 single cells; see Supplementary Fig. 1b
for the distribution of cells within classically defined gates™® and
Supplementary Fig. 2 for quality metrics of single-cell RNA-seq)
to determine their transcriptomes or individually cultured ex vivo
(‘index-culture, 2,038 single cells) to quantify megakaryocytic,
erythroid and myeloid lineage potential. Subsequently, the functional
and transcriptomic data sets were integrated by regression models
using commonly indexed surface marker expression to identify the
molecular and cellular events associated with the differentiation of
human HSCs at the single-cell level (Fig. 1). To make this data
type accessible, we developed indeXplorer, a web-based platform that
combines features of FACS software (for example, custom gating)
with tools for single-cell transcriptomics data analysis (for example,
differential expression analysis, clustering, principal component
analysis) in a single graphical user interface (Supplementary Fig. 3 and
http://steinmetzlab.embl.de/shiny/indexplorer/?launch=yes).

Early haematopoiesis is a continuous process

HSCs and their immediate progeny, such as multipotent progeni-
tors (MPPs) or multilymphoid progenitors (MLPs), are located in
the Lin~CD347CD38~ compartment, whereas more differentiated
progenitors reside in the Lin"CD34+*CD38% compartment™’. Global
gene expression analysis of single cells within these two compartments
revealed fundamentally different transcriptomic structures. In both
individuals, the Lin~CD347CD38" progenitors could be separated
into clusters corresponding to distinct progenitor cell types of all
major branches of haematopoiesis (Fig. 2a and see below). In contrast,
clustering within the Lin~CD34*CD38~ compartment was largely
unstable, as demonstrated by cluster stability analysis (Supplementary
Fig. 4a), the absence of clusters according to Gap statistics (Supple-
mentary Fig. 4b), and a recently published algorithm for the clustering
of single cells?® (Supplementary Fig. 4c). A simulated series of random
steps from an individual cell to one of its nearest neighbours (see
Methods) revealed that the majority of Lin-CD34"CD38~ cells were
highly interconnected, contrasting the disconnected cell types from
the Lin~CD34*CD38" compartment (Fig. 2b). Unsupervised visual-
ization of all individual cells irrespective of FACS markers by t-SNE
confirmed that Lin~CD34"CD38~ cells formed a single continuously
connected entity. In contrast, Lin~CD34TCD38" cells emerged into
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Figure 1 Experimental strategy. Adult human HSPCs were stained with
antibodies against up to 11 surface markers and individually sorted for either
single-cell RNA-seq or single-cell cultures. Data from the two experiments
were then integrated on the basis of surface marker expression to reconstruct
developmental trajectories of haematopoiesis.

locally clustered cell populations, with the exception of some pheno-
typic common myeloid progenitors (CMPs) and CD10* MLPs, sug-
gesting that the classification based on differential CD38 expression is
excellent, but not absolute (Fig. 2¢).

Notably, the absence of hierarchical structures in the primitive
Lin~CD34*CD38~ compartment was due to the gradual nature of
differences between cells in that compartment, and not due to insuffi-
cient data quality or a lack of transcriptomic heterogeneity: a principal
component analysis of Lin”CD34"CD38" cells resolved more than
10 distinct, variable biological processes in this compartment, such as
cell cycle activation and lineage priming (Supplementary Fig. 4d-f).
These processes are tightly correlated to surface marker expression
(Supplementary Fig. 4g).

Collectively, these observations are incompatible with the classical
model of early haematopoiesis, which assumes a hierarchical tree-like
structure of discrete progenitors downstream of HSCs. In contrast, our
data suggest that HSCs and their immediate progeny are initially part
of a continuum of low-primed undifferentiated (‘CLOUD’)-HSPCs
within the Lin~CD34"CD38~ compartment (see also below). Discrete
populations are established only when differentiation has progressed
to the level of restricted progenitors typically associated with the
upregulation of CD38.

Lineage-restriction downstream of the HSPC continuum

To characterize the discrete populations in the Lin~CD34*CD38%
compartment, we performed gene expression and cell surface
marker analyses as well as functional validations at the single-cell
level. Our analyses revealed that these populations correspond to
lineage-restricted progenitors of all major branches of bone mar-
row haematopoiesis, including B-cell progenitors of distinct stages,
megakaryocyte/erythrocyte committed progenitors (ME, Ery, Mk),
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Figure 2 A stem and progenitor cell continuum precedes the establishment
of discrete lineages at the CD34+CD38* stage. (a) Hierarchical clustering
of Lin~CD34+CD38~ (individual 1: 467 cells, individual 2: 261 cells)
and Lin-CD34*+CD38* (individuall: 567 cells, individual 2: 118 cells)
compartments for both individuals. Clustering was performed on the most
variable 1,000 genes of each population. The most variable 100 genes
are displayed in the heatmap. The asterisk indicates that 3 putative
eosinophil/basophil/mast cell progenitor subclusters of <5 cells were merged.
Cells labelled G2M showed high expression of genes indicative for G2/M
phase of the cell cycle and likely clustered together based on their cell

neutrophil-primed progenitors (Neutro), monocyte/dendritic cell
(Mono/DC) progenitors, and eosinophil/basophil/mast cell progeni-
tors (Eo/Baso/Mast), as well as immature myeloid progenitors (Fig. 3a
and Supplementary Table 2). Importantly, populations cluster by
cell type and not by individual in a cross-individual comparison
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(see panel a)

cycle state rather than cell-type-specific gene expression. (b) Random
walk analysis of Lin"CD34+CD38~ and Lin-CD34*CD38* compartments
for both individuals. One hundred random walks, that is, series of random
steps from one cell to any of its five nearest neighbours in correlation
distance space, were simulated and the number of cells reached was
evaluated in relation to the total number of cells. Five-nearest-neighbour
networks are depicted on the right. (¢) t-SNE visualization of all cells
(individual 1) highlighting the degree to which cells are associated with
local clusters (left panel, see also Methods) and the immunophenotype
(right panel).

(Fig. 3b). The comparison of the surface marker expression of these
populations to the commonly applied gating scheme® using our in-
dexed data set showed that immunophenotypically defined oligopo-
tent progenitor populations (megakaryocyte-erythroid progenitors,
MEPs; granulocyte-monocyte progenitors, GMPs; B-cell-NK-cell
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Figure 3 The Lin-CD34*CD38* compartment consists of distinct lineage-
restricted progenitors. (a) Overview of putative cell types in individual 1
(see panel b for a comparison between individuals). Classes obtained from
hierarchical clustering of the Lin-CD34+CD38* compartment (Fig. 2a)

were assigned to putative cell

types based on analyses of gene

and surface marker expression. The asterisk indicates that 3 putative
eosinophil/basophil/mast cell progenitor subclusters of <5 cells were
merged for this analyses. TFs, transcription factors. (b) Averaged gene

expression profiles for cell

types from both individuals defined in

progenitors, B-NKPs) were mainly comprised of cell types with

unilineage-specific gene expression profiles (Fig. 3c) and functional

unipotency (Fig. 4a,b).

Cells within the classic GMP compartment were separated into

several neutrophil-primed progenitors (N-0 to N-3), as well as
into monocyte/dendritic cell progenitors (Mono/DC). The distinct
neutrophil-primed progenitors probably represent progenitors at dif-

ferent developmental stages and granule composition (Fig. 4c and

Supplementary Fig. 4h)?"*2. Immunophenotypically, all neutrophil-

primed progenitors express the surface markers CD135 and CD45RA,

which are progressively upregulated during maturation (Fig. 4c).

In contrast to neutrophil-primed progenitors, Eo/Baso/Mast pro-
genitors did not fall into the classical GMP gate but displayed
a Lin"CD34*CD38*CD10~CD45RA~CD135™¢ immunophenotype
(Fig. 3¢), and expressed transcription factors important for early MEP

commitment (GATA2 and TAL1) supporting a recent study suggest-

ing that granulocyte subtypes might derive from distinct haemato-

poietic lineages'>.
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Fig. 2a were clustered on the basis of the 1,000 most variable
genes. Only the most variable 100 genes are shown in the heatmap.
(c) Index-omics display of Lin-CD34"CD38* progenitors. Sequenced single
Lin~CD34+CD38* cells were arranged according to their cell surface marker
expression in classical FACS gating strategies to identify B- and NK-
cell progenitors (B-NKPs), megakaryocytic—erythroid progenitors (MEPs),
common myeloid progenitors (CMPs) and granulocyte-monocyte progenitors
(GMPs). Cells were colour-coded on the basis of their cell type identity from
Fig. 3a.

The MEP gate consisted of megakaryocytic (Mk) progenitors
expressing typical Mk genes, of erythroid-committed (E-1, E-2)
progenitors of distinct developmental stages, differing in haemoglobin
and GATAI expression, as well as of subpopulations showing
combined expression of megakaryocytic and erythroid genes (M/E).
Our single-cell transcriptome data suggested CD71 (TRFC) and the
red blood cell antigen KEL to be highly indicative for erythroid fate,
which was confirmed by single-cell culture assays using CD71 and
KEL as indexing antibodies (Fig. 4d).

For individual 2, two CD10" B-cell progenitor clusters (small
pre-B-cells, sB and large pre-B-cells, 1B) were observed. sB was
characterized by high CD9 messenger RNA expression, high CD10
surface expression and small cell size (forward scatter (FSC)), whereas
1B showed high expression of interleukin-7 receptor (IL7RA) mRNA,
intermediate CD10 surface levels, expression of cell-cycle-related
genes and large cell size (Fig. 4e and Supplementary Fig. 4i and
Supplementary Table 2). This suggests that sB corresponds to small
pre-B-cells, and IB to large pre-B-cells, progenitor populations that
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Figure 4 Characterization of Lin"CD34+tCD38" lineage-restricted progen-
itors. (a) Index-culture display of Lin-CD34+CD38*CD10~ HSPCs. Sin-
gle HSPCs were cultured for 3 weeks and the resulting colony type
was plotted in relation to CD45RA and CD135. (b) Single cells from
the ex vivo culture assay were scored as unipotent (gave rise to one
lineage) or mixed (gave rise to more than one lineage). (c) Neutrophil-
primed subpopulations in relation to CD45RA and CD135 surface marker
expression. (d) Megakaryocytic/erythroid-primed subpopulations in relation

have been well characterized in the murine system, but to a lesser
extent in the human system?. To validate and prospectively isolate
large pre-B-cells and small pre-B-cells, we used IL7RA and CD9
FACS markers, which allowed us to recapitulate the levels of CD10
surface expression, cell size and cell cycle activity as predicted
from the index-omics data (Fig. 4f and Supplementary Fig. 4j). In
contrast to individual 2, in individual 1, only small pre-B-cells were
observed (Fig. 3b).

to TFRC (CD71) mRNA and KEL mRNA expression (left panel) and erythroid
colony output in relation to CD71 and KEL surface marker expression
(right panel). (e) Pre-B-cell subpopulations from individual 2 in relation to
CD10 surface expression and forward scatter (FSC). (f) Prospective isolation
of B-cell subpopulations sB and IB using classical flow cytometry. FACS
markers for IL7R and CD9 permit the separation of two populations with
FSC/CD10 profiles corresponding to sB and IB, as suggested from gene
expression data.

For both individuals, we also observed CD38-positive HSPCs with
a gene expression profile of rather immature cells (Im) (Fig. 3a). These
clustered globally with the Lin”CD34tCD38~ compartment in t-SNE
analyses, and expressed lower levels of CD38 (Supplementary Fig. 4k).
Most of these cells displayed an immunophenotype typical for CMPs
(Lin~CD34*tCD38"CD45RA~CD135"); however, the composition of
the cell types present in the CMP gate depends strongly on the exact
gating strategy applied (see below, Supplementary Fig. 5h, i).
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On the basis of these analyses, we provide markers and gating
strategies for the prospective isolation of several of these newly defined
populations using standard flow cytometry (Figs 3 and 4).

Developmental trajectories of early human haematopoiesis

To obtain a detailed view on the transition from stem cells to
lineage-restricted progenitors in the continuous HSPC landscape, we
developed STEMNET, a new dimensionality reduction algorithm.
STEMNET identifies genes specific to the six Lin”CD34*CD38" re-
stricted progenitor populations defined above (Neutro, Eo/Baso/Mast,
B-cell, Mono/DC, Ery and Mk; see Supplementary Table 3 for a list of
genes used by STEMNET) and then computes the probability that each
primitive (‘CLOUD’) HSPC can be assigned to any of these classes.
STEMNET thereby places the six developmental endpoints on the
corners of a simplex. This resulted in the arrangement of the least-
primed HSCs, such as CD49f" HSCs, to the centre, and the remaining
HSPCs localizing in between according to their degree of priming
(Fig. 5a, and see Supplementary Fig. 5a,b for individual 2). To describe
the position of each cell we computed the predominant direction of
priming d as the developmental endpoint closest to the cell and the
degree of lineage priming S as the (Kullback-Leibler) distance from
the least-primed cell.

This analysis suggests that HSCs located in the centre of the
‘CLOUD’ gradually acquired continuous lineage priming into either
of the major branches. While lympho/myeloid and megakary-
ocytic/erythroid priming formed major points of attraction, a
clear separation into single lineages was not present at this stage
(Fig. 5a). In contrast, lineages were clearly separated at the level of
Lin~ CD34*CD38" progenitors, without further sub-branching in this
compartment (Fig. 5a, see Supplementary Fig. 5¢ for CD38 expres-
sion). Importantly, these results are not due to limitations of the bioin-
formatics method, as STEMNET is able to detect both subsequent
branching points and discrete intermediate populations on simulated
data (Supplementary Fig. 6a—d). Moreover, applying diffusion pseu-
dotime (DPT), a different recently published method for the inference
of developmental trajectories* to our data confirmed the absence
of subsequent binary branch points and the direct lineage commit-
ment from CLOUD-HSPCs along continuous trajectories (Supple-
mentary Fig. 6e).

Within the differentiation continuum, STEMNET analysis located
previously defined immunophenotypic populations according to their
known lineage potential® (Fig. 5b, see Supplementary Fig. 5b for
individual 2). For example, GMPs were distributed to the neutrophil
and monocytic/dendritic cell branches while MEPs were located to the
megakaryocytic and erythroid branches (notice that the localization
of CMPs critically depends on the exact CD38 and CD135 gating
strategy, Supplementary Fig. 5h,i). In contrast, immunophenotypic
MLPs were located close to the separation of lymphoid, neutrophil and
monocytic/dendritic cell lineages (Fig. 5b and Supplementary Fig. 5b),
with individual cells already primed towards specific lineages, in line
with frequent functional commitment to single lineages in mouse
LMPPs". Together, these analyses suggest that developmental stages
immediately downstream of HSCs such as MLPs and MPPs do not
represent discrete cell types located at defined branching points, but
should rather be considered as transitory states within the HSPC con-
tinuum with higher probability for commitment to particular lineages.

While undergoing lineage commitment only very few cells acquired
a transcriptomic state of dual-lineage priming (Supplementary
Fig. 5d,e), in accordance with a recent single-cell transcriptomic
study on mouse GMPs®. However, our analyses suggest that a
direct transition from a primed multi-lineage towards a unilineage
transcriptomic state represents the main route of lineage commitment,
whereas dual-lineage states (such as Gfil *Irf8* GMPs, Supplementary
Fig. 5f) exist, but represent rare exceptions. Importantly, both
transcriptomic and functional (Supplementary Fig. 5g) lineage
combinations of bipotent cells were not restricted to the combinations
predicted by the classical model, conflicting with a strictly ordered
hierarchy of branching events. Along these lines, co-expression of
opposing pairs of transcription factors, such as IRF8 and PU.l
(SPI1) that have been thought to establish an oligopotent state,
occurred at much lower frequency than previously expected (see
Fig. 8a(viii,xi))®.

Transcriptomic priming mediates lineage commitment

Single-cell RNA-seq protocols require cell lysis and therefore prohibit
subsequent functional interrogation of the same single cell. However,
the use of indexed FACS surface markers common to both single-
cell ex vivo culture data and single-cell RNA-seq data allowed us
to quantitatively link the amount and direction of transcriptomic
priming to functional properties such as lineage potential and
the STEMNET-predicted
dominant direction of transcriptional priming into the lympho/

proliferative capacity. For example,
myeloid versus the megakaryocytic/erythroid direction was strongly
correlated to the surface marker expression of CD135 and CD45RA
(Fig. 6a(i,ii)), which could be used to qualitatively predict the
predominant cell type in colonies of our single-cell cultures (note
that lymphoid progenitors do not grow in these conditions, and
that myeloid sublineages are not resolved) (Fig. 6a(ii)). Utilizing all
recorded surface markers for linear models on the single-cell RNA-seq
data allowed us to quantitatively predict the dominant cell type present
in the single-cell cultures for the Lin~CD34"CD38" (P=3.7 x 10~%)
and the Lin~CD34"CD38~ compartment (P =3.7 x 107%, Fig. 6a(iii)
and Supplementary Fig. 7a for the full specification of regression
models). Moreover, predicting erythroid and megakaryocytic
priming individually revealed that the amount of lineage-specific
priming was linked to functional lineage commitment (Fig. 6b,c and
Supplementary Fig. 7b,c). However, colonies derived from Mk-primed
cells were frequently dominated by other cell types due to their lower
proliferative capacity ex vivo (Supplementary Fig. 7b). STEMNET
further predicted Lin-CD34tCD38~ CD45RA~CD90~ CD135™ cells
to be primed towards megakaryocytic differentiation (Fig. 6d, left
panel). To functionally validate this prediction in vivo, we FACS-
sorted these cells, transplanted them into sublethally irradiated NSG
mice and quantified their lineage output 14 days post transplantation.
As predicted, these cells, which we termed Mk-primed MPPs,
predominantly generated thrombocytes if compared with MLPs and
HSCs (Fig. 6d, right panel). Together, these analyses revealed that
transcriptomic priming is linked to the restriction of lineage potential
at an early stage in vitro and in vivo.

We next estimated the degree of transcriptomic lineage priming
S for individual cells from the culture experiments (Fig. 7a,b).
As expected, committed progenitors with a high degree of inferred
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Figure 5 Visualization of the HSPC continuum. (a) The similarity of every cell
to each of the progenitor classes was computed by STEMNET (see Methods),
projected on a unit circle, and used to quantify the degree and direction
of transcriptomic priming. Data from individual 1 are shown; for individual
2 see Supplementary Fig. 5a,b. (b) Immunophenotypic populations®® were

transcriptomic lineage priming formed small colonies (Fig. 7a) of a
single-cell type (Fig. 7b). In contrast, primitive HSPCs (low inferred
Sy frequently displayed multi- or bilineage potential (Fig. 7b) and
generated much larger colonies (Fig. 7a). However, not all of the
primitive HSPCs displayed multipotency, but frequently appeared
to be lineage-restricted while typically retaining a high proliferative
capacity comparable to their multipotent counterparts (Fig. 7c). These
data suggest that proliferative capacity and lineage potency are not
obligatorily linked.

To investigate the ability of cells with various amounts of priming
to switch lineage potential, we cultured HSPCs in the absence and
presence of erythropoietin (EPO). Progenitors that formed exclusively
erythroid colonies in the presence of EPO were unable to give rise
to alternative lineages in the absence of EPO (Fig. 7d). Moreover,
we cultured single HSPCs for one week, split the colonies into four
and determined the lineage outcome of the daughter colonies two

highlighted on the HSPC continuum. py,; indicates P values calculated by
kernel-density-based tests comparing each population with CD49f* HSCs. For
CMPs, see Supplementary Fig. 5h,i. For CD49f* HSCs, n=101 single cells;
CD49f-HSCs, n=117; MPPs, n=176; CD10-MLPs, n=52; CD10*MLPs,
n=16; B-NKPs, n=26; GMPs, n=244; MEPs, n=231.

weeks later. In line with the predictions of our model, the degree of
transcriptomic priming was anticorrelated to the propensity of cells to
generate daughters with variable lineage composition (Supplementary
Fig. 7d,e). Together, these results support the hypothesis that
early lineage priming of primitive HSPCs coincides with a loss of
functional plasticity.

Molecular processes underlying HSC commitment

To characterize stemness, early lineage priming and transcriptional
cell type manifestation on the molecular level, we identified co-
expressed gene modules whose activities were associated with the
direction and/or the degree of priming. We visualized the activity of
these gene modules on the differentiation landscape established above
(Fig. 8a(i)) and along the progression from HSCs to each of the six
lineages (Fig. 8b and Supplementary Fig. 8a,b and Supplementary
Table 4 for a complete list). Importantly, data from both individuals
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Figure 6 The direction of transcriptomic priming is quantitatively linked to
functional lineage potential. (a) Comparison of the predominant direction
of priming d (lympho/myeloid versus megakaryocyte/erythroid) obtained
from single-cell transcriptomics to the dominant cell type observed in
colonies from single-cell culture. (i) Illustration. (ii) Qualitative comparison
of the two quantities with respect to CD45RA and CD135 surface marker

expression.

the observed colony composition (see Supplementary Fig. 7a).

(iii) Quantitative link. The most likely dominant direction of
priming was estimated for each founder cell from index-culture based on
regression models constructed on all surface markers and compared with

P values

are from a Fisher test with n=434 cells (left panel) and n=193 cells
(right panel). (b) Comparison between inferred amount of transcriptomic
Mk priming and the percentage of CD41* Mk cells per colony. Errors bars
denote s.e.m. P value is from a Pearson product moment correlation test
with n=627 single cells that formed colonies. See also Supplementary
Fig. 7c. (c) Comparison between inferred amount of transcriptomic erythroid

yielded highly comparable results (Supplementary Fig. 8). To gain

additional information about biological processes associated with

HSC differentiation, we determined the mean expression of genes for

each gene ontology (GO) term, and selected representative examples

that changed significantly during early lineage priming (Fig. 8c).

Together, these analyses provide insights into the global molecular

and cell biological processes HSCs encounter while undergoing

continuous lineage priming, unilineage commitment and subsequent
differentiation.

The least-primed state was characterized by expression of the
HOXA3/PRDM16/HOXB6 module**® (Fig. 8a(ii),b and Supplemen-
tary Table 4) and associated with typical stem cell properties such

as cell cycle quiescence, low expression of the entire gene ex-

pression machinery, low total RNA content (measured by mRNA

reads per in vitro spike in RNA read), low cellular respiration®,
low CD38 and high CD90 surface expression® (Fig. 8c). The ex-
pression of the HLF/ZFP36L2 module (which also contains the

priming and the percentage of CD235" erythroid cells per colony. See
also Supplementary Fig. 7c. Errors bars denote s.e.m. P value is from
a Pearson product moment correlation test with n=627 single cells
that formed colonies. (d) Xenotransplantation validating a Mk-primed MPP
population identified by STEMNET. HSCs, MLPs and a population of
putatively Mk-primed MPPs (Lin-CD34+CD38-CD45RA-CD90-CD135")
were sorted, transplanted into immunocompromised mice and chimaerism
of human lympho/myeloid cells (CD45%), thrombocytes and erythrocytes
were determined 2 weeks post transplantation. Experimental set-up (top
right panel), localization of populations in STEMNET (left panels), and
human engraftment (bottom right panels, error bars denote s.e.m.) are
indicated. Relative contribution of thrombocytes was significantly higher in
Mk-primed MPPs compared with HSCs (P=0.0031) and MLPs (P=0.0002,
two-tailed unpaired t-test, n=6 HSCs, n=4 Mk-primed MPPs, n=3
MLPs). Asterisks indicate level of significance as follows: **P < 0.01;
=P <0.001.

transcription factors MECOM/EVII, HFL, GATA3) was highest in
immature HSCs, but present in the entire ‘CLOUD’ (Fig. 8a(iii),b and
Supplementary Table 4)3°-32,

Intriguingly, stem cells also expressed genes from the earliest prim-
ing modules from both the lympho/myeloid (FLT3/SATBI module)
and the megakaryocyte/erythrocyte (GATA2/NFE2 module)*® lin-
eages in a non-exclusive manner (Fig. 8a(iv-v)). These data suggest
that the first transcriptional priming events into the predominantly
lympho/myeloid or the megakaryocyte/erythrocyte direction are al-
ready present in most primitive HSCs, coinciding with the occurrence
of first functional lineage biases already at this stage (Figs 6a,b, 7a S*
bin 1 and 2). A number of additional gene modules were activated in
a combinatorial fashion between lineages, similar to previous obser-
vations from bulk RNA-seq® (Fig. 8 and Supplementary Fig. 8a and
Supplementary Table 4).

Following acquisition of lineage priming, HSCs upregulate their
gene expression machinery, mRNA and protein biosynthesis, and
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Figure 7 The degree of transcriptomic priming is quantitatively linked to
multipotency and proliferative capacity. (a) Comparison between the inferred
amount of transcriptomic priming S of the founder cell and the resulting
colony size (cell number). (i) lllustration. (ii) Qualitative link. (iii) Quantitative
link. Errors bars denote s.e.m. P value is from a Pearson product moment
correlation test with n=1,031 single cells. (b) Comparison between the

respiration®*®

, while cell cycle activity increases only marginally
(Fig. 8c). At this stage, cells start to express lineage-specific gene
modules, for example the SPII/GFII module for the neutrophil
lineage (Fig. 8a(viii)) or the IRF1/CASP1 module® for the B-cell
lineage (Fig. 8a(vi)). Other modules active at this stage, however,
are shared between lineages; for example, the TALI/HFSI module
is shared between the erythroid and the megakaryocytic lineage,
whereas the EAF2/KLF4 module is shared between the neutrophil
and the monocyte lineage. This coincides with the observation
that most progenitors at this stage display narrow restriction in
their developmental potential, whereas some progenitor cells remain
oligopotent!” (Fig. 7b, S bin 3).

Manifestation of lineage-specific differentiation is accomplished
by activation of gene modules such as the CEBPA/CEPBD module
for the neutrophil lineage, the EBFI1/ID3 module for the B-cell
lineage, the IRF8 module for the monocytic/dendritic lineage, the
GPI1BB/PBX1 module for the megakaryocytic lineage and the
GATAI1/KLF1 module for the erythroid lineage®*%” (Fig. 8a(x-xv),b).
In all cases, this step is accompanied by cell cycle activation, CD38
surface marker upregulation (Fig. 8c) and unipotency (Fig. 7b, S bin
4 and 5).

Together, our data suggest that HSCs are characterized by the
expression of specific stem cell modules in combination with early,
probably antagonizing priming modules. During the continuous
priming and differentiation process the stem cell modules and certain
(but not all) early priming modules already expressed in HSCs are
turned off, while specific lineage modules become reinforced to
drive differentiation towards lineage commitment and manifestation
(Fig. 8a,b). Transcription factors from upstream modules may trigger

0 05 1.0 15
Inferred S™ of founder cell

+EPO -EPO

inferred amount of priming S of the founder cell and the number of cell
types in the colony. P value is from a Pearson product moment correlation
test with n=1,031 single cells. (c) Inferred transcriptomic degree of priming
S (x axis) in relation to the colony size (y axis) and the number of cell types
per colony (colour code). (d) Distribution of colony types in relation to the
presence or absence of erythropoietin (EPO) in the culture medium.

expression of downstream modules, as in the case of GATA2, TALI and
GATAI®. In contrast, transcription factors from mutually exclusive
downstream modules may inhibit each other; for example, IRF8 is
known to repress CEBPA*. Such inhibitory interactions may render

71015 and thus less abundant than

oligopotent progenitors unstable
previously anticipated (Fig. 7b). In contrast, in cells with a low
amount of priming, expression levels of mutually exclusive modules

are sufficiently small to allow uni-, oligo- or multipotency.

DISCUSSION

In summary, we provide a global view of the early human haemato-
poiesis during homeostasis. Our data set combines both informa-
tion on the lineage potential of HSCs (index-culture) and insights
into the unperturbed lineage commitment of HSCs during human
haematopoiesis (reconstruction of developmental trajectories from
static single-cell expression data), where lineage tracing approaches®®
are not possible. Here, we rely on single-cell culture data and xeno-
transplantation for functional validation, which unlike gene expres-
sion or cellular barcoding measure developmental potential, not fate.

Our results are incompatible with fundamental aspects of the
differentiation-tree model, in which HSCs are required to pass
through discrete and definable intermediate progenitor cell stages
by subsequent binary cell fate decisions made on branching points.
Instead, we propose that early haematopoiesis is represented by
a cellular continuum of low-primed undifferentiated (CLOUD)-
HSPCs. This HSPC continuum contains phenotypic MPPs and MLPs,
which do not constitute discrete progenitor cell types, but rather
transitory states. CLOUD-HSPCs gradually acquire transcriptomic
lineage priming in a combination of multiple directions, with
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Figure 8 Lineage commitment is a layered multi-step process. (a,b) Activity
of gene modules associated with developmental progression of HSPCs.
Genes depending on the degree and/or direction of priming were identified
and clustered into modules displaying similar expression patterns (see
Methods). Averaged gene expression of selected modules from individual 1
was highlighted in the HSPC differentiation continuum (a) or smoothened
and plotted against the degree of lineage-specific priming (b). For a
complete list of modules and individual 2, see Supplementary Fig. 8 and
Supplementary Table 4. (c) Gene ontology and FACS marker changes along
the early priming of HSPCs (S <0.4). During later stages of priming, GO

some cell state transitions and lineage combinations more likely to
occur than others. Distinct lineages emerge directly from CLOUD-
HSPCs, earlier than previously anticipated and without passing
through a series of discrete, stable progenitors. Our data suggest a
multidimensional molecular and cellular landscape of steady-state
human haematopoiesis defined by a continuous flow of differentiation
and emergence of lineage trajectories independent of each other.
This landscape can be visualized by using the classical Waddington’s

landscape as a blueprint®*!

, which more appropriately reflects the
continuous nature of haematopoiesis than a ‘cell type tre¢’ (Fig. 8d).
Haematopoietic stem cells reside in a flat valley at the top. Barriers
separating individual lineages emerge early and deepen gradually,
illustrating the acquisition of lineage biases driven by small differences

in gene expression of early fate mediators. When barriers become

Bcell Mono/DC Neutro Eo/Baso/Mast Mk

Ery

activity and FACS marker expression additionally depend on the direction of
priming (not shown). (d) Graphical summary of a continuum-based model
of bone marrow haematopoiesis. Due to the interactions of gene regulatory
networks, some cell states and transitions are more likely than others,
represented by a lower elevation within a Waddington landscape. During early
lineage commitment, small barriers between lineages arise early, thereby
creating lineage biases in HSCs. At the progenitor stage these barriers
are already more pronounced, making the oligopotent stage less likely.
Note that T- and NK-cell development predominantly occurs outside the
bone marrow*?.

insurmountable, cell type manifestation and lineage commitment
are established.

While our study provides detailed insight into lineage commitment
from HSCs into all branches of human bone marrow haematopoiesis,
it does not cover lineage decisions occurring further downstream or
outside the bone marrow, such as T-cell development. Given the low
frequency of eosinophil/basophil/mast cell and monocyte/dendritic
cell progenitors within the CD34" bone marrow compartment,
our study cannot fully resolve the separation and maturation of
these lineages.

Together, our data determine a comprehensive continuum-based
model of early human haematopoiesis, which will probably have im-
portant implications for the aetiology of haematologic disorders and
which may serve as a paradigm for other adult stem cell systems. O
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METHODS

Methods, including statements of data availability and any associated
accession codes and references, are available in the online version of
this paper.

Note: Supplementary Information is available in the online version of the paper
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METHODS

Bone marrow aspirations. Bone marrow aspirates from healthy individuals between
25 and 39 years of age were obtained at the University clinics in Heidelberg and
Mannheim after written informed consent. The use of human samples for RNA-seq
and functional studies was approved by the local ethics committees in accordance
with the Declaration of Helsinki. Bone marrow mononuclear cells were isolated by
gradient centrifugation using Histopaque-1077 (Sigma).

Flow cytometry. Bone marrow mononuclear cells were stained with surface markers
for 30 min on ice according to standard protocols. For FACS sorting, BD FACS Aria
II/IIT or Fusion flow cytometers (BD Bioscience) equipped with 405 nm, 488 nm,
561 nm and 633 nm (Aria)/642 nm (Fusion) lasers were used. For flow cytometric
analyses, LSRII and LSRFortessa flow cytometers (BD Biosciences) equipped
with 350 nm, 405 nm, 488 nm, 561 nm and 640 nm lasers were used. For Ki67-
Hoechst cell cycle analysis, surface staining was performed as described previously*.
Subsequently, cells were fixed and permeabilized using cytofix-cytoperm buffer (BD
Bioscience), and incubated with Ki67 antibody overnight at 4 °C. Cells were stained
with 2 ug ml™! Hoechst 33342 (Invitrogen) and analysed. Data were analysed using
FlowJo (TreeStar), indeXplorer or R.

Single-cell liquid cultures (‘index-cultures’). Fresh human bone marrow
mononuclear cells were stained as described above with fluorescence-labelled
antibodies against CD2, CD34, CD38, CD45RA, CD71, CD90, CD130, CD135,
CD238 (KEL), FceRI and a lineage cocktail consisting of CD4, CD8, CD11b, CD14,
CD19, CD20, CD56, CD235a and CD10. Single Lin-CD34"CD38"CD10~ and
Lin~CD34*CD38 CD10 HSPCs were sorted into ultralow attachment 96-well
plates (Corning) containing 100 ul StemSpan SFEM media (Stem Cell Technologies),
L-glutamine (100 ng m™"), penicillin/streptomycin (100 ng ml™") and the following
human cytokines: SCF (20 ng ml™", Peprotech), Flt3-L (20 ng ml™', Peprotech), TPO
(50 ng ml™!, Peprotech), IL-3 (20 ng ml™", Peprotech), IL-6 (20 ng ml™', Peprotech),
G-CSF (20ngml™', Peprotech), IL-5 (20 ngml™", Peprotech), M-CSF (20 ngml™',
Peprotech), GM-CSF (20 ngml™!, Peprotech) and EPO (4Um™!, R&D). For the
experiment displayed in Fig. 7d, Epo was left out from the medium. Note that the
CD38* and CD38~ gates were set to touch (see also Supplementary Fig. 1a).

Fluorescence intensities were recorded for every channel for each sorted cell
and used to retrospectively reconstruct immunophenotypic populations. Cells were
cultured for 21 days at 5% CO, and 37 °C. To characterize clonal progeny, colonies
were imaged by microscopy and subsequently analysed for CD15, CD33, CD41a
and CD235a expression by flow cytometry. Note that under these conditions, only
myeloid (CD33), erythroid (CD235a) and megakaryocytic (CD41a) colonies are
efficiently generated. Colonies were judged on the basis of their visual morphology
and expression of surface markers. Colony size and lineage output were based on flow
cytometry and confirmed by microscopy. A colony was determined to be positive for
a particular lineage if >10 cells of the respective cell type were detected.

For the ‘split-in-four’ experiment (Supplementary Fig. 7d,e), colonies were
evaluated 7 days after seeding of single cells and colonies with more than 50 cells
were equally split into 4 wells and cultured for an additional 14 days before colony
size and lineage output were scored.

Mouse experiments. NSG mice were bred and housed under specific pathogen-free
conditions at the central animal facility of the German Cancer Research Center. All
animal experiments were approved by the Regierungsprisidium Karlsruhe under
Tierversuchsantrag numbers G108/12 and G210/12.

A total of 17,000 FACS-sorted HSCs (Lin~ CD34*CD38 CD90*CD45RA™),
MLPs (Lin~CD34*CD38 CD45RA*) or Mk-primed MPPs (Lin~CD34*CD38~
CD90~CD1357) from healthy bone marrow were injected into the femoral bone
marrow cavity of female mice at 15 weeks of age that had been sublethally irradiated
(200 cGy) 24 h before injection.

Two weeks after xenotransplantation, lineage-specific human engraftment in the
injected femur was evaluated by flow cytometry using anti-human-CD45-PE, anti-
human-CD235a-APC and anti-human-CD41a-FITC antibodies.

Single-cell transcriptome sequencing (‘index-omics’). A 25-year-old male donor
(individual 1) and a 29-year-old female donor (individual 2) were selected for single-
cell RNA-seq. Fresh bone marrow mononuclear cells were stained as described
above with fluorescence-labelled antibodies against CD34, CD38, CD45RA, CD90,
CD49f, CD135, CD10, CD7 and a lineage cocktail consisting of CD4, CD8, CD11b,
CD14, CD19, CD20, CD56 and CD235a. Fluorescence intensities were recorded
for every channel for each sorted cell and used to reconstruct immunophenotypic
populations subsequently.

While the frequently used smart-seq2 protocol* failed to amplify transcriptomes
from bone marrow-derived human HSPCs, both the QUARTZ-seq protocol®”
and a modified smart-seq2 protocol (see below) yielded good-quality cDNA
(Supplementary Fig. 2a). To avoid method-specific biases, data were generated
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using both QUARTZ-seq (individual 2) and smart-seq2.HSC (individual 1), and
all findings were systematically compared between individuals (Figs 2 and 3b and
Supplementary Figs 4a,b, 5a,b and 8c).

For individual 1, eight plates of Lin"CD34"CD38  and six plates of
Lin~CD34*CD38" HSPCs were sorted and whole transcriptome amplification
was performed using the smart-seq2 protocol*, but using 5ul of a modified RT
buffer containing 1x SMART First Strand Buffer (Clontech), 1 mM dithiothreitol
(Clontech), 1uM template switching oligo (Exiqon), 10 Uul™" SMARTScribe
(Clontech) and 1 U ul~' RNASin plus (Promega). ERCC spike-ins were included at
a final dilution of 1:1,000,000. Libraries were constructed using a home-made Tn5
transposase (based on ref. 46). Note that the CD38" and CD38" gates were set to
touch (see also Supplementary Fig. 1a).

For individual 2, eight plates of Lin"CD34*CD387, one plate of
Lin~CD34*CD38 CD90*CD45RA~ and four plates of Lin~CD34*CD38%
HSPCs were sorted and whole transcriptome amplification was performed using
the QUARTZ-Seq protocol®”. ERCC spike-ins were included into the lysis buffer
at a final dilution of 1:2,000,000. Libraries were constructed using Nextera Tn5
(Illumina) following the protocol provided, but using 1/4 of all volumes. Libraries
were then sequenced on an Illumina HiSeq 2500 platform.

Raw data processing and quality control. Reads were demultiplexed and, where
applicable, the remaining poly-A tail of the mRNA was trimmed off. Reads were then
aligned to the Homo sapiens genome (build 37.68, also containing the ERCC spike
in sequences) using GSNAPY, with the expected paired-end length set to 400 bp and
the allowable deviation from the expected paired-end length set to 100 bp. Reads
overlapping uniquely with mRNA genes were counted using HTSeq*. As a first
filtering step, we retained all cells in which we observed more than 750 genes at a
minimum of 10 reads each, and a total of at least 150,000 reads. We removed all
genes from the data set that were not observed by at least 10 reads in at least 5 cells.
Statistics on these filtering steps are displayed in Supplementary Fig. 2.

We then fitted error models® to the readcount data (see also below). In 35 cells of
individual 2 and 1 cell of individual 1, we observed an extreme overdispersion of the
genes classified as non-dropout events. These cells were removed. In individual 1,
we further excluded 13 cells with an abnormal CD38~CD90"#" immunophenotype
(Supplementary Fig. 1a). These cells were clear outliers also with regard to gene
expression, as they mostly expressed genes associated with various types of mature
immune cell (not shown).

Data normalization using posterior odds ratio. We designed a normalization
method to address the following two challenges: single-cell transcriptomics has large
technical variability; and human haematopoietic stem and progenitor cells largely
differ in RNA content (Supplementary Fig. 2h).

While lowly expressed genes are sometimes observed in cells with high total
RNA content, they are almost never seen in cells with low total RNA content
(Supplementary Fig. 2i). As this effect is the same for all genes of low expression
level, it will induce some correlation structure on the data. In our data set, the first
principal component was correlated to the library size and mRNA content, which
may dominate over the effects of developmental transitions (Supplementary Fig. 2j,
panel i). Normalization through division by total library size or harmonic mean
estimator does not resolve this issue, as lowly expressed genes are still unobserved
(zero) in cells of low mRNA content (Supplementary Fig. 2i,j panel ii). We and others
have therefore used hierarchical models that assume that molecule counts are created
by sampling from the true amount of mRNA molecules with cell-specific sampling
efficiencies®". To adapt these approaches to the case where no molecular barcodes
were used, we here use the error model of ref. 49, which describes the posterior
probability of a gene expression level x in a cell c as

P (X|7e, £20) = pa(X) Proisson (X) + (1 — Pa (X)) prp (x |1

where py is the probability of a dropout event at gene expression X, pxg is the
probability of observing r. reads in the case of no dropout and ppoisson(X) is the
probability of observing r. spurious reads in the case of a dropout. Q. is a vector
of cell-specific and numerically optimized parameters: the slope and intercept of p,
as a function of r.; the slope and intercept of x as a function of r.; the dispersion of
the negative binomial distribution pys (x|r.); and the background frequency A of the
Poisson distribution, which was fixed to 0.1.
The maximum posterior average expression across all cells is then given by

(U =argmax Hp(x\rc, £20)

While the mean of [ ]_p(x|r., $2.) describes the expression magnitude of a gene in
a given cell, its spread describes the uncertainty due to technical noise. To obtain a
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single number that weighs expression magnitude by confidence level, we compute a
posterior odds ratio (POR):

f:cp(x|rc,ﬂc)dx

POR=log, fpr(xlrc,ﬂc)dx
POR can be interpreted as the evidence (in bits) that a specific gene in a specific cell
is expressed more highly (or lowly) than in the average cell. The use of POR scores
in principal component analysis solved the problems associated with the above-
mentioned normalization strategies (Supplementary Fig. 2j panel iii). POR scores
were used as the measure of gene expression for all analyses.

Clustering. For hierarchical clustering, we selected the 1,000 most variable genes
of each population. We then used Ward linkage on Euclidean distances. Gap
statistics was computed on the same hierarchical clustering function using the R
package cluster. Random walk analysis* was performed by constructing a 5-nearest-
neighbour graph on correlation distances, initializing at a random node, and then
simulating a series of random steps on the 5-connected graph. The local clustering
coefficient of a node in such a graph quantifies the extent to which the neighbours of
two connected cells are themselves connected to each other. It was computed using
the transitivity function of the igraph package™.

STEMNET. Basic set-up. To identify processes associated with the transition of HSCs
to progenitor cell types, we sought a lower-dimensional representation of the HSPC
data that reflects lineage priming. We therefore trained an elastic-net regularized
generalized linear model (GLMNET) of the multinomial family on the most mature
populations (N1-3, EBM, MD, spB1/2, E1/2 and Mk from Fig. 2a for individual
1, or IpB, EBM, N, ME and MD for individual 2), using class membership as the
response variable. During this step, a number of population-specific genes was
identified (Supplementary Table 3). The classifier then used the expression of these
genes in all cells to estimate the probability p; that a cell i belongs to class j. From
these probabilities, we compute the Kullback-Leibler distance from the average
HSPC, which can be interpreted as the amount of lineage information a given cell
has acquired:

6
Sl = Zp,j log @
= Ppi

where p; is the average probability of a cell to belong to class j. We further assign each
cell a predominant direction of priming as

d;=argmax @

i b

For displaying the six-dimensional vector p; in two dimensions, the developmental
endpoints are arranged on the edge of a circle and all cells are placed in between.
Each endpoint k is assigned with an angle «;. The class probabilities p; are then
transformed to Cartesian coordinates by

X = E Dik COS
k

and

y,:E Pisinoy
k

To find the optimal arrangement of the developmental endpoints on the circle,
lineages with common precursor stages are placed next to each other. The proximity
between lineages I and k is computed by

Dy= ZP:I X Pik

All arrangements are tested and the arrangement with the highest
proximity is chosen. This approach is based on a method termed ‘circular a
posteriori projection™'.

Data simulation. To test the ability of the STEMNET method to uncover binary
branching events and discrete subpopulations, we quantitatively specified alternative
models of cell fate specification and reshuffled our original data according to these
models (Supplementary Fig. 6). In particular, we assumed that each cell is located
on a binary tree, where nodes represent branching points and edges between nodes
represent developmental trajectories. Each node V; is specified by a tuple (E,, E,, p;,
P2, h) with E;, pointing to the left and right child, p,, giving the probability that a
cell adapts the fate associated with the left and right child (p, + p, =1),and h€(0,1)
giving the height of the node (for developmental endpoints, h = 1, and for the root,

METHODS

h = 0). A cell is then defined by the tuple (h,E), where E points to the next node
downstream of the cell.

For the scenario depicted in Supplementary Fig. 6a, cells were generated by
randomly drawing values h from a Beta distribution with parameters (2,3). E was
assigned by moving down a distance of h from the root and randomly choosing a
branch according to p,, at each node that was passed. For the scenario depicted in
Supplementary Fig. 6d cells were then scattered around the nearest node assuming an
average distance of 0.01. The developmental distance D(c;, V;) between a cell ¢;and a
node V; is then computed by traversing through the tree and summingall distances h
that are passed along the way. For example, the distance between two developmental
endpoints that diverge at a node with h = 0.6 is 0.8. To generate synthetic data from
these cell fate specification models, we extracted the coefficients of the STEMNET
classifier (Supplementary Table 3), and for each developmental endpoint j compiled
lists of genes with nonzero coefficient. Gene expression values for these genes were
then reordered across cells i to follow the developmental distance D(c;, V;) (that
is, assuming that gene expression of lineage-specific genes was entirely determined
by developmental distance, Supplementary Fig. 6a). Alternatively, gene expression
values were randomly reshuffled such that the correlation between developmental
distance from V; and gene expression equals the empirically observed correlation
between gene expression and p; from the STEMNET classifier (Supplementary
Fig. 6b-d).

Quantitative link between single-cell transcriptomics and single-cell culture. To
quantitatively link single-cell transcriptomic properties (such as the amount or
direction of priming) to single-cell functional properties, we made use of FACS
markers used in both experiments. In particular, for each transcriptomic property,
we constructed a regression model with logicle transformed flow cytometry markers
as explanatory variables and the property as a response variable. To achieve greater
robustness than in standard linear regression, we applied GLMNET models of
the normal family for this task, and used tenfold cross-validation to determine
the regularization parameter A. The regression coefficients of these models are
shown in Supplementary Fig. 7a together with the R? these models achieve in
tenfold cross-validation if applied to the single-cell transcriptomic data. We then
applied these classifiers to logicle transformed flow cytometry data from the single-
cell culture experiment to estimate the magnitude of single-cell transcriptomic
properties in that experiment. To further improve the classifier, we also included
rank-transformed mRNA expression levels of TFRC (CD71) and KEL in the training
data, and rank-transformed flow cytometry data of CD71 and KEL in the single-cell
culture experiment.

Identification of gene clusters associated with lineage priming. We then identified genes
whose expression depends on §, d, or both, by separately fitting four different linear
models to the expression data of each gene. The first model describes gene expression
as a function of the predominant direction d, which is a categorial variable. It best
fits to genes that are up- or downregulated early during developmental progression
in a certain direction and stay unchanged until the end. The second model describes
gene expression as a function of a third-degree polynomial through log,, . It best
fits to genes that are up- or downregulated at a specific stage of developmental
progression, independent of the developmental direction. The third model describes
gene expression as a function of d, a third-degree polynomial through log,, S and
the interaction of d and log,, S. It best fits to genes that are up- or downregulated
at a specific stage of development in a specific direction. The fourth model describes
gene expression as a constant. It best fits to genes that do not change systematically
during acquisition of lineage fate. For each gene, we identified the optimal model
by comparing the models’ Bayesian Information Criteria (BIC). For each class of
genes (dependent on log,; §, d or both) separately, we identified subgroups of
genes that display similar dependencies on log,, S and d by performing hierarchical
clustering using correlation distance and complete linkage on the fitted values from
the preferred model.

Statistics and reproducibility. Single-cell RNA-seq was performed on two different
individuals. Totals of 1,034 (for I1) and 379 cells (for 12) were included into the
study. Single-cell culture was performed for 2,038 cells. As indicated in the figure
legends, P values are computed from the Pearson product moment correlation
test, kernel-density-based global two-sample comparison test or two-tailed
unpaired ¢-test.

For animal experiments, no statistical method was used to predetermine sample
size. The experiments were not randomized. The investigators were not blinded to
animal allocation during experiments and outcome assessment.

Code availability. Most analyses were performed in indeXplorer, a custom-made
software for the analysis of single-cell index-sorting/transcriptomic data sets.
indeXplorer was written in R and relies on the package shiny; code is available from
https://git.embl.de/velten/indeXplorer.
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For analyses that were not performed in indeXplorer directly, we provide an R
package containing all code at https://git.embl.de/velten/STEMNET.

Data availability. RNA-seq data that support the findings of this study have
been deposited in the Gene Expression Omnibus (GEO) under accession
code GSE75478. Processed data are available at http://steinmetzlab.embl.de/
shiny/indexplorer/?launch=yes for browsing. All other data supporting the findings
of this study are available from the corresponding author on reasonable request.
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Supplementary Figure 2 Quality metrics of single-cell RNA-Seq. a,
Bioanalyzer traces of amplified cDNA generated from single human HSPCs
with the default smart-seq2 protocol (upper panel), QUARTZ-Seq (middle
panel, applied to individual 2) and a modified version of smart-seq2 (lower
panel, applied to individual 1, see methods). b, c, Filtering of cells based on
total read counts and number of genes expressed. The use of the modified
smart-seq2 protocol (b) strongly decreased the dropout rate compared to
the QUARTZ-Seq protocol (c). The large dropout rate in the QUARTZ-Seq
protocol was due to the small volume used. d, e, The number of genes per
cell (d) and cell-cell correlation (e) for the two individuals compared to two
other recent single-cell RNA-Seq data sets from the haematology field3:4. Box
plots display median bar, first-third quantile box and 5th-95th percentile
whiskers. n=379 cells individual 1, n=1034 cells individual 2, n=218 cells
Individual 1, HSCs; n=2730 cells Paul et al., n=1058 cells Kowalczyk et al.
f, g, The mean read count and variance of spike-ins (large black dots) and

0 1 2 3 4
CD10 (protein level)

genes (small dots) were compared in order to identify genes whose biological
noise exceeded technical variability (cyan dots)®. h, The total RNA content of
Lin"CD34+*cells varies widely. i, Cartoon describing the hypothetical effect of
large variations in RNA amount in homogeneous populations. Two cells from
the same population (red) display identical RNA concentrations for two genes,
but differ in RNA amount by 10-fold. A third cell from a different population
expresses the two sample genes at a different ratio but absolute high number.
Following sequencing, the genes are more likely to be lost in the smaller cell,
which cannot be reverted by normalization. j, PCA performed on lymphoid
(CLP) specific genes® should clearly separate cells expressing the lymphoid
surface marker CD10. However, without normalization cells are only arranged
by read count (/). Standard normalization using a harmonic mean estimator
of library size does not solve the problem (if). Following normalization by
Posterior Odds Ratios (POR, see Online Methods) a PCA performed on CLP
specific genes clearly separates CD10* and CD10- cells (iif).
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SUPPLEMENTARY INFORMATION

indeXplorer software: A web-based platform for intuitive browsing of single cell

index-omics and index-culture data
a) Gating & scatter plots
= In FACS marker, transcriptome, PCA or t-SNE space
Color-coding of gene expression or population identity
Display of all FACS events in background
Storage of plots as publication-quality pdfs
o

| §fe
® e "
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.
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FACS_cd10 (logicle)

[ON N

CD

(logicle)

Populations

Heatmap1-1
Heatmap1-2
other

b) Single-cell differential expression
analysis (e.g. CD38*CD10" against

all others)
= Integration with GOrilla for gene ontology analysis
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e) Gene list management

c) Clustering (e.g. of CD38"CD10*
cells, based on all genes)

d) PCA
= Integration with GOrilla for analysis of loadings
- -based g noise estimatic
= Principle component regression of FACS markers

Population

© other

* Heatmap1-1
* Heatmap1-2

= Creation of gene lists; Import from gene ontology, several literature resources, or by user upload
= Set operations on gene lists, e.g. to identify all transcription factors within a gene list

f) Ability to store & restore sessions

Supplementary Figure 3 indeXplorer, a web-based GUI for exploring
single-cell index-omics and index-culture data. indeXplorer combines

the capabilities of a FACS software with tools for the analysis of single

cell transcriptomics data in a single graphical user interface. FACS and
transcriptomics modules are tightly linked, allowing for example the display
of gene expression or transcriptomic clusters on FACS scatter plots (a),

http:/steinmetzlab.embl.de/shiny/indexplorer/?demo=yes

differential expression testing of arbitrarily gated populations (b), as well as
hierarchical clustering (c) and principal component analysis (d). /ndeXplorer
further provides tools for gene list management, allows the user to download
plots as publication-quality pdfs, and to store & restore sessions. On http:/
steinmetzlab.embl.de/shiny/indexplorer/?”demo=yes we provide a short
interactive introduction into the use of indeXplorer.
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Supplementary Figure 4 Unsupervised analyses of single-cell transcriptomics.
a, Cluster stability analysis’ of the Lin"CD34+CD38" and Lin"CD34+*CD38*
populations. For n=500 repetitions, 66% of cells were randomly selected,
clustering was performed and a consensus clustering was computed. The
probability that clusterings obtained from random subsets of the data

agree with the consensus is plotted on the y axis (box plot with median

bar, first-third quantile box and 5th-95th percentile whiskers). b, Gap-
statistic (Gapy) of Lin'CD34*CD38" and Lin"CD34*CD38* compartments.

A maximum of Gap, indicates the statistically optimal cluster number8.

¢, clustering obtained using ICGS®. 4 outlier cells in the Lin"CD34+CD38"
compartment (left panel, blue bar) were characterized by a lower number of
genes detected, but no coherent differences in gene expression (not shown).
d-f, Transcriptomic heterogeneity in the Lin"CD34+*CD38" compartment. d,
>10 principal components in Lin-CD34+CD38" exceed noise. e, Principal
components 2 and 5 of a PCA performed on combined data from both
individuals. Loadings of all genes with annotated cell-cycle phase dependent

gene expression patternsO are shown in the right panel. Cell cycle associated
genes are shifted compared to other genes on PC2 and arranged by peak time
of gene expression on PC5. Scores of all Lin"CD34+CD38 cells are shown

in the left panel. f, Principal components 3 and 4. Loadings of all genes
annotated as CD38*CD10* “CLP” or CD41*CD42+*GP6* “Mk” specific®

are shown, demonstrating that PC3 and PC4 correlate with lymphoid versus
megakaryocytic priming. Scores of all Lin"CD34+CD38" cells are shown in the
left panel. g. Principal components of Lin"CD34+CD38" cells are significantly
correlated to surface marker expression. Data from individual 1 are shown.

h, Expression of neutrophil marker genes in relation to CD45RA and CD135.
See also Main Fig. 4c. i, Expression of cell cycle genes suggests that the
CD10MidFSC-ANigh population is more actively cycling. j, Ki67-Hoechst cell
cycle analyses of IL7R-CD9* and IL7R*CD9- populations, corresponding

to sB and IB respectively. k, Cells from the transcriptomic /m cluster have
intermediate CD38 expression and group with Lin"CD34+*CD38  HSPCs in
t-SNE analysis.
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Supplementary Figure 5 Analyses using STEMNET. a, The similarity of

every cell to each of the progenitor classes was computed by STEMNET

(see methods), projected on a unit circle, and used to quantify the degree
and direction of transcriptomic priming. Data from individual 2 is shown.

b, immunophenotypes highlighted on the STEMNET plot for individual 2.

¢, CD38 surface marker expression highlighted on the STEMNET plot for
individual 1. d, e, Dual lineage primed cells, defined as cells with more than
25% priming in two directions, were highlighted on the STEMNET plot (d) or
in a ternary plot depicting only priming in the Mk, Neutro, and Eo/Baso/Mast
directions (e). f, Rare IRF8*GFI1* progenitors? are not a typical intermediate
stage between granulocytes and monocytes but appear displaced from

developmental trajectories or are fully primed towards individual lineages.
g, Distribution of colony types observed in the index-culture experiment.
Functionally bipotent cells are highlighted. h, i, The transcriptomic lineage
priming of immunophenotypic CMPs depends strongly on the gating
strategy. Cells from the CMP gate (Lin"CD34+*CD38*CD45RACD135%) were
highlighted on the STEMNET plot (upper panels) or as ternary plots (lower
panels). The effect of variations in the CD135 (h) and CD38 (i) gates are
shown. P-values were calculated by kernel-density based tests comparing
each population to CD49f* HSCs. For CD49f* HSCs, n=101 single cells;
CMPs, default gate, n=64; CMPs, relaxed CD38 gate, n=164; CMPs,
stringent CD38 gate, n=24; CMPs, relaxed CD135 gate, n=180.
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SUPPLEMENTARY INFORMATION

1. Specification of tree structure

2. Reorder expression data
(shown: reordered expression of CSF3R, a Neutrophil marker)

3. STEMNET on reordered data
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Supplementary Figure 6 Simulation of data from alternative models of cell
fate specification. a, To demonstrate the ability of STEMNET to identify
subsequent binary branching events, we assumed a scenario where cells
locate on developmental trajectories between universally defined branching
points (left panel, see also methods). For each gene used by STEMNET

as a marker specific to a given developmental endpoint, we

reordered

the expression data to parallel the developmental distance from that
endpoint. The middle panel depicts exemplary the reordered expression of
CSF3R, a neutrophil marker. Finally, we apply STEMNET to the reordered
data set (right panel). b, To simulate data using a more realistic noise

HSC (stringent gate)
other “CLOUD-HSPC”

i i
0.00 0.05

level, we estimated the correlation between developmental distance and
gene expression from the data for each gene (upper panels). We then
reshuffled the expression values such that the correlation between marker
gene expression and (simulated) developmental distance approximates

the correlation estimated from the data (lower panels). c, STEMNET on
reshuffled data. d, To simulate a scenario where HSCs pass through discrete
progenitor cell types, cells were placed near branching points, data was
simulated as described for panel (b), and STEMNET was applied to the
reshuffled data. e. Projection of single cell expression data into diffusion
map spacell.
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Dominant direction of priming = Mk/Ery (Figure 4A)
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Supplementary Figure 7 The quantitative link between index-omics and
index-culture. a, Regression models used to estimate transcriptomic
quantities from FACS surface marker expression. Model coefficients and
the fraction of variance explained in a 10-fold cross validation scheme
(R2) are shown. For genes marked with an asterisk, regression models were
constructed on mRNA expression and applied to FACS surface marker
expression. b, Linkage of the exact predicted direction of transcriptomic
priming (for the cell types with robust colony forming abilities; Neutro, Ery,
Mk) to the actual cell type composition of the ex vivo colonies. Illustration
(left panel) and quantitative linkage (right panel) are shown. The exact
direction of transcriptomic priming was estimated for each founder cell from
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index-culture based on regression models constructed on all surface markers
and compared to the observed colony composition. ¢, CD71 and KEL FACS
marker and mRNA expression in relation to the degree of transcriptomic Ery/
Mk priming and the percentage of Ery/Mk cells in the colony. d, e, As an
additional experimental measure of developmental plasticity, we cultured
single HSPCs for 1 week, split the colony in four and determined the lineage
outcome of the daughter colonies two weeks later. For several colonies, the
lineage output varied significantly across daughters (e, p-values are from

a chi-square test for independence). These colonies tended to derive from
developmentally more primitive cells (d). p-value is from a Pearson product
moment correlation test with n=96 split-in-four experiments.

WWW.NATURE.COM/NATURECELLBIOLOGY

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



SUPPLEMENTARY INFORMATION

1e-3

A Individual 1 (1034 cells) B Individual 2 (379 cells)
0.01 I | TSC ot N ! HSC to pre-B cell
TR T R e e
1 B B (o [ | l 0.01 ‘ ' ‘ ’
oot HSC to Eosinophil/Basophil/Mast Cell p. 0-1 ‘ ‘ ‘ ‘ 1 A I HSC
5.1 HSC to Megakaryocyte/Erythrocyte progenitor
1 1e-8 ' T | ’ l
po L L fTRERTTWTY
5 ". | ‘ ' ’ I lw“ ' ‘ " ‘ " ’ A" " “ ' ' l‘ E HSC to Monocyte/Dendritic Cell progenitor Neutro
1 £
k) A )\ A A A G le-4 | [ ' Y Meg/Er
g HSC to Monocyte/Dendritic Cell progenitor 5 1(39.5‘;s l ‘ " A " Y' ' gEY
2 001 | 1 | | g o1 x ‘ A A A |
ST TV WAL IR [T WL -
A ‘ | | R || | j‘ ‘ | ‘ 33 HSC to Neutrophil progenitor Averaged
%)

HSC to Megakaryocyte progenitor

o o D o0 ] I ' expmansion
N TN w5 i Ml W)
!

HSC to Neutrophil progenitor 1e-3

0.01 ' | 0.01
| |
RN WA AR AT/ (L
L) l 1
PR F R T R F R S F R R SBLEJS5ER $8553:55°%%
LIgSoEo =98 z95g0589pkr2°% LFUE-g=255865 2028 £22z9r- ¥
<353F8EBgMITLC EEFTOUSSECEHE 5 f ER6Z3E-j 8% ERxk5y f£39=E5 2
BEOGE” Y T F 90357 Z5XE = & f fz % ES § 99Tz =3 2o %
3 05 o 5] 9 o o T
Module Module
C  caraztys SPINK2/SELL
GMPR/MINPP1
GATA2/N
CD47/MC!
LEF1/CSF
PPARAHCFC
TAL1/HSF
SPI/GFI
SPRCRELL
HOXA9/CSRNP = —
AlF1/PKM
 ———
1 LT3/SLC2A5
MYB/NFKB
IRF1/CASP ENO1/MYC
=SEy !
NRE EBF1/ID3
CEBRACRRFD EBPA/CEBPD
REREBCL6 o
UBE2L6 -CD99/CD53
% of genes from 12 NOt <30 wm 40 wm 60 wm 80 =W 100
present in 11 module shown
Supplementary Figure 8 Gene modules affected by the onset of lineage. a, b,  individual 1, the overlap with each module from individual 2 is shown. Due
Averaged gene expression of all gene modules, including those omitted from to the higher number of cells analysed, gene modules from individual 2 split
the main figure, was smoothened and plotted against the degree of lineage- up into multiple modules from individual 1, while modules from individual 1
specific priming. Data is shown for individual 1 (a) and 2 (b). ¢, Comparison overlap only with a single module from individual 2. Only genes discovered
between gene modules from individual 1 and 2. For each module from in both individuals were included in this analysis.
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Supplementary Table Legends

Supplementary Table 1 List of antibodies used.

Supplementary Table 2 Genes overexpressed by cell populations in the Lin"CD34+*CD38* compartment.

Supplementary Table 3 STEMNET models.

Supplementary Table 4 Gene modules with dependence on direction and degree of priming.

References

1.

2.
3.
4

o

11.

Doulatov, S. et al. Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid
development. Nat. Immunol. 11, 585-93 (2010).

Notta, F. et al. Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science 333, 218-21 (2011).
Paul, F. et al. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 163, 1663-1677 (2015).

Kowalczyk, M. S. et al. Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells.
Genome Res. 25, 1860-1872 (2015).

Brennecke, P. et al. Accounting for technical noise in single-cell RNA-seq experiments. Nat. Methods 10, 1093-5 (2013).

Chen, L. et al. Transcriptional diversity during lineage commitment of human blood progenitors. Science (80-. ). 345, 1251033-1251033
(2014).

Ohnishi, Y. et al. Cell-to-cell expression variability followed by signal reinforcement progressively segregates early mouse lineages. Nat. Cell Biol.
16, 27-37 (2014).

Tibshirani, R., Walther, G. & Hastie, T. Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. Ser. B (Statistical
Methodol. 63, 411-423 (2001).

Olsson, A. et al. Single-cell analysis of mixed-lineage states leading to a binary cell fate choice. Nature 537, 698-702 (2016).

Santos, A., Wernersson, R. & Jensen, L. J. Cyclebase 3.0: a multi-organism database on cell-cycle regulation and phenotypes. Nucleic Acids Res.
43,D1140-D1144 (2014).

Haghverdi, L., Bittner, M., Wolf, F. A., Buettner, F. & Theis, F. J. Diffusion pseudotime robustly reconstructs lineage branching. Nat. Methods 13,
845-848 (2016).

WWW.NATURE.COM/NATURECELLBIOLOGY

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



	Human haematopoietic stem cell lineage commitment is a continuous process
	RESULTS
	Early haematopoiesis is a continuous process
	Lineage-restriction downstream of the HSPC continuum
	Developmental trajectories of early human haematopoiesis
	Transcriptomic priming mediates lineage commitment
	Molecular processes underlying HSC commitment

	DISCUSSION
	METHODS
	ACKNOWLEDGEMENTS
	AUTHOR CONTRIBUTIONS
	COMPETING FINANCIAL INTERESTS
	Figure 1 Experimental strategy.
	Figure 2 A stem and progenitor cell continuum precedes the establishment of discrete lineages at the CD34+CD38+ stage.
	Figure 3 The Lin-CD34+CD38+ compartment consists of distinct lineage-restricted progenitors.
	Figure 4 Characterization of Lin-CD34+CD38+ lineage-restricted progenitors.
	Figure 5 Visualization of the HSPC continuum.
	Figure 6 The direction of transcriptomic priming is quantitatively linked to functional lineage potential.
	Figure 7 The degree of transcriptomic priming is quantitatively linked to multipotency and proliferative capacity.
	Figure 8 Lineage commitment is a layered multi-step process.
	METHODS
	Bone marrow aspirations.
	Flow cytometry.
	Single-cell liquid cultures (`index-cultures').
	Mouse experiments.
	Single-cell transcriptome sequencing (`index-omics').
	Raw data processing and quality control.
	Data normalization using posterior odds ratio.
	Clustering.
	STEMNET.
	Statistics and reproducibility.
	Code availability.
	Data availability.




