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Abstract

Dissecting the molecular basis of quantitative traits is a significant challenge, and is
essential for understanding complex diseases. Even in model organisms, precisely
determining causative genes and their interactions has remained elusive, due in part
to difficulty in narrowing intervals to single genes, and in detecting epistasis or linked
guantitative trait loci. These difficulties are exacerbated by limitations in experimental
design, such as low numbers of analyzed individuals, and polymorphisms between
parental genomes. We address these challenges by applying three independent
high-throughput approaches for QTL mapping to map the genetic variants underlying
eleven phenotypes in two genetically distant Saccharomyces cerevisiae strains,
namely: 1) individual analysis of over 700 meiotic segregants, 2) bulk segregant
analysis, and 3) reciprocal hemizygosity analysis, a new genome-wide method we
developed. We identified differences in the performance of each approach and, by
combining them, identified eight polymorphic genes that affect eight different
phenotypes: colony shape, flocculation, growth on non-fermentable carbon sources,
and resistance to drugs, salt, and heat. Our results demonstrate the power of
individual segregant analysis to dissect quantitative trait loci and address the
underestimated contribution of interactions between variants. We also reveal
confounding factors like mutations and aneuploidy in pooled approaches, providing
valuable lessons for future designs of complex trait mapping studies.



Introduction

Most medical and agricultural traits are complex, influenced by multiple alleles with
different effect sizes that interact to produce inherited phenotypic variation. Previous
studies in model organisms (STEINMETZ and DAvis 2004; EHRENREICH et al. 2009;
FLINT and MAckAY 2009; FLINT 2011) have yielded insights into genetic principles that
shape complex traits. These studies have shown that besides major quantitative trait
loci (QTLs) with large effects, many loci with smaller effects contribute to phenotypic
variation. Indeed, although many alleles have been associated with complex traits in
humans, their individual and cumulative effects are usually small (<10%) (LANGO
ALLEN et al. 2010). Further studies have revealed extensive context-dependent
effects such as epistasis or genotype-by-sex interactions, as well as pleiotropic
effects, most instances of which have likely not been detected. Hence understanding
the genetic basis of complex traits remains an open challenge (STRANGER et al.
2011).

In this study, we applied three high-throughput methods for the first time to
comprehensively identify causative variants underlying eleven phenotypes in two
genetically distant yeast strains, S96 and SK1 (LiTI et al. 2009; SCHACHERER et al.
2009). Each method begins with a hybrid generated by crossing these two strains.
The first method is the commonly used Bulk Segregant Analysis (BSA) (SEGRE et al.
2006; BIRKELAND et al. 2010; EHRENREICH et al. 2010; WENGER et al. 2010; PARTS et
al. 2011; SWINNEN et al. 2012), in which, millions of segregants from the hybrid
undergo selection under an environmental pressure. Quantitative trait locus (QTL)
mapping is then performed by identifying regions of allelic enrichment via sequencing
of the pool (Figure 1).

The second method utilized here is Individual Segregant Analysis (ISA) of 720
segregants from the hybrid. These segregants were genotyped by next-generation
sequencing (WILKENING et al. 2013) and individually phenotyped to detect genomic
regions linked to the phenotypes of interest (Figure 1). Most previous QTL mapping
studies in yeast have been performed with sample sizes on the order of 100
segregants and up to 3000 markers (average SNP distance: 4 kb) (STEINMETZ et al.
2002; BREM et al. 2005; GATBONTON et al. 2006; Foss et al. 2007; Hu et al. 2007,
MARULLO et al. 2007; NoGAmI et al. 2007; PERLSTEIN et al. 2007; EHRENREICH et al.
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2009; LI et al. 2013). Our experiment thus increases the sample size by 7-fold and
the number of markers by 20-fold (average SNP distance: 150 bp). To date, only one
study with a similar number of segregants (1008) has been published; however, it did

not detect causative genes (Bloom et al. 2013).

To attain QTL mapping at single-gene resolution, we developed and applied a third
method termed Reciprocal Hemizygosity Scanning (RHS). For this method, we
constructed a hemizygous deletion collection in the hybrid by deleting either the SK1
or the S96 allele and replacing it with a kanamycin resistance gene (KanMX) and a
molecular barcode (Figure 1) (WINZELER 1999). This collection includes ~75% of the
open reading frames (ORFs) in the yeast genome, allowing for the direct comparison
of allelic variants within a single pooled experiment on a genome-wide scale
(STEINMETZ et al. 2002; STEINMETZ and DAvis 2004). This is the first report of this
genome-wide approach including more than 19,000 hemizygous strains (~4,861

genes deleted in duplicate per background).

Overlaying QTLs detected by these three methods yielded extremely high resolution,
allowing us to identify the putative allelic variants underlying eight phenotypes. We
also discovered strong interactions between QTLs and differences between the three
approaches, which can partially be explained by different experimental parameters
(e.g. period of growth), but also by confounding factors such as accumulation of

mutations influencing the pooled RHS and BSA approaches.

Materials and Methods

Yeast strain generation

Haploid strains from S288c (BY4742 prototrophic MATalpha, referred to as “S96”)
and SK1 (SK1 MATa ura3A his3A flo8A canlA::STE2pr-HIS3) were crossed and an
individual hybrid strain was sporulated by transferring the cells grown in YPD (Yeast
Extract 10g/L, Bacto Peptone 20g/l, Dextrose 20g/L) to 200ml sporulation medium
(0.5% (w/v) potassium acetate) and incubating them at 22°C with agitation. After

spreading the cells on YPD plates, 768 clones were randomly picked in eight 96-well
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plates, grown overnight, and stored as glycerol stocks. This set of segregants can be
copied and sent to other labs upon request. For BSA, we crossed our haploid SK1
strain, in which the PMS1 open reading frame was exchanged with its S288c version
to make it more genetically stable (HECK et al. 2006; DEMOGINES et al. 2008b) (SK1
MATa ura3A his3A flo8A canl-A::STE2pr-HIS3 PMS1[S288c]), with an S96 strain
(BY4742 MATalpha ura3A his3A canlA::STE2pr-HIS3). Two independent crosses
were grown in 100ml YPD until ODgponm = 1 and sporulated as described above. We
used the Synthetic Genetic Array (SGA) marker system to select for MATa strains on
SD plates lacking histidine and supplemented with L-canavanine (60mg/ml) (TONG et
al. 2001; PAN et al. 2004). The resulting colonies were scraped off the plates with an
estimated number of 4x10® independent segregants per pool. Aliquots of the pool
were frozen at -80°C in 15% glycerol for later use. ENA6 was amplified from genomic
DNA of SK1 and cloned into the p416 expression vector (MUMBERG et al. 1995) using
Spel and Xhol restriction sites (Table S1). The empty plasmid as well as the ENA6-
containing plasmid were transformed into SK1 cells and tested in normal and high

salt conditions.

Genotyping

Both ISA and BSA analyses were performed with the same 65,234 single nucleotide
polymorphisms (SNP) positions, as described before (WILKENING et al. 2013). In brief,
sequences were aligned to the S288c reference genome (SGD), using Novoalign
and only allowing unigue alignments. Realignment of the subsequent BAM files, SNP
calling and genotyping were performed using GATK (MCKENNA et al. 2010). For ISA
segregants, missing genotypes were imputed with BEAGLE (BROWNING and
BROWNING 2007). In total, 768 segregants were sequenced, but from the coverage,
aneuploidies were detected in 26 individual segregants (WILKENING et al. 2013). After
exclusion of these aneuploid strains, strains with low coverage or contamination, 720

segregants were used for subsequent analyses.

QTL mapping
For ISA, we estimated the genetic map for our dataset and calculated the LOD score
at each position using R/qtl (BROMAN et al. 2003). The threshold at 5% significance

level was estimated using the permutation test implemented in R/qtl.



To identify smaller effect QTLs and interactions between QTLs for the high salt and
high temperature phenotypes, we stratified the ISA samples according to the major
QTL allele prior to repeating QTL analysis. In principle this is similar to using the
genotypes at major QTLs as a covariate, as described in previous studies (Broman
2001). For BSA the allele frequency was calculated at each SNP position for all
conditions. The allele frequency was fitted using local polynomial regression
assuming binomial distribution and confidence intervals were called using a
bootstrapping method. To determine whether the allele frequency at the peak for a
given condition was significant compared to the control (YPD 30°C, 100 generations),
a permutation test was performed for each peak and p-values were corrected using
Benjamini-Hochberg (details in Supplementary Notes).

We also performed an in silico comparison of the ISA method with a simulated BSA
using only the best performing strains (pool of 50 segregants with extreme
phenotypes) for eight of the phenotypes analyzed in this study (Figure S1).

Estimating heritability of traits

A genomic selection method was used to estimate, for each trait, the proportion of
phenotypic variance that could be explained by using all the 65,234 markers used for
QTL mapping. Ridge regression best linear unbiased prediction (rrBLUP) was applied
using the rrBLUP package (ENDELMAN 2011). The model has two components of
error, genetic variance (Vg) and error variance (Ve). The heritability of the trait, which
is the proportion of phenotypic variance that can be explained by all genetic markers,
can be estimated by calculating Vg / (Vg + Ve). For estimating narrow sense
heritability, the additive kinship matrix described in the rrBLUP package was used as
the relationship matrix, and for estimating broad sense heritability, the non-additive

Gaussian kernel was used.

Phenotyping

For ISA, individual strains were phenotyped in 96 well plates by growth curve
analysis (PROCTOR et al. 2011). Cells were grown overnight in YPD to saturation to
obtain similar densities for all strains. These colonies were replicated in the medium
of interest in transparent 96-well plates and grown until saturation (usually 1-2 days).
Doubling times were calculated from OD measurement of liquid cultures at a

wavelength of 595nm in a plate reader (Genios, Tecan) as previously described (ST
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ONGE et al. 2007). The relative fithess was calculated as (1/doubling time at stress
condition)/(1/doubling time in YPD at 30°C). The phenotype “fitness YPD” was
calculated as 1/doubling time in YPD at 30°C. “OD saturation” refers to the ODsg5nm

at the saturation phase.

In addition, a colony-size assay was performed for high salt phenotype by replicating
YPD overnight cultures on agar plates and growing them for 2-4 days, until an
average colony diameter of ~5mm was reached. To determine colony sizes, photos
were taken of the agar plates and processed with the CellProfiler software
(CARPENTER et al. 2006). The relative fitness in a specific condition was calculated
as: log (colony size treatment) - log (colony size control). To account for variability
between plates, the colony sizes were normalized using the median colony size per
plate. Colony shapes were determined by visual observation of the control plates

(30°C YPD) used for the colony-size assay.

Bulk segregant analysis (BSA)

BSA was done similarly to the approach in Parts et al. (PARTS et al. 2011). In brief,
two independent pools of segregants from an S96 x SK1 cross (see Yeast strain
generation) were grown in 100ml YPD for 4h. From this pre-culture, 400ml of each
specific condition medium (treatment) and of YPD (30°C control) were inoculated
with a starting ODgoonm = 0.08 and grown until ODgoonm = 2. This dilution step was
repeated to keep cells in continuous exponential growth for ~100 divisions. The cells
were then collected and kept at -80°C for later DNA isolation and library preparation.

Sequencing library preparation

Genomic DNA from individual (ISA) or pooled strains (BSA) was isolated from fresh
and frozen cell pellets with the PrepEase kit (USB). Adapters were ligated to
sonicated DNA as previously described (WILKENING et al. 2013). After size selection
on an E-Gel (Invitrogen), libraries were amplified with Illumina paired-end primers,
cleaned, and sequenced (105 bp paired-end) on a HiSeq 2000 (lllumina).

Reciprocal Hemizygosity Scanning (RHS)
Both alleles of each gene in the genome were individually deleted in the SK1 x S96

hybrid, and replaced with a molecular barcode and a kanMX4 cassette. The resulting
7



RHS pools were grown for 40 generations in the following conditions: YPD 30°C,
YPD 38°C, YPD + 350mM NaCl, YPD + 350uM cantharidin. Genomic DNA from the
pool was extracted, the uptags and downtags containing the barcodes were amplified
by PCR, and hybridized to Tag4 Microarrays (Affymetrix) (PIERCE et al. 2007).
Fitness of each deletion strain was deduced from the signal intensity of the barcodes
on the microarray. For each gene, the selection coefficient s (or relative growth rate
of the strain in the pool) was estimated using the log, fold change of normalized
signal intensity between the initial and final timepoints (details in Supplementary
Notes). The allelic effect at each locus was calculated as the difference between the

selection coefficients (AS = Ssk1 — Ssos)-

Confirmation of QTLs

To test the effect of a gene variant on a specific trait, the open reading frame (ORF)
+/- 300bp was deleted by homologous recombination. For S96 a CORE cassette
(SToricl et al. 2001) (kindly provided by Michael Knop) with KIURA3 (counter-
selectable) and kanMX4 (reporter) markers was inserted by standard DNA targeting
procedures (GIETz and ScHIESTL 2007) at the respective ORF locus. For SK1
transformation was done by electroporation (as described in
http://www.koko.gov.my/CocoaBioTech/DNA%20Cells36.html). Cells were then

spread on synthetic dextrose plates supplemented with geneticin (G418, 400ug/ml)
and lacking uracil for 3-4 days at 30°C. The correct integration site was confirmed by
colony PCR with internal and external primers (Table S1). For allele replacement
experiments, cells were transformed with the ORF region +/- 600bp amplified from
the strain carrying the desired allele. Counterselection for the CORE cassette
excision was performed by selection on plates containing 5-fluoroorotic acid (5-FOA,
1g/L).

Computational detection of genetic interactions

Apart from the stratification of the samples according to the major QTL, to identify
QTLs acting in a specific background, the Interaction Distance method (ID) (IGNAC et
al. 2012) was applied. ID is based on merging interaction information, a
generalization of mutual information to three variables, and the normalized
information distance, a metric of the amount of information shared between two

variables. ID was applied to measure dependence between two genetic markers and
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a phenotype, allowing us to detect the presence of interactions between the QTLSs.
Positive ID values indicate redundant information between markers with strong
effects on the phenotype (due to linkage or genetic redundancy); negative values
indicate synergy between the markers in predicting the quantitative phenotype. To
estimate the statistical significance of an ID value, we computed IDs between one
million randomly generated markers given the same phenotype. A candidate
interaction was considered significant if its p-value was less than 0.005. In applying
ID, we discretized the variables: for example, the phenotype in high temperature
growth was discretized into four bins of equal size. To reduce computational
requirements, we initially reduced the number of markers to 1226 by identifying
blocks of highly correlated markers. Figure S2A shows the significant interaction
candidates among the reduced set of markers. For the high-resolution interaction
analysis in the TAO3-MKT1 region, we then selected all markers with the appropriate

coordinates from the full marker set.

Results

We performed QTL mapping on 11 distinct traits using three high-throughput
approaches (BSA, ISA, and RHS). In the following, we present the QTL mapping
results of these independent approaches, ranging from a simple Mendelian trait, to
non-selectable traits with two to three QTLs with similar effect sizes, to complex traits
driven by many QTLs with different effect sizes. Five of these traits were analyzed
with all three methods, which allowed us to evaluate their performance in QTL
detection. Finally, our large set of individual segregants allowed us to identify

interactions between QTLs within specific phenotypes.

BSA, ISA, and RHS effectively detect the causal QTL for cantharidin resistance.
We first evaluated the three methods (ISA, BSA, and RHS) to map QTLs for a
Mendelian trait (cantharidin resistance), where S96 is resistant and SK1 is sensitive
to cantharidin. With ISA, we mapped a single interval of ~1kb (LOD >200) on
chromosome (chr) 8 (Figure 2). Within 3kb of this interval a BSA QTL was called,
with the S96 allele highly enriched (~95%); this QTL was found in both biological
replicates, while several additional BSA peaks with similar amplitudes were not. The

gene CRG1 was located in the strongest QTL peak in ISA and was also the top RHS
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hit (Figure 2). We confirmed the causative role of CRG1 by individually phenotyping
the RHS hemizygous strains, demonstrating that deletion of the S96 CRG1 allele
abolished cantharidin resistance (Figure S3). Individual and combinatorial
replacement of the two nonsynonymous CRG1 SNPs (D82E and Y119C) indicated
that both are necessary for cantharidin resistance in S96: 60 colonies of SK1 cells
carrying both SNPs grew on cantharidin plates but none from the single SNP
replacements. Our results are consistent with previous reports that CRG1 confers
cantharidin resistance (NIEWMIERZYCKA and CLARKE 1999; HOON et al. 2008; LISSINA
et al. 2011). Crgl has been shown to mediate resistance to cantharidin by direct
methylation of the compound, rendering it non-toxic for yeast (LISSINA et al. 2011).
Our results suggest that the enzymatic activity of Crgl or its interaction with
cantharidin is impaired by this change of two amino-acids. Thus collectively, our
results demonstrate that all three approaches successfully detect the true QTL for

this Mendelian trait.

ISA detects QTLs for two non-selectable traits.

We next analyzed two non-selectable traits that clearly differed among the parental
strains and segregants, namely colony shape and flocculation. For these traits, BSA
and RHS approaches could not be performed since they use pooled phenotyping and
require a selective pressure. SK1 cells form a wrinkled colony shape on agar plates,
whereas S96 cells form smooth colonies (Figures S4 and S5). 8.5% of the progeny
formed wrinkled colonies, which suggests that the trait is conditioned by three or four
independent genes (probability of 0.5% to 0.5* when assuming the same effect size).
Consistent with this estimate, we identified three QTLs which, using gene deletion
and allele replacement, we narrowed down to three genes (AMN1, MUC1 and SFL1,
Figure S5) required for the wrinkled SK1-like colonies.

While neither of the parental strains flocculated, one-quarter of the segregants did
(23% in rich lactose medium), suggesting that two independent genes condition the
phenotype. Indeed, we detected two QTLs (Figure S4), each of which contains a
gene known to modify flocculation: the FLO1 allele (HobGson et al. 1985) from the
S96 background (disrupted in SK1 according to our sequencing data) and the SFL1
allele (FuJita et al. 1989) from the SK1 background (which harbors a premature stop

codon at amino acid 477 in SK1). For SFL1, the calculated maximum LOD score in
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the QTL was within the gene and even close to its premature (likely causative) stop
codon in SK1. By narrowing the QTLs of these physical phenotypes down to the
presumably causative genes, we demonstrate the ability of ISA to map QTLs at high

resolution in these non-selective binary traits.

From simple to complex traits

In our study, the average confidence interval size for QTLs detected in ISA was 6¢cM
(~18kb). This resolution was much higher compared to previous studies, where
interval size has ranged from 16¢cM (STEINMETZ et al. 2002) to 19cM (SINHA et al.
2008). Given the successful identification of causative genes for less complex traits,
we applied ISA to eight quantitative traits showing a continuous distribution among
the segregants (Figure 3 and Table S2). We used these results to estimate the extent
to which increasing the number of segregants improves the resolution of QTL
detection (Figure S6 and Table S3). Our results suggest that for complex,
multifactorial traits, increasing the number of segregants from 200 to at least 600
improves the resolution by more than 2-fold (Figure S6), but has no effect for
Mendelian traits. Four of these complex growth traits (ethanol, 5-fluorouracil (5-FU),
high salt concentration, and high temperature) were also analyzed by BSA and RHS.
In contrast to the physical traits, these traits are more suitable for BSA and RHS
since the fittest strains can be selected via pooled growth. However, our RHS
approach displayed a high false positive rate (discussed later) and RHS results are

therefore not shown.

ISA uncovers the architecture of the complex high-salt tolerance trait.

We combined ISA and BSA to dissect the high-salt tolerance trait as thoroughly as
possible. At a high salt concentration (350 mM NacCl), S96 grew faster than SK1 and
their progeny showed a continuous distribution of growth rates. Six QTLs were
identified with ISA and eight with BSA, two of which overlapped (chr 4 and chr 16).
The chr 4 QTLs were the strongest identified by each approach (Figure 4; BSA:
Table S2; ISA: LOD >50, cutoff LOD = 3.5). Within the 95% confidence interval of
these QTLs lies a cluster of ENA genes encoding sodium pumps, which are known to
confer salt resistance (HARO et al. 1991). In contrast to a cluster of five highly similar
ENA genes present in S96 (ENA1-5), SK1 carries only one copy of ENAG6, a

phylogenetically distant ENA gene (DARAN-LAPUJADE et al. 2009). ENA copy number
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variation has been associated with high salt tolerance across different yeast strains
(WARRINGER et al. 2011). Accordingly, we found that overexpressing ENAG6 increased
salt resistance in SK1 cells (Figure S7). Moreover, we determined that ENA copy
number accounts for 20% of the phenotypic variance. Our results thus demonstrate

the ability of both ISA and BSA to successfully identify a large-effect locus.

However, identification of the major QTL is often not sufficient for understanding the
genetic basis of a trait. If the sample size is too small, the phenotypic variance
caused by a large effect QTL like the ENA locus can be overestimated and the QTLs
with smaller effects will be obscured. To overcome this risk and identify additional
QTLs for salt tolerance, we stratified the ISA segregants according to their ENA
genotype and repeated the QTL analysis. This highlighted the contribution of QTLs
with high LOD scores (chr 3, 5, 14, 15, 16) even in the detrimental SK1 ENA
background (Figure 4). We thus identified six QTLs that explain more than 80% of
both narrow (additive genetic factors) and broad sense heritability (all genetic factors
including genetic interactions) (VISSCHER et al. 2008) (Table S4), suggesting that we
have captured most of the causative alleles. These results demonstrate that allelic
stratification can reveal additional QTLs and thus enable a more comprehensive

dissection of complex traits.

Six of eight BSA QTLs were specific to BSA, in which cells were cultured for 5-9 days
(versus 1-2 days in ISA). To test whether the difference in QTL detection could be
attributed to long-term effects, we performed a colony size assay on agar with the
ISA segregants (2-4 days in culture). In segregants with the S96 ENA background,
we observed a beneficial effect on chr 9, where one of the BSA-specific QTLs was
also detected (Figure 4). This observation suggests that variations in experimental
procedures, such as assay duration, can lead to the detection of different QTLs. The
combination of several methods could thus be a strategy to more thoroughly resolve

the alleles responsible for a complex trait.

Mapping of high temperature QTLs reveals major differences between ISA and
BSA.
We then applied both BSA and ISA to dissect another selective phenotype, high

temperature growth. At high temperature (38°C), S96 grew faster than SK1 and five
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QTLs were identified with ISA and three with BSA. Only the QTL on chr 9 (S96 allele
beneficial) was common between these two approaches (Figure 5). Within this QTL,
we identified TAO3 as the gene responsible for high temperature resistance, which
we confirmed by allele replacement. By applying the stratification method described
in the previous section, we identified additional smaller effect QTLs that act
specifically in the SK1-TAO3 or the S96-TAO3 background. We were able to
separate a double LOD peak on chr 14 (Figure 5, lower right image): the left peak
was mapped in the SK1 TAO3 background, and the right peak (including MKT1) in
the S96 TAO3 background. By generating strains with all four combinations of TAO3
and MKT1 alleles in the S96 background, we confirmed that the effect of the MKT1
variant was indeed larger in combination with the S96 TAOS allele (Figure 5, lower
left image). These results show that the resolution of our ISA approach is sufficient to
identify two QTLs within a distance of less than 100kb (Figure 5), and demonstrate
the power of ISA for detecting epistatic genetic interactions. The identified QTLs
explain ~59% and 47% of the narrow sense and broad sense heritability respectively

(Table S4), suggesting that several additional causative alleles remain undiscovered.

Mapping genetic loci associated with growth on ethanol, glycerol, and 5-FU.
For growth with ethanol as the carbon source (YPE), both ISA and BSA detected a
QTL on chr 14 and the SK1 allele of MKT1 was confirmed as causative for improving
growth in YPE by allele replacement (Figure S7 and S8). In addition to its impact on
high temperature growth, we also confirmed that the SK1 allele of TAO3 (lying within
a major ISA QTL on chr 9) significantly improves growth in media containing glycerol
as the carbon source (YPG) (Figure S7). Finally, for growth in 5-Fluorouracil (5-FU),
one QTL was identified by both ISA and BSA on chr 5 (likely due to a URA3 deletion
in the SK1 background). None of the other BSA QTLs were reproducible between the
two biological replicates (Figure S8). Using ISA, however, we successfully identified
and confirmed by allele replacement that MKT1 (within the QTL of chr 14) is
causative for improved growth on 5-FU.

ISA allows the detection and characterization of genetic interactions.
The complete dissection of complex traits can be hindered by non-additive genetic
interactions, but also by the presence of closely linked alleles, which often remain

undetected despite their contribution to phenotype. We previously reported one such
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linked region surrounding MKT1 on chr 14 (STEINMETZ et al. 2002), which could
explain the missing heritability (both narrow and broad) observed for high-
temperature growth. In fact, the experimentally validated MKT1-TAO3 interaction
responsible for high-temperature growth lies in regions of high linkage. We observed
that the LOD profile for high-temperature growth has many local peaks on chr 9 and
chr 14, which carry TAO3 and MKT1 respectively (Figure S2A). If we include all
markers on chr 9 and chr 14 for estimating the heritability, more than 65% of both
narrow and broad sense heritability can be explained (Table S4), suggesting the
presence of closely linked, interacting QTLs. To dissect these interactions at a finer
resolution, we applied an interaction distance method (IGNAC et al. 2012). A subset of
1226 markers was used to identify regions with the strongest interactions on chr 9
and chr 14. These regions of interaction were further analyzed with a denser marker
set, and our results suggest that both regions contain more than one causative locus,

and that these loci interact with each other (Figure S2A).

The interaction Distance method (IGNAC et al. 2012) allowed us to detect both
redundancy and synergistic effects between ISA QTLs for growth in YPE and YPD
(Table S5 and Figure S2B). Our results demonstrate that ISA is a powerful method to
detect and characterize genetic interactions, which must be accounted for to explain

phenotypic variance in complex traits.

Several factors confound QTL detection in pooled approaches.

We next assessed the impact of experimental factors that confound QTL
identification for each approach, which may partly explain their differing results. While
for most traits, BSA QTLs of both biological replicates were nearly identical, they
varied widely between replicates for resistance to cantharidin and 5-FU (Figure 2 and
Figure S8). Sequencing the 5-FU BSA pools revealed nonsense mutations in genes
conferring resistance to the drug (FUR4, URA2), suggesting that individual cells
acquired beneficial mutations and overtook the population, causing the enrichment of
false positive loci. This effect is specific to bulk selection approaches, and is likely to
occur for all phenotypes for which single mutations can confer a significant growth
advantage. The impact of such confounding mutations would be expected to

increase with the strength and length of the selection procedure.
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Besides mutations that cause resistance in BSA and aneuploidy in RHS, we
determined diploidization to be another confounding factor during long-term selection
in BSA. We sequenced BSA pools at different timepoints during selection at high
temperature. A decrease of an initially strong SK1 allele enrichment on chr 3 (from
~100% to 50% allele frequency) was observed between generations 16 and 24
(Figure S10). This loss was detected in all of our BSA experiments and can also be
observed in other studies (EHRENREICH et al. 2010). This enrichment of SK1 alleles
on chr 3 corresponds to the MATa locus used for the initial selection of haploid
progeny for BSA. Mating-type PCR (HUXLEY et al. 1990) performed on 32 individual
clones after 100 generations confirmed that all cells had become diploid at this stage.
This implies that a small number of MATalpha cells in the initial BSA pool mated with

MATa cells, and that these diploid cells then overtook the population.

As described earlier, RHS results displayed a high rate of false positive hits for our
complex traits. Resequencing 50 of the RHS deletion strains revealed numerous
chromosomal aberrations, which mostly consisted of triploidies. 12 of 38 false
positive strains and four of 12 randomly selected strains were aneuploid (see Table
S6 and Figure S9 for details). Since these aberrations affect many genes, their
consequences are likely to obscure allelic differences at a single locus, especially
when these are more subtle as for complex traits, and can thus lead to false

positives.

These observations suggest that both pooled methods are vulnerable to genetic
alterations that can render the detection of truly causative QTLs difficult. These
confounding factors should therefore be taken into account by adapting the
experimental approaches, for example by decreasing the duration of selective

pressure, or comparing additional biological replicates.

Discussion

Despite intensive efforts, dissecting the genetic basis of complex traits is a persistent
challenge. Several methods have been developed, including pooled approaches

such as BSA, allowing for millions of individuals to be tested in a single experiment.
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Using next-generation sequencing techniques, a large numbers of segregants can
now be individually genotyped at a reasonable cost (WILKENING et al. 2013), enabling
higher-resolution QTL mapping. To further increase resolution to the level of
individual genes, we also developed and applied the RHS method. In the following
section, we discuss the biological impact of quantitative trait gene (QTG)
identification for two dissected traits (wrinkled colony shape and flocculation),
confounding factors of pooled approaches like BSA and RHS, and the importance of

interactions between QTLSs.

QTGs for wrinkled colony shape and flocculation are closely related.

For wrinkled colony shape we identified three QTGs (Figure S4), which are also
known to modify flocculation. Among these, AMN1 encodes a protein required for
daughter cell separation (WANG et al. 2003) and cell clumpiness (YVERT et al. 2003).
It has not been associated with colony shape before, but was recently implicated in
flocculation (LI et al. 2013). Moreover, a loss-of-function mutation in the S96 AMN1
allele (D368V) has been reported to cause widespread gene expression changes
(YVERT et al. 2003; RONALD et al. 2005). Another gene we identified as linked to
flocculation is MUC1 (also known as FLO11), which encodes a key cell surface
protein required for flocculation, as well as invasive and pseudohyphal growth (Lo
and DRANGINIS 1998). Furthermore, the number of serine/threonine-rich tandem
repeats in MUC1 has been linked to flocculation strength (VERSTREPEN et al. 2005;
Liu et al. 2007), and this region is 1.1kb shorter in SK1, corresponding to ~12 repeats
vs. 40 repeats in S96 (for primer sequences see Table S1). MUCL1 expression level
has also been connected to colony shape (BARRALES et al. 2008; WHITE et al. 2011;
VOORDECKERS et al. 2012). The third gene we identified is SFL1, which is a known
flocculation inhibitor (FuJITA et al. 1989). Its deletion causes wrinkled colony shape in
the 21278b background (HALME et al. 2004), which is consistent with our observation
that the SK1 allele of SFL1 with its premature stop codon is required for wrinkled
colony shape. Despite AMN1, MUC1, and FLOS5 having previously been implicated in
flocculation (GOVENDER et al. 2008; Li et al. 2013) and the first two genes showing an
effect on colony morphology in our study, we did not see any effect of these
polymorphisms on flocculation in our background, as no QTLs for flocculation were
detected at these genes. However, SFL1 was detected as a QTL for both traits.
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Two pleiotropic genes were identified across the traits tested.

We confirmed by allele replacement that two QTGs modify multiple phenotypes
(TAO3, MKT1) (Figure 3). We found that the SK1 allele of the well-known pleiotropic
gene MKT1 was beneficial for three growth phenotypes (high temperature, YPE, and
5-FU, Figure 3 and Figure S7). Previous studies have found MKT1 to modify high
temperature (STEINMETZ et al. 2002), sporulation (DEUTSCHBAUER and DAvis 2005),
petite frequency (DIMITROV et al. 2009), DNA repair (DEMOGINES et al. 2008a) or drug
sensitivity (Kim and FAy 2009; EHRENREICH et al. 2010). The most likely causative
polymorphism is a D30G mutation, with G being conserved across all other
sequenced strains (SWINNEN et al. 2011). Moreover, as reported by Zhu et al. (ZHu et
al. 2008), MKT1 is a global regulator of gene expression and can therefore influence
many traits. Similarly, TAO3 was identified as a QTG in two phenotypes (high
temperature and YPG, Figure 3 and Figure S7) in our study. This gene has
previously been identified as a causative QTG for sporulation (DEUTSCHBAUER and
DAvis 2005) in the same strain background (SK1 x S96), but has not been connected
to high temperature resistance before our study. Finally, the implication of SFL1 in
colony shape in this study along with its previous implication in flocculation (FUJITA et
al. 1989) suggests that this gene is also pleiotropic. On the other hand, QTLs
identified for growth in three different non-fermentable carbon sources (lactose =
YPL, ethanol = YPE, glycerol = YPG) did not overlap (Figure 3), suggesting the
absence of gene variants that globally influence the metabolism of non-fermentable
carbon sources (e.g. enzymes of the Krebs cycle or mitochondrial respiration) in our

strain background.

Analyses of pooled approaches suggests potential confounding factors.

Unlike morphological traits, phenotypes that confer a growth advantage under a
specific condition are especially suited for BSA and RHS, as phenotypic selection
can be performed in bulk. The BSA approach is relatively fast and easy and confers
a significant advantage over the other two approaches in terms of time and cost.
However, we observed that spontaneous mutations conferring resistance to the
selective pressure can lead to biased results. Assuming a low number of cells with
an advantageous mutation in the original BSA pool, a shorter selection time (e.g. 10-

30 generations) might alleviate this effect. Moreover, the analysis of multiple
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timepoints and biological replicates should help to identify true QTLs for traits with a

strong selective pressure.

Additionally, the use of a BSA pool with haploid segregants harbors the risk of
diploidization, as seen in our time-dependent high-temperature QTL maps (Figure
S10). This observation is in accordance with a recent study showing the invasion of
diploids in a population of haploids despite no apparent growth advantage (GERSTEIN
and OTTO 2011). The presence of heterozygous strains diminishes the enrichment of
beneficial alleles, since for dominant alleles the allele frequency would rarely reach
100% because of recessive allele remaining in the heterozygous strains. To avoid
the diploidization of haploid segregants in BSA, the strains could be diploidized in
advance. The haploid segregants could also be independently phenotyped, followed
by genotyping the pool of strains with extreme phenotypes. Nevertheless, even this
method would still be limited by large-effect QTLs masking smaller-effect QTLs.
Moreover, as explained earlier, genetic interactions are not detectable with BSA, nor
does it allow the separation of linked QTLs. Thus, combining the modified BSA
strategies above with ISA should compensate for these limitations and lead to a more

comprehensive understanding of the genetic architecture of complex traits.

The genome-wide RHS approach developed in our laboratory is based on individual
gene deletions and successfully identified the causative gene for a Mendelian trait
(cantharidin resistance). It should theoretically have performed best at identifying
individual causative genes; nevertheless, it displayed a high false positive rate for
complex traits, most likely caused by chromosomal aberrations (Figure S9). A related
recent study also reported incidences of aneuploidies and mutations, leading to high
false positive rates (Kim et al. 2012). This issue could be circumvented either by
sequencing all strains and eliminating aberrant genotypes, or by constructing
additional replicate strains. With the emergence of more efficient gene editing
techniques, e.g., CRISPR/Cas (CoNG et al. 2013), an RHS-type approach could also
be feasible in the near future for human cells, which should enhance the detection of
functional alleles for phenotypes with medical implications (e.g. drug resistance,
cancer development and progression).

Different culture times might contribute to BSA-ISA differences.
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For high salt resistance, different QTLs were detected between BSA and ISA. One
factor likely contributing to these differences is the longer culture time in BSA. Our
results using a longer-term colony assay in ISA (Figure 4) suggest that in the BSA
pool, an early selection for the advantageous S96 ENA allele occurred, followed by
enrichment of beneficial alleles in this background. This effect has also been
observed in two studies, which identified different QTLs depending on sporulation
time (DeEUTSCHBAUER and DAvis 2005; BEN-ARI et al. 2006). This selection for large-
effect QTLs and the subsequent enrichment of additional alleles in this background is
a caveat to BSA studies, as QTLs acting specifically in the presence of the
detrimental major QTL allele would be overlooked. This problem can be avoided by

using ISA, where genotypic stratification of segregants can be performed.

Gene-gene interactions and linked QTLs hinder the identification of QTGs.

Besides large-effect QTLs masking the genetic effects of other causative genes, the
difficulty of dissecting quantitative traits is increased by two factors even in an ISA
approach. First, synergistic interactions can occur between functionally related genes
(PEREZ-PEREZ et al. 2009). With the interaction distance method we detected
synergistic gene-gene interactions, similarly to Bloom et al. (BLoowm et al. 2013), as
well as redundancy effects (Table S5). We found very little overlap between these
interaction pairs and those found using synthetic lethality screens (TONG et al. 2001,
TONG et al. 2004), suggesting that natural and synthetic variant interactions may
shape phenotypic robustness differently. Second, a group of tightly linked genes can
be responsible for large-effect QTLs (NooR et al. 2001). With the high-temperature
growth phenotype, we confirmed the novel TAO3-MKT1 interaction, and many more
are expected from our Interaction Distance Method (Figure S2). These results
suggest that effects of linked causative genes and synergy are prevalent, and should
be accounted for in future efforts to map quantitative traits. Parts et al. have shown
that multiple rounds of crossing from generations F1 to F12 can reduce the linkage
between two loci (PARTS et al. 2011), an approach that could thus increase QTL

resolution and dissect linked QTGs.

In conclusion, our study addresses the fundamental issue of how to improve
guantitative trait dissection. Applying three high-throughput approaches allowed us to
resolve eight potential causative genes for eight phenotypes. Nevertheless, for the
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complex traits, the causal alleles explained only part of the heritability (on average
~60% of broad sense and ~66% of narrow sense; Table S4), suggesting the
contribution of additional factors such as linked QTLs and epistatic effects. To
thoroughly assess the impact of these factors on phenotype, future studies should
improve resolution by increasing the sample size. Future studies would also benefit
from accounting for experimental differences that can influence the loci detected, for
example by combining multiple approaches as we have done here. Our findings
indicate that we are currently looking at the tip of the iceberg: the focus should now
be placed on the development of innovative experimental and computational
strategies to deepen our understanding of the complex architecture of quantitative

traits.
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Figure legends

Figure 1. Schematic overview of the three QTL mapping approaches used in
this study. The parental strain backgrounds S96 and SK1 were used for all
approaches. Individual segregant analysis (ISA): genotyping and phenotyping are

performed on individual segregants. Bulk segregant analysis (BSA): a pool of

segregants is grown in control and selective media. By sequencing the pooled
genomic DNA, the allelic enrichments in the pool are determined. Reciprocal
hemizygosity scanning (RHS): in a hybrid strain, alleles are alternatively deleted,

resulting in reciprocal hemizygous, isogenic hybrid strains that differ only by a single
allele. DNA barcodes specific to each gene enable the pooling and parallel analysis
of strain fitness on a genome-wide level. After selective growth, the barcodes are
amplified and hybridized to a microarray, providing a proxy of fitness that can be
used to measure the effects of allelic variation in each gene on the phenotype of

interest.

Figure 2. Cantharidin resistance QTLs mapped by BSA, ISA, and RHS. The top
LOD (logarithm of odds) score identified by ISA is located directly at the causal
CRG1 gene, which was also the top hit in RHS (bottom plot). For BSA, the SK1 allele
frequency (1 corresponding to 100% SK1, 0 to 100% S96) is plotted for two biological
replicates. These replicates were not reproducible overall (likely due to spontaneous
beneficial mutations in individual cells of the pool, as seen for 5-FU treatment),
except for very few regions (including the CRG1 locus). The results on chr 8, which
contains CRG1, are magnified (inset). For RHS, A s represents the difference

between the selection coefficients of S96 and SK1.

Figure 3. Detection of ISA QTLs for 11 phenotypes. LOD scores are plotted for all
phenotypes tested in this study using the IGV browser (Robinson et al. 2011)
(Mendelian traits = blue, fitness traits in rich media = black, high temperature = red,
high salt (NaCl) = green, non-fermentable carbon sources = purple, 5-FU = gray).

QTLs containing putative causative variants are marked with a gray dashed line and
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labeled with the gene. Gene variants that were confirmed by allele exchange or by
individual growth of RHS strains (for CRG1) in this study are marked with a star at
the respective phenotype. Two gene variants were found to modify more than one
phenotype: MKT1 (high temperature, ethanol, 5-FU) and TAO3 (high temperature,
glycerol).

Figure 4. Identification of high salt QTLs. For BSA, SK1 allele frequency is plotted
in black (replicates were highly reproducible and therefore only one is shown). For
ISA results, the LOD scores are plotted in green. In addition to the standard method
(1-2 days liquid culture), ISA phenotyping was also performed by a colony size assay
on agar (2-4 days), in order to account for effects of growth duration. The major QTL
identified by all approaches was the ENA locus on chr 4 (ENA CNV), which contains
a cluster of genes encoding sodium pumps. By stratifying the ISA samples according
to their ENA genotype (S96 ENA = red, SK1 ENA = blue), QTLs specific to SK1 ENA
(chr 3 and chr 15 for liquid culture) and S96 ENA (chr 9 for colony size assay) were
detected. The synergistic effect of the QTL on chr 9 in combination with ENA is also
illustrated in the boxplot using the individual fitness (according to colony size) of 720
segregants. To test for interactions, we used an ANOVA test. A linear model is fitted
to the data: phenotype ~ QTL1 + QTL2 + QTL1:QTL2 . The p-value for the interaction

Is the significance of including the interaction term (QTL1:QTL2).

Figure 5. Identification of high temperature QTLs. BSA and ISA results are plotted
as in Figure 4. By stratifying the ISA samples for the major QTL (S96 TAO3 = red,
SK1 TAO3 = blue), the double QTL peak on chr 14 could be separated into two
individual QTLs; c¢hrl4:390,000-410,000 for the SK1 TAO3 subset and
chr14:480,000-500,000 for the S96 TAO3 subset. A magnification of this region is
shown in the bottom right panel, with 95% confidence intervals and the calculated
maximum shown as boxes below the separated peaks. The synergistic interaction
between the S96 TAO3 and the SK1 MKT1 was confirmed in 94 allele replacement
strains (bottom left boxplot). The p-value for interaction was calculated as described

in the legend of Figure 4.
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Figure 3
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