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Abstract

The reaction�di�usion process corresponding to the Fisher�Kolmogorov
equation is studied by means of a discrete multivariate master equa�
tion� For travelling wave fronts the stability criterion necessary for
the applicability of a system�size expansion is shown to be violated
due to the existence of a zero mode of the 
rst variational equation�
This zero mode is connected to the translational invariance of the sys�
tem� Performing stochastic simulations of the master equation in a
wide range of parameters it is demonstrated that for 
nite size of the
system �up to about �	� particles in the frontal region� a rather large
�uctuation e�ect on the wave propagation speed results� In general�
the asymptotic wave speed lies below the stable� minimal speed which
is given by a theorem of Kolmogorov for the macroscopic equation�
The wave front position exhibits a di�usion�type behaviour associated
with translative �uctuations along the propagation direction�

� Introduction

The Fisher�Kolmogorov equation represents a simple non�linear reaction�di
usion
equation for a space and time dependent concentration c�x� t�
 Its relevance stems
from the fact that it admits stable travelling wave solutions which describe the
spread of the substance described by the concentration c�x� t�
 For example� it
has been used to describe the wave of advance of advantageous genes ��� or the
spread of neolithic farming ���
 Moreover� it is studied as a prototype to under�
stand the qualitative behaviour of more complicated dynamics ��� ��
 Microscopic
Boltzmann equation and lattice gas simulations have been reported in ��� and ���

Mathematically� the Fisher�Kolmogorov equation is a deterministic partial

di
erential equation
 However� in most applications the variable c�x� t� is de�ned

�



as the number of discrete particles� e
g
 individuals or molecules� in a given
volume element of space
 It is this discrete nature of the dynamical variables
which necessarily leads to internal �uctuations in the system and which makes a
stochastic description indispensable
 Within such a stochastic description c�x� t�
appears as the expectation value of the number of particles per volume element

Thus� it is important to investigate the in�uence of internal �uctuations upon

the dynamics described by the Fisher�Kolmogorov equation
 This will be done
in the present paper by formulating a multivariate master equation which models
the di
usive part as a collective random walk process and the reactive part by
means of a chemical birth�and�death process
 The resulting master equation
describes the reaction�di
usion process on a mesoscopic level including internal
�uctuations induced by the discrete particle representation
 Employing a stochas�
tic simulation technique we investigate this multivariate stochastic process for a
wide range of parameters
 In particular� we study the in�uence of �uctuations
upon the wave speed and wave front position

Usually one argues that �uctuations are small and� therefore� it su�ces to in�

vestigate the dynamics of the averages
 However� this is true only if �uctuations
are damped or� in other words� if the macroscopic dynamics is asymptotically sta�
ble
 Under this condition the ��expansion provides a unique decomposition of the
stochastic process into a macroscopic part which is governed by a deterministic
di
erential equation and a small �uctuating part which obeys a linear Fokker�
Planck equation describing small Gaussian �uctuations around the macroscopic
dynamics
 Thus� under the condition of asymptotic stability a unique macro�
scopic equation is extracted by means of the ��expansion and the in�uence of
the noise upon the macroscopic dynamics can be completely neglected

However� as is well�known the situation changes drastically if the macroscopic

dynamics becomes unstable
 This is the case� for example� if by varying some
control parameter� hyperbolic �xed points emerge from bifurcations of the deter�
ministic macroscopic equation ��� �� ��
 The master equation investigated in this
paper shows a di
erent type of behaviour
 Performing the ��expansion it will be
shown that the condition of asymptotic stability is violated for travelling wave
solutions
 To be more precise� the translational invariance of the system leads to
the existence of perturbations which stay constant in time rather than tending
to zero
 As a result the position of the wave front exhibits a di
usion�type be�
haviour with a strong in�uence upon the speed of the travelling wave
 These facts
are demonstrated by means of stochastic simulations of the full master equation

The paper is organized as follows
 Having brie�y reviewed the basic prop�

erties of the Fisher�Kolmogorov equation in section � we construct in section �
the multivariate master equation governing the stochastic process of the particle
numbers
 We perform its ��expansion and show that the condition of asymptotic
stability is violated due to the existence of translative perturbations
 In section
IV we explain the stochastic simulation technique which is then used in order
to simulate the multivariate stochastic process de�ned by the master equation
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The results of the simulations are discussed in view of the results of section �

In particular� we investigate the speed of the travelling waves and the in�uence
of translative �uctuations
 In section � we summarize the results and draw some
conclusions


� The Fisher�Kolmogorov equation

The rate equation that corresponds in the continuum limit to the reaction�
di
usion process we will consider in the following is

�c

�t
� D

��c

�x�
�Ac�Bc� � ���

It is often called the Fisher�Kolmogorov equation ��� �	�
 c � c�x� t� is a real�
valued function of the one�dimensional space�variable x and of the time t
 In
applications� c is usually a concentration� so we are only interested in positive
solutions
 D� A and B are positive parameters which are also constant in space
and time for the present discussion
 As far as applications to reaction�di
usion
processes are concerned the above Fisher�Kolmogorov equation describes the
behaviour of the concentration c�x� t� of molecules of type X which di
use in
space with di
usion constant D and react according to the scheme

Y � X �� � X � ���

where A and B denote the corresponding reaction rate coe�cients
 The concen�
tration of the molecules of type Y is assumed to be constant� i
 e
 the Y �molecules
serve as a particle reservoir

By appropriately scaling space and time and measuring c in units of the

typical concentration A�B� one can reduce the number of parameters to one
 If
one replaces

x �� B

A
x � t �� A t � c �� A

B
c �

and introduces the new dimensionless paramter

� ��
DA

B�
�

equation ��� becomes
�c

�t
� �

��c

�x�
� c� c� � ���

Equation ��� has two stationary states
 One of them� c � 	 is unstable� while
the other one� c � �� is stable
 Furthermore� eqn
 ��� admits travelling wave
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solutions
 In a frame of reference that is moving with the constant speed v along
the x�axis� eqn
 ��� becomes

��

�t
� �

���

�z�
� v

��

�z
� �� �� � ���

where c�x� t� � ��x � vt� t� and z � x � vt
 A travelling wave with speed v is
given by the stationary solution of eqn
 ���� i
 e


c�x� t� � ��x� vt� � ���

These travelling wave solutions connect the unstable to the stable state�

lim
x���

c�x� t� � � and lim
x���

c�x� t� � 	 � ���

where we have chosen to let the front propagate from the left to the right
 An
essential feature of the Fisher�Kolmogorov equation is the existence of travelling
wave solutions for any wave speed v � vmin � �

p
� ���


A large class of initial conditions evolves to the solution c�x� t� propagating
with minimum speed vmin � �

p
�
 This class contains those initial conditions

c�x� 	� that satisfy the following conditions ��� �	��

� c�x� 	� non�negative and continuous everywhere�

� c�x� 	� � � if x � x��

� c�x� 	� � 	 if x � x� or c�x� 	� � exp��ax� as x�� �

where x� � x� and a � ��p�
 Thus the asymptotic wave speed depends sensi�
tively on the behaviour of the initial condition c�x� 	� as x � �
 On the other
hand side� if the initial condition is such that c�x� 	� � 	 for x � x�� then the
ultimate wave does not depend on the detailed form of c�x� 	�
 Any practical
model deals� of course� with a �nite domain� and the quantity whose concentra�
tion is described by c�x� t� eventually consists of discrete particles � in this sense
we have always an initial condition of type� c�x� 	� � 	 if x � x�

Looking at the stability of travelling wave solutions� we have just seen that

they are unstable to perturbations that are nonzero for large x
 However they
are stable to �nite domain perturbations ���
 This question becomes important
in section � and will be addressed there in more detail

In order to be able to speak about the front position� we introduce as a

pragmatical measure for the front position at time t

ctot�t� �

��Z
x�

c�x� t�dx � ���
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where x� is a point far enough left of the initial front� and ctot�t� is the total
amount of substance at time t
 This allows an alternative de�nition of the wave
propagation speed�

vR �
dctot�t�

dt
�

d

dt

��Z
x�

c�x� t�dx �

��Z
x�

�
��

�x�
c� c� c�

�
dx �

��Z
x�

�
c� c�

�
dx �

���
For travelling wave solutions� this is equivalent to the former de�nition of the
wave speed eqn
���
 Moreover� it is an obvious generalization of the wave speed
to solutions which are not stationary in any comoving frame

The analytical form of travelling wave solutions is in general not known
 There

is one known analytical solution for v � �
q
����

c�x� t� �
�h

� � exp
�
z�
p
��
�i� � ���

which is however not stable ���
 In the limit where the Fisher�Kolmogorov equa�
tion is a good deterministic approximation of the stochastic process �which will
be discussed in more detail below�� eqn
 ��� is useful for getting an idea of what
the wave front for a given parameter � should look like


� The Master Equation

The Fisher�Kolmogorov equation introduced in section � constitutes a purely
macroscopic� deterministic description of the reaction�di
usion process
 How�
ever� in general the concentration c�x� t� describes some average value of a dis�
crete quantity� e
g
 the number of molecules in a volume element � around x

This discrete character of the dynamical variables leads to internal �uctuations
in the system
 Only in a certain limit of large particle numbers one may expect
these �uctuations to vanish asymptotically and the deterministic description to
be valid
 Thus� on a more re�ned� mesoscopic level the reaction�di
usion process
has to be regarded as a discrete stochastic process

In order to formulate this stochastic process physical space� i
 e
 the inter�

val �	� L�� is discretized into a su�ciently large number M of cells labelled by
the integer index 	 � �� � � � �M 
 Doing so� we de�ne a mesoscopic length scale
� � L�M which is chosen in such a way that the system can be considered to be
homogeneous within distances of the order �
 Next we introduce for each cell 	 a
positive integer N� which denotes the number of molecules in cell 	
 These num�
bers are regarded as time dependent random numbers� i
 e
 the set �N�� � � � � NM�
represents a multivariate stochastic process

Assuming that �N��t�� � � � � NM �t�� is a Markov process� its dynamics is com�

pletely speci�ed by giving a master equation for the probability distribution
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P �N�� � � � � NM � t�
 The master equation is written in the form

�

�t
P � AP ��	�

where A is a linear time evolution operator acting on functions of the stochastic
variables �N�� � � � � NM�
 We shall use the term function �of the stochastic vari�
ables� for a map from the state space f�N�� � � � � NM �g into the real numbers and
denote them by normal type capital letters
 An operator� denoted by a bold�face
letter� maps a function of the stochastic variables to a function of the stochastic
variables

The expectation value hF i of an arbitrary function F �N�� � � � � NM� is

hF �t�i �
�X

N���

	 	 	
�X

NM��

F �N�� � � � � NM�P �N�� � � � � NM � t� � ����

In particular� the expectation value

c�x�� t� ��
�

�
hN��t�i ����

represents the average concentration of molecules in cell 	
 Within a certain
continuum limit the time evolution equation for the concentration ���� derived
from the master equation converges to the Fisher�Kolmogorov equation
 This
continuum limit implies large occupation numbers N� and large concentrations�
and will be discussed below

The construction of the time evolution operator A is straightforward
 Follow�

ing ��� �� ��� the di
usive part is modelled as a collective random walk� represented
by Ad� and the reactive part as a chemical birth�and�death process� represented
by Ar�

A � Ad �Ar �

It is convenient to introduce the shift operators E� and E
��

� ���� which are de�ned
by�

E�F �� � � � N�� � � �� �� F �� � � � N� � �� � � �� �

E��� F �� � � � N�� � � �� ��

�
F �� � � � N� � �� � � �� if N� � �
	 if N� � 	 �

These operators describe the creation and annihilation of the particles

The reaction operator involves annihilation and creation of particles within

the cells�

Ar �
MX
���

�
E��� � �

�
N� �

�

�
�E� � ��N� �N� � �� � ����

The creative transitions within cell 	� that correspond to the reaction Y �X �
�X� cf
 eqn
 ���� are represented by the operator �E��� ���N�� and the destructive
transitions� that correspond to Y �X 
 �X� by �E� � ��N� �N� � �� ��
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Any possible transition can be written as a product of the two elementary
operators E� and E���� 
 The jump of a particle to another cell is equivalent to
the annihilation of a particle in one cell and creation in the other
 Jumps to the
left are consequently represented by a term E�����E� � �� jumps to the right by
E�����E� � �
 The di
usion operator Ad describes the collective random walk of
the particles�

Ad �
�

��

MX
���

�
E�����E� �E�����E� � �

�
N� � ����

The boundary conditions are such that particles which jump to the left of cell
� or to the right of cell M are immediately replaced
 In equation ���� this may
formally be expressed by identifying cells 	 and � as well as cells M and M � �

Since hN�i varies little with 	 along the cells near the boundaries 	 � � and
	 �M for the type of solutions we investigate �see �gures �� ��� these boundary
conditions are a good approximation of an in�nite continuation of physical space
with boundary conditions of type ���

In the remainder of this section we will investigate the relation between the

master equation and the Fisher�Kolmogorov equation� and in which limit the
expectation values ���� obey the Fisher�Kolmogorov equation
 The quantity
c�x�� t� � hN��t�i�� is useful only if the probability distribution P �N�� � � � � NM � t�
is unimodal
 This seems� in fact� to be the case in all our numerical solutions of
the master equation �see section ��

In a �rst approach� using ����� ���� and the master equation ��	� we derive

an equation of motion for the �rst moments hN�i�

�
�c�x�� t�

�t
�

�

�t
hN��t�i � hN�Ai � ����

It simpli�es the algebra considerably to use the following form for the time evo�
lution equation for the expectation value�

�

�t
hN�i � h�N��A�i � ����

where � � � is the commutator
 The proof is found in ����
 It uses the fact that
A conserves the normalization
 In order to evaluate �N��A�� one uses �N��E�� �

�
���E��
h
N��E

��

�

i
� 
���E

��

� and �N���� � �N�� N�� � 	
 Thus we arrive at�

�

�t
hN�i � �

��
�hN���i � �hN�i� hN���i� � hN�i � �

�
hN�

� �N�i � ����

This is the time evolution equation for the �rst moments hN��t�i and follows
exactly from the master equation
 Equations for higher moments are derived
similarly
 An essential feature is that the equation for the k�th moment contains
the �k � ���th moment on the right hand side and� thus� an in�nite hierarchy
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of moment equations is obtained
 However� if one crudely makes a Poissonian
approximation

hN�

� �N�i � hN�i� � ����

equation ���� becomes the discretized Fisher�Kolmogorov equation�

�

�t
c�x�� �

�

��
�c�x���� � �c�x�� � c�x����� � c�x��� c�x��

� � ����

Clearly� we can only compare solutions of the Fisher�Kolmogorov equation with
solutions of the discretized equation when the di
erence quotient is a good enough
approximation for the di
erential operator
 On the other hand side� the qualita�
tive behaviour of the solutions will be the same in both cases� i
 e
 the existence
of travelling wave solutions and some sort of speed selection mechanism

However� as will be demonstrated in section � large and signi�cant deviations

from the Poisson�like behaviour ���� occur in the frontal region
 One thus cannot
make the assumption ���� without distorting the dynamics in the frontal region

This distortion might be more or less grave� depending on the size of � and on
the quantity of interest
 We will come back to this question below

The moment equations can be used to construct an equation for the time

derivative of the expectation value of a function F which is a polynomial in the
N�� � � � � NM 
 In particular� consider the total particle number

Ntot ��
MX
���

N�� ��	�

This de�nition is analogous to eqn
 ���
 Furthermore� in analogy to eqn
 ���� we
de�ne

vM ��
d

dt
hNtoti� ����

Using the moment equation ���� and neglecting boundary terms� we get the
equivalent form

vM �
MX
���

hN�i � �

�
hN�

� �N�i � ����

The quantities Ntot and vM play a central r�ole in this paper
 Note that
eqn
 ���� provides an exact de�nition of the wave front speed of the stochastic
process under consideration� without invoking the concept of stationarity in a
comoving frame
 Remember eqn
 ���� where this concept was used to de�ne
and describe travelling wave solutions of the Fisher�Kolmogorov equation
 In
section � we will show that vM and� in a certain sense� the front form have stable
stationary values� whereas the process itself does not become stationary in any
comoving frame
 This underlines the usefulness of eqn
 ����

Let us now discuss a more systematic procedure to establish a relation between

the master equation and the Fisher�Kolmogorov equation than cutting o
 the
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moment equations ���� through the approximation ����
 To this end� we consider
an expansion method introduced by van Kampen ���
 The expansion parameter
has to be identi�ed from the parameters of the equation under study
 Basically�
it is required to have the properties of a volume ��system�size�expansion��
 In
the last part of this section� we will sketch how to perform the expansion
 It
yields a stability criterion� which we will �nd to be violated
 The e
ect of this
instability will be discussed� and in particular we will �nd it to be the origin of
the breakdown of the Poissonian approximation ����

In order to understand better the meaning of the expansion we �rst want to

take a closer look at the parameters � and �
 The number of particles per cell
in the stable state is hN�i � �
 Thus � is a measure for the quantization of the
concentration� one particle corresponds to a �concentration quantum� 
c � ���

Adjacent cells in the system are coupled through di
usion
 According to the
master equation� the relative probability of a di
usive transition compared to the
probability of a reactive transition lies between ����� and ���� �the �rst value
for nearly empty cells� the second one for �lled up cells� N� � ��
 The quantity

�� ��
�

��

is therefore a measure for the strength of the di
usive coupling of the cells
 More
exactly� �� is the ratio between the di
usive displacement frequency and the
typical reaction rate
 If �� is large� the occupation numbers N� cannot vary much
between adjacent cells� due to the balancing e
ect of the di
usion� and the front
must extend over a large number of cells
 �In fact� this number can then be
roughly estimated as ��

p
�� from approximate analytic solutions of the Fisher�

Kolmogorov equation ����
 Similarly� �� small implies a steep front
 According to
this heuristic argument� �� is a measure for the quantization of space relative to the
width of the wave front� which is the only length scale of the Fisher�Kolmogorov
equation ���
 Expressing �� and � in terms of the dimensional parameters D�A�B
corresponding to the dimensional Fisher�Kolmogorov equation ��� and of the
dimensional cell size 
l we have

� �
A

B

l and �� �

D

A
l�
�

Each pair ������ corresponds to a ��dimensional surface in the ��dimensional
parameter space of the D�A�B� 
l
 The master equations belonging to points on
the same ��surface are equivalent

Returning to van Kampen�s expansion� we clearly identify � as the correct

expansion parameter
 Since we do not want to change the spatial resolution
through the expansion� �� has to be held constant
 The limit

��� and �� �
�

��
� const
 ����
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that we are going to perform can be expressed as follows in the dimensional
parameters�

B � 	 and D�A� 
l � const


Recall that in the dimensional Fisher�Kolmogorov equation ��� the concentration
to the left of the front is A�B� which tends to in�nity in this limit
 Thus� the
increase of the occupation numbers N� in the limit ���� means increasing concen�
tration of the substance under consideration while leaving the spatial structure
unchanged

The essential assumption of the expansion is that it is possible to split the

stochastic process N� into two parts� the �rst part is a macroscopic variable �c�
and must be a stable solution of a yet to be de�ned deterministic equation
 The
second part �

�

� �� describes small stochastic deviations around the deterministic
value�

N� � � c� �
p
� �� �

This assumption means that the probability distribution P �N�� � � � � NM � t� is a

single sharp peak with a width which is of order �
�

� smaller than the range in
which its position varies

The transformation of variables from �N�� � � � � NM� to ���� � � � � �M� induces�

from the master equation for P �N�� � � � � NM � t�� a master equation for the joint
probability distribution  ���� � � � � �M � t� of the transformed stochastic process
���� � � � � �M �
 Collecting terms of the same order in �� the leading term of orderp
� diverges in the limit � � �� unless the macroscopic variables c� ful�ll the

discretized Fisher�Kolmogorov equation ����
 The next�to�leading order terms
of the master equation for  constitute a linear Fokker�Planck equation�

� 

�t
�
X
���

�L��

�

���
��� � �

�

�
D��

��

������
 �

where

L�� � �� �
����� � �
��� � 
������ � 
��� ��� �c�� �

D�� � 
���
h
�� �c��� � �c� � c���� � c� � c��

i
� ��
����� �c��� � c��� ��
����� �c��� � c�� � ����

The second term of the Fokker� Planck equation describes a multivariate
di
usion process for the stochastic variables �� with the di
usion matrix D

Since the Fokker�Planck equation is linear� its general solution is a nonstationary
multivariate Gaussian process and thus can be completely characterized by its
mean values and variances
 The drift matrix L governs the time evolution of the
expectation values of the ���

�

�t
h��i �

X
�

L��h��i �

�	



or in continuous notation

�

�t
h��x� t�i � L�t��h��x� t�i� � ����

where L�t� is the linear� time dependent operator

L�t� � �
��

�x�
� �� �c�x� t� �

Note that L is the same operator as obtained by performing a linear stability
analysis of the Fisher�Kolmogorov equation
 A necessary criterion for the validity
of the ��expansion is that �uctuations are always damped� in order to keep
the probability distribution  ���� � � � � �M � t� unimodal and narrow
 Thus the
macroscopic dynamics� which is described by the Fisher�Kolmogorov equation�
is required to be at least asymptotically stable in the sense of Lyapunov ���
 A
discussion of the stability of travelling wave solutions can for example be found
in ���
 We quote the result that they are stable to �nite support perturbations
in the comoving frame of reference of the wave� transforming eqn
 ���� to the
comoving frame one obtains

�

�t
g�z� t� � Hg�z� t� � ����

where g�x� t� � h��x� vt� t�i� z � x� vt� and

H � �
��

�z�
� v

�

�z
� � � ���z� � ����

The operator H is time independent because � is stationary in the comoving
frame� compare eqn
 ���
 Consequently� the above stability condition amounts
to the requirement that all eigenvalues of H must have negative real parts
 In
fact� restricting the underlying function space to pertubations with �nite support
one �nds that all eigenvalues of H are real and negative
 Thus� the macroscopic
solution is asymptotically stable in the sense of Lyapunov against �nite support
perturbations

However� as is seen by di
erentiating eqn
 ��� with respect to z� the space

derivative of the macroscopic solution � represents an eigenvector of H with
eigenvalue zero�

Hg� � 	 � g� ��
��

�z
� ����

This fact� of course� re�ects the translational invariance of the Fisher�Kolmogorov
equation
 Although g� has not a �nite support it is of relevance in our context

Namely� since g��z�� 	 for z � ��� g� can be approximated by �nite support
perturbations with arbitrary accuracy

We have now discussed the stability of wave solutions regarding the continuous

drift operators L� respectivelyH
 On the level of the discrete master equation� we
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do not expect the situation to change a lot� and we will �nd in fact the following
conclusions justi�ed from the simulations� Firstly� the stability condition which
is necessary for the applicability of the ��expansion is ful�lled for those pertur�
bations which change the shape of the front �e
g
 steepen or �atten the front�
and leave its position unchanged
 Secondly� perturbations which correspond to
a translation along the x�axis and which do not alter the front shape are not
damped and� therefore� violate the necessary condition of asymptotic stability

Since translative �uctuations are not damped� the ��expansion breaks down

at this point
 However� we will show that it is possible to at least approxi�
mately separate their in�uence from that of the others
 Consider an ensem�
ble of wave fronts starting each with the same shape at the same position �i
 e

P �N�� � � � � NM � t�� is a 
�distribution�
 If � is not too small� each of them will
approximately behave like the corresponding solution of the Fisher�Kolmogorov
equation
 According to the above� the shape of each front is hardly distorted by
the �uctuations
 However� in addition to their deterministic propagation� they
receive small random displacements through the translative �uctuations which
stay constant rather than tending to zero
 Therefore� the random front position
represents a stochastic process of di
usion type ���
 Obviously� the total particle
number Ntot introduced above in eqn
 ��	� is a sensitive measure of the front
position
 One therefore expects Ntot to be a di
usion�type process
 In the next
section the situation will be investigated by means of stochastic simulations of
the full master equation


� Simulation

One advantage of the master equation formulation of reaction�di
usion processes
is that the master equation literally translates into a compact and simple nu�
merical simulation algorithm
 Basically� the simulation algorithm generates an
ensemble of realizations of the stochastic process �N��t�� � � � � NM�t��
 From this
ensemble� all quantities of interest can be estimated
 The well�known simulation
algorithm ���� ��� ��� consists of three basic steps�

�
 Let us assume that at time t the state of the system is given by �N�� � � � � NM�

In the �rst step� the time t � � of the next transition is determined
 The
total transition rate� as can be read o
 the master equation� is

Wtot �
MX
���

W� �

where

W� �
MX
���

��

��
N� � N� �

�

�
N� �N� � �� � ����

��



The probability for any transition to occur within the in�nitesimal timestep
d� is Wtotd� 
 Consequently� the waiting time � � i
 e
 the time the system
remains in the state �N�� � � � � NM � until the next transition occurs� is ex�
ponentially distributed
 The random number � is generated from the uni�
formly distributed random number r on the interval �	� �� via the formula

� � � �

Wtot

ln r �

�
 In the second step� the actual transition that is to occur is chosen from all
possible ones� and all variables are updated correspondingly
 The set of all
possible transitions decomposes naturally into groups labelled by 	
 The
group with label 	 contains the reactive transitions that occur within cell
	 and the di
usive transitions in which a particle jumps out of cell 	
 As
indicated in equation ����� W� is the transition rate for transitions of group
	
 Now� a group 	 is chosen with relative probability W��Wtot with the
help of the rejection method ����
 In our case� there are four transitions in
each group�

�a� Di
usive transitions�

N� � N� � �
N��� � N��� � �

�
probability �

�

��
N��W�

N� � N� � �
N��� � N��� � �

�
probability �

�

��
N��W�

�b� Reactive transitions�

N� � N� � � probability � N��W�

N� � N� � � probability �
N��N� � ��
� W�

Performing one of these transitions yields the state �N��t� � �� � � � � NM�t� � ��

The four probabilities add up to �


�
 Repeat steps � and � until a desired �nal time is reached


Finally� by generating a su�ciently large number of realizations of the stochas�
tic process� one can evaluate the interesting quantities as ensemble averages

As initial conditions we took a step pro�le

N��t�� �

�
� � for 	 � 	�
	 � else

��



and a smooth function that better approximates the �nal front from �compare
eqn
 �����

N��t�� � round

�
�

f� � exp �
 �	 � 	����g�
�

� ��	�

where round�x� is the integer next to the real x
 In an ensemble of realizations
of the stochastic process� each starts with the same initial condition


�

����

����

����

����

�����

�����

� �� �� �� �� �� ��

hN�i

	

Figure ��

The time development of the wave front for small times� starting from

a step initial condition� obtained by averaging over �� realizations� The

parameters are � � ��� and � � ���� thus �� � �� The dashed curve is the

initial condition at time t � �� the solid curves are the averages at times

t � ���� �� 	� �� �� 
from left to right��

The time development of a wave front solution with � � �	� and �� � � for
small times� evolving from a step initial pro�le� can be seen in Fig
 �
 The plotted
front pro�les result from averaging the occupation numbers of �� realizations at
equal times

The most striking observed fact in our simulations is that the wave front

speed vM � calculated according to eqn
 ���� or eqn
 ���� relaxes to a stationary
value di
erent from vmin � �

p
�
 Remember that vmin is the asymptotic speed

of travelling wave solutions of the Fisher�Kolmogorov equation according to a
theorem by Kolmogorov �see section ��
 The relaxation of vM is depicted in
Fig
 � for the step initial condition� � � �	� and �� � �� and in Fig
 � for
the smooth initial condition� � � �		 and �� � �	
 vM according to ���� is

��
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Figure ��

The relaxation of the wave speed vM � The data are taken from the same

simulation as in Fig� �� i� e� � � ���� � � ���� �� � � and a step initial

condition� The solid line is vM�
p
� calculated according to eqn� 
	���

the dashed line shows vM�
p
� according to 
		�� The dotted line is at 	�

which corresponds to the minimal wave speed vmin � 	
p
� belonging to the

Fisher�Kolmogorov equation� The average value of the speed for t � 	� is


��
��� �������p
� 
compare Table ���

��
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Figure ��

The observed stationarity of the wave speed vM for larger times� Here�

� � ��� and � � ���� thus �� � ��� The initial condition was 
���� As in

Fig� 	� the solid line is vM�
p
� calculated according to eqn� 
	��� the dashed

line shows vM�
p
� according to 
		� and the dotted line at 	 corresponds

to the minimal wave speed vmin � 	
p
�� The average value of the speed

for t � �� is 
������ �������p
� 
compare Table ���

��



estimated by calculating the increase in the total number of particles within a
certain time interval� averaged over a number of simulated realizations of the
stochastic process
 On the other hand� hN�i and hN�

�i are directly estimated
from the simulated realizations of the stochastic process� which gives a value for
vM according to ����
 The di
erence between both estimations of vM lies within
the statistical errorbars
 The time that the special analytic solution ��� needs to
travel along the distance of its own width is of order Trelax � �	
 This is also
the timescale in which the wave front speed vM approaches its stationary value

After times much larger than Trelax the initial condition will be forgotten �as long
as it allows the development of a wave front at all�
 This is analogous to the
wave speed selection mechanism for the Fisher�Kolmogorov equation described
in section �
 Note that vM stationary means that hNtoti increases linearly

In Table � we give an overview of the observed wave front speeds� divided byp

�� for a range of values of the parameters � and ��
 The speeds were calculated
according to equation ���� from the average of the particle production rate� and
the errorbars of the speeds were calculated as the standard error of the mean

The averaging was made over a sample of n
m points� where n is the number of
realizations and m is the number of equidistant times at which the speeds were
measured
 In each realization the �rst measurement was taken approximately
after � relaxation times� followed by typically �	 more measurements! the time
intervals between consecutive measurements were of the order of one relaxation
time in order to ensure that consecutive measurements can be regarded as statis�
tically independent
 At this point we remark that for a simulation with large ��
i
 e
 large cell occupation numbers� one needs less realizations than for one with
small � to get the same statistical errors
 A graphical representation of the lines
�� � �	� �� and 	�� in this table is given in Fig
 �

As we can see from Fig
 � the line �� � � nicely converges for increasing �

to the value of the Kolmogorov velocity vmin
 Note that � has been varied over
� orders of magnitude and that in order to obtain a wave front speed which is
consistent with the value predicted from the Fisher�Kolmogorov equation � must
at least of the order of �	�
 However� this does not mean that �uctuation e
ects
then become negligible� as far as other observables such as the variance of the
wave speed are concerned

Furthermore� we see from Fig
 � that the lines corresponding to di
erent

values of �� exhibit a quite di
erent behaviour
 Taking into account that the
number of cells located in the frontal region of a single realization of the wave
is approximately ��

p
�� we conclude that the way in which the stationary wave

speed vM asymptotically reaches vmin for large � depends sensitively upon the
width of the wave front

Fig
 � shows the occupation numbersN� taken at the same time from di
erent

realizations of the stochastic process
 We see from this �gure that the curves from
di
erent realizations emerge from each other by a shift along the 	�axis
 In this
sense� the shape of the wave front is stable
 For comparison� the dashed line
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Figure ��

The wave speed v�
p
� as function of � for �� � ���� �� ��� vM is estimated

from simulation data according to eqn� 
	���

indicates the shape of the special analytical solution ���� at an arbitrary position

In contrast� the expectation values hN�i describe a wave front shape which is much
�atter� since they are the average over di
erent realizations of the front which
are at di
erent positions
 This observation con�rms our discussion in section
III� Each realization of the wave keeps its shape during its propagation while
su
ering random horizontal displacements
 Whereas �uctuations which change
the front shape are damped� translative �uctuations are unstable and give rise to
a di
usive type behaviour of the random front position
 In order to investigate
this di
usion behaviour in more detail we plot in Fig
 � the variance of the total
particle number Ntot�

hhN�

totii � hN�

toti � hNtoti� � ����

As one can see hhN�
totii increases linearly with time� which con�rms the di
usive�

type behaviour of the front position
 From the �gure we estimate the correspond�
ing di
usion constant to be D � �			 for the given parameter values � � �		�
�� � �	

The breakdown of the purely macroscopic description can also be seen by

investigating the distribution of the N�
 In Fig
 � we have plotted the quantity

"� �� hN�

�i � hN�i� � hN�i �

which is a measure for the deviation from the Poissonian�type behaviour �cf

eqn
 ������ together with the mean front pro�le hN�i for � di
erent times
 As

��



Figure ��

The �attening of the averaged front pro�le due to the translative �uctu�

ations� The � solid lines show � di�erent realizations at the same time

t � ��� for � � ���� � � ��� and �� � � 
parameters as in Fig� � and 	��

The symbols denote the average of �� realizations� and the errorbars rep�

resent the standard error of the mean� For comparison� the dashed line

indicates the special analytic solution 

� at an arbitrary position�

��
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Figure ��

The time development of the variance of the total particle number Ntot�

see eqn� 
	��� The parameters are � � ���� � � ���� �� � ��� same as in

Fig� ��

�	



is to be expected� "� is largest in the middle of the front� where the chemical
reaction is fastest and the front is steepest� and vanishes outside the frontal
region! it is approximately proportional to the derivative of the mean wave shape
hN�i
 As in Fig
 � we see that with increasing time the front broadens and that
the deviation from the Poissonian becomes larger
 One �nds that

P
�"� grows

proportional to the variance hhN�
totii


Figure ��

The quantity �� 
dashed lines�� which measures the deviation of N� from

the Poisson distribution� plotted together with the corresponding front

pro�le hN�i 
solid lines� at the four di�erent times t � ��� ���� 	��� 	���

The parameters are � � ���� � � ���� �� � �� same as in Fig� ��	� and ��

The wave actually propagates about ��
 cells in the time intervals �t � ��

that lie between these four plots� Thus� in order to bring them together

in one �gure� the curves hN�
ti�i and ��
ti� are suitably shifted along the

��axis�

Given a certain model� the informations presented in Fig
 � can be used to es�
timate the in�uence of �uctuations on the wave front speed and to decide whether
or not a continuous description in terms of the Fisher�Kolmogorov equation is

��



su�cient
 As an example� we would like to relate the parameters �� and � to
an application of the Fisher�Kolmogorov equation which has already been given
by Fisher ���
 Fisher used equation ��� to model the spread of an advantageous
mutation in a population which is distributed uniformly in a linear habitat� such
as a shoreline
 He gives a numerical example with

D �
L�

��
� A � 	�	�
 ��� �

� is the lifetime of one generation of the species� the standard displacement L
of young from parents in each generation is assumed to be L � �		 yards and
the selective advantage of the mutation A is � percent per generation
 This in�
formation is su�cient to determine the minimum speed of wave front solutions�
vmin � �

p
AD � �� yards per generation
 We have to make additional assump�

tions on the cell size 
l and on B in order to identify the corresponding master
equation
 Assuming 
l � q 
 L� where q is a small positive number� we get
�� � D��A
l�� � ����q�A� � � �	�q�
 A reasonable value for �� the number of
individuals living on a length of q 
 �		 yards may be in the order of �		
 Lo�
cating Fisher�s model in Fig
 �� it lies somewhere between the lines �� � �	 and
�� � � around log � � �
 The �uctuation e
ect on the wave front speed is around
�	 percent in this region
 Furthermore� according to Fig
 �� the variance of the
wave front position grows with approximately �	 yards��generation
 Note that
the discrepancy of the wave front speed between the Fisher�Kolmogorov equa�
tion equation and the master equation leads to completely di
erent long�time
predictions of the front position


� Conclusion

Let us brie�y summarize the results of this paper
 We have investigated the
multivariate master equation which describes the reaction�di
usion process of
the Fisher�Kolmogorov equation on a mesoscopic level
 Performing stochastic
simulations of this master equation we have demonstrated that �uctuations a
ect
the speed of travelling waves
 The asymptotic value of the wave speed can be
larger or even lower than the minimal and stable value predicted by Kolmogorov�s
theorem for the macroscopic equation� depending on the values of the parameters
in the master equation
 Furthermore we found that the stochastic process which is
de�ned as the �uctuating position of the wave front always exhibits a di
usion�
type behaviour and is non�stationary even when the wave speed is stationary

Investigating the �rst variational equation of the Fisher�Kolmogorov equation
this fact has been traced back to the existence of translative pertubations of the
travelling wave which do not decay with time
 Thus� the macroscopic dynamics
turns out to be unstable and the ��expansion is� stricly speaking� not valid in
general


��



However� as we have discussed� the failure of the ��expansion does not mean
that any connection between the stochastic process and the macroscopic equation�
i
 e
 the Fisher�Kolmogorov equation is lost
 This is due to the fact that all �nite
support �uctuations which change the front shape and leave the front position
unchanged decay with time and ful�ll the stability condition
 This fact can be
clearly seen in our simulations� Single realizations of the multivariate stochastic
process exhibit a front shape which is both stable and constant in time
 It is only
the front position which su
ers large �uctuations that lead to a broadening of
the averaged wave front shape
 Thus� although strictly speaking the assumptions
of the ��expansion are not ful�lled many features predicted from this expansion
remain valid
 The important conclusion to be drawn is that the validity of any
prediction made on the basis of the system�size expansion crucially depends on
the observable under consideration

In this paper we have not given an explanation for the deviations of the wave

front speeds of the stochastic process from the Kolmogorov velocity vmin
 The
results of our stochastic simulations suggest that these deviations are caused by
an asymmetrical in�uence of the large �uctuations of the wave front position
upon its average drift
 It should be clear that such an e
ect is neglected by
the linear noise approximation of the ��expansion
 However� a more detailed
investigation of this e
ect can possibly be based on a modi�ed ��expansion

Recall that the �rst variational equation admits stable and unstable solutions

Whereas the stable modes can be treated by the ordinary ��expansion method
leading to the linear noise approximation� the unstable mode can be dealt with
by the di
usion�type approximation in the sense of van Kampen ��� which yields
a non�linear Fokker�Planck equation for the unstable mode
 The general case
can then be treated by decomposing the stochastic process into its stable and
unstable part and performing the corresponding expansions separately
 However�
these more theoretical considerations are beyond the scope of the present paper

Concluding� we remark that the described �uctuation e
ects on wave front

propagation are not restricted to the special case of the Fisher�Kolmogorov equa�
tion � but can be expected to occur in more general reaction�di
usion systems
which are translation invariant and which admit travelling wave solutions
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� only one realization was generated


Table �� The wave speed vM�
p
�� obtained by means of eqn
 ���� from the

stochastic simulation data� as function of the parameters �� and �
 The numbers
in the �rst lines of the boxes denote the mean value and the standard error
of the mean� and the number in the second line of each box is the number of
measurement points� as described in the text


��


