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Abstract

The reaction—diffusion process corresponding to the Fisher—Kolmogorov
equation is studied by means of a discrete multivariate master equa-

tion. For travelling wave fronts the stability criterion necessary for
the applicability of a system-—size expansion is shown to be violated

due to the existence of a zero mode of the first variational equation.

This zero mode is connected to the translational invariance of the sys-

tem. Performing stochastic simulations of the master equation in a

wide range of parameters it is demonstrated that for finite size of the

system (up to about 107 particles in the frontal region) a rather large

fluctuation effect on the wave propagation speed results: In general,

the asymptotic wave speed lies below the stable, minimal speed which

is given by a theorem of Kolmogorov for the macroscopic equation.

The wave front position exhibits a diffusion—type behaviour associated
with translative fluctuations along the propagation direction.

1 Introduction

The Fisher—-Kolmogorov equation represents a simple non—linear reaction—diffusion
equation for a space and time dependent concentration ¢(x, ). Its relevance stems
from the fact that it admits stable travelling wave solutions which describe the
spread of the substance described by the concentration ¢(x,t). For example, it
has been used to describe the wave of advance of advantageous genes [1] or the
spread of neolithic farming [2]. Moreover, it is studied as a prototype to under-
stand the qualitative behaviour of more complicated dynamics [3, 4]. Microscopic
Boltzmann equation and lattice gas simulations have been reported in [5] and [6].

Mathematically, the Fisher—-Kolmogorov equation is a deterministic partial
differential equation. However, in most applications the variable ¢(x,1) is defined



as the number of discrete particles, e.g. individuals or molecules, in a given
volume element of space. It is this discrete nature of the dynamical variables
which necessarily leads to internal fluctuations in the system and which makes a
stochastic description indispensable. Within such a stochastic description ¢(x, )
appears as the expectation value of the number of particles per volume element.

Thus, it is important to investigate the influence of internal fluctuations upon
the dynamics described by the Fisher—Kolmogorov equation. This will be done
in the present paper by formulating a multivariate master equation which models
the diffusive part as a collective random walk process and the reactive part by
means of a chemical birth-and—death process. The resulting master equation
describes the reaction—diffusion process on a mesoscopic level including internal
fluctuations induced by the discrete particle representation. Employing a stochas-
tic simulation technique we investigate this multivariate stochastic process for a
wide range of parameters. In particular, we study the influence of fluctuations
upon the wave speed and wave front position.

Usually one argues that fluctuations are small and, therefore, it suffices to in-
vestigate the dynamics of the averages. However, this is true only if fluctuations
are damped or, in other words, if the macroscopic dynamics is asymptotically sta-
ble. Under this condition the )—expansion provides a unique decomposition of the
stochastic process into a macroscopic part which is governed by a deterministic
differential equation and a small fluctuating part which obeys a linear Fokker—
Planck equation describing small Gaussian fluctuations around the macroscopic
dynamics. Thus, under the condition of asymptotic stability a unique macro-
scopic equation is extracted by means of the Q-expansion and the influence of
the noise upon the macroscopic dynamics can be completely neglected.

However, as is well-known the situation changes drastically if the macroscopic
dynamics becomes unstable. This is the case, for example, if by varying some
control parameter, hyperbolic fixed points emerge from bifurcations of the deter-
ministic macroscopic equation [7, 8, 9]. The master equation investigated in this
paper shows a different type of behaviour. Performing the ()—expansion it will be
shown that the condition of asymptotic stability is violated for travelling wave
solutions. To be more precise, the translational invariance of the system leads to
the existence of perturbations which stay constant in time rather than tending
to zero. As a result the position of the wave front exhibits a diffusion-type be-
haviour with a strong influence upon the speed of the travelling wave. These facts
are demonstrated by means of stochastic simulations of the full master equation.

The paper is organized as follows. Having briefly reviewed the basic prop-
erties of the Fisher—Kolmogorov equation in section 2 we construct in section 3
the multivariate master equation governing the stochastic process of the particle
numbers. We perform its {2-expansion and show that the condition of asymptotic
stability is violated due to the existence of translative perturbations. In section
IV we explain the stochastic simulation technique which is then used in order
to simulate the multivariate stochastic process defined by the master equation.



The results of the simulations are discussed in view of the results of section 3.
In particular, we investigate the speed of the travelling waves and the influence
of translative fluctuations. In section 5 we summarize the results and draw some
conclusions.

2 The Fisher—Kolmogorov equation

The rate equation that corresponds in the continuum limit to the reaction—
diffusion process we will consider in the following is
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a:D@ﬁ—AC—BCQ . (1)
It is often called the Fisher—Kolmogorov equation [1, 10]. ¢ = e(x,t) is a real-
valued function of the one-dimensional space-variable x and of the time ¢. In
applications, ¢ is usually a concentration, so we are only interested in positive
solutions. D, A and B are positive parameters which are also constant in space
and time for the present discussion. As far as applications to reaction—diffusion
processes are concerned the above Fisher—Kolmogorov equation describes the
behaviour of the concentration ¢(x,t) of molecules of type X which diffuse in
space with diffusion constant D and react according to the scheme

Y + X =2X | (2)

where A and B denote the corresponding reaction rate coefficients. The concen-
tration of the molecules of type Y is assumed to be constant, i.e. the Y-molecules
serve as a particle reservoir.

By appropriately scaling space and time and measuring ¢ in units of the
typical concentration A/B, one can reduce the number of parameters to one. If
one replaces
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and introduces the new dimensionless paramter
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equation (1) becomes
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Equation (3) has two stationary states. One of them, ¢ = 0 is unstable, while
the other one, ¢ = 1, is stable. Furthermore, eqn. (3) admits travelling wave



solutions. In a frame of reference that is moving with the constant speed v along
the x—axis, eqn. (3) becomes
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where ¢(x,t) = ¢(x — vt,t) and z = @ — vt. A travelling wave with speed v is
given by the stationary solution of eqn. (4), i. e.

(1) = Bz —vt) 5)
These travelling wave solutions connect the unstable to the stable state,

xl_i}r_noo c(a,t)=1 and xginm c(x,t)=0 (6)
where we have chosen to let the front propagate from the left to the right. An
essential feature of the Fisher—-Kolmogorov equation is the existence of travelling
wave solutions for any wave speed v > vy, = 2,/ [1].

A large class of initial conditions evolves to the solution ¢(x,t) propagating
with minimum speed v,,;, = 2,/7. This class contains those initial conditions
¢(x,0) that satisfy the following conditions [3, 10]:

e ¢(x,0) non—negative and continuous everywhere,
o c(x,0)=1 if a <uay,
o c(x,0)=0 if x>y or c(x,0) x exp(—ax) as ¥ — o0

where x; < 3 and @ > 1/,/7. Thus the asymptotic wave speed depends sensi-
tively on the behaviour of the initial condition ¢(x,0) as @ — oco. On the other
hand side, if the initial condition is such that ¢(x,0) =0 for x > a3, then the
ultimate wave does not depend on the detailed form of ¢(x,0). Any practical
model deals, of course, with a finite domain, and the quantity whose concentra-
tion is described by ¢(x,t) eventually consists of discrete particles — in this sense
we have always an initial condition of type: ¢(x,0) = 0 if @ > xs.

Looking at the stability of travelling wave solutions, we have just seen that
they are unstable to perturbations that are nonzero for large x. However they
are stable to finite domain perturbations [3]. This question becomes important
in section 3 and will be addressed there in more detail.

In order to be able to speak about the front position, we introduce as a
pragmatical measure for the front position at time ¢

+ oo

ctot(t):/c(x,t)dx , (7)
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where x¢ is a point far enough left of the initial front, and ¢ (¢) is the total
amount of substance at time ¢. This allows an alternative definition of the wave
propagation speed,

400 +o0 +oo
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For travelling wave solutions, this is equivalent to the former definition of the

wave speed eqn.(5). Moreover, it is an obvious generalization of the wave speed
to solutions which are not stationary in any comoving frame.

The analytical form of travelling wave solutions is in general not known. There

is one known analytical solution for v = 54/~/6,
1
2
[1 + exp (Z/\/6"}/)]

which is however not stable [3]. In the limit where the Fisher—Kolmogorov equa-

) (9)

c(x,t) =

tion is a good deterministic approximation of the stochastic process (which will
be discussed in more detail below), eqn. (9) is useful for getting an idea of what
the wave front for a given parameter v should look like.

3 The Master Equation

The Fisher—-Kolmogorov equation introduced in section 2 constitutes a purely
macroscopic, deterministic description of the reaction-diffusion process. How-
ever, in general the concentration ¢(x,t) describes some average value of a dis-
crete quantity, e.g. the number of molecules in a volume element ) around =.
This discrete character of the dynamical variables leads to internal fluctuations
in the system. Only in a certain limit of large particle numbers one may expect
these fluctuations to vanish asymptotically and the deterministic description to
be valid. Thus, on a more refined, mesoscopic level the reaction—diffusion process
has to be regarded as a discrete stochastic process.

In order to formulate this stochastic process physical space, i.e. the inter-
val [0, L], is discretized into a sufficiently large number M of cells labelled by
the integer index A =1,..., M. Doing so, we define a mesoscopic length scale
1 = L/M which is chosen in such a way that the system can be considered to be
homogeneous within distances of the order (). Next we introduce for each cell A a
positive integer Ny which denotes the number of molecules in cell A. These num-
bers are regarded as time dependent random numbers, i. e. the set (Ny,..., Na)
represents a multivariate stochastic process.

Assuming that (Nq(t),..., Na(2)) is a Markov process, its dynamics is com-
pletely specified by giving a master equation for the probability distribution



P(Ny,...,Na,t). The master equation is written in the form

0

8tP = AP (10)
where A is a linear time evolution operator acting on functions of the stochastic
variables (Ny,..., Ny). We shall use the term function (of the stochastic vari-
ables) for a map from the state space {(Ny,..., Ny )} into the real numbers and
denote them by normal type capital letters. An operator, denoted by a bold-face
letter, maps a function of the stochastic variables to a function of the stochastic
variables.

The expectation value (F') of an arbitrary function F(Ny,..., Na) is

(F(t)) =3 -+ > F(Niy..., Nu)P(Ny,oo, Nagst) (11)
N1=0 Npr=0
In particular, the expectation value
1
s, ) = N (1) (12

represents the average concentration of molecules in cell A. Within a certain
continuum limit the time evolution equation for the concentration (12) derived
from the master equation converges to the Fisher—Kolmogorov equation. This
continuum limit implies large occupation numbers N, and large concentrations,
and will be discussed below.

The construction of the time evolution operator A is straightforward. Follow-
ing [7, 8, 12] the diffusive part is modelled as a collective random walk, represented
by A,, and the reactive part as a chemical birth-and—death process, represented
by A.,:

A=A,+A,

It is convenient to introduce the shift operators Ey and EY' [8], which are defined

by:
E/\F(...,N/\,...) = F(,N/\—I-l,) 5

_ F(...,Ny—1,...) if Ny>1
ET'F(...,Ny,...) = {0( A ) o Ni:()

These operators describe the creation and annihilation of the particles.
The reaction operator involves annihilation and creation of particles within
the cells:

M
1
AT:Z(E;l—l)NA—|—§(EA—1)NA(NA—1) : (13)
A=1
The creative transitions within cell A, that correspond to the reaction Y+ X —

2X, cf. eqn. (2), are represented by the operator (E7!'—1)N,, and the destructive
transitions, that correspond to Y 4+ X « 2X, by (Ey — 1) N, (N, — 1) /Q.
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Any possible transition can be written as a product of the two elementary
operators Ey and Ej'. The jump of a particle to another cell is equivalent to
the annihilation of a particle in one cell and creation in the other. Jumps to the
left are consequently represented by a term E;! E\ — 1, jumps to the right by
E;_ll_lEA — 1. The diffusion operator A, describes the collective random walk of
the particles:

Y. _
Au= o AZ (E;LE\+ELE, —2) N, (14)
=1

The boundary conditions are such that particles which jump to the left of cell
1 or to the right of cell M are immediately replaced. In equation (14) this may
formally be expressed by identifying cells 0 and 1 as well as cells M and M + 1.
Since (N,) varies little with A along the cells near the boundaries A = 1 and
A = M for the type of solutions we investigate (see figures 1, 5), these boundary
conditions are a good approximation of an infinite continuation of physical space
with boundary conditions of type (6).

In the remainder of this section we will investigate the relation between the
master equation and the Fisher—Kolmogorov equation, and in which limit the
expectation values (12) obey the Fisher—-Kolmogorov equation. The quantity
c(an, ) = (Ny(1)) /€ is useful only if the probability distribution P(Ny, ..., Nas,t)
is unimodal. This seems, in fact, to be the case in all our numerical solutions of
the master equation (see section 4).

In a first approach, using (12), (11) and the master equation (10) we derive
an equation of motion for the first moments (N)):

de(xn,t) 0

Q=7 = 7l

Ni(t)) = (N A) . (15)

It simplifies the algebra considerably to use the following form for the time evo-
lution equation for the expectation value:

0
§<N/\> = <[N/\7A]> ) (16)
where [, ] is the commutator. The proof is found in [13]. It uses the fact that

A conserves the normalization. In order to evaluate [V, A], one uses [N,,E,\| =

—0u 2 En, [NM,EKI] = 6,,E ! and [N,,1] = [N,, Ny] = 0. Thus we arrive at:

0 1

0 (3 = LN 2N + (M) + (V) — & (V=N (17
This is the time evolution equation for the first moments (N, (¢)) and follows
exactly from the master equation. Equations for higher moments are derived
similarly. An essential feature is that the equation for the £&—th moment contains
the (k + 1)-th moment on the right hand side and, thus, an infinite hierarchy



of moment equations is obtained. However, if one crudely makes a Poissonian

approximation
(NY = M) = (NN)* (18)
equation (17) becomes the discretized Fisher—Kolmogorov equation:
0 9 2
5600 = galelan) = 2e(xn) + e(ar-1)) +e(er) —clan)” . (19)

Clearly, we can only compare solutions of the Fisher-Kolmogorov equation with
solutions of the discretized equation when the difference quotient is a good enough
approximation for the differential operator. On the other hand side, the qualita-
tive behaviour of the solutions will be the same in both cases, i.e. the existence
of travelling wave solutions and some sort of speed selection mechanism.

However, as will be demonstrated in section 4 large and significant deviations
from the Poisson-like behaviour (18) occur in the frontal region. One thus cannot
make the assumption (18) without distorting the dynamics in the frontal region.
This distortion might be more or less grave, depending on the size of () and on
the quantity of interest. We will come back to this question below.

The moment equations can be used to construct an equation for the time
derivative of the expectation value of a function F' which is a polynomial in the

Ni,..., Ny. In particular, consider the total particle number
M
Ntot = Z N/\. (20)
A=1

This definition is analogous to eqn. (7). Furthermore, in analogy to eqn. (8), we

define p
Vpr o= E<Ntot>. (21)

Using the moment equation (17) and neglecting boundary terms, we get the
equivalent form

= L) - %(Nf—]\w | (22)

The quantities N,; and vy play a central réle in this paper. Note that
eqn. (21) provides an exact definition of the wave front speed of the stochastic
process under consideration, without invoking the concept of stationarity in a
comoving frame. Remember eqn. (5), where this concept was used to define
and describe travelling wave solutions of the Fisher-Kolmogorov equation. In
section 4 we will show that vy; and, in a certain sense, the front form have stable
stationary values, whereas the process itself does not become stationary in any
comoving frame. This underlines the usefulness of eqn. (21).

Let us now discuss a more systematic procedure to establish a relation between
the master equation and the Fisher-Kolmogorov equation than cutting off the



moment equations (17) through the approximation (18). To this end, we consider
an expansion method introduced by van Kampen [8]. The expansion parameter
has to be identified from the parameters of the equation under study. Basically,
it is required to have the properties of a volume (“system-size-expansion”). In
the last part of this section, we will sketch how to perform the expansion. It
yields a stability criterion, which we will find to be violated. The effect of this
instability will be discussed, and in particular we will find it to be the origin of
the breakdown of the Poissonian approximation (18).

In order to understand better the meaning of the expansion we first want to
take a closer look at the parameters v and . The number of particles per cell
in the stable state is (NV,) = Q. Thus € is a measure for the quantization of the
concentration, one particle corresponds to a “concentration quantum” éc = 1/€2.
Adjacent cells in the system are coupled through diffusion. According to the
master equation, the relative probability of a diffusive transition compared to the
probability of a reactive transition lies between 2v/Q? and v/Q? (the first value
for nearly empty cells, the second one for filled up cells, Ny = Q). The quantity

.0
7‘_Q2

is therefore a measure for the strength of the diffusive coupling of the cells. More
exactly: 7 is the ratio between the diffusive displacement frequency and the
typical reaction rate. If ¥ is large, the occupation numbers N, cannot vary much
between adjacent cells, due to the balancing effect of the diffusion, and the front
must extend over a large number of cells. (In fact, this number can then be
roughly estimated as 12 /5 from approximate analytic solutions of the Fisher—
Kolmogorov equation [3]). Similarly, 4 small implies a steep front. According to
this heuristic argument, 4 is a measure for the quantization of space relative to the
width of the wave front, which is the only length scale of the Fisher—-Kolmogorov
equation (3). Expressing 4 and € in terms of the dimensional parameters D, A, B
corresponding to the dimensional Fisher—-Kolmogorov equation (1) and of the
dimensional cell size 6! we have
A D

0= s d A=
B at R YTE

FEach pair (4,) corresponds to a 2-dimensional surface in the 4-dimensional
parameter space of the D, A, B, 6l. The master equations belonging to points on
the same 2-surface are equivalent.

Returning to van Kampen’s expansion, we clearly identify () as the correct
expansion parameter. Since we do not want to change the spatial resolution
through the expansion, 4 has to be held constant. The limit

Q1 — o and A= % = const. (23)



that we are going to perform can be expressed as follows in the dimensional
parameters:

B—0 and D, A, 6l = const.

Recall that in the dimensional Fisher—Kolmogorov equation (1) the concentration
to the left of the front is A/ B, which tends to infinity in this limit. Thus, the
increase of the occupation numbers N, in the limit (23) means increasing concen-
tration of the substance under consideration while leaving the spatial structure
unchanged.

The essential assumption of the expansion is that it is possible to split the
stochastic process N, into two parts: the first part is a macroscopic variable ¢y
and must be a stable solution of a yet to be defined deterministic equation. The
second part 0z n\ describes small stochastic deviations around the deterministic
value,

Ny = Qen+VQn

This assumption means that the probability distribution P(Ny,..., Ny, t) is a
single sharp peak with a width which is of order Q% smaller than the range in
which its position varies.

The transformation of variables from (Ny,..., Nas) to (n1,...,nam) induces,
from the master equation for P(Ny,..., Nas,t), a master equation for the joint
probability distribution II(n1,...,na,1) of the transformed stochastic process
(71, ...,nm). Collecting terms of the same order in Q, the leading term of order
V/Q diverges in the limit © — oo, unless the macroscopic variables ¢, fulfill the
discretized Fisher—Kolmogorov equation (19). The next—to-leading order terms
of the master equation for II constitute a linear Fokker—Planck equation:

1 0*

—L I1 -D I1
Z DY (2 )—I— Ma O

where

Linv = A (8un1— 26,0 + 0ungr) + 00 (1 —2¢,)
Dy = oy [’NV (cxo1 +2ey +engr) + e + Ci]
— Foup-1(er—1 ) = Aot (e +en) (24)

The second term of the Fokker— Planck equation describes a multivariate
diffusion process for the stochastic variables n, with the diffusion matrix D.
Since the Fokker—Planck equation is linear, its general solution is a nonstationary
multivariate Gaussian process and thus can be completely characterized by its
mean values and variances. The drift matrix L governs the time evolution of the
expectation values of the 7,,

6
at 77/\ ZLAM 77#« ”
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or in continuous notation

%M(MD = L) ((n(z, 1)) (25)

where L(t) is the linear, time dependent operator

2
L(t) = ’ya— + 1 — 2¢(a,t)
Ox?

Note that L is the same operator as obtained by performing a linear stability
analysis of the Fisher—Kolmogorov equation. A necessary criterion for the validity
of the Q-expansion is that fluctuations are always damped, in order to keep
the probability distribution II(n,...,na,1) unimodal and narrow. Thus the
macroscopic dynamics, which is described by the Fisher—-Kolmogorov equation,
is required to be at least asymptotically stable in the sense of Lyapunov [8]. A
discussion of the stability of travelling wave solutions can for example be found
in [3]. We quote the result that they are stable to finite support perturbations
in the comoving frame of reference of the wave: transforming eqn. (25) to the
comoving frame one obtains

En (z,1) = Hg(z,1) (26)
where g(x,t) = (n(x — vt, 1)), 2 = x — vt, and
2 d
H:’y@—l—vg—l—l—%ﬁ(z) ) (27)

The operator H is time independent because ¢ is stationary in the comoving
frame, compare eqn. (5). Consequently, the above stability condition amounts
to the requirement that all eigenvalues of H must have negative real parts. In
fact, restricting the underlying function space to pertubations with finite support
one finds that all eigenvalues of H are real and negative. Thus, the macroscopic
solution is asymptotically stable in the sense of Lyapunov against finite support
perturbations.

However, as is seen by differentiating eqn. (4) with respect to z, the space
derivative of the macroscopic solution ¢ represents an eigenvector of H with
eigenvalue zero,

9o

Hgo =0 ,  go ‘= @ . (28)

This fact, of course, reflects the translational invariance of the Fisher—-Kolmogorov
equation. Although ¢y has not a finite support it is of relevance in our context.
Namely, since go(z) — 0 for z — +o0, g can be approximated by finite support
perturbations with arbitrary accuracy.

We have now discussed the stability of wave solutions regarding the continuous
drift operators L, respectively H. On the level of the discrete master equation, we
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do not expect the situation to change a lot, and we will find in fact the following
conclusions justified from the simulations: Firstly, the stability condition which
is necessary for the applicability of the Q-expansion is fulfilled for those pertur-
bations which change the shape of the front (e.g. steepen or flatten the front)
and leave its position unchanged. Secondly, perturbations which correspond to
a translation along the z—axis and which do not alter the front shape are not
damped and, therefore, violate the necessary condition of asymptotic stability.

Since translative fluctuations are not damped, the )—expansion breaks down
at this point. However, we will show that it is possible to at least approxi-
mately separate their influence from that of the others. Consider an ensem-
ble of wave fronts starting each with the same shape at the same position (i.e.
P(Ny,...,Na,to) is a é—distribution). If € is not too small, each of them will
approximately behave like the corresponding solution of the Fisher-Kolmogorov
equation. According to the above, the shape of each front is hardly distorted by
the fluctuations. However, in addition to their deterministic propagation, they
receive small random displacements through the translative fluctuations which
stay constant rather than tending to zero. Therefore, the random front position
represents a stochastic process of diffusion type [8]. Obviously, the total particle
number N, introduced above in eqn. (20) is a sensitive measure of the front
position. One therefore expects Ny, to be a diffusion—type process. In the next
section the situation will be investigated by means of stochastic simulations of
the full master equation.

4 Simulation

One advantage of the master equation formulation of reaction—diffusion processes
is that the master equation literally translates into a compact and simple nu-
merical simulation algorithm. Basically, the simulation algorithm generates an
ensemble of realizations of the stochastic process (Ny(t),..., Na(t)). From this
ensemble, all quantities of interest can be estimated. The well-known simulation
algorithm [14, 15, 16] consists of three basic steps:

1. Let us assume that at time ¢ the state of the system is given by (Ny,..., Na).
In the first step, the time ¢ + 7 of the next transition is determined. The
total transition rate, as can be read off the master equation, is

M
Wtot = Z W/\ 9
A=1
where
M 9y 1
Wy=3 =Ny + N+ N (N —1) . (29)
= Q Q
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The probability for any transition to occur within the infinitesimal timestep
dr is Wi,dr. Consequently, the waiting time 7, i.e. the time the system
remains in the state (Ny,..., Nas) until the next transition occurs, is ex-
ponentially distributed. The random number 7 is generated from the uni-
formly distributed random number r on the interval [0, 1] via the formula

1
Wtot

Inr

T =

2. In the second step, the actual transition that is to occur is chosen from all
possible ones, and all variables are updated correspondingly. The set of all
possible transitions decomposes naturally into groups labelled by A. The
group with label A contains the reactive transitions that occur within cell
A and the diffusive transitions in which a particle jumps out of cell A\. As
indicated in equation (29), W) is the transition rate for transitions of group
A. Now, a group A is chosen with relative probability W) /W, with the
help of the rejection method [16]. In our case, there are four transitions in
each group:

(a) Diffusive transitions:

N/\—>N/\—1 .. _l
Ny — Ny 4+ 1 }probablhty =0 Ny W,y
NA — NA —1

Nopt — Nyjy + 1 }probabﬂity = lNA/WA

QQ

(b) Reactive transitions:

Ny — N, +1 probability = N, /W,
Ny(Ny -1
Ny— N, —1 probability = AgliAWA)

Performing one of these transitions yields the state (N1(t + 7),..., Na(t + 7)).
The four probabilities add up to 1.

3. Repeat steps 1 and 2 until a desired final time is reached.

Finally, by generating a sufficiently large number of realizations of the stochas-
tic process, one can evaluate the interesting quantities as ensemble averages.
As initial conditions we took a step profile

Q

it A< A
Nx(to):{ 07 o =70

else
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and a smooth function that better approximates the final front from (compare

eqn. (9)):

Q
Nyto) = round ({1 Foxpla(h Aom]}?) ’ (30)

where round(x) is the integer next to the real x. In an ensemble of realizations
of the stochastic process, each starts with the same initial condition.
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Figure 1:

The time development of the wave front for small times, starting from
a step initial condition, obtained by averaging over 17 realizations. The
parameters are Q = 10* and v = 108, thus ¥ = 1. The dashed curve is the
initial condition at time ¢t = 0, the solid curves are the averages at times
t=0.5,1,2,5, 10 (from left to right).

The time development of a wave front solution with Q = 10* and ¥ = 1 for
small times, evolving from a step initial profile, can be seen in Fig. 1. The plotted
front profiles result from averaging the occupation numbers of 17 realizations at
equal times.

The most striking observed fact in our simulations is that the wave front
speed vy, calculated according to eqn. (21) or eqn. (22) relaxes to a stationary
value different from v,,;,, = 2,/9. Remember that vy, is the asymptotic speed
of travelling wave solutions of the Fisher—-Kolmogorov equation according to a
theorem by Kolmogorov (see section 2). The relaxation of vy is depicted in
Fig. 2 for the step initial condition, § = 10* and ¥ = 1, and in Fig. 3 for
the smooth initial condition, 2 = 100 and ¥ = 10. vy according to (21) is
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Figure 2:

The relaxation of the wave speed vp;. The data are taken from the same
simulation as in Fig. 1,i.e. Q@ = 10%, v = 10%, ¥ = 1 and a step initial
condition. The solid line is wps/ /7 calculated according to eqn. (21),
the dashed line shows vps/,/7 according to (22). The dotted line is at 2,
which corresponds to the minimal wave speed v,,;, = 2,/7 belonging to the
Fisher—Kolmogorov equation. The average value of the speed for ¢t > 20 is

(1.9854 0.004) x /7 (compare Table 1).
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Figure 3:

The observed stationarity of the wave speed vps for larger times. Here,
Q =100 and v = 10, thus 4 = 10. The initial condition was (30). As in
Fig. 2, the solid line is vps/,/7 calculated according to eqn. (21), the dashed
line shows wvys/(/7 according to (22) and the dotted line at 2 corresponds
to the minimal wave speed v,,;, = 2,/7. The average value of the speed
for t > 40is (1.8374 0.004) x /7 (compare Table 1).
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estimated by calculating the increase in the total number of particles within a
certain time interval, averaged over a number of simulated realizations of the
stochastic process. On the other hand, (N,) and (N3) are directly estimated
from the simulated realizations of the stochastic process, which gives a value for
vpr according to (22). The difference between both estimations of vas lies within
the statistical errorbars. The time that the special analytic solution (9) needs to
travel along the distance of its own width is of order T, = 10. This is also
the timescale in which the wave front speed vy; approaches its stationary value.
After times much larger than T, the initial condition will be forgotten (as long
as it allows the development of a wave front at all). This is analogous to the
wave speed selection mechanism for the Fisher-Kolmogorov equation described
in section 2. Note that vy, stationary means that (N, ) increases linearly.

In Table 1 we give an overview of the observed wave front speeds, divided by
/7 for a range of values of the parameters {2 and 4. The speeds were calculated
according to equation (21) from the average of the particle production rate, and
the errorbars of the speeds were calculated as the standard error of the mean.
The averaging was made over a sample of n X m points, where n is the number of
realizations and m is the number of equidistant times at which the speeds were
measured. In each realization the first measurement was taken approximately
after 5 relaxation times, followed by typically 40 more measurements; the time
intervals between consecutive measurements were of the order of one relaxation
time in order to ensure that consecutive measurements can be regarded as statis-
tically independent. At this point we remark that for a simulation with large €,
i.e. large cell occupation numbers, one needs less realizations than for one with
small 2 to get the same statistical errors. A graphical representation of the lines
4 =10, 1, and 0.1 in this table is given in Fig. 4.

As we can see from Fig. 4 the line ¥ = 1 nicely converges for increasing ()
to the value of the Kolmogorov velocity v,,;,. Note that €} has been varied over
5 orders of magnitude and that in order to obtain a wave front speed which is
consistent with the value predicted from the Fisher—Kolmogorov equation {2 must
at least of the order of 10*. However, this does not mean that fluctuation effects
then become negligible, as far as other observables such as the variance of the
wave speed are concerned.

Furthermore, we see from Fig. 4 that the lines corresponding to different
values of 4 exhibit a quite different behaviour. Taking into account that the
number of cells located in the frontal region of a single realization of the wave
is approximately 124/% we conclude that the way in which the stationary wave
speed vy; asymptotically reaches v,,;, for large Q) depends sensitively upon the
width of the wave front.

Fig. 5 shows the occupation numbers V, taken at the same time from different
realizations of the stochastic process. We see from this figure that the curves from
different realizations emerge from each other by a shift along the A—axis. In this
sense, the shape of the wave front is stable. For comparison, the dashed line
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Figure 4:

The wave speed v/,/7 as function of Q for ¥ = 0.1,1,10. vy is estimated
from simulation data according to eqn. (21).

indicates the shape of the special analytical solution (9), at an arbitrary position.
In contrast, the expectation values (V) describe a wave front shape which is much
flatter, since they are the average over different realizations of the front which
are at different positions. This observation confirms our discussion in section
ITI: Each realization of the wave keeps its shape during its propagation while
suffering random horizontal displacements. Whereas fluctuations which change
the front shape are damped, translative fluctuations are unstable and give rise to
a diffusive type behaviour of the random front position. In order to investigate
this diffusion behaviour in more detail we plot in Fig. 6 the variance of the total
particle number N,
<<Nt20t>> = <Nt20t> - <Ntot>2 : (31)

As one can see ((N72,)) increases linearly with time, which confirms the diffusive—
type behaviour of the front position. From the figure we estimate the correspond-
ing diffusion constant to be D ~ 8000 for the given parameter values {2 = 100,
4 =10.

The breakdown of the purely macroscopic description can also be seen by
investigating the distribution of the N,. In Fig. 7 we have plotted the quantity

Ay = (N3 — (N))2 — (N))

which is a measure for the deviation from the Poissonian—type behaviour (cf.
eqn. (18)), together with the mean front profile (N,) for 4 different times. As
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Figure 5:

The flattening of the averaged front profile due to the translative fluctu-
ations. The 7 solid lines show 7 different realizations at the same time
t = 435 for Q = 10%, v = 10® and 4 = 1 (parameters as in Fig. 1 and 2).
The symbols denote the average of 66 realizations, and the errorbars rep-
resent the standard error of the mean. For comparison, the dashed line
indicates the special analytic solution (9) at an arbitrary position.
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Figure 6:
The time development of the variance of the total particle number Ny,

see eqn. (20). The parameters are = 100, v = 10°, 4 = 10, same as in
Fig. 3.
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is to be expected, A is largest in the middle of the front, where the chemical
reaction is fastest and the front is steepest, and vanishes outside the frontal
region; it is approximately proportional to the derivative of the mean wave shape
(N)). Asin Fig. 6 we see that with increasing time the front broadens and that
the deviation from the Poissonian becomes larger. One finds that Y-, Ay grows
proportional to the variance ((N?2.)).
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Figure 7:

The quantity Ay (dashed lines), which measures the deviation of Ny from
the Poisson distribution, plotted together with the corresponding front
profile (N)) (solid lines) at the four different times ¢ = 60,135,210, 285.
The parameters are Q = 10%, v = 10%, ¥ = 1, same as in Fig. 1,2, and 5.
The wave actually propagates about 149 cells in the time intervals At = 75
that lie between these four plots. Thus, in order to bring them together
in one figure, the curves (Ny(%;)) and A\(¢;) are suitably shifted along the
A-axis.

Given a certain model, the informations presented in Fig. 4 can be used to es-
timate the influence of fluctuations on the wave front speed and to decide whether
or not a continuous description in terms of the Fisher—Kolmogorov equation is
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sufficient. As an example, we would like to relate the parameters 4 and € to
an application of the Fisher—Kolmogorov equation which has already been given
by Fisher [1]. Fisher used equation (1) to model the spread of an advantageous
mutation in a population which is distributed uniformly in a linear habitat, such
as a shoreline. He gives a numerical example with

L2

=5

D A=0.01x7""

7 is the lifetime of one generation of the species, the standard displacement L
of young from parents in each generation is assumed to be L = 100 yards and
the selective advantage of the mutation A is 1 percent per generation. This in-
formation is sufficient to determine the minimum speed of wave front solutions,
Vmin = 2V/AD = 14 yards per generation. We have to make additional assump-
tions on the cell size 6/ and on B in order to identify the corresponding master
equation. Assuming 6/ = ¢ X L, where ¢ is a small positive number, we get
¥ = D/(A8I*) = 1/(2¢*AT) = 50/¢*. A reasonable value for {2, the number of
individuals living on a length of ¢ x 100 yards may be in the order of 100. Lo-
cating Fisher’s model in Fig. 4, it lies somewhere between the lines 4 = 10 and
¥ = 1 around log ) & 2. The fluctuation effect on the wave front speed is around
10 percent in this region. Furthermore, according to Fig. 6, the variance of the
wave front position grows with approximately 70 yards®/generation. Note that
the discrepancy of the wave front speed between the Fisher—-Kolmogorov equa-
tion equation and the master equation leads to completely different long—time
predictions of the front position.

5 Conclusion

Let us briefly summarize the results of this paper. We have investigated the
multivariate master equation which describes the reaction—diffusion process of
the Fisher—-Kolmogorov equation on a mesoscopic level. Performing stochastic
simulations of this master equation we have demonstrated that fluctuations affect
the speed of travelling waves. The asymptotic value of the wave speed can be
larger or even lower than the minimal and stable value predicted by Kolmogorov’s
theorem for the macroscopic equation, depending on the values of the parameters
in the master equation. Furthermore we found that the stochastic process which is
defined as the fluctuating position of the wave front always exhibits a diffusion—
type behaviour and is non-stationary even when the wave speed is stationary.
Investigating the first variational equation of the Fisher-Kolmogorov equation
this fact has been traced back to the existence of translative pertubations of the
travelling wave which do not decay with time. Thus, the macroscopic dynamics
turns out to be unstable and the ()—expansion is, stricly speaking, not valid in
general.
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However, as we have discussed, the failure of the {)-expansion does not mean
that any connection between the stochastic process and the macroscopic equation,
i.e. the Fisher—-Kolmogorov equation is lost. This is due to the fact that all finite
support fluctuations which change the front shape and leave the front position
unchanged decay with time and fulfill the stability condition. This fact can be
clearly seen in our simulations: Single realizations of the multivariate stochastic
process exhibit a front shape which is both stable and constant in time. It is only
the front position which suffers large fluctuations that lead to a broadening of
the averaged wave front shape. Thus, although strictly speaking the assumptions
of the )-expansion are not fulfilled many features predicted from this expansion
remain valid. The important conclusion to be drawn is that the validity of any
prediction made on the basis of the system-size expansion crucially depends on
the observable under consideration.

In this paper we have not given an explanation for the deviations of the wave
front speeds of the stochastic process from the Kolmogorov velocity v,,;,. The
results of our stochastic simulations suggest that these deviations are caused by
an asymmetrical influence of the large fluctuations of the wave front position
upon its average drift. It should be clear that such an effect is neglected by
the linear noise approximation of the ()-expansion. However, a more detailed
investigation of this effect can possibly be based on a modified {)-expansion.
Recall that the first variational equation admits stable and unstable solutions.
Whereas the stable modes can be treated by the ordinary ()-expansion method
leading to the linear noise approximation, the unstable mode can be dealt with
by the diffusion-type approximation in the sense of van Kampen [8] which yields
a non—linear Fokker—Planck equation for the unstable mode. The general case
can then be treated by decomposing the stochastic process into its stable and
unstable part and performing the corresponding expansions separately. However,
these more theoretical considerations are beyond the scope of the present paper.

Concluding, we remark that the described fluctuation effects on wave front
propagation are not restricted to the special case of the Fisher—Kolmogorov equa-
tion , but can be expected to occur in more general reaction—diffusion systems
which are translation invariant and which admit travelling wave solutions.
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Overview over simulated wave front speeds v/,/7

log ©2
log 4 1 2 3 1 5 6
2 || 1.7540.02
42
1 1.6340.02 | 1.87£0.01 | 1.9084+0.004 1.93240.002*
1080 1950 936 28+
0 || 1.46+0.03 | 1.7940.02 | 1.918£0.005 | 1.985+0.003 | 2.017+£0.003 | 2.013£0.003
1600 1000 2340 380 936 30F
-1 1 1.21+£0.02 | 1.8440.01 | 2.13+£0.01
1600 1300 391
-2 (1 0.7940.02 | 2.2140.02 | 2.92£0.03
1600 490 400
-3 2.07£0.03 | 4.67£0.06
720 750
-4 0.92£0.02 5.940.1
396 672

“log 4 = 0.70 for this entry.
* only one realization was generated.

Table 1: The wave speed vyr/,/7, obtained by means of eqn. (21) from the
stochastic simulation data, as function of the parameters 4 and 2. The numbers
in the first lines of the boxes denote the mean value and the standard error

of the mean, and the number in the second line of each box is the number of

measurement points, as described in the text.
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