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Abstract

Extensive numerical simulation of a reaction—diffusion—system reveal
an unusual system size dependence of the fluctuation magnitude. If
Q denotes the system size parameter, e.g. particle number, fluctua-
tions are usually predicted to be of order Q°® (stable case) or Q'
(diffusion—type case). In contrast, a scaling like Q%% is observed in
a combined birth—death and random-walk process, which is described
by a multivariate chemical master equation and corresponds to the
Fisher equation in the macroscopic limit.

PACS: 05.40.+j; 87.10.+e; 82.20.-w

The system. In this work we consider the following simple nonlinear reaction—
diffusion—system: Particles are distributed along one spatial coordinate and move
by way of diffusion. They react according to the scheme A = 2A. Thus, the
presence of A-particles at some location leads to further production, and at the
same time reactions of two A-particles will destroy one of them.

Macroscopic Description. Mean field theory yields a deterministic reaction—
diffusion equation by completely neglecting the fluctuations. In the present case,
this is the Fisher equation. It is a nonlinear partial differential equation for the
space and time dependent concentration variable ¢(x,1):

- = 7—|—C—C2 . (1)

Here, v is the (space- and time—independent) diffusion coefficient, and both reac-
tion rates have been absorbed by choosing appropriate units for = and t. Equation
(1) was proposed by Fisher to model the spread of advantageous genes [1] and
its relevance stems from the fact that it admits stable travelling wave solutions.



The typical situation of interest is the one in which a front is moving to the right,
replacing the unstable ¢ = 0 state by the stable ¢ = 1 state. There are front solu-
tions for any front velocity. However, there is a velocity selection principle which
guarantees that, for localized initial conditions (i.e. ¢(x,0) = 0 for > x¢), the
front velocity approaches the asymptotic value vp = 2,/7. The Fisher equation is
usually studied as a prototype to understand the qualitative properties of waves
or bifurcations in more complicated processes [2-6].

Mesoscopic Description. The mesoscopic master equation description of dis-
tributed reacting systems takes into account the effects of internal fluctuations,
which are caused by the underlying microscopic dynamics of the discrete particles
[7, 8]. Position space is divided into M intervals or cells, such that the particle
distribution in each cell is homogeneous. The state of the system is given by
the set of positive, integer-valued particle numbers {Ny|A = 1,..., M}. This
many—particle representation is analogous to the second quantization in quan-
tum mechanics. The diffusive motion of the particles is described as a collective
random walk between the cells, and reactions within the cells are modelled as a
birth and death process.

The present analysis is neither restricted to the diffusion—controlled nor to
the reaction—controlled limit. The latter case is included by considering only one
single cell; in the diffusion—controlled limit the number M of cells is large, and
the occupation numbers N, are either 0 or 1. Here, we consider systems where
the density is so high that there may be many particles in one cell. The typical
cell occupation number is expressed by the parameter €. In our simulations, €}
ranged from 10 to 10°.

The mesoscopic, stochastic model is completely contained in the many-particle
master equation. Together with an initial condition it uniquely determines the
time—dependent joint probability distribution P(Ny,..., Ny, 1):
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The shift operator EE' changes every Ny to the right of it by £1. The first
line of equation (2) corresponds to diffusive or random walk transitions, the
second line to reactive transitions. Equation (2) is discussed in detail in reference
[9]. Microscopic lattice simulations of Fisher-like systems and exact results are
reported in references [10-13], Boltzmann equation simulations can be found in
reference [14].

Statement of the Problem. What is the relation between the macroscopic
and the mesoscopic level of description? For many systems, it is possible to show



that in a certain limit, which we shall call macroscopic limit, the expectation
values of the stochastic process described by the master equation are governed by
the macroscopic equation. Higher moments then simply lead to small fluctuations
around the deterministic path. Our numerical analysis will show that and why
this is not the case for the system under consideration, and we shall deduce a
power—law for the scaling of the fluctuations with the system size.

The macroscopic limit. For equation (2) the macroscopic limit is given by

Q2 — o
F:=~/0% = const. . (3)

The parameter § is the mean particle number per cell in the stable stationary
state behind the front. The width of the front is controlled by 4. Namely, /v is
proportional to its width measured in units of z, and /5 is proportional to the
number of cells within the front. Furthermore, as is read off the master equation,
7 is proportional to the ratio of the frequency of diffusion events to that of the
reaction events.

Numerical results. The master equation was numerically solved by means of
a stochastic simulation algorithm [15] which generates a sample of realizations
of the stochastic process. This was done for a wide range of parameters {2 and
7. For each parameter selection, around 50 realizations were generated, and the
simulation time corresponds to 5-100 autocorrelation times of the slowest mode.
The spatial extent M of the grid was large enough that no particle reached the
right boundary during this time; on the left side, particles were reflected. Details
are described in reference [9].

The solid lines in Figure 1 show, at the same time, seven different realiza-
tions which emerged from a step initial condition. For comparison, the dashed
line shows an approximation of the stable vy = 2,/7 wave front solution of the
macroscopic Fisher equation at an arbitrary horizontal position [5]. While the
mean front position of the ensemble wanders to the right with a given mean
speed, the individual realizations themselves may be slower or faster and thus
their horizontal positions differ. This is caused by translative fluctuations, i.e.
by perturbations that displace the whole front along the A—axis. Since the master
equation is, just as the Fisher equation, translationally invariant, such fluctua-
tions are not at all damped. The deterministic drift of the front to the right is
superposed with a Brownian motion.

Let us define a quantitative measure for the front position. It is measured as
the area under the graph defined by the front:

Nualt) = 3 Malt) W

A=M\



Here, A1 is an arbitrary reference cell to the left of the front. The front velocity
vy can now be defined as the time derivative of the ensemble average (Ny,(1)).
In reference [9] we reported numerical results for the stationary value of vy, after
relaxation for a large range of parameters. We observed a surprising difference
between vy and the value vp = 2, /7 even for large system-size of the stochastic
system, i.e. even for large values of ().
The ensemble variance of N,,; is a measure for the size of the fluctuations of
the front position. Var(Ny,) is the variance estimator
Var(Ni) = —— (NG — N )
tot) = tot tot)” -
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Figure 2 shows its growth with time. The sample comprises n = 60 realizations
with parameter values of @ = 100 and 4 = 10. We see that Var(Nyy), after a
certain relaxation time of approximately 10 units, grows linearly with time. This
is of course reminescent of a diffusion process, with the diffusion coefficient D
estimated as

var(Ntot)|t:tb - var(Ntot)|t:ta (6)
i, — 1,

In Figure 2, we have t, = 20, ¢, = 59.5 and D = 744000. In this manner D was
determined for a large range of parameter values. The results are presented in

D =

the double-logarithmic plot depicted in Figure 3. Within statistical errors, the
data are fitted by straight lines. Note that () varies over four decades. A least
square linear regression yields a slope of 1.68 4 0.03 for the solid line (¥ = 1) and
consistent values for the other two lines. Consequently, the numerical data are
very well fitted through a power law of the form

D =Q*f(%) (7)

with
o =0.8440.02

We can now summarize the behaviour of the probability distribution of the
front position N;,;. Starting with an ensemble of identically prepared systems, the
mean (V;,+) has a certain initial value and the variance is zero. After relaxation,
the mean (Ny,) grows linearly with time, leading to a front speed of approxi-
mately 20+/7, and this value is expected to become exact in the macroscopic
limit. Moreover, also the variance Var(V;,;) grows linearly with time according
to equation (6). The distribution of Ny, can be seen to remain unimodal and
approximately Gaussian for all times. The relative spread of the front position is
given by the dimensionless quantity
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The expression on the right hand side is obtained by combining equations (6)
and (7) and using (Niot) = vart.

There are two conclusions to be drawn from equation (8): (i) Since o & 0.84
is smaller than one, the relative spread of the front position vanishes in the
macroscopic limit (3). We also know that the fluctuations of the front form are
damped, as is illustrated in Figure 1 and shown explicitely in references [5, 9].
Thus the dynamic of the front becomes deterministic in the macroscopic limit.
(ii) The approach to this limit, as measured by the relative spread of the front
position, is approximately proportional to Q7€ and therefore extraordinarily
slow.

Discussion. In many cases, it is possible in the macroscopic limit to split up the
stochastic dynamics defined by a master equation into a deterministic and a small
stochastic part [7, 16]. A systematic procedure is the )-expansion which uses the
ansatz Ny = Qe +Q%5n,. Here, N are the extensive stochastic variables indexed
by A,  is the system-size parameter and c) are intensive deterministic functions
which may be identified with the expectation values (NV,)/€Q. To leading order an
equation for the ¢, is obtained. If its linearization is asymptotically stable, the
expansion converges and the equation for the transformed stochastic variables 7,
becomes independent of € in the limit  — oo. This implies that the relative
spread, as defined in equation (8), of N, or any linear function thereof is of order
005

If one naively applies the Q—expansion formalism to the master equation (2),
one obtains the (discrete space) Fisher equation as the macroscopic equation.
However, the necessary stability criterion is violated: The wave front solutions are
not stable to translative perturbations, as we have seen above. Consequently, the
relative spread of the front position scales approximately as Q716 and vanishes
much slower for {2 — oo as in cases where the Q-expansion applies.

One might now perhaps presume that the Fisher-like system is, because of
its zero-mode, of the “diffusion—type” [7]. However, for diffusion-type systems
there is no nontrivial macroscopic equation and the relative spread of the vari-
ables scales as 0, i.e. does not vanish for 8 — co. This clearly does not accord
with our numerical results, which indicate that there is a nontrivial macroscopic
deterministic equation (the Fisher equation), and that the relative spread van-
ishes.

The validity of a macroscopic equation in describing a real reaction—diffusion—
system always depends on the system being close enough to the macroscopic limit.
For the present Fisher-like system, we conclude that this limit in principle exists
but point out that there will be many real systems which are far away from
that limit. Recall that the relative spread (8) vanishes as slowly as Q7' For
such finite systems, fluctuations are not negligible and may have, as reported
earlier [9], a significant influence on the dynamics of the mean values. We expect



these conclusions not only to apply to the specific system (2), but to a general

class of spatially extended systems with a zero-mode of the macroscopic equation.
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Figure 1: The solid lines show 7 different realizations at the same time t = 435,
for parameter values Q = 10* and v = 10%. The symbols with the error bars
denote the mean of 66 realizations and its standard error. For comparison, the
dashed line shows an approximation of the stable wave front solution of the Fisher
equation.
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Figure 2: The time-dependence of the variance of the front position Ni,:. Param-
eters are 0 = 1000, ¥ = 10, sample size: 60 realizations.
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Figure 3: Overview over the numerically found values of D, defined in equa-
tion (6), as a function of Q, for three different values of 7% = 0.1, 1, 10.



