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Abstract

A fast method for the Monte Carlo solution of the balance equations which

arise in non�equilibrium thermodynamics is suggested� It is applicable to

chemical kinetics� reaction�di	usion processes� 
uid dynamics and heat con�

duction� The method is based on a multivariate master equation which is con�

structed in such a way that the simulation algorithm avoids time�consuming

transition selection procedures� and thus becomes particularly e�cient� For

the example of a large chemical reaction scheme� the proposed method is

shown to perform signi
cantly faster than conventional methods which rely

on a birth�and�death master equation in discrete occupation number space�

������Lq� ������Ln� ������Wt
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Monte Carlo methods are a standard tool for the study of equilibrium properties �see

e� g� ��	
 and are also widely used to investigate non�equilibrium situations� such as chem�

ical reactions and reaction�di�usion processes �
��	� These systems are most conveniently

described by multivariate master equations� which describe reactions as a birth�and�death

process and di�usion as a collective random walk �����	� Recently similar master equa�

tions were also shown to o�er a systematic and numerically e�cient approach to �uctuating

hydrodynamics� �uid turbulence and heat conduction ������	�

For the purpose of this letter� it is important to recall two fundamental aspects of the

master equation approach to non�equilibrium simulations� First� the master equation must

be consistent with the macroscopic description from non�equilibrium thermodynamics which

is usually given in terms of balance equations for the conserved quantities� e� g� mass� mo�

mentum� energy and particle number density� The consistency condition is that in the

macroscopic limit the expectation values of the corresponding stochastic quantities obey

these balance equations� Furthermore� it is possible to demand consistency of the �uctua�

tions obtained through the master equation with those predicted by the theory of �uctuating

hydrodynamics by Landau and Lifshitz ���	� Second� rather than solving the master equation

directly as a di�erential equation for a probability density� the simulation algorithm gener�

ates a sample of realizations �or paths
 of the stochastic process from which the quantities

of interest are estimated as ensemble averages�

Most applications of the master equation approach have up to now been on chemical

systems and reaction�di�usion processes� where the stochastic variables are discrete particle

numbers� Here� the selection of the next event �or state transition
 is the time�critical

part of the simulation algorithms� and much e�ort has been dedicated to its optimization

����������	� On the other hand� the introduction of continuous instead of discrete stochastic

variables may result in a signi�cant speedup� as it has been already demonstrated for the

case of two�dimensional turbulence simulations ���	� The basic idea is to circumvent time�

consuming selection and bookkeeping procedures by assigning equal rates to all transitions�

but giving them appropriately varying transition step widths�






Fast simulations can thus be performed whenever it is possible to construct a stochas�

tic process whose simulation algorithm assigns equal rates to all transitions and which is

consistent with non�equilibrium thermodynamics� The purpose of the present report is to

outline the method in general� and to compare its numerical performance to methods which

are based on a birth�and�death master equation� Since we are going to present a simula�

tion example from chemical kinetics� notation and terminology will be adapted to chemical

kinetics�

Let us brie�y recall the usual birth�and�death master equation description of chemical

reactions ���	� The state of the system is described by a set of integer stochastic occupation

numbers Ns� If the system is not homogeneous in space� then a discrete partition of space

can be introduced in the usual way ��	� Ns is interpreted as the number of particles of a

species in a space cell� s labeling both species and cells� The connection with the macroscopic

description is made through interpreting the expectation values

cs �
�

�
hNsi ��


as the macroscopic concentrations� � denoting the volume of the space cells�

Now we generalize this approach and consider a system which is described by a set of

real�valued stochastic variables �x�� � � � � xn
 � x� where xs � IR� The probability of �nding

the system in a state within the n�dimensional interval �x� x � dx	 at time t is given by

P �x� t
dx� In analogy to ��
 the macroscopic variables are obtained through

cs � hxsi

and the time evolution of the probability density P �x� t
 is described by a master equation

�

�t
P �x� t� �

Z
dx�
�
w�x� x��P �x�� t��w�x�� x�P �x� t�

�
� ���

The transition rates w�x� x�
 are speci�ed as follows� We require that all realizations of

the stochastic process are piecewise constant and that there is only a �nite number R of

transitions which all have the same rate�

�



w�x� x�
 �
�

��

RX
���

��x� b���� x
�

 � ��


Here� � is the typical time scale of the system� and it de�nes the time unit in which all

times are measured throughout this paper� � is a dimensionless scaling parameter which

we are free to introduce in this ansatz� Its role is similar to that of the volume � in the

birth�and�death master equation� The index � labels the di�erent possible transitions and

the functions b� specify these transitions as follows� If at time t� the transition � occurs� and

the system has been in state x� just until t�� it is in state b���� x
�
 immediately afterwards

������	� The choice of the b� depends on the speci�c system to be simulated and is guided by

two requirements� �i
 thermodynamic consistency� as mentioned above� and �ii
 numerical

e�ciency� In the following we shall see in detail how these requirements can be employed to

choose suitable transitions b��

The thermodynamic consistency conditions are derived using an expansion in powers of

the parameter � which is completely analogous to van Kampen�s well�known system size

expansion ���	� Thus� the �rst requirement on b� is that it depends on � such that

b���� x
 � x � ����x
 �O���
 � ��


where �� is a di�erentiable function that does not depend on �� The basic idea of the

expansion is to split the stochastic dynamics of x into a large deterministic part c and

a smaller stochastic part �� i� e� to set x � c �
p
� �� Inserting this ansatz into the

master equation� expanding the b��functions according to ��
� and sorting the terms with

respect to their order in �� we obtain the following results� The leading order terms are

of order ������ and thus they are required to cancel out if the expansion is to converge in

the limit �� �� This leads to the following ordinary system of di�erential equations ��the

macroscopic equation�
 for c � �c�� � � � � cn
�

d

dt
c�t
 �

�

�

RX
���

���c�t

 � ��


The next�to�leading order is �� and the corresponding terms constitute a linear Fokker�

Planck equation for the probability density ���� t
 of the new stochastic variable �

�
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All remaining� higher order terms of the expansion become arbitrarily small as � goes to

zero�

The following conclusions can be drawn from the expansion� First� the macroscopic

equation and the Fokker�Planck equation depend on the transitions b� only via the ��� i� e��

terms of order �� in ��
 have no e�ect and b���� x
 might as well be chosen such that it

only depends linearly on �� Second� any macroscopic equation can be constructed by an

appropriate choice of the transitions b�� Moreover� the choice of these transitions is not

uniquely determined by the macroscopic equation� as is seen from equation ��
� any set of

functions b� for which the right hand side of ��
 is the same is equally admissible� Third�

under certain conditions this arbitrariness can be employed to obtain the desired �uctuating

behaviour which is described by the di�usion matrix in the Fokker�Planck equation ���	�

These results are strictly valid only in the limit � � �� but simulations are always

performed with �nite �� This is no serious problem however� since Monte Carlo methods

anyway have some statistical error� due to the �niteness of the sample of realizations which

is generated� Thus� � can always be chosen su�ciently small such that the systematic error

caused by the �niteness of � is negligible in relation to the statistical error� This statement

will be illustrated in the example�

Let us now turn to the numerical treatment of the master equation� The simulation

algorithm which generates a realization of the Markov process de�ned by �

 and ��
 looks

as follows�

�� Set the state variables �x�� � � � � xn
 to their initial values and set the time step counter

z � ��


� Draw a uniformly distributed random number � from the set f�� � � � � Rg�
�� Perform the transition x �� b���� x
�

�� Increment z by �� and if not �nished� goto 
�

�� The elapsed time t is the sum of z independent� exponentially distributed random

�



time steps with mean ��	R�

Since z typically is very large� setting t � z��	R is a good approximation according to

the central limit theorem� and no random numbers need to be generated for the time step�

We see that the selection of the next transition simply amounts to drawing a uniformly

distributed random number� and after the transition no further auxiliary variables need to

be updated� Since typically the state vector x has many components� it is computationally

advantageous if each single b� works only on a few components of x� and leaves the rest of

them unchanged�

In order to compare the method�s numerical performance with that of conventional

schemes which are based on a discrete birth�and�death master equation� let us now consider

a simple example from chemical kinetics� namely an irreversible polymerization �or coagu�

lation
 reaction ���	� Each chain length or particle size r constitutes a separate species Mr�

and reactions of the type

Mr �Ms
krs��Mr�s ��


are possible for any pair �r� s
� Here� krs denotes the reaction rate�

In the new method� the stochastic variable xs stands for the concentration of Ms� The

thermodynamical consistency condition is that its expectation value cs � hxsi obeys the

macroscopic rate equations corresponding to the reaction scheme ��
� One can easily verify

that the condition is satis�ed if the transitions b� � brs are chosen as

brs �

��������
�������

xr �� xr � �

�
��krs xrxs

xs �� xs � �

�
��krs xrxs

xr�s �� xr�s �
�

�
��krs xrxs

for r �� s� and

brr �

����
���
xr �� xr � ��krr x

�
r

x�r �� x�r �
�

�
��krr x

�
r

�

The discrete birth�and�death master equation corresponding to the reaction scheme

��
 can be found explicitely in reference ��	� It depends on the volume � of the reaction
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vessel� Choosing an appropriate length unit� � equals the total number of monomers� In

the simulation of the discrete process� the selection of the next transition is the time�critical

part� and it can be implemented in several ways� First� there are the rather simple linear

search �
	 and the rejection method ��	� A modi�cation of the rejection method is the null�

process method ��	� Furthermore� there is a variety of more re�ned methods where the set

of possible transitions is arranged in classes� or more generally in a tree� and the selection

of the transition is performed by searching through the tree� beginning at its root ������	�

Each method requires a set of variables which depend on the transitions rates� and have to

be updated after each transition� We implemented the following schemes� linear search �
	�

rejection method ��	 and a multi�level tree search method ���	 with 
� � and �� levels�

In order to have an exact analytical solution of the rate equations which belong to the

reaction scheme ��
 as reference� we employed the trivial kernel krs � 
������� together with

the initial condition cs��
 � ���s ���	� For the benchmarking� the simulation was run from

time t � 
�� � ����� to t � ����� � The simulation programs using the di�erent algorithms

were written as similar as possible and run on the same machine �IBM RS�����
�

In order to make a fair comparison between the di�erent algorithms one must take into

account that they do not solve the master equation exactly� but rather generate a sample

of realizations of the stochastic process� from which the concentrations cs are estimated

through the sample averages �cs� Consequently� the CPU time consumption of an algorithm

must be related to the accuracy of its results� Using the exact solution cexs �t
 of the rate

equations� the error can be de�ned as


 �

vuut�

n

nX
s��

�cexs �t
� �cs�t

� � ��


Then there are two sources of error� �i
 A systematic error� which stems from the fact

that in the simulations � respectively � are �nite� whereas the rate equations assume the

macroscopic limit � � �� respectively � � �� �ii
 A statistical error� which is caused

by the �niteness of the sample generated in the simulation� Here we are interested in the

case where the systematic error is much smaller than the statistical error� Then the more

�



realizations are generated� the smaller becomes the error� and generically the reciprocal of

the error will be proportional to the root of the sample size� This can in fact be veri�ed in

Figure �� where the total CPU time �which is proportional to the number of realizations


is plotted against the reciprocal of the squared error at t � ����� � We can see that the

curves are roughly straight lines� Their slope is a measure of the �CPU time consumption

per accuracy�� and thus the lower the slope� the higher is the e�ciency of the algorithm�

The fact that the lines for di�erent � have nearly the same slope can easily be understood�

When varying �� the CPU time per realization increases proportionally to �	�� but the

number of realizations necessary to achieve a given accuracy decreases by the same factor�

such that the total CPU time remains constant� An analogous trade�o� is found in the choice

of � in the discrete master equation� This trade�o� may be used for e�cient load�balancing

when the realizations are generated in parallel on multiple CPUs �
�	�

Noting the di�erent ordinate scales in Figure �� we see that the new method is �� times

faster than simulations of the discrete master equation using the linear search selection

method� In exactly the same manner the other selection schemes were benchmarked� which

lead to the results summarized in Table �� It is no question that such numbers depend

very much on the type of problem� as well as on the implementation� Important factors are

the inhomogeneity of the distribution of transition rates �respectively widths
� the number

of variables which have to be updated after each transition and the speed of the random

number generator� However� the presented results are meaningful beyond the particular

numerical example that we have chosen here� In the following we shall see that a signi�cant

speedup can be achieved with the new method for a large class of simulation problems�

First� consider the relative performance of the di�erent selection schemes in the discrete

simulations� The rejection ��	 and null�process ��	 method are good for homogeneous situa�

tions� whereas they become extremely slow when the transition rates vary in a wide range�

since a lot of time is wasted in rejection steps or null�processes� This is con�rmed by our

results� Generally� the linear search method �
	 is slow� However� in the present example� it

performs very well� since the transition rates are� for the given initial condition and the con�

�



sidered time range� sharply peaked near the origin �r� s small
� and the linear search starts

at the right end� When the distribution of transition rates is quite inhomogeneous� tree

methods are reported to perform the fastest ���	� How does this comply with our results 

Besides the time consumption of the actual search for the next transition one must as well

consider the amount of bookkeeping for maintaining the data structure� Therefore at least

two cases must be distinguished�

I� After a transition� only a small number of transition rates is changed� This is typical

of reaction�di�usion�systems with a small number of species and a large number of spatial

cells� Clearly� a reaction within one cell does not a�ect the rates in the others� and a

di�usion step only a�ects the rates of the two cells involved� In these cases the updating

even of a complicated data structure like a tree is not computationally expensive� and the

bookkeeping time is in general negligible compared to the search time�

II� A transition changes a large number of transition rates� This is typical of complex

chemical reactions systems where the number of species is large and each species can react

with all or many of the others� The presented aggregation or polymerization reaction is

of this type� Our results indicate that tree or classi�cation methods become ine�cient for

systems of type II� since the bookkeeping requires much time�

In contrast� the new method is by construction not diverted by time�consuming selection

and bookkeeping procedures� and for the given problem proves to be about �� times faster

than the fastest discrete algorithm�

How is the performance of the new method e�ected by the distribution of the transition

widths Obviously it is expected to work best if the transitions are all of the same order of

magnitude� On the other side� if there are a few large transitions and many small ones� a

lot of CPU time is wasted on simulation steps that only make insigni�cant changes in the

variables� Furthermore� the CPU time consumption is directly proportional to the number of

possible transitions� Therefore the set of possible transitions should not contain transitions

that do practically not occur in the simulation� Qualitatively� the situation resembles very

much to the one encountered with the rejection method�

�



Note that the presented simulation example does not favour the new method� indeed

the transition rates� resp� widths� do vary in a wide range� This statement is veri�ed by

the good performance of the linear search compared to the other traditional methods� as

mentioned above� The new method performs remarkably well even under these conditions�

Concluding� the new method can be expected to signi�cantly outperform the conven�

tional algorithms whenever the simulated system is of type II� It o�ers an e�cient and

uncomplicated approach to non�equilibrium simulations�
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FIG� �� The CPU time consumption TCPU that is required to achieve an accuracy ��� of the

Monte Carlo simulation results �see equation ����
 The slopes of the lines are used to measure

the e�ciencies of the di�erent algorithms
 The solid� dotted and dash�dotted lines correspond to

the new algorithm with di�erent values of �� and their time axis is on the right side of the plot


The dashed line is the result of simulations of the birth�and�death master equation using the linear

search selection method �� � ��� � ����
 Its time axis is on the left side of the plot
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TABLES

CPU time

New method �

Linear search ��

Rejection method ���

��level tree ��

��level tree ���

���level tree ���

TABLE I� The CPU times required for the di�erent algorithms to solve the test problem to a

given accuracy �see text�
 Shown are the factors by which the other methods are slower than the

new method
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