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Abstract

A fast method for the Monte Carlo solution of the balance equations which
arise in non—equilibrium thermodynamics is suggested. It is applicable to
chemical kinetics, reaction—diffusion processes, fluid dynamics and heat con-
duction. The method is based on a multivariate master equation which is con-
structed in such a way that the simulation algorithm avoids time-consuming
transition selection procedures, and thus becomes particularly efficient. For
the example of a large chemical reaction scheme, the proposed method is
shown to perform significantly faster than conventional methods which rely

on a birth-and—death master equation in discrete occupation number space.
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Monte Carlo methods are a standard tool for the study of equilibrium properties (see
e.g. [1]) and are also widely used to investigate non-equilibrium situations, such as chem-
ical reactions and reaction—diffusion processes [2-5]. These systems are most conveniently
described by multivariate master equations, which describe reactions as a birth—and—death
process and diffusion as a collective random walk [6-10]. Recently similar master equa-
tions were also shown to offer a systematic and numerically efficient approach to fluctuating
hydrodynamics, fluid turbulence and heat conduction [11-13].

For the purpose of this letter, it is important to recall two fundamental aspects of the
master equation approach to non—equilibrium simulations: First, the master equation must
be consistent with the macroscopic description from non—equilibrium thermodynamics which
is usually given in terms of balance equations for the conserved quantities, e.g. mass, mo-
mentum, energy and particle number density. The consistency condition is that in the
macroscopic limit the expectation values of the corresponding stochastic quantities obey
these balance equations. Furthermore, it is possible to demand consistency of the fluctua-
tions obtained through the master equation with those predicted by the theory of fluctuating
hydrodynamics by Landau and Lifshitz [14]. Second, rather than solving the master equation
directly as a differential equation for a probability density, the simulation algorithm gener-
ates a sample of realizations (or paths) of the stochastic process from which the quantities
of interest are estimated as ensemble averages.

Most applications of the master equation approach have up to now been on chemical
systems and reaction—diffusion processes, where the stochastic variables are discrete particle
numbers. Here, the selection of the next event (or state transition) is the time—critical
part of the simulation algorithms, and much effort has been dedicated to its optimization
[1-3,15-17]. On the other hand, the introduction of continuous instead of discrete stochastic
variables may result in a significant speedup, as it has been already demonstrated for the
case of two—dimensional turbulence simulations [18]. The basic idea is to circumvent time—
consuming selection and bookkeeping procedures by assigning equal rates to all transitions,

but giving them appropriately varying transition step widths.



Fast simulations can thus be performed whenever it is possible to construct a stochas-
tic process whose simulation algorithm assigns equal rates to all transitions and which is
consistent with non—equilibrium thermodynamics. The purpose of the present report is to
outline the method in general, and to compare its numerical performance to methods which
are based on a birth-and-death master equation. Since we are going to present a simula-
tion example from chemical kinetics, notation and terminology will be adapted to chemical
kinetics.

Let us briefly recall the usual birth—and—death master equation description of chemical
reactions [10]: The state of the system is described by a set of integer stochastic occupation
numbers N;. If the system is not homogeneous in space, then a discrete partition of space
can be introduced in the usual way [7]. Ny is interpreted as the number of particles of a
species in a space cell, s labeling both species and cells. The connection with the macroscopic

description is made through interpreting the expectation values

cs = E(NQ (1)

as the macroscopic concentrations, {2 denoting the volume of the space cells.

Now we generalize this approach and consider a system which is described by a set of
real-valued stochastic variables (z1,...,z,) = z, where x; € IR. The probability of finding
the system in a state within the n-dimensional interval [z,z + dz] at time ¢ is given by

P(z,t)dz. In analogy to (1) the macroscopic variables are obtained through

cs = ()

and the time evolution of the probability density P(z,t) is described by a master equation

%P(m,t) :/dm' {w(z, )P 1) — w(a',2)P(z,t)} . (2)

The transition rates w(z,z’) are specified as follows: We require that all realizations of
the stochastic process are piecewise constant and that there is only a finite number R of

transitions which all have the same rate:



R

w(z,7') = ai S 6z — ba(ay2')) - (3)

T =1

Here, 7 is the typical time scale of the system, and it defines the time unit in which all
times are measured throughout this paper. « is a dimensionless scaling parameter which
we are free to introduce in this ansatz. Its role is similar to that of the volume €2 in the
birth—and—death master equation. The index A labels the different possible transitions and
the functions by specify these transitions as follows: If at time ¢, the transition A\ occurs, and
the system has been in state 2’ just until ¢y, it is in state by(«, 2') immediately afterwards
[13,18]. The choice of the by depends on the specific system to be simulated and is guided by
two requirements: (i) thermodynamic consistency, as mentioned above, and (ii) numerical
efficiency. In the following we shall see in detail how these requirements can be employed to
choose suitable transitions b,.

The thermodynamic consistency conditions are derived using an expansion in powers of
the parameter v which is completely analogous to van Kampen’s well-known system size

expansion [10]. Thus, the first requirement on by is that it depends on « such that
ba(a, ) = 2+ af(x) + O(a) (4)

where 3, is a differentiable function that does not depend on «. The basic idea of the
expansion is to split the stochastic dynamics of x into a large deterministic part ¢ and
a smaller stochastic part 7, i.e. to set * = ¢ + /a 7. Inserting this ansatz into the
master equation, expanding the by—functions according to (4), and sorting the terms with
respect to their order in «, we obtain the following results: The leading order terms are

1/2

of order a~"/#, and thus they are required to cancel out if the expansion is to converge in

the limit & — 0. This leads to the following ordinary system of differential equations (“the

macroscopic equation”) for ¢ = (¢, ..., ¢,):
! (t) ! ER:B (c(?)) (5)
dtc T = Ae '

The next-to-leading order is o and the corresponding terms constitute a linear Fokker—

Planck equation for the probability density II(n, t) of the new stochastic variable n
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on 1 & OBy (c) d(n,I0) 1 o1
7= m (T ey ta@Ohg,5)

All remaining, higher order terms of the expansion become arbitrarily small as a goes to
zZero.

The following conclusions can be drawn from the expansion: First, the macroscopic
equation and the Fokker-Planck equation depend on the transitions b, only via the [, i.e.,
terms of order a? in (4) have no effect and by(c, ) might as well be chosen such that it
only depends linearly on a. Second, any macroscopic equation can be constructed by an
appropriate choice of the transitions by. Moreover, the choice of these transitions is not
uniquely determined by the macroscopic equation: as is seen from equation (5), any set of
functions by for which the right hand side of (5) is the same is equally admissible. Third,
under certain conditions this arbitrariness can be employed to obtain the desired fluctuating
behaviour which is described by the diffusion matrix in the Fokker—Planck equation [13].

These results are strictly valid only in the limit « — 0, but simulations are always
performed with finite ov. This is no serious problem however, since Monte Carlo methods
anyway have some statistical error, due to the finiteness of the sample of realizations which
is generated. Thus, a can always be chosen sufficiently small such that the systematic error
caused by the finiteness of « is negligible in relation to the statistical error. This statement
will be illustrated in the example.

Let us now turn to the numerical treatment of the master equation. The simulation

algorithm which generates a realization of the Markov process defined by (2) and (3) looks

as follows:

1. Set the state variables (x1, ..., z;,) to their initial values and set the time step counter
z=0.

2. Draw a uniformly distributed random number A from the set {1,..., R}.

3. Perform the transition = — by(«, x).
4. Increment z by 1, and if not finished, goto 2.

5. The elapsed time ¢ is the sum of z independent, exponentially distributed random



time steps with mean a7/R.

Since z typically is very large, setting ¢ = za7/R is a good approximation according to
the central limit theorem, and no random numbers need to be generated for the time step.
We see that the selection of the next transition simply amounts to drawing a uniformly
distributed random number, and after the transition no further auxiliary variables need to
be updated. Since typically the state vector x has many components, it is computationally
advantageous if each single by works only on a few components of x, and leaves the rest of
them unchanged.

In order to compare the method’s numerical performance with that of conventional
schemes which are based on a discrete birth—and—-death master equation, let us now consider
a simple example from chemical kinetics, namely an irreversible polymerization (or coagu-
lation) reaction [19]. Each chain length or particle size r constitutes a separate species M.,

and reactions of the type
M, + M, 2= M, (6)

are possible for any pair (r, s). Here, k,s denotes the reaction rate.

In the new method, the stochastic variable z, stands for the concentration of M. The
thermodynamical consistency condition is that its expectation value ¢; = (x) obeys the
macroscopic rate equations corresponding to the reaction scheme (6). One can easily verify

that the condition is satisfied if the transitions by = b,, are chosen as

T, > X, — %owkm T, Ty
brs : § T, > x4 — %m’k,«s TpLs
Lotk
Tris = Tris + 50&7’ rs LrLs

for r # s, and

T, > T — Tk, 1
bpr
Tor F> Ty + 307k, 27
The discrete birth—-and—death master equation corresponding to the reaction scheme

(6) can be found explicitely in reference [4]. It depends on the volume Q of the reaction



vessel. Choosing an appropriate length unit, 2 equals the total number of monomers. In
the simulation of the discrete process, the selection of the next transition is the time—critical
part, and it can be implemented in several ways. First, there are the rather simple linear
search [2] and the rejection method [1]. A modification of the rejection method is the null-
process method [3]. Furthermore, there is a variety of more refined methods where the set
of possible transitions is arranged in classes, or more generally in a tree, and the selection
of the transition is performed by searching through the tree, beginning at its root [15-17].
Each method requires a set of variables which depend on the transitions rates, and have to
be updated after each transition. We implemented the following schemes: linear search [2],
rejection method [1] and a multi-level tree search method [15] with 2, 4 and 10 levels.

In order to have an exact analytical solution of the rate equations which belong to the
reaction scheme (6) as reference, we employed the trivial kernel k,; = 2-10°77" together with
the initial condition ¢,(0) = 014 [19]. For the benchmarking, the simulation was run from
time t = 2.5-10"*r to t = 10737. The simulation programs using the different algorithms
were written as similar as possible and run on the same machine (IBM RS/6000).

In order to make a fair comparison between the different algorithms one must take into
account that they do not solve the master equation exactly, but rather generate a sample
of realizations of the stochastic process, from which the concentrations ¢, are estimated
through the sample averages ¢;. Consequently, the CPU time consumption of an algorithm
must be related to the accuracy of its results. Using the exact solution ¢£%(t) of the rate

equations, the error can be defined as

€= \j . Xn:(C?(t) —&(1)? (7)

=1
Then there are two sources of error: (i) A systematic error, which stems from the fact
that in the simulations « respectively €2 are finite, whereas the rate equations assume the
macroscopic limit @ — 0, respectively @ — oo. (ii) A statistical error, which is caused
by the finiteness of the sample generated in the simulation. Here we are interested in the

case where the systematic error is much smaller than the statistical error. Then the more
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realizations are generated, the smaller becomes the error, and generically the reciprocal of
the error will be proportional to the root of the sample size. This can in fact be verified in
Figure 1, where the total CPU time (which is proportional to the number of realizations)
is plotted against the reciprocal of the squared error at ¢ = 10 37. We can see that the
curves are roughly straight lines. Their slope is a measure of the “CPU time consumption
per accuracy”, and thus the lower the slope, the higher is the efficiency of the algorithm.

The fact that the lines for different oz have nearly the same slope can easily be understood:
When varying «, the CPU time per realization increases proportionally to 1/a, but the
number of realizations necessary to achieve a given accuracy decreases by the same factor,
such that the total CPU time remains constant. An analogous trade—off is found in the choice
of Q in the discrete master equation. This trade—off may be used for efficient load—balancing
when the realizations are generated in parallel on multiple CPUs [20].

Noting the different ordinate scales in Figure 1, we see that the new method is 65 times
faster than simulations of the discrete master equation using the linear search selection
method. In exactly the same manner the other selection schemes were benchmarked, which
lead to the results summarized in Table 1. It is no question that such numbers depend
very much on the type of problem, as well as on the implementation. Important factors are
the inhomogeneity of the distribution of transition rates (respectively widths), the number
of variables which have to be updated after each transition and the speed of the random
number generator. However, the presented results are meaningful beyond the particular
numerical example that we have chosen here. In the following we shall see that a significant
speedup can be achieved with the new method for a large class of simulation problems.

First, consider the relative performance of the different selection schemes in the discrete
simulations. The rejection [1] and null-process [3] method are good for homogeneous situa-
tions, whereas they become extremely slow when the transition rates vary in a wide range,
since a lot of time is wasted in rejection steps or null-processes. This is confirmed by our
results. Generally, the linear search method [2] is slow. However, in the present example, it

performs very well, since the transition rates are, for the given initial condition and the con-



sidered time range, sharply peaked near the origin (r, s small), and the linear search starts
at the right end. When the distribution of transition rates is quite inhomogeneous, tree
methods are reported to perform the fastest [15]. How does this comply with our results?
Besides the time consumption of the actual search for the next transition one must as well
consider the amount of bookkeeping for maintaining the data structure. Therefore at least
two cases must be distinguished:

[. After a transition, only a small number of transition rates is changed. This is typical
of reaction—diffusion—systems with a small number of species and a large number of spatial
cells. Clearly, a reaction within one cell does not affect the rates in the others, and a
diffusion step only affects the rates of the two cells involved. In these cases the updating
even of a complicated data structure like a tree is not computationally expensive, and the
bookkeeping time is in general negligible compared to the search time.

IT. A transition changes a large number of transition rates. This is typical of complex
chemical reactions systems where the number of species is large and each species can react
with all or many of the others. The presented aggregation or polymerization reaction is
of this type. Our results indicate that tree or classification methods become inefficient for
systems of type II, since the bookkeeping requires much time.

In contrast, the new method is by construction not diverted by time—consuming selection
and bookkeeping procedures, and for the given problem proves to be about 65 times faster
than the fastest discrete algorithm.

How is the performance of the new method effected by the distribution of the transition
widths? Obviously it is expected to work best if the transitions are all of the same order of
magnitude. On the other side, if there are a few large transitions and many small ones, a
lot of CPU time is wasted on simulation steps that only make insignificant changes in the
variables. Furthermore, the CPU time consumption is directly proportional to the number of
possible transitions. Therefore the set of possible transitions should not contain transitions
that do practically not occur in the simulation. Qualitatively, the situation resembles very

much to the one encountered with the rejection method.



Note that the presented simulation example does not favour the new method: indeed
the transition rates, resp. widths, do vary in a wide range. This statement is verified by
the good performance of the linear search compared to the other traditional methods, as
mentioned above. The new method performs remarkably well even under these conditions.

Concluding, the new method can be expected to significantly outperform the conven-
tional algorithms whenever the simulated system is of type II. It offers an efficient and

uncomplicated approach to non—equilibrium simulations.
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FIG. 1. The CPU time consumption Tpyy that is required to achieve an accuracy e=2 of the
Monte Carlo simulation results (see equation (7)). The slopes of the lines are used to measure
the efficiencies of the different algorithms. The solid, dotted and dash—dotted lines correspond to
the new algorithm with different values of «, and their time axis is on the right side of the plot.
The dashed line is the result of simulations of the birth—and—death master equation using the linear

search selection method (Q = 2.5-10%). Its time azis is on the left side of the plot.
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TABLES

CPU time
New method 1
Linear search 65
Rejection method 325
2-level tree 94
6-level tree 225
10-level tree 394

TABLE 1. The CPU times required for the different algorithms to solve the test problem to a

given accuracy (see text). Shown are the factors by which the other methods are slower than the

new method.
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