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Numerical investigations of open quantum systems� which are widely performed in such �elds as
photochemistry� quantum optics and nuclear magnetic resonance� can� in the Markovian regime� be
based either on the master equation for the reduced density operator or on a stochastic process in
the Hilbert space of the reduced system	 It is shown that the CPU time consumptions of the two
methods depend on the system size N as N��� and as R�N� N�� respectively	 The exponent � is
characteristic of the speci�c system	 R�N� is the number of process realizations generated in the
simulation and is de�ned by prescribing the tolerable statistical error of the result	 Since R�N� is a
non
increasing function of N � the stochastic method is found to be always faster for large systems	
This is demonstrated for the example of the dissipative Morse oscillator excited by an intense short
laser pulse	
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I� INTRODUCTION

During recent years� the Monte Carlo wave�function
method has been proposed for investigating dissipative
quantum systems ������ Besides providing insight into
statistical properties which are not revealed by the den�
sity operator master equation approach� the Monte Carlo
wave�function method has been designed as an e�cient
computational tool for the treatment of large systems as
encountered� for instance� in photochemistry �
� and laser
cooling �	�� For a system with N states� the density ma�
trix treatment requires simultaneous solution of O�N��
equations� while the stochastic wave�function approach
involves the time evolution of no more than N variables�
As with any Monte Carlo method� the results are sub�

ject to a statistical error� This error is related to the
number of realizations of stochastic wave�functions that
are generated in the simulation� The total CPU time re�
quired by the Monte Carlo wave�function method thus
depends on the desired accuracy�
This article presents a systematic analysis of the time

consumption of the Monte Carlo wave�function method
and compares it with that of the numerical solution of
the corresponding density matrix equation� The main
interest lies on the dependency of the time�consumption
on the system sizeN � It will be shown that for su�ciently
large N and for any prescribed� �xed statistical error the
stochastic wave�function method is always faster than the
integration of the corresponding density matrix equation�
The article is structured as follows� Section II con�

tains a general� quantitative formulation of the relations
between CPU time consumption� system size and statis�
tical errors� In Section III these general considerations
are illustrated with an explicit example� The example
is non�trivial and concerns the excitation of molecular
vibrations by short laser pulses in a dissipative environ�
ment� The results are summarized in Section IV�

II� GENERAL CONSIDERATIONS ON

NUMERICAL PERFORMANCE

A� Reduced density operator and stochastic

wave�function method

Dissipation in a quantum system arises when the sys�
tem is coupled to environmental degrees of freedom
whose dynamics need not or cannot be described explic�
itly� The environment is then taken into account by in�
troducing suitable dissipative terms in the system�s dy�
namic equations� The typical situation encountered� for
instance� in quantum optics and laser physics is a bound
system� e� g�� an atom or molecule� coupled to an environ�
ment which consists of a continuum of electromagnetic
�eld modes�
One fashion to formulate the dynamics of the open

quantum system employs the reduced density operator�

which is obtained from the density operator of the to�
tal system by tracing over the variables of the environ�
ment� In order to derive a closed equation for the reduced
density operator� various approximation techniques are
known ������ The most famous of these is the Markov
approximation which yields under certain additional as�
sumptions the so�called quantum optical Markovian mas�
ter equation �������� that is a linear di�erential equation
for the density operator �
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The Hamiltonian HS describes the coherent part of the
dynamics� The dissipation is represented by the opera�
tors Ai and the rates �i� The form of Eq� ��� guarantees
that the properties of a density operator� i� e�� Hermitic�
ity� normalization and semi�positivity� are preserved� In
principle� the numerical solution of Eq� ��� is straight�
forward� Introducing a basis� the resulting set of linear
coupled di�erential equations for the matrix elements of
� can be solved by a standard numerical integration rou�
tine� However� if the dimension of the matrix is large�
CPU time and memory requirements impose limits on
the calculations�
In recent years several stochastic wave�function meth�

ods have been developed for the description of open quan�
tum systems ������ The essence of these methods is the
use of ensembles of pure states� Instead of an equation
of motion for the density matrix� the dynamics is for�
mulated in terms of a stochastic process in the system�s
Hilbert space� Again� a Markov approximation can be
made� and the process is then found to be a piecewise�
deterministic Markov process� Individual realizations of
the process consist of intervals of deterministic time evo�
lution interrupted by a discrete set of jumps� The pro�
cess can be characterized by the density T ��� tj ��� t�� of
the conditional transition probability to �nd the system
in state � at time t� given that it was in state �� at time
t�� Its short time behaviour takes the form ��������

T ��� t� � j��� t� � ��� ������� �
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The deterministic part of the process is induced by
the non�linear operator G� as long as no jump oc�
curs� individual realizations evolve according to ����t �
�iG�����h� The stochastic part of the process is de�
scribed by the transition rate W ��j��� of a jump from
�� to �� Denoting by P ��� t� the one�time probability
density� the ensemble average of the quantum mechanical
expectation value h�jBj�i of an observable B is de�ned
as �����
�

Et�B� �

Z
h�jBj�iP ��� t�D�D��� ���






where D�D�� is the volume element in the system�s
Hilbert space� and the integration extends over the whole
space�
The numerical aspect of the stochastic wave�function

approach is an algorithm that generates a �nite sample
of size R of independent realizations �r�t�� r � �� � � � � R�
The algorithm is described� for example� in references
�
��
��	�� As with any Monte Carlo method� the results
are obtained through estimation from the sample of re�
alizations� They are laden with a statistical error� which
becomes smaller when the sample size R is increased�

B� Time consumption

Let us denote by N the number of complex variables
which are used for the numerical representation of the
wave�function� that is� the number of basis states� The
number of complex variables to represent the density ma�
trix is then N��
�
In the case of the density matrix equation �DME�� the

part of the numerical integration routine that dominates
the CPU time consumption is the calculation of the right�
hand side of Eq� ���� One such calculation requires� for
large enough N � an amount of CPU time proportional to
a power of N � and the CPU time needed to integrate the
density matrix over a given physical time interval is� to
leading order in N �

TDME � k� s��N�N� � ���

Here� s��N� is the number of times the right�hand side
of Eq� ��� has to be evaluated� k� and 	 depend on the
type of the speci�c problem� but not on N � Besides�
k� depends on the particular implementation on a com�
puter� Analogously� in many examples the time�critical
part of the stochastic simulation �StS� is the calculation
of the generator G���� and the CPU time required for
the simulation is

TStS � k�R�N� s��N�N�� ���

R�N� is the number of realizations of the process that
are generated to treat the system of size N � s��N� is the
number of evaluations of G��� for one realization� and
k� is analogous to k��
In many situations� s��N� and s��N� will be roughly

equal� Provided that similar numerical integration rou�
tines are used� this is the case if the smallest time scale
of the dynamics of the stochastic wave�function is about
equal to that of the density matrix� Since we want to
separate the e�ects of system�size from dynamical phe�
nomena� this case is the one of interest for this article�
and the presented example illustrates that case�
Let us brie�y note that there are also situations where

s��N� and s��N� are quite di�erent� In general their ra�
tio might depend on N and they do not necessarily grow
in the same way with the physical time over which the

system is studied� Consider the case where the time scale
of the dynamics of a single realization of the stochastic
process varies� during its temporal evolution� in a wide
range� as for example� in laser cooling ����� The simu�
lation of one realization will then contain stretches with
very long time steps� interrupted by phases of more rapid
development and short time steps� The integrator of a
density matrix equation� on the other side� which de�
scribes the dynamics of the whole ensemble� must always
adapt to the short time scale� Clearly� in such cases the
stochastic wave�function method is the preferred choice�
Independent of the speci�c form of the Hamiltonian

HS � the number of �oating point operations to calculate
the right�hand side of Eq� ��� and to calculate G��� di�er
by about a factor N � and one expects

	 � 
� �� �
�

This relation will be veri�ed in the example of section III�
The crucial quantity for the relative performance is

therefore the number of realizations R�N�� If it grows
with N slower than linearly� then� regardless of the values
of the factors k� and k�� the stochastic simulation will
eventually be always faster for large systems� i� e�� large
N � In fact� as we shall see in Section III� R�N� can
in many cases be chosen to be independent� or even a
decreasing function of N �
The sample size R�N� is of course closely related to the

statistical error of the estimated results� Consequently�
R�N� is selected according to the desired accuracy of
the results� The more accurate the results are supposed
to be� the larger an R�N� we have to choose� A prac�
tical prescription for the tolerable statistical error may�
for instance� be� �estimate the expectation value of the
energy with a relative error of � ��� or� �calculate the
density matrix with a precision of better than ���� in
each of its elements�� A meaningful comparison between
the two methods on a general level is only possible if the
behaviour of R�N� has general properties that are inde�
pendent on the particular choice of prescription used� as
well as on particularities of the system under study� In
the following we shall see that this is indeed the case�
An unbiased and consistent estimator for the expec�

tation value Et�B� of an observable B �cf� Eq� ���� is
provided by the sample average�

 Bt �
�

R

RX
r��

h�r�t�jB j�r�t�i� �	�

where �r is the r�th realization generated by the algo�
rithm� and R is the total number of independent real�
izations� Here and in the following� the hat denotes an
estimator for the quantity underneath� The statistical
error in the estimation can be measured by the square
root of the variance of  Bt�

�B ��

q
Var�  Bt�� ���

�



The argument t stands for a given� �xed time� usually
the end of the simulation� Since� from Eq� �	�

Var �  Bt� �
�

R
Var

� h��t�jB j��t� i �� ���

�B decreases proportionally to ��
p
R� The statistical

error �B needs itself to be estimated from the sample
of realizations� and an estimator  �B is constructed by
employing Eq� ���� with the sample variance on the right�
hand side�  �B is also often called the standard error of
the mean�
The equation

��B �
�B�N�

R
����

de�nes a factor �B�N� that takes into account the de�
pendence of the statistical error on the observable B and
on the system size N � but does not depend on the sample
size R� Using a su�ciently large sample of realizations�
�B�N� can be determined by �tting Eq� ���� to the sim�
ulated data� Then� Eq� ���� can be solved for R�

R � RB�N� �
�B�N�

��B
� ����

This is the number of realizations that is necessary to
achieve an accuracy of �B for observable B and system
size N �
In the example of section III� �B�N� is determined for

various observables B� If �B�N� varies as a power of the
system size� �B�N� � N�x� the following classi�cation
can be made �����

�� If x � �� the observableB is strongly self�averaging�


� If � 
 x 
 �� the observable B is self�averaging�

�� If x � �� the observable B is not self�averaging�

Concluding the general considerations� we can write
Eqs� ��� and ��� in a more succinct form

TDME � k�N
���

TStS � k�N
��x�

Here we have assumed that the numbers of steps s� and
s� are roughly equal and can be absorbed into the con�
stants 
� k� and k�� The performance of the stochastic
wave�function method versus that of density matrix in�
tegration can be measured by the di�erence between the
exponents� which is � in the non�self�averaging �x � ��
and 
 in the strongly self�averaging case �x � ���

III� SIMULATION

In this section the general considerations of Sec� II will
be con�rmed by means of numerical investigations of a
non�trivial example� the excitation of molecular vibra�
tions by short laser pulses in a dissipative environment�

A� Stochastic wave�function method

First� let us repeat very brie�y some basic features of
the stochastic wave�function method as far as they are
necessary to understand the simulation� A piecewise de�
terministic stochastic process �
�� is completely speci�ed
by the following quantities �����
�� The non�linear operator G that induces the norm�

conserving deterministic �ow according to

����t � � i

�h
G����


� A set of jump operators A� � The index � counts
over the di�erent possible jumps� The ��th jump is given
by

� � A��

kA��k �

�� A set of jump rates �� � At each time t� the prob�
ability for jump � to occur in the next time interval dt
is

P � jump � within �t� t� dt� � � ��kA���t�k dt�
In the context of Markovian open quantum systems�

these quantities are not fully independent� Instead of G�
equivalently a linear� non�Hermitian operator

�H � HS � i�h
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and an unnormalized wave�function �� can be used that
obeys � ����t � �i �H ����h� If the initial condition ��t�� �
���t�� is ful�lled� then the two wave�functions are related

by ��t� � ���t��k ���t�k� HS is the Hamiltonian of the free
system� Note that in the example of Section III B� the
operators HS � �H and G are explicitly time�dependent�
A further important quantity is the random waiting

time � until the next jump occurs� given that the system
is in a state � at time t� The cumulative distribution
function of � can be shown to be ��
�

F ��� � ��
��� ���t� ��

���� � ����

with the initial condition ���t� � �� This relation be�
tween the distribution of the waiting time and the norm
of �� is employed in the Monte Carlo generation of the
waiting time�
The relation of the stochastic wave�function to the den�

sity operator is

��t� �

Z
j�ih�jP ��� t�D�D��� ����

i� e�� the density matrix is the covariance matrix of the
stochastic process �� In particular� expectation values of
the kind ��� can equivalently be expressed as

Et�B� � TrfB��t�g� ����

�



B� Example� The damped driven Morse oscillator

The concept of laser control of chemical reactions by
means of selective excitation of molecular vibrational
states has received considerable interest in recent years
�
��� In the simplest case� one might consider a single
molecular degree of freedom within a single electronic
potential energy surface�

HM �
�


m
p� � V �q�� ��
�

For V �q�� consider the Morse potential

V �q� � Df�� exp��b�q � qeq��g��

With an appropriate choice of the parameters D� b and
qeq � this model yields a fairly realistic description of� for
example� the vibrational dynamics of the local O�H bond
in the water molecule� or of the HF molecule �

�
���
Representing the interaction with the laser �eld semi�
classically in dipole approximation� the interaction term
is

HL�t� � �qF�s�t� sin��Lt�� ��	�

Here� �q is the relevant component of the molecular
dipole moment� F� is the maximum �eld strength and
s�t� is the envelope of the laser pulse� or of a series of
pulses� To be speci�c� we take

s�t� � sin�
�
�t

tp

�
�

In the language of Sec� II A� the !system� is the non�
dissipative driven Morse oscillator� and is represented by
the Hamiltonian

HS�t� � HM �HL�t�� ����

A description based on the time�dependent Schr"odin�
ger equation with Hamiltonian HS�t� applies for isolated
polar bonds interacting solely with the laser pulse� i� e��
for small molecules in a dilute gas� If the dynamics is re�
stricted to bound states� a straightforward numerical ap�
proach consists in the numerical integration of the time�
dependent Schr"odinger equation in the energy eigenbasis
of HM � Selective excitation of a given target state with
probabilities arbitrarily close to unity can be achieved
by suitable choice of the laser pulse parameters F� and
tp �

�
	�� A good theoretical understanding of the mech�
anisms involved� as well as a simple criterion for optimal
pulse design� is provided by representing the dynamics in
a time�dependent comoving Floquet basis �
��
���
Inclusion of dissipative contributions to the dynamics

is necessary if the molecule under consideration is em�
bedded in a solid or dissolved in a liquid� Environment
induced relaxation and dephasing have a signi�cant ef�
fect on the excitation mechanism� In particular� it seems

no longer possible to achieve a selectivity as perfect as in
the isolated case �
���
Within the formalism of the stochastic wave�function

method� the dissipative part of the dynamics is described
by specifying a set of jump operators� together with their
respective jump rates� The present investigations are re�
stricted to the case where the dynamics is well con�ned
in the subspace H of bound states of the Morse oscillator�
The number of bound states is �
��

N � int

�p

mD

�hb
�

�
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and the energy spectrum of HM is given by

Ek �

r
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for k � �� �� � � � � N ��� For the jump operators� we chose
a basis of the space of linear operators in H�

Ajk � jjihkj j� k � �� �� � � � � N � �� �
��

where jji is the eigenstate that belongs to Ej � The index
pair �j� k� now plays the role of the index � in the gen�
eral formalism of section III A� The operators Ajk are
eigenoperators of HM �

�HM � Ajk � � �Ej �Ek�Ajk � �

�

The e�ect of the jump operator Ajk on the system wave�
function may be interpreted as the transition which be�
longs to the emission or absorption of a vibration quan�
tum of energy jEj � Ekj� If we assume that the envi�
ronmental degrees of freedom have a �at spectral density
in the frequency range of interest and obey a thermal
distribution� that the interaction is proportional to the
system�s dipole moment� and that the relevant processes
in the system�environment interaction are spontaneous
emission as well as induced absorption and emission of
vibration quanta� the jump rates are

�jk � � jhjjq � qeq jkij� �

	
�

�

�n��jk� � �� if �jk � �

�� if �jk � �

�n��jk�� if �jk 
 �

�
��

where

�h�jk � Ek � Ej �

�n��jk� is the thermal distribution

�n��jk� � �e�h�jk�kBT � �����

and � is a constant of dimension �time����length���

that characterizes the strength of the system�environ�
ment coupling� Inserting Eq� �
�� into Eq� ��
�� we �nd

�



that the deterministic part of the wave�function dynam�
ics is governed by

�H�t� � HS�t�� i�h
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The stochastic process� as well as the density matrix
equation for the damped driven Morse oscillator are now
completely speci�ed� Numerical calculations have to be
performed in a speci�c basis� for which we chose the
�bound� eigenstates jji of HM � The equation for �� in
the energy representation is

d

dt
��j � � i

�h

�
Ej

��j � f�t�

N��X
k��

Qjk
��k

�
� �



�j ��j � �
��

Here� f�t� is the time�dependent external force �cf�
Eq� ��	��

f�t� � �F�s�t� sin��Lt��

and Qjk are the matrix elements of the dipole operator�

Qjk � hjjq � qeq jki�

The matrix �Qjk� is real and symmetric� �j is the total
rate of all jumps away from jji�

�j �
N��X
m��

�mj � �
��

Inserting Eqs� ���� and �
�� into Eq� ���� the density
matrix equation in the energy representation takes the
form

d�jk
dt

� � i

�h
�Ej �Ek� �jk � i

�h
f�t�

X
l

�Qjl �lk �Qlk �jl�

��jk

�X
l

�jl �ll

�
� �



��j � �k� �jk� �

�

The choice of the simulation parameters was based on
the physical model of a HF molecule driven by a laser
pulse �
�� and is shown in Table I� For simplicity� the
initial condition was assumed to be the pure ground state
j�i of the Morse oscillator� Thus the initial probability
density and the initial density matrix were

P ��� t � �� �
�


�

Z ��

�

d� ��� � ei�j�i ��
��t � �� � j�ih�j�

where ���� is the Dirac functional� Using these param�
eters� the number of bound states is N � 
�� and for
the non�dissipative oscillator �i� e�� � � � in Eq� �
���� a
nearly ��� � population of the �fth excited state can be
achieved�

In order to study the e�ect of the system size on the
time consumption of the numerical routines� a series of
similar oscillators with varying numberN of bound states
was investigated� The parameters of these oscillators
were de�ned as follows� Solving Eq� ���� for b�

b �
p

mD��hN

and �xing m and D to their values given in Table I� b
is a function of N � The system size N was varied in the
range N � �
� � � � � 	�� In order to not just blow up the
number of states� with the actual dynamics always stay�
ing in the same number of low�lying states� it is necessary
to appropriately scale the driving �eld as well� To this
end� let us de�ne a target state jj�i�

j� � int

�
N

�
�

�




�
�

and tune the laser frequency to be

�h�L �
Ej� �E�

j�
�

The laser amplitude F�� the pulse length tp and the ef�
fective charge � were kept �xed at the values speci�ed in
Table I�
The strength of the environment coupling is most con�

veniently expressed via the mean lifetime of a certain
excited state �
���

�j� � ��j��
���

with �j� as de�ned in Eq� �
��� Specifying �j� is equiv�
alent to specifying �� The two combinations of environ�
ment parameters that were used in the simulations are
displayed in Table II� Combination A corresponds to the
parameters used in Ref� �
���

C� Simulation results

The central part of the simulation programs is the nu�
merical integration of Eqs� �
�� and �

�� We used the
same Runge�Kutta procedure for both �rkqc and odeint

from Ref� ������
Fig� � shows the occupation probabilities P��k�t� �

�kk�t� of the oscillator eigenstates versus time result�
ing from the action of the laser pulse� In the non�
dissipative case �� � ��� nearly ��� � selective excitation
of the �fth eigenstate is achieved with the applied optimal
pulse� Dissipation �parameter combination A� results in
an broad distribution of the occupation probability over
several excited states�
Now let us turn to the comparison between stochas�

tic simulation algorithm and the integration of the den�
sity matrix equation� The �rst thing to do is� of course�
to verify that both methods do indeed yield the same






results� Because of Eq� ����� all expectation values es�
timated from stochastic simulations should be equal�
within the statistical error bars� to those calculated from
the density matrix� Moreover� with increasing sample
size� the simulation results should converge to the den�
sity matrix results� This is illustrated in Fig� 
� The
lowest curve shows the squared di�erence

�H �


 Ht �Et�HM �

��
�
	�

between Et�HM � � TrfHM��t�g� the expectation value
of the oscillator energy at time t � tp obtained from in�

tegrating the density matrix equation� and  Ht� the value
estimated from a sample of realizations of the stochas�
tic process� �H is plotted as a function of the sample
size� To obtain Fig� 
� ��� subsamples of varying size
were randomly drawn from a pool of a total 
��� realiza�
tions that were generated by the simulation program� For
Fig� 
 environment parameter combination A was used#
the plot for combination B is similar� The upper two
curves show the maximum of the squared di�erences be�
tween the diagonal and o��diagonal elements of the two
density matrices�

�diag � max
k

� �kk � �kk�
�

�
��

�o��diag � max
j ��k

� �jk � �jk�
�
� �
��

where  �jk is the estimator for the matrix element hjj�jki�

 �jk �
�

R

RX
r��

hjj�r�t�ih�r�t�jki� ����

Clearly� �diag and �o��diag decrease with sample size� and
systematic errors �induced� e� g�� by round�o� errors or
by imperfections in the random number generator� are
found to be negligible�
The next issue to look at are the exponents 
 and 	

which were introduced in Section II B� cf� Eqs� ��� and
���� Fig� � shows the CPU time per time step of the
numerical integrator as a function of the system size N �
For Fig� � it makes no di�erence whether the environment
parameter combination A or B is used� Measuring the
slope of the lines� we obtained

	 � ���� ���� 
 � 
��� ����

which con�rms Eq� �
�� These exponents can be easily
understood� in the case of the stochastic simulation� the
most time�consuming part is the multiplication of �� with
the dipole matrix Q �cf� Eq� �
���� which requires O�N��
�oating point operations� Analogously� for the density
matrix integration� the calculation of the right�hand side
of Eq� �

� for all j and k involves O�N	� �oating point
operations�
Fig� � displays the number of integrator steps s� and

s� that are necessary to calculate a whole pulse� As we

can see s� and s� increase with N � but remain roughly
equal� Their increase is due to particular properties of the
presented example� The systems of di�erential equations
which have to be solved for the density matrix calculation
and for the stochastic simulation both become sti�er with
increasingN � In particular� the ratio between the highest
and the lowest eigenenergy of the oscillator grows about
linearly with increasing N �
In order to investigate the behaviour of R�N�� the

number of Monte Carlo realizations that have to be gen�
erated to treat a system of size N � it is necessary to
look at the standard error of various observables �see
Section II B�� An obvious choice for the observable of
interest is the oscillator energy HM � whose standard er�
ror we call  �H � More generally� it is possible to consider
elements  �jk of the density matrix �cf� Eq� ������ Denot�
ing their standard error by  �jk � we can de�ne

 �diag � max
k

 �kk � ����

 �o��diag � max
j ��k

 �jk � ��
�

the maximum standard error for diagonal and o��
diagonal elements� respectively� Fig� � shows  �diag�
 �o��diag and  �H as a function of the sample size R� Fig� �
was obtained� like Fig� 
� by randomly drawing ��� sub�
samples of varying size from a pool of a total 
��� real�
izations� After verifying that the curves are statistically
consistent with straight lines of slope ��� the parameters
�diag� �o��diag and �H can be found according to Eq� ����
by linear regression on the logarithmic data�
In this manner� the ��parameters were determined

from a series of simulations with varying N and for the
two di�erent environment parameter sets� The results
are presented in Fig� 
� Up to statistical �uctuations�
��N� and therefore R�N� is a non�increasing function of
N � Therefore� in order to achieve a constant statisti�
cal error in the simulation results when the system size
N is increased� the number of realizations need not be
increased� It follows that the stochastic simulation will
eventually� for large system size� be always faster than
solving the density matrix equation� This is the main
result of the presented study�
This result is exempli�ed in Fig� 	� The plots show

the CPU times needed to integrate the density matrix
equation ��� and to generate as many realizations of
the stochastic process �	� as are necessary to obtain
a standard error of the mean of the oscillator energy
�H � � � ���	� The number of realizations R was cal�
culated according to Eq� ����� According to Fig� 
c� we
chose �H�N� � ���	 independently of N � The curves
follow di�erent power laws and at some point N� they
intersect� In the present example� N� � �� for the weak
dissipation case and N� � �� for the case of strong dissi�
pation� Above N�� the stochastic simulation is faster�

	



IV� CONCLUSION

It is commonplace that Monte Carlo algorithms are
the only way to study very high�dimensional systems� for
which exact deterministic calculations are beyond the ca�
pacity of any computing machinery� On the other hand� a
deterministic method may be preferred for small systems�
In this study� using a non�trivial example of intermediate
size� the dependence of the CPU time consumption on
the system size has been investigated for the quantum
stochastic wave�function method and for the numerical
integration of the corresponding density matrix equation�
It has been possible to analyze the CPU time consump�
tion in terms of simple power laws� The main result of
the numerical study is that the CPU time for the density
matrix integration TDME and the time for the stochastic
wave�function simulation TStS scale with the system size
N as

TDME � N	�

TStS � N�� ����

Although the numerical study was performed on a spe�
ci�c example� the considerations made in Section II B
are far more general� In particular� whereas the absolute
values of the exponents in Eqs� ���� depend on speci�c
properties of the system under study� their di�erence is
of more general signi�cance� Under general conditions�
the exponent in the expression for TDME is expected to
be larger by � to 
 than the exponent of TStS�
For a systematic comparison of the performance of the

stochastic wave�function method and density matrix in�
tegration� the following two main points had to be taken
into account�
First� one has to determine the number R of realiza�

tions of the stochastic process that have to be generated
in the simulation� This number is related to the type
of the observable under interest as well as to the desired
accuracy� Quantitatively� this relation may be expressed
in the form

R � N�x

��
� ����

where � is the desired standard error of the mean and
x is an exponent that varies between � and �� depend�
ing on the so�called self�averaging property ���� of the
observable� Note that Eqs� ���� correspond to a non�
self�averaging observable# the di�erence in the exponents
would be even larger in the self�averaging case� An exam�
ple of a self�averaging observable is the position operator
of a particle when working in position representation�
Second� we analyzed the time consumptions in terms

of �CPU time per integrator step� times �number of in�
tegrator steps�� and both factors have to be investigated
separately� The present study focuses on the �rst fac�
tor and assumes that the second is roughly equal for the
two numerical methods� However� if the second factor

is di�erent� one can generally expect �as we discussed in
Section II B� that the advantage will be with the stochas�
tic wave�function method�
Due to the recent developments in computer technol�

ogy� there is currently a trend in scienti�c computing
towards parallel computing� The quantities TDME and
TStS that have been investigated above stand for the time
that the programs run on a single processor� When com�
paring numerical algorithms that run on a parallel com�
puter� other important criteria are speed�up and scala�
bility� The speed�up is de�ned as the ratio between the
wall�clock times needed to do the job on the single pro�
cessor and on the parallel computer� Scalability means
that the speed�up is close to the number of processors
of the parallel machine� for a wide range of numbers of
processors� This implies that little time is spent on com�
munication and synchronization overhead� Whereas an
e�cient� scalable parallelization of the density matrix nu�
merical integration appears to be a complicated task� the
stochastic wave�function method is an intrinsically paral�
lel and very well scalable algorithm� since the individual
realizations are generated independently� the only com�
munication needed is for the �nal averaging or archiving�
and for parameter control� Load balancing means that
the parallel program adapts to a heterogeneous network
with processors of varying speed� whose load may vary
in time because of a time�sharing operating system� If
the total number of realizations to be generated is much
larger than the number of processors� it is straightforward
and easy to perform an e�cient load balancing� An im�
plementation of the stochastic wave�function method on
an IBM RS$
��� cluster with 	 processors� using a mes�
sage passing library �MPI� that realizes all these features
was used to generate the stochastic simulations presented
in this article�
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Reduced Mass m ����	
�� mel

Potential Depth D �	����� hartree

Morse Parameter b �	���� a���

E�ective Charge � �	���� qel

Laser Amplitude F� �	���� hartree��qela��

Laser Frequency �L �	����
� hartree��h

Laser Pulse Length tp ��� � ����L ����� fs

TABLE I	 The simulation parameters of the Morse os

cillator and the laser pulse	 The Bohr radius a� is
������� � ����� m� � hartree is equivalent to ���� � ����� J	

A B

Temperature T ��� K �h�L�kB

Mean lifetime of
target state �j�

�	� tp �	�� tp

TABLE II	 The two combinations of environment param

eters that were employed in the simulations	 Using combina

tion A� the dynamics is dominated by its coherent part and
there are only a few �about � on average� quantum jumps
within the time of the pulse	 With combination B the num

ber of jumps is much larger� and dissipative e�ects are more
dominant	
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FIG	 �	 The occupation probabilities P��k�t� � �kk�t� of
the oscillator eigenstates versus time resulting from the ac

tion of the laser pulse	 The oscillator parameters correspond
to those of a HF molecule and are stated in the text	 The
dashed lines correspond to the non
dissipative situation� and
show that with the applied optimal laser pulse� nearly perfect
selective excitation of the �fth eigenstate is achieved	 The
solid lines show what happens when an environment coupling
is present	 The coupling strength is such that the mean life

time of the �fth excited state� ��� is half the pulse length
�parameter combination A�	
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FIG	 �	 The di�erence between quantities estimated from
stochastic simulations and those obtained from integrating
the density matrix equation as a function of the sample size
R	 �H � �diag and �o��diag are de�ned in Eqs	 ���
���	
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FIG	 �	 The CPU time per step for the integration of the

density matrix equation ��� and for the propagation of the
wave vector 	 ���	 The dotted lines indicate how the expo

nents � and 
 were calculated from the slope� the continuous
lines simply connect the data points	
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FIG	 �	 The triangles ��� display s�� the number of inte

grator steps to calculate one pulse using the density matrix
equation	 The diamonds ��� show s�� the average number
of steps to calculate one realization of the stochastic process	
For this plot� environment parameter combination A was em

ployed	
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FIG	 �	 The squared standard error of the mean of the os

cillator energy ����H�� the maximum squared standard error
of the diagonal ����diag� and of the o�
diagonal ����o��diag� el

ements of the estimated density matrix as functions of the
sample size R	 See also Eqs	 ���� and ����	 For this plot� the
system size N was �� and environment parameter combina

tion A was employed	 The plots for other system sizes and for
environment parameter combination B look similar	 All �tted
straight lines have slope 
�� and from their intersection with
the y
axis at R � � the parameters ��N� were determined
according to Eq	 ����	
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FIG	 �	 The function �B�N� measures the self
averaging
property of the observable B� cf	 Eq	 ����	 The �gure shows
a� �diag� b� �o��diag and c� �H 	 These quantities were ob

tained from graphs like in Fig	 � as described in the text	
The triangles � correspond to weak dissipation �environment
parameter combination A�� the diamonds � to strong dissipa

tion �combination B�	 From these plots we conclude that� in
order to achieve a constant statistical error in the simulation
results when the system size N is increased� the number of
realizations need not be increased	
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FIG	 �	 CPU times needed to integrate the density matrix
equation �TDME� �� and to generate as many realizations
of the stochastic process �TStS� �� as are necessary to ob

tain a standard error of the mean of the oscillator energy
�H � � � ����	 The plots on the right
hand side cover the
full variation of system size we investigated while the plots on
the left side zoom in at lower N 	 The curves follow di�erent
power laws and at some point N� they intersect	 Above N��
the stochastic simulation is faster	
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