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Numerical investigations of open quantum systems, which are widely performed in such fields as
photochemistry, quantum optics and nuclear magnetic resonance, can, in the Markovian regime, be
based either on the master equation for the reduced density operator or on a stochastic process in
the Hilbert space of the reduced system. It is shown that the CPU time consumptions of the two
methods depend on the system size N as N*™! and as R(N) N, respectively. The exponent « is
characteristic of the specific system. R(NN) is the number of process realizations generated in the
simulation and is defined by prescribing the tolerable statistical error of the result. Since R(N) is a
non-increasing function of N, the stochastic method is found to be always faster for large systems.
This is demonstrated for the example of the dissipative Morse oscillator excited by an intense short
laser pulse.
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I. INTRODUCTION

During recent years, the Monte Carlo wave-function
method has been proposed for investigating dissipative
quantum systems [1-5]. Besides providing insight into
statistical properties which are not revealed by the den-
sity operator master equation approach, the Monte Carlo
wave-function method has been designed as an efficient
computational tool for the treatment of large systems as
encountered, for instance, in photochemistry [6] and laser
cooling [7]. For a system with N states, the density ma-
trix treatment requires simultaneous solution of O(N?)
equations, while the stochastic wave-function approach
involves the time evolution of no more than N variables.

As with any Monte Carlo method, the results are sub-
ject to a statistical error. This error is related to the
number of realizations of stochastic wave-functions that
are generated in the simulation. The total CPU time re-
quired by the Monte Carlo wave-function method thus
depends on the desired accuracy.

This article presents a systematic analysis of the time
consumption of the Monte Carlo wave-function method
and compares it with that of the numerical solution of
the corresponding density matrix equation. The main
interest lies on the dependency of the time-consumption
on the system size N. It will be shown that for sufficiently
large N and for any prescribed, fixed statistical error the
stochastic wave-function method is always faster than the
integration of the corresponding density matrix equation.

The article is structured as follows. Section II con-
tains a general, quantitative formulation of the relations
between CPU time consumption, system size and statis-
tical errors. In Section III these general considerations
are illustrated with an explicit example. The example
is non-trivial and concerns the excitation of molecular
vibrations by short laser pulses in a dissipative environ-
ment. The results are summarized in Section IV.

II. GENERAL CONSIDERATIONS ON
NUMERICAL PERFORMANCE

A. Reduced density operator and stochastic
wave-function method

Dissipation in a quantum system arises when the sys-
tem is coupled to environmental degrees of freedom
whose dynamics need not or cannot be described explic-
itly. The environment is then taken into account by in-
troducing suitable dissipative terms in the system’s dy-
namic equations. The typical situation encountered, for
instance, in quantum optics and laser physics is a bound
system, e. g., an atom or molecule, coupled to an environ-
ment which consists of a continuum of electromagnetic
field modes.

One fashion to formulate the dynamics of the open
quantum system employs the reduced density operator,

which is obtained from the density operator of the to-
tal system by tracing over the variables of the environ-
ment. In order to derive a closed equation for the reduced
density operator, various approximation techniques are
known [8,9]. The most famous of these is the Markov
approximation which yields under certain additional as-
sumptions the so-called quantum optical Markovian mas-
ter equation [10-13], that is a linear differential equation
for the density operator p
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The Hamiltonian Hg describes the coherent part of the
dynamics. The dissipation is represented by the opera-
tors A; and the rates ;. The form of Eq. (1) guarantees
that the properties of a density operator, i.e., Hermitic-
ity, normalization and semi-positivity, are preserved. In
principle, the numerical solution of Eq. (1) is straight-
forward. Introducing a basis, the resulting set of linear
coupled differential equations for the matrix elements of
p can be solved by a standard numerical integration rou-
tine. However, if the dimension of the matrix is large,
CPU time and memory requirements impose limits on
the calculations.

In recent years several stochastic wave-function meth-
ods have been developed for the description of open quan-
tum systems [1—4]. The essence of these methods is the
use of ensembles of pure states. Instead of an equation
of motion for the density matrix, the dynamics is for-
mulated in terms of a stochastic process in the system’s
Hilbert space. Again, a Markov approximation can be
made, and the process is then found to be a piecewise-
deterministic Markov process. Individual realizations of
the process consist of intervals of deterministic time evo-
lution interrupted by a discrete set of jumps. The pro-
cess can be characterized by the density T'[v, |, ] of
the conditional transition probability to find the system
in state ¢ at time ¢, given that it was in state ¢ at time
to. Its short time behaviour takes the form [14,15].
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The deterministic part of the process is induced by
the non-linear operator G: as long as no jump oc-
curs, individual realizations evolve according to 0v/dt =
—iG(y)/h. The stochastic part of the process is de-
scribed by the transition rate Wi|y'] of a jump from
¥' to 1. Denoting by P[i,t] the one-time probability
density, the ensemble average of the quantum mechanical
expectation value (1| B|v) of an observable B is defined
as [14,16]

E[B] = / (|Bl) Pl, 1D6Dv", 3)



where Dy Di* is the volume element in the system’s
Hilbert space, and the integration extends over the whole
space.

The numerical aspect of the stochastic wave-function
approach is an algorithm that generates a finite sample
of size R of independent realizations " (t),r = 1,..., R.
The algorithm is described, for example, in references
[2,16,17]. As with any Monte Carlo method, the results
are obtained through estimation from the sample of re-
alizations. They are laden with a statistical error, which
becomes smaller when the sample size R is increased.

B. Time consumption

Let us denote by N the number of complex variables
which are used for the numerical representation of the
wave-function, that is, the number of basis states. The
number of complex variables to represent the density ma-
trix is then N2 /2.

In the case of the density matrix equation (DME), the
part of the numerical integration routine that dominates
the CPU time consumption is the calculation of the right-
hand side of Eq. (1). One such calculation requires, for
large enough N, an amount of CPU time proportional to
a power of N, and the CPU time needed to integrate the
density matrix over a given physical time interval is, to
leading order in N,

TDME = kl Sl(N) N’B. (4)

Here, s1(N) is the number of times the right-hand side
of Eq. (1) has to be evaluated. k; and 8 depend on the
type of the specific problem, but not on N. Besides,
k1 depends on the particular implementation on a com-
puter. Analogously, in many examples the time-critical
part of the stochastic simulation (StS) is the calculation
of the generator G(¢), and the CPU time required for
the simulation is

Tsis = ko R(N) s5(N) N°. (5)

R(N) is the number of realizations of the process that
are generated to treat the system of size N, so(IV) is the
number of evaluations of G(¢) for one realization, and
ko is analogous to k.

In many situations, s;(NN) and s2(N) will be roughly
equal. Provided that similar numerical integration rou-
tines are used, this is the case if the smallest time scale
of the dynamics of the stochastic wave-function is about
equal to that of the density matrix. Since we want to
separate the effects of system-size from dynamical phe-
nomena, this case is the one of interest for this article,
and the presented example illustrates that case.

Let us briefly note that there are also situations where
s1(N) and so(N) are quite different. In general their ra-
tio might depend on N and they do not necessarily grow
in the same way with the physical time over which the

system is studied. Consider the case where the time scale
of the dynamics of a single realization of the stochastic
process varies, during its temporal evolution, in a wide
range, as for example, in laser cooling [18]. The simu-
lation of one realization will then contain stretches with
very long time steps, interrupted by phases of more rapid
development and short time steps. The integrator of a
density matrix equation, on the other side, which de-
scribes the dynamics of the whole ensemble, must always
adapt to the short time scale. Clearly, in such cases the
stochastic wave-function method is the preferred choice.

Independent of the specific form of the Hamiltonian
Hg, the number of floating point operations to calculate
the right-hand side of Eq. (1) and to calculate G(v) differ
by about a factor IV, and one expects

B ~a+l. (6)

This relation will be verified in the example of section III.

The crucial quantity for the relative performance is
therefore the number of realizations R(N). If it grows
with IV slower than linearly, then, regardless of the values
of the factors k; and ks, the stochastic simulation will
eventually be always faster for large systems, i.e., large
N. In fact, as we shall see in Section III, R(N) can
in many cases be chosen to be independent, or even a
decreasing function of N.

The sample size R(N) is of course closely related to the
statistical error of the estimated results. Consequently,
R(N) is selected according to the desired accuracy of
the results. The more accurate the results are supposed
to be, the larger an R(N) we have to choose. A prac-
tical prescription for the tolerable statistical error may,
for instance, be: “estimate the expectation value of the
energy with a relative error of 1 %”, or: “calculate the
density matrix with a precision of better than 10~* in
each of its elements”. A meaningful comparison between
the two methods on a general level is only possible if the
behaviour of R(N) has general properties that are inde-
pendent on the particular choice of prescription used, as
well as on particularities of the system under study. In
the following we shall see that this is indeed the case.

An unbiased and consistent estimator for the expec-
tation value F;[B] of an observable B (cf. Eq. (3)) is
provided by the sample average,

R
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where 9" is the r-th realization generated by the algo-
rithm, and R is the total number of independent real-
izations. Here and in the following, the hat denotes an
estimator for the quantity underneath. The statistical
error in the estimation can be measured by the square
root of the variance of B,

o5 = /Var(By). (3)



The argument t stands for a given, fixed time, usually
the end of the simulation. Since, from Eq. (7)

Var (B) = 1 Var (GOIBI0@)), O

op decreases proportionally to 1/\/§ The statistical
error o needs itself to be estimated from the sample
of realizations, and an estimator Gp is constructed by
employing Eq. (9), with the sample variance on the right-
hand side. dp is also often called the standard error of
the mean.

The equation

AB(N)
R

defines a factor Ag(IN) that takes into account the de-
pendence of the statistical error on the observable B and
on the system size N, but does not depend on the sample
size R. Using a sufficiently large sample of realizations,
A (N) can be determined by fitting Eq. (10) to the sim-
ulated data. Then, Eq. (10) can be solved for R,

_ As(N)

R=Rp(N) = - (11)
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This is the number of realizations that is necessary to
achieve an accuracy of op for observable B and system
size N.

In the example of section III, Ag (V) is determined for
various observables B. If A\g(INV) varies as a power of the
system size, Ag(N) ~ N~ the following classification
can be made [19]:

1. If z = 1, the observable B is strongly self-averaging.
2. If 0 < z < 1, the observable B is self-averaging.
3. If x = 0, the observable B is not self-averaging.

Concluding the general considerations, we can write
Egs. (4) and (5) in a more succinct form

Tome = ky N+
Tsis = ko N*%,

Here we have assumed that the numbers of steps s; and
so are roughly equal and can be absorbed into the con-
stants «, k1 and ks. The performance of the stochastic
wave-function method versus that of density matrix in-
tegration can be measured by the difference between the
exponents, which is 1 in the non-self-averaging (z = 0)
and 2 in the strongly self-averaging case (z = 1).

III. SIMULATION

In this section the general considerations of Sec. IT will
be confirmed by means of numerical investigations of a
non-trivial example, the excitation of molecular vibra-
tions by short laser pulses in a dissipative environment.

A. Stochastic wave-function method

First, let us repeat very briefly some basic features of
the stochastic wave-function method as far as they are
necessary to understand the simulation. A piecewise de-
terministic stochastic process [20] is completely specified
by the following quantities [14]:

1. The non-linear operator G that induces the norm-
conserving deterministic flow according to

O/0t = —2G(1).

2. A set of jump operators A,. The index v counts
over the different possible jumps. The v-th jump is given
by

A
A

3. A set of jump rates 7,. At each time ¢, the prob-
ability for jump v to occur in the next time interval dt
is

(8

P( jump v within [t,t + dt] ) = v, ||A. ()| dt.

In the context of Markovian open quantum systems,
these quantities are not fully independent: Instead of G,
equivalently a linear, non-Hermitian operator

ITN[ = HS - % Z’YVAT/AM (12)

and an unnormalized wave-function ¥ can be used that
obeys 09 /0t = —iH /K. If the initial condition ¢(tg) =
¥ (to) is fulfilled, then the two wave-functions are related
by 1(t) = ¢(t)/||)(t)||. Hs is the Hamiltonian of the free
system. Note that in the example of Section IIIB, the
operators Hg, H and G are explicitly time-dependent.

A further important quantity is the random waiting
time 7 until the next jump occurs, given that the system
is in a state ¢ at time ¢. The cumulative distribution
function of 7 can be shown to be [16]

Py =1-d+n (13)

with the initial condition )(¢) = 1. This relation be-
tween the distribution of the waiting time and the norm
of 1) is employed in the Monte Carlo generation of the
waiting time.

The relation of the stochastic wave-function to the den-
sity operator is

plt) = / 0| Pl, DYDY, (14)

i.e., the density matrix is the covariance matrix of the
stochastic process . In particular, expectation values of
the kind (3) can equivalently be expressed as

Ei[B] = Te{Bp()}- (15)



B. Example: The damped driven Morse oscillator

The concept of laser control of chemical reactions by
means of selective excitation of molecular vibrational
states has received considerable interest in recent years
[21]. In the simplest case, one might consider a single
molecular degree of freedom within a single electronic
potential energy surface:

— 1 2
Hi = 5" +V(a). (16)

For V' (q), consider the Morse potential
V() = D{1 — exp[—b(q — geq)]}’-

With an appropriate choice of the parameters D, b and
eq, this model yields a fairly realistic description of, for
example, the vibrational dynamics of the local O—H bond
in the water molecule, or of the HF molecule [22-25].
Representing the interaction with the laser field semi-
classically in dipole approximation, the interaction term
is

Hy,(t) = pqFos(t) sin(wrt). (17)

Here, pg is the relevant component of the molecular
dipole moment, Fy is the maximum field strength and
s(t) is the envelope of the laser pulse, or of a series of
pulses. To be specific, we take

s(t) = sin? <:—z> .

In the language of Sec. I A, the ‘system’ is the non-
dissipative driven Morse oscillator, and is represented by
the Hamiltonian

Hs(t):HM—l-HL(t). (18)

A description based on the time-dependent Schrodin-
ger equation with Hamiltonian Hg(t) applies for isolated
polar bonds interacting solely with the laser pulse, i.e.,
for small molecules in a dilute gas. If the dynamics is re-
stricted to bound states, a straightforward numerical ap-
proach consists in the numerical integration of the time-
dependent Schrodinger equation in the energy eigenbasis
of Hys. Selective excitation of a given target state with
probabilities arbitrarily close to unity can be achieved
by suitable choice of the laser pulse parameters Fy and
tp [26,27]. A good theoretical understanding of the mech-
anisms involved, as well as a simple criterion for optimal
pulse design, is provided by representing the dynamics in
a time-dependent comoving Floquet basis [24,25].

Inclusion of dissipative contributions to the dynamics
is necessary if the molecule under consideration is em-
bedded in a solid or dissolved in a liquid. Environment
induced relaxation and dephasing have a significant ef-
fect on the excitation mechanism. In particular, it seems

no longer possible to achieve a selectivity as perfect as in
the isolated case [28].

Within the formalism of the stochastic wave-function
method, the dissipative part of the dynamics is described
by specifying a set of jump operators, together with their
respective jump rates. The present investigations are re-
stricted to the case where the dynamics is well confined
in the subspace H of bound states of the Morse oscillator.
The number of bound states is [29]

N (x/QmD 1> |

1
w3 (19)

and the energy spectrum of Hj; is given by

[2D 1\ 7% 1\’
Ey,=\/—hblk+<-) ——Ek+ 20
g m < + 2) 2m < + 2) (20)
for k =0,1,..., N —1. For the jump operators, we chose
a basis of the space of linear operators in #,

Aji = |7) (k|

where |j) is the eigenstate that belongs to E;. The index
pair (j, k) now plays the role of the index v in the gen-
eral formalism of section IIIA. The operators Aj; are
eigenoperators of Hy:

jk=0,1,...,N -1, (21)

[(Hu, Aji] = (Ej — Ex) Aj.- (22)

The effect of the jump operator A;; on the system wave-
function may be interpreted as the transition which be-
longs to the emission or absorption of a vibration quan-
tum of energy |E; — Ej|. If we assume that the envi-
ronmental degrees of freedom have a flat spectral density
in the frequency range of interest and obey a thermal
distribution, that the interaction is proportional to the
system’s dipole moment, and that the relevant processes
in the system-environment interaction are spontaneous
emission as well as induced absorption and emission of
vibration quanta, the jump rates are

ﬁ(wjk) +1, if wir >0
Vik :K'|<j|q_Qeq|k>|2 X 0,

if Wik = 0
ﬁ(wjk), if Wik < 0
(23)

where
hwjk = Ek — Ej,
fi(wjk) is the thermal distribution
n(wjy) = (e"ir/keT 1)1,

and k is a constant of dimension (time)~!(length)=>
that characterizes the strength of the system-environ-
ment coupling. Inserting Eq. (21) into Eq. (12), we find



that the deterministic part of the wave-function dynam-
ics is governed by

A1) = Hs(t) — 057 3y (kL
ik

The stochastic process, as well as the density matrix
equation for the damped driven Morse oscillator are now
completely specified. Numerical calculations have to be
performed in a specific basis, for which we chose the
(bound) eigenstates |j) of Has. The equation for ¢ in
the energy representation is

g (Bd - 50 Y Qi) - 0. (2
at T TR A kzoakk CEEALA

Here, f(t) is the time—dependent external force (cf.
Eq. (17))

f(t) = pFos(t) sin(wrt),

and @, are the matrix elements of the dipole operator,
ij = <]|q - Qeq|k>-

The matrix (@) is real and symmetric. T'; is the total
rate of all jumps away from |j),

N-—1
F]‘ = Z 'ij- (25)
m=0

Inserting Eqgs. (18) and (21) into Eq. (1), the density
matrix equation in the energy representation takes the
form

dp; ' '
% _ —%(Ej — Ey) pj — %f(t)Z(sz pik — Quk pjt)

[
1
+0;k (Z Vit Pll) = 5 (T + L) pje- (26)
!

The choice of the simulation parameters was based on
the physical model of a HF molecule driven by a laser
pulse [25] and is shown in Table I. For simplicity, the
initial condition was assumed to be the pure ground state
|0) of the Morse oscillator. Thus the initial probability
density and the initial density matrix were

Plot=0=5- [ dpolv - o),
ol = 0) = 0)(0)

where 4[] is the Dirac functional. Using these param-
eters, the number of bound states is N = 24, and for
the non-dissipative oscillator (i.e., & = 0 in Eq. (23)), a
nearly 100 % population of the fifth excited state can be
achieved.

In order to study the effect of the system size on the
time consumption of the numerical routines, a series of
similar oscillators with varying number IV of bound states
was investigated. The parameters of these oscillators
were defined as follows. Solving Eq. (19) for b,

b=+v2mD/hN

and fixing m and D to their values given in Table I, b
is a function of N. The system size N was varied in the
range N = 12,...,78. In order to not just blow up the
number of states, with the actual dynamics always stay-
ing in the same number of low-lying states, it is necessary
to appropriately scale the driving field as well. To this
end, let us define a target state |j*),

it N+1
=int | — + =
J 5 T3/

and tune the laser frequency to be
E. - E
hLUL = 17*0
J

The laser amplitude Fp, the pulse length ¢, and the ef-
fective charge u were kept fixed at the values specified in
Table 1.

The strength of the environment coupling is most con-
veniently expressed via the mean lifetime of a certain
excited state [28],

Tjx = (Fj*)_la

with T'j« as defined in Eq. (25). Specifying 7+ is equiv-
alent to specifying k. The two combinations of environ-
ment parameters that were used in the simulations are
displayed in Table II. Combination A corresponds to the
parameters used in Ref. [28].

C. Simulation results

The central part of the simulation programs is the nu-
merical integration of Egs. (24) and (26). We used the
same Runge-Kutta procedure for both (rkqc and odeint
from Ref. [30]).

Fig. 1 shows the occupation probabilities Py_(t) =
pri(t) of the oscillator eigenstates versus time result-
ing from the action of the laser pulse. In the non-
dissipative case (k = 0), nearly 100 % selective excitation
of the fifth eigenstate is achieved with the applied optimal
pulse. Dissipation (parameter combination A) results in
an broad distribution of the occupation probability over
several excited states.

Now let us turn to the comparison between stochas-
tic simulation algorithm and the integration of the den-
sity matrix equation. The first thing to do is, of course,
to verify that both methods do indeed yield the same



results. Because of Eq. (15), all expectation values es-
timated from stochastic simulations should be equal,
within the statistical error bars, to those calculated from
the density matrix. Moreover, with increasing sample
size, the simulation results should converge to the den-
sity matrix results. This is illustrated in Fig. 2. The
lowest curve shows the squared difference

Sm = (ﬁt o [HM])2 (27)

between E:[Hpy] = Tr{Hpyp(t)}, the expectation value
of the oscillator energy at time ¢ = ¢, obtained from in-
tegrating the density matrix equation, and fIt, the value
estimated from a sample of realizations of the stochas-
tic process. dg is plotted as a function of the sample
size. To obtain Fig. 2, 100 subsamples of varying size
were randomly drawn from a pool of a total 2000 realiza-
tions that were generated by the simulation program. For
Fig. 2 environment parameter combination A was used;
the plot for combination B is similar. The upper two
curves show the maximum of the squared differences be-
tween the diagonal and off-diagonal elements of the two
density matrices,

ddiag = max (Prk — prr)” (28)
Joff-diag = Max (pjr — pir)’, (29)
J#k

where pj, is the estimator for the matrix element (j|p|k):

R
pik = 2 3G OV (DIR)- (30)

Clearly, ddiag and dofr-diag decrease with sample size, and
systematic errors (induced, e.g., by round-off errors or
by imperfections in the random number generator) are
found to be negligible.

The next issue to look at are the exponents o and f3
which were introduced in Section IIB, cf. Egs. (4) and
(5). Fig. 3 shows the CPU time per time step of the
numerical integrator as a function of the system size V.
For Fig. 3 it makes no difference whether the environment
parameter combination A or B is used. Measuring the
slope of the lines, we obtained

B8=3.0x£0.1, a=20+0.1,
which confirms Eq. (6). These exponents can be easily
understood: in the case of the stochastic simulation, the
most time-consuming part is the multiplication of ¢ with
the dipole matrix @ (cf. Eq. (24)), which requires O(N?)
floating point operations. Analogously, for the density
matrix integration, the calculation of the right-hand side
of Eq. (26) for all j and k involves O(N?) floating point
operations.

Fig. 4 displays the number of integrator steps s; and
so that are necessary to calculate a whole pulse. As we

can see s; and s increase with N, but remain roughly
equal. Their increase is due to particular properties of the
presented example. The systems of differential equations
which have to be solved for the density matrix calculation
and for the stochastic simulation both become stiffer with
increasing N. In particular, the ratio between the highest
and the lowest eigenenergy of the oscillator grows about
linearly with increasing .

In order to investigate the behaviour of R(N), the
number of Monte Carlo realizations that have to be gen-
erated to treat a system of size IV, it is necessary to
look at the standard error of various observables (see
Section IIB). An obvious choice for the observable of
interest is the oscillator energy H s, whose standard er-
ror we call 6. More generally, it is possible to consider
elements pj;, of the density matrix (cf. Eq. (30)). Denot-
ing their standard error by ¢;, we can define

Odiag = max Okk, (31)
Ooff-diag = r]n;éazc Ojks (32)

the maximum standard error for diagonal and off-
diagonal elements, respectively. Fig. 5 shows Ggiag,
Gofi-diag a0d 0 as a function of the sample size R. Fig. 5
was obtained, like Fig. 2, by randomly drawing 100 sub-
samples of varying size from a pool of a total 2000 real-
izations. After verifying that the curves are statistically
consistent with straight lines of slope —1, the parameters
Adiag, Aofi-diag and A can be found according to Eq. (10)
by linear regression on the logarithmic data.

In this manner, the A-parameters were determined
from a series of simulations with varying N and for the
two different environment parameter sets. The results
are presented in Fig. 6. Up to statistical fluctuations,
A(N) and therefore R(N) is a non-increasing function of
N. Therefore, in order to achieve a constant statisti-
cal error in the simulation results when the system size
N is increased, the number of realizations need not be
increased. It follows that the stochastic simulation will
eventually, for large system size, be always faster than
solving the density matrix equation. This is the main
result of the presented study.

This result is exemplified in Fig. 7: The plots show
the CPU times needed to integrate the density matrix
equation (A) and to generate as many realizations of
the stochastic process (o) as are necessary to obtain
a standard error of the mean of the oscillator energy
o = 4-1072. The number of realizations R was cal-
culated according to Eq. (11). According to Fig. 6¢, we
chose Ag(N) = 1073 independently of N. The curves
follow different power laws and at some point Ny they
intersect. In the present example, Ng ~ 35 for the weak
dissipation case and Ny & 55 for the case of strong dissi-
pation. Above Ny, the stochastic simulation is faster.



IV. CONCLUSION

It is commonplace that Monte Carlo algorithms are
the only way to study very high-dimensional systems, for
which exact deterministic calculations are beyond the ca-
pacity of any computing machinery. On the other hand, a
deterministic method may be preferred for small systems.
In this study, using a non-trivial example of intermediate
size, the dependence of the CPU time consumption on
the system size has been investigated for the quantum
stochastic wave-function method and for the numerical
integration of the corresponding density matrix equation.
It has been possible to analyze the CPU time consump-
tion in terms of simple power laws. The main result of
the numerical study is that the CPU time for the density
matrix integration Tpyg and the time for the stochastic
wave-function simulation Tsig scale with the system size
N as

Tome ~ N2,
Tses ~ N2. (33)

Although the numerical study was performed on a spe-
cific example, the considerations made in Section IIB
are far more general. In particular, whereas the absolute
values of the exponents in Egs. (33) depend on specific
properties of the system under study, their difference is
of more general significance. Under general conditions,
the exponent in the expression for Tpyg is expected to
be larger by 1 to 2 than the exponent of Ts;s.

For a systematic comparison of the performance of the
stochastic wave-function method and density matrix in-
tegration, the following two main points had to be taken
into account.

First, one has to determine the number R of realiza-
tions of the stochastic process that have to be generated
in the simulation. This number is related to the type
of the observable under interest as well as to the desired
accuracy. Quantitatively, this relation may be expressed
in the form

N—CL‘

R~
o2

; (34)

where o is the desired standard error of the mean and
z is an exponent that varies between 0 and 1, depend-
ing on the so-called self-averaging property [19] of the
observable. Note that Eqgs. (33) correspond to a non-
self-averaging observable; the difference in the exponents
would be even larger in the self-averaging case. An exam-
ple of a self-averaging observable is the position operator
of a particle when working in position representation.
Second, we analyzed the time consumptions in terms
of “CPU time per integrator step” times “number of in-
tegrator steps”, and both factors have to be investigated
separately. The present study focuses on the first fac-
tor and assumes that the second is roughly equal for the
two numerical methods. However, if the second factor

is different, one can generally expect -as we discussed in
Section IT B- that the advantage will be with the stochas-
tic wave-function method.

Due to the recent developments in computer technol-
ogy, there is currently a trend in scientific computing
towards parallel computing. The quantities Tpyg and
Ts¢s that have been investigated above stand for the time
that the programs run on a single processor. When com-
paring numerical algorithms that run on a parallel com-
puter, other important criteria are speed-up and scala-
bility. The speed-up is defined as the ratio between the
wall-clock times needed to do the job on the single pro-
cessor and on the parallel computer. Scalability means
that the speed-up is close to the number of processors
of the parallel machine, for a wide range of numbers of
processors. This implies that little time is spent on com-
munication and synchronization overhead. Whereas an
efficient, scalable parallelization of the density matrix nu-
merical integration appears to be a complicated task, the
stochastic wave-function method is an intrinsically paral-
lel and very well scalable algorithm: since the individual
realizations are generated independently, the only com-
munication needed is for the final averaging or archiving,
and for parameter control. Load balancing means that
the parallel program adapts to a heterogeneous network
with processors of varying speed, whose load may vary
in time because of a time-sharing operating system. If
the total number of realizations to be generated is much
larger than the number of processors, it is straightforward
and easy to perform an efficient load balancing. An im-
plementation of the stochastic wave-function method on
an IBM RS/6000 cluster with 7 processors, using a mes-
sage passing library (MPI) that realizes all these features
was used to generate the stochastic simulations presented
in this article.
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Reduced Mass m 1744.805 me;

Potential Depth D 0.22509  hartree

Morse Parameter b 11741 ag!

Effective Charge 0.3099  qe

Laser Amplitude Fp 0.0431  hartree/(qeia0)
Laser Frequency wy, 0.016489 hartree/n
Laser Pulse Length ¢, 100 - 27 /wr, =922 fs

TABLE I. The simulation parameters of the Morse os-
cillator and the laser pulse. The Bohr radius ao is
5.29177 - 10~ ! m, 1 hartree is equivalent to 4.35 - 1071% J.

A B |
Temperature T 300 K hwr/ks ‘
Mean lifetime of 0.5 t, 0.01 ¢,
target state 7«

TABLE II. The two combinations of environment param-
eters that were employed in the simulations. Using combina-
tion A, the dynamics is dominated by its coherent part and
there are only a few (about 2 on average) quantum jumps
within the time of the pulse. With combination B the num-
ber of jumps is much larger, and dissipative effects are more
dominant.
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FIG. 1. The occupation probabilities Po_,(t) = prr(t) of
the oscillator eigenstates versus time resulting from the ac-
tion of the laser pulse. The oscillator parameters correspond
to those of a HF molecule and are stated in the text. The
dashed lines correspond to the non-dissipative situation, and
show that with the applied optimal laser pulse, nearly perfect
selective excitation of the fifth eigenstate is achieved. The
solid lines show what happens when an environment coupling
is present. The coupling strength is such that the mean life-
time of the fifth excited state, 75, is half the pulse length
(parameter combination A).
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FIG. 2. The difference between quantities estimated from
stochastic simulations and those obtained from integrating
the density matrix equation as a function of the sample size
R. 0m, dgiag and dof.diag are defined in Egs. (27-29).
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FIG. 3. The CPU time per step for the integration of the
density matrix equation (A) and for the propagation of the
wave vector ¢ (¢). The dotted lines indicate how the expo-
nents a and 3 were calculated from the slope; the continuous
lines simply connect the data points.
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FIG. 4. The triangles (A) display s1, the number of inte-
grator steps to calculate one pulse using the density matrix
equation. The diamonds (¢) show s», the average number
of steps to calculate one realization of the stochastic process.
For this plot, environment parameter combination A was em-
ployed.
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FIG. 5. The squared standard error of the mean of the os-
cillator energy (6%), the maximum squared standard error
of the diagonal (&giag) and of the off-diagonal (&gff—diag) el-
ements of the estimated density matrix as functions of the
sample size R. See also Eqgs. (31) and (32). For this plot, the
system size N was 24 and environment parameter combina-
tion A was employed. The plots for other system sizes and for
environment parameter combination B look similar. All fitted
straight lines have slope -1, and from their intersection with
the y-axis at R = 1 the parameters A(N) were determined
according to Eq. (10).
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FIG. 6. The function Ap(N) measures the self-averaging
property of the observable B, cf. Eq. (10). The figure shows
a) Adiags b) Aofi-diag and ¢) Ag. These quantities were ob-
tained from graphs like in Fig. 5 as described in the text.
The triangles A correspond to weak dissipation (environment
parameter combination A), the diamonds ¢ to strong dissipa-
tion (combination B). From these plots we conclude that, in
order to achieve a constant statistical error in the simulation
results when the system size N is increased, the number of
realizations need not be increased.
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FIG. 7. CPU times needed to integrate the density matrix
equation (Tpme, A) and to generate as many realizations
of the stochastic process (Tsts, ¢) as are necessary to ob-
tain a standard error of the mean of the oscillator energy
om = 4-107%. The plots on the right-hand side cover the
full variation of system size we investigated while the plots on
the left side zoom in at lower N. The curves follow different
power laws and at some point Np they intersect. Above Np,
the stochastic simulation is faster.
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