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The dynamics of periodically driven quantum systems coupled to a thermal environment is investigated. The
interaction of the system with the external coherent driving field is taken into account exactly by making use
of the Floquet picture. Treating the coupling to the environment within the Born-Markov approximation one
finds a Pauli-type master equation for the diagonal elements of the reduced density matrix in the Floquet
representation. The stationary solution of the latter yields a quasistationary, time-periodic density matrix which
describes the long-time behavior of the system. Taking the example of a periodically driven particle in a box,
the stationary solution is determined numerically for a wide range of driving amplitudes and temperatures. It is
found that the quasistationary distribution differs substantially from a Boltzmann-type distribution at the
temperature of the environment. For large driving fields it exhibits a plateau region describing a nearly constant
population of a certain number of Floquet states. This number of Floquet states turns out to be nearly inde-
pendent of the temperature. The plateau region is sharply separated from an exponential tail of the stationary
distribution which expresses a canonical Boltzmann-type distribution over the mean energies of the Floquet
states. These results are explained in terms of the structure of the matrix of transition rates for the dissipative
quantum system. Investigating the corresponding classical, nonlinear Hamiltonian system, one finds that in the
semiclassical range essential features of the quasistationary distribution can be understood from the structure of
the underlying classical phase space.

PACS number�s�: 05.70.Ln, 03.65.Sq, 02.50.Ga

I. INTRODUCTION

Within the Born-Markov approximation, autonomous
open quantum systems are described by quantum dynamical
semigroups with a time-independent Lindblad generator �1�.
Under quite general physical conditions such systems relax
in the long-time limit to a unique stationary state, which is
given by the principles of equilibrium statistical mechanics
�2�. For example, requiring the condition of detailed balance
for the transition rates and some kind of ergodic property
regarding the operators which describe the coupling of the
system to its environment, one finds an equilibrium station-
ary state which is given by the Boltzmann distribution over
the energy eigenvalues of the system.

For open quantum systems in time-varying external fields,
the quantum dynamics must be described, in general, by a
time-dependent generator. In the case in which the external
driving field is strong, one expects that the long-time dynam-
ics differs significantly from the equilibrium stationary state.
In this paper, we shall investigate the question of the exis-
tence and the basic properties of a certain quasistationary
state which governs the long-time behavior for systems in
strong, time-periodic driving fields.

In our study, the interaction with the external field will be
treated exactly using the Floquet representation for time-
periodic quantum systems �3,4�, whereas the coupling to en-
vironment will be taken into account in the Born-Markov
approximation. It is known that for this case the diagonal
elements of the reduced density matrix in the Floquet repre-
sentation obey a closed equation of motion which is formally
equivalent to a Pauli-type master equation �5–7�.

We shall perform analytical and numerical investigations
of the stationary solution of the Pauli master equation for a
general class of periodically driven, nonlinear oscillators
coupled to an environment at finite temperature. Our results
reveal that a large class of Hamiltonian systems leads to a
unique, quasistationary density matrix which is diagonal in
the Floquet representation. The structure of the quasistation-
ary distribution will be discussed in detail. We shall also
study the connections to the phase flow of the corresponding
classical Hamiltonian system, which shows a sharp di-
chotomy of quasiregular and chaotic motion.

II. MASTER EQUATION FOR OPEN QUANTUM
SYSTEMS IN STRONG DRIVING FIELDS

A. The density matrix in the Floquet representation

We consider in the following a periodically driven quan-
tum system coupled to an environment at temperature T �for
a review, see Ref. �7��. The coherent part of the dynamics is
generated by some Hamiltonian H(t) which is periodic in
time with frequency �L , that is, we have H(t�TL)�H(t),
where TL�2�/�L denotes the period. Usually, H(t) takes
the form H(t)�H0�HI(t), where H0 is the unperturbed
system Hamiltonian and HI(t) represents a time-periodic in-
teraction with an external driving field.

According to the Floquet theorem �3,4�, there exists a
basis of TL-periodic wave functions u j(t)�u j(t�TL), the
Floquet states, such that any solution �(t) of the time-
dependent Schrödinger equation pertaining to the Hamil-
tonian H(t) can be represented in the form �we choose units
such that ��1)
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The quantity 
 j is the Floquet index or quasienergy corre-
sponding to the Floquet state u j(t). The important point to
note is that the amplitudes a j in the above representation are
independent of time.

In principle, the coupling to the environment may take
any form. To be specific, we take this interaction to be of
dipole form, that is, the relevant system operator which
couples to the degrees of the environment is the dipole op-
erator D. Such a coupling occurs, for example, in atomic or
quantum optical systems where the environment could be the
quantized radiation field in thermal equilibrium �1,8�. Invok-
ing the Floquet representation, one finds that the dynamics of
the diagonal matrix elements

p j� t ���u j� t ��
� t ��u j� t �� �1�

of the reduced density operator 
(t) of the open system is
governed by the following Pauli master equation in the
strong driving limit:

d

dt
p j� t ��	

k
�wjkpk� t ��wk jp j� t ���	

k
Wjkpk� t �. �2�

This equation may be derived directly within the density-
matrix formulation �5� or else by making use of the stochas-
tic wave-function method and by investigating the associated
jump process �6�. In both cases, one uses the Born-Markov
approximation for the coupling of the reduced system to its
environment, whereas the coupling to the driving field is
treated exactly by invoking the Floquet representation of the
time-evolution operator.

Formally, Eq. �2� represents an ordinary master equation
in the sense of classical probability theory for a stochastic
jump process �9�. The quantity wk j is the rate �probability per
unit of time� for a jump from the Floquet state u j(t) into the
Floquet state uk(t). For dipole coupling, these rates are
given by the explicit expression �6�

wk j�	
m

wk jm�	
m

���k jm�N̄��k jm��Dk jm�2. �3�

Here, the sum is to be extended over all integers m which
label the Fourier modes Dk jm of the time-periodic dipole
matrix element �uk(t)�D�u j(t)� ,

Dk jm��
0

TL dt

TL
e�im�Lt�uk� t ��D�u j� t �� . �4�

The �k jm denote the corresponding transition frequencies
which are given though differences of quasienergies plus in-
teger multiples of �L ,

�k jm�
k�
 j�m�L . �5�

Finally, �(�)��(��) denotes the density of modes of the
environment belonging to the frequency � . For ��0, N̄(�)
is the Planck distribution for the quanta of frequency � . For
the sake of a compact notation we define

N̄����� �e���1 ��1 for ��0,

N̄�����1, for ��0,

where ��1/kBT , T is the temperature of the environment,
and kB denotes the Boltzmann constant.

B. The quasistationary solution

Any master equation of the form �2� has at least one sta-
tionary solution p j* �9�. This is due to the fact that the matrix
Wjk has always a left eigenvector (1,1,1, . . . ) belonging to
the eigenvalue zero. The corresponding right eigenvector p*
then fulfills Wp*�0, and, when normalized, is a stationary
solution of the master equation.

Once we have determined a stationary distribution p j* of
the Pauli-type master equation �2�, we immediately obtain a
solution 
*(t) of the corresponding density-matrix equation
which is diagonal in the Floquet representation and which is
given in the Schrödinger picture by


*� t ��	
j

�u j� t ��p j*�u j� t ��. �6�

This equation represents a density matrix which varies peri-
odically in time with a period which is equal to that of the
external driving field. For this reason the stationary solution
p j* of the Pauli-type master equation may be called quasis-
tationary.

An important question is whether the diagonal part of any
initial density matrix converges for large times to the quasis-
tationary solution. For this to be the case, the stationary so-
lution p j* of the Pauli master equation must be unique, which
means that the Pauli master equation must be irreducible �9�.
A similar condition is used in the study of the return to
equilibrium in relaxing semigroups of autonomous open
quantum systems �2�.

For general rates wk j the determination of the quasista-
tionary solution p j* can be a difficult task. However, for an
autonomous physical system one expects that any initial state
relaxes to a state which is in thermal equilibrium with the
environment. Thus, without external driving, the stationary
solution of Eq. �2� should represent a canonical distribution
over the energy eigenvalues 
 j

0 of the unperturbed system
Hamiltonian H0. It is instructive for the considerations be-
low to recall briefly the basic arguments which lead to this
conclusion. For an autonomous system without external driv-
ing field, the master equation is of the same form as Eq. �2�,
where, however, the transition rates are given by

wk j
0 ����k j�N̄��k j��Dk j�2.

The transition frequencies are now obtained as differences of
unperturbed energy eigenvalues, �k j�
k

0�
 j
0 , and Dk j

���k�D�� j� is the dipole matrix element between the corre-
sponding eigenstates �k and � j of H0. According to general
principles of statistical mechanics �9�, the stationary equilib-
rium distribution p j* of a closed physical system obeys the
condition of detailed balance which is given by wk j

0 p j*
�wjk

0 pk* . The crucial point is that the rates wk j
0 for the au-

tonomous system do not involve a sum over the index m
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which labels the Fourier components in Eq. �3�. Therefore,
the density of the modes of the environment as well as the
dipole matrix element drop out when one forms the ratio

wk j
0

wjk
0

�
N̄��k j�

N̄��k j��1
�e���k j, �7�

where we assume �without restriction� that �k j�0. As can
be seen immediately, the solution p j* of the detailed balance
condition yields, as expected, the canonical distribution p j*
�Nexp(��
j

0), where N is a normalization factor. This is
the usual argument employed in statistical mechanics, dem-
onstrating that the system relaxes to a stationary equilibrium
state which is given by the canonical distribution over the
unperturbed energy eigenvalues at the given temperature T
of the environment.

It is interesting to observe that a similar argument applies
also to another case, namely the periodically driven har-
monic oscillator with system Hamiltonian,

H� t ��
1

2�
p2�

1

2
��0

2x2��x sin �Lt .

In this case one obtains �6�

Dk jm��m ,0�� j�1,k�j�1�� j�1,k�j �� 1

2��0
.

This expression shows that for � j�k��1 the rates wk j van-
ish. For � j�k��1, however, only the term m�0 in Eq. �3�
is different from zero. This is a very specific property which
is valid only for harmonic potentials. Thus, the dipole opera-
tor couples only neighboring Floquet states u j(t) and
u j�1(t) and the expression for the rates wk j involves only a
single Fourier component, as is the case for an autonomous
system. On using the same arguments as above, we therefore
get the following quasistationary distribution:

p j*�Ne��
 j, �8�

where 
 j is the quasienergy spectrum of the harmonic oscil-
lator �see, e.g., �10��. Note that the quasienergies of the
driven harmonic oscillator differ from the unperturbed ener-
gies just by a j-independent term. The quasienergies of the
harmonic oscillator are thus equidistant for all � . Equation
�8� implies that the stationary, nonequilibrium distribution of
the driven oscillator is a canonical distribution over its
quasienergy states, that is, the quasistationary density matrix

*(t) varies periodically in time with time-independent oc-
cupation probabilities of the Floquet states. A more detailed
investigation of the dynamics of dissipative, periodically
driven systems with quadratic potentials can be found in
Refs. �11,12�.

We now turn to the case of a driven, nonlinear oscillator.
Instead of the simple relation �7�, we have, in general, the
following expression for the ratio of transition rates:

wk j

wjk
�

	
m

wk jm

	
m

wjkm

�

	
m

wk jm

	
m

wjk ,�m

�

	
m

���k jm�N̄��k jm��Dk jm�2

	
m

���k jm�N̄���k jm��Dk jm�2

, �9�

where we have used the relations � jk ,�m���k j ,�m ,
�(��)��(�), and D jk ,�m�Dk j ,�m* , which are valid by
definition.

In the case of strong driving, many Fourier modes of the
Floquet wave functions are excited with appreciable ampli-
tude. This means that �Dk jm�2 may be appreciably different
from zero for many m’s which label these modes. Equation
�9� therefore shows that the ratio wk j /wjk of transition rates
differs significantly from the simple relation �7�, which is
valid in the zero driving limit. Therefore, the simple line of
reasoning leading to a stationary state given by a canonical
distribution does not apply in the present case. In the next
section we shall investigate numerically the properties of the
quasistationary distribution p j* of the Pauli-type master
equation for the case of a nonlinear, strongly driven oscilla-
tor.

III. NUMERICAL SIMULATIONS

A. Model system and numerical methods

As an example for a strongly anharmonic system, we con-
sider a periodically driven particle in a potential box. The
time-dependent Hamiltonian is given by

H� t ���
1

2�

d2

dx2
�V�x ���x sin �Lt , �10�

where the potential V(x) reads

V�x ��� 0 for �x��a ,

�� for �x��a .
�11�

Scaling space, time, and momentum coordinates as

x̂�
x

a
, t̂��Lt , p̂�

p

�a�L
,

the Schrödinger equation corresponding to the Hamiltonian
�10� can be written as

i
1

�

d

d t̂
��� �

1

2�2

d2

dx̂2
�V̂� x̂ ��� x̂ sin t̂ � ,

where V̂( x̂)�V(ax̂)/�a2�L
2 is the scaled potential and we

have introduced the dimensionless parameters

���a2�L , ��
�

�a�L
2

. �12�
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The coherent part of the dynamics thus depends only upon
the two dimensionless parameters � and � . The parameter �
is a dimensionless coupling constant which is proportional to
the field amplitude. The meaning of the parameter � may be
seen by looking at the commutator of space and momentum
coordinate, � p̂ , x̂���i��1. Recall that we have set ��1.
The quantity ��1 is thus a dimensionless, scaled Planck con-
stant. The limit �→� corresponds to the classical limit,
whereas small values of � imply that quantum behavior
dominates in a certain region of the classical phase space
�10�.

The dissipative part of the dynamics introduces two fur-
ther parameters, namely the density of modes and the tem-
perature of the environment. For simplicity we chose a con-
stant density of modes, �(�)��0 . �0 determines the
relaxation time of the process but not the stationary solution.
The latter only depends on the dimensionless temperature

T̂�
kBT

�L
. �13�

Thus, the stationary solution p j* depends on three dimension-

less parameters, namely � , � , and T̂ .
The numerical determination of the stationary distribution

p j* over the Floquet states proceeds in three steps as follows.
�i� Determination of the quasienergies and Floquet wave

functions pertaining to the Hamiltonian �10�.
�ii� Calculation of the Fourier components Dk jm of the

dipole operator and determination of the matrix W of the
master equation �2�.

�iii� Determination of the �normalized� right eigenvector
p j* of W corresponding to the eigenvector zero.

To perform step �i� we have represented the time-
dependent Schrödinger equation in a finite basis consisting
of N eigenfunctions of H0. The Floquet spectrum is deter-
mined by diagonalization of the monodromy operator
U(TL,0), that is, the time-evolution operator U(t ,t0) of the
time-dependent Schrödinger equation taken over a period of
the driving field. With the help of the Floquet states, one
evaluates the time-dependent matrix elements
�u j(t)�D�uk(t)� of the dipole operator.

In step �ii� one determines the Fourier transform of the
dipole matrix elements to obtain the Fourier components
Dk jm . We denote by mmax the number of sampling points
which are used used in the numerical Fourier tranformation.
The Fourier components of the dipole matrix elements to-
gether with the quasienergies determined in step �i� yield the
rates wk j and the matrix W.

In step �iii� one has to find the zero mode of the matrix
W. In all cases considered the lowest eigenvalue of W
turned out to be smaller than the other eigenvalues by a
factor of at least 104. This clearly excludes the possibility of
a degenerate zero mode, and of a decomposable W matrix
�9�. In all cases we thus have a unique stationary solution
p j* .

B. Numerical results and discussion

In the following we shall represent the stationary distribu-
tion p j* as a function of the mean energies Ē j which are

obtained by averaging the expectation value of the time-
dependent Hamiltonian H(t) in the Floquet states u j(t) over
a period of the external field,

Ē j��
0

TL dt

TL
�u j� t ��H� t ��u j� t ��. �14�

We display in Fig. 1 a logarithmic plot of the stationary
distributions p j* for a fixed driving amplitude of ��0.248

and for different scaled temperatures T̂
�0.5,1.0,1.5, . . . ,8.0. As can be seen from the figure, the
canonical distribution over the unperturbed energies changes
significantly for strong driving fields. The most striking fea-
ture is that the stationary distribution p j* exhibits two quali-
tatively very different and clearly separated regions. In the
first region we have a number of states which are populated
with an approximately constant probability. This region will
be called plateau region in the following. For increasing
mean energy the plateau region goes over to a second region
where p j* clearly decays exponentially with the mean en-
ergy. A similar conclusion was found in an investigation of
chaotic tunneling in a double-well potential �13�.

Figure 1 also demonstrates that the plateau region is sepa-
rated from the exponential region by a sharp transition at
some mean energy ĒC which is nearly independent of the
temperature. The solid lines of Fig. 1 are obtained by a linear
fit of the numerical data in the exponential region. One finds
that the slopes of these lines are in perfect agreement with
the chosen scaled temperatures T̂ of the environment. In the

FIG. 1. Logarithmic plot of the quasistationary distribution p j*
for the open system with Hamiltonian �10� as a function of the

mean energy Ē j for different scaled temperatures T̂
�0.5,1.0,1.5, . . . ,8.0 �symbols�. The lines represent a linear fit of
the numerical data in the exponential region, which is found to be in
excellent agreement with a Boltzmann-type distribution correspond-
ing to the various temperatures. The plateau region as well as the

temperature independence of the mean transition energy ĒC which
separates both regions are also clearly seen. The parameters are �
�20, ��0.248, N�32, and mmax�2048.
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exponential region the stationary distribution therefore rep-
resents a canonical distribution over the mean energies of the
Floquet states.

Summarizing these results, we may write for the station-
ary distribution in the plateau region

p j*�const for Ē j�ĒC , �15�

and in the exponential region

p j*�exp��Ē j /kBT� for Ē j�ĒC . �16�

In order to explain this behavior of the quasistationary dis-
tribution, we plot in Fig. 2 the matrix wk j . As can be seen
from the figure, for the chosen parameters the states j
�1, . . . ,15 are strongly mixed: Each Floquet state is
coupled to all other Floquet states from this set and the cor-
responding transition rates vary erratically with k and j. This
explains why in the plateau region the stationary solution is
nearly constant since all rows and columns of the W matrix
sum up to nearly the same value in this range.

However, above a certain sharp threshold, which is given
by j�15 for the parameters of the figure, the transition rates
strongly decrease with increasing j and k and couple only
states with � j�k��1. This behavior is very similar to that of
the harmonic oscillator and explains why for j�15 the sta-
tionary solution p j* behaves in a way which is similar to that
of the distribution of the harmonic oscillator.

C. Comparison with the classical phase-space structure

The appearance of two clearly separated regions in the
stationary distribution p j* can also be understood from a
simple semiclassical analysis. To this end, we first investi-

gate the classical analog of the quantum system given by the
Hamiltonian �10�. The classical phase flow generated by the
corresponding Hamiltonian function is known to be chaotic
and has been extensively studied in the literature �see, e.g.,
�14,15��.

For strong driving fields, that is, for driving amplitudes
���c which are larger than the amplitude �c�0.0625 given
by the Chirikov criterion �16� for the overlap of all primary
resonances, the classical phase space also consists of two
clearly separated regions �15�. This can be seen from Fig. 3
which shows a Poincaré surface of section of the phase
space.

The first region constitutes a connected chaotic sea which
emerges from the region of the primary nonlinear resonances
and which contains only small stable, elliptic islands. The
second phase-space region is densely filled with invariant
tori corresponding to perpetual adiabatic invariants �15�. We
see from Fig. 3 that both regions are separated by a sharp
border which marks the transition from the irregular, chaotic
motion to the quasiperiodic, nearly integrable motion in the
region surrounding the chaotic sea.

As is shown in �10�, the quantization of the invariant flux
tubes in the regular region of the phase space yields an ex-
cellent semiclassical approximation for the Floquet states
and the quasienergies of the quantum system. In view of our
above results on the quasistationary probability distribution
of the open, dissipative system, it is tempting to relate the
exponential region of that distribution to the nearly inte-
grable region of the phase space. In fact, for Ē j�ĒC the
quasienergies rapidly approach the mean energies Ē j and one
expects a Boltzmann distribution over the quasienergies in
this region of phase space.

On the other hand, the quasienergy spectrum for the states
corresponding to the chaotic sea shows a complicated avoid-
ing crossing structure when plotted as a function of the driv-
ing amplitude. This reflects large dipole matrix elements and
a broad Fourier spectrum of these elements. Consequently,
one expects that the chaotic sea corresponds to the plateau
region observed in the stationary distribution p j* .

FIG. 2. Representation of the (N�N)-matrix wk j formed by the
various rates for the transition between the Floquet states for the
Hamiltonian �10�. The matrix element w00 is found in the upper

corner. The parameters are ��20, ��0.418, T̂�4.5, N�32, and
mmax�2048.

FIG. 3. Poincaré surface of section for the strongly driven par-
ticle in the box for a scaled driving amplitude of ��0.66. The
figure represents a family of solutions of the classical equations of

motion in the ( x̂ , p̂) plane at times t�0,TL ,2TL , . . . ,600TL ,
where TL denotes the period of the driving field.
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To verify this simple semiclassical picture, we study the
behavior of the quasistationary distribution as a function of
the scaled driving amplitude � . Figure 4 shows the number
of Floquet states in the plateau region of p j* determined from
the full quantum calculation �crosses� and compares it with
the number of semiclassical Floquet states corresponding to
the chaotic sea of the classical phase space �triangles�. The
number of semiclassical Floquet states corresponding to the
chaotic sea is estimated as follows. First, we have deter-
mined from the Poincaré surface of section the area A of the
chaotic sea in the scaled coordinates x̂ , p̂ . According to the
quantization rules derived in �10�, we then get for the num-
ber n of semiclassical Floquet states in that region the esti-
mate

n�
�

2�
A . �17�

This relation simply expresses Weyl’s rule applied to the
extended phase space of the Hamiltonian system. It has al-
ready been used in Ref. �17� for an investigation of the
mixed regular and chaotic dynamics of a driven rotor. Note
that A and n depend on � . It is this function n�n(�) which
is represented in Fig. 4 �triangles�. The agreement between
both quantities plotted in this figure nicely confirms our
above semiclassical picture.

IV. SUMMARY

We have studied the dynamics of open quantum systems
subjected to strong, periodic driving fields. The stationary
solution of the Pauli-type master equation which governs the
diagonal elements of the reduced density matrix in the Flo-
quet representation has been demonstrated to differ substan-
tially from a canonical distribution at the temperature of the
environment: It exhibits a certain region in which a number
of Floquet states is occupied with approximately constant
probability. This plateau region is clearly separated from an
exponential tail of the stationary distribution which describes
a Boltzmann-type distribution at the environmental tempera-
ture over the mean energies of the Floquet states. The num-
ber of Floquet states within the plateau region is nearly in-
dependent of the temperature but strongly depends on the
driving amplitude.

The essential features of the stationary solution can be
understood from an investigation of the classical phase-space
structure. It has been shown that the plateau region corre-
sponds to the chaotic sea which emerges from the region of
phase space belonging to the primary nonlinear resonances.
This chaotic sea is surrounded by a nearly integrable phase-
space region which is densely filled with invariant flux tubes.
This region which is dominated by regular motion corre-
sponds to the exponential tail of the stationary distribution. A
sharp transition border separates the chaotic sea from the
nearly integrable motion and marks the transition from the
plateau region of the stationary distribution to its exponential
tail.

These results have been obtained from numerical simula-
tions of a simple, strongly nonlinear model, namely from the
periodically driven particle in a potential box. It must be
emphasized, however, that the dichotomy of the classical
phase space as well as the general structure of the matrix wk j
describing the transition rates between Floquet states is simi-
lar for all potentials that lead to a discrete spectrum of un-
perturbed energy eigenvalues whose spacing increases with
increasing energy. For strong driving fields our results thus
describe generic features for this class of potentials.

We remark finally that our formulation of the problem of
periodically driven open systems also allows the determina-
tion of the quanta radiated during the jumps between Floquet
states. The frequencies of these quanta are determined by
relation �5�. The above properties of the quasistationary state
of the open system could thus lead to characteristic features
of the radiation spectrum.
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