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Einf ührung

Die Theorieoffener Quantensystemebeschäftigt sich mit physikalischen Prozessen, deren Dynamik
zum einen durch die Quantenmechanik und zum anderen durch den Austausch von Energie mit ei-
ner Umgebung bestimmt ist. Synonym kann der Begriff desdissipativen Quantensystemsgebraucht
werden. Der Begriff enth¨alt zwei Verallgemeinerungen: Ist die Wechselwirkung mit der Umge-
bung vernachl¨assigbar, gelangt man zum Spezialfall abgeschlossener Quantensysteme, deren Dyna-
mik vollständig in der Schr¨odinger–Gleichung enthalten ist. Sind andererseits Quanteneffekte ver-
nachlässigbar, dann gelten klassische Gleichungen, ein Beispiel hierf¨ur ist das Brownsche Teilchen.

Typische Beispiele f¨ur offene Quantensysteme sind Atome und Molek¨ule, die mit dem elektroma-
gnetischen Feld wechselwirken. Das elektromagnetische Feld kann zum Beispiel dann als Umgebung
betrachtet werden, wenn es sich im thermischen Gleichgewicht befindet. In der Quantenoptik ist das
elektromagnetische Feld typischerweise in einem Vakuumzustand, und vom Atom oder Molek¨ul emit-
tierte Photonen unterliegen inkoh¨arenten Prozessen. Eine weitere wichtige Anwendung der Theorie
offener Quantensysteme ergibt sich, wenn die große Anzahl von wechselwirkenden Freiheitsgraden
eines großen Molek¨uls, eines Clusters, eines dichten Gases oder eines Festk¨orpers in einen relevan-
ten, das heißt explizit betrachteten, und einen nicht relevanten Anteil aufgespaltet werden. Die nicht
relevanten Freiheitsgrade werden dann nur statistisch, als Umgebung, betrachtet. Aus diesem Grund
nennt man das offene Quantensystem machmal auch reduziertes System.

Gesamtsystem Gesamtsystem

Reduziertes System Reduziertes System

-

-

6

?

exakte uniẗare
Dynamik

dissipative
Dynamik

Komposition Reduktion

Die dissipative Quantendyna-
mik des reduzierten Systems lei-
tet sich aus der unit¨aren Dyna-
mik, das heißt aus der Schr¨odin-
ger–Gleichung f¨ur das Gesamt-
system ab. Schematisch ist die-
ses Konzept in der nebenstehen-
den Skizze angedeutet. Die For-
mulierung der reduzierten Dyna-
mik muss zwei Aspekten Rech-
nung tragen: Der Zustand der Umgebung ist in der Regel nicht exakt bekannt, gegeben sind nur seine
statistischen Eigenschaften. Weiterhin wird eine Reduktionsvorschrift ben¨otigt. Die Reduktion l¨asst
sich als Projektion auffassen, bei der ¨uber die nicht relevanten Variablen gemittelt wird [1]. Sie ist das
zentrale Konzept der Theorie offener Quantensysteme. Mathematisch bedient man sich zur Formu-
lierung der reduzierten Dynamik entweder des Dichteoperators oder der Methode der stochastischen
Wellenfunktionen. Der erste Zugang ist im zweiten implizit enthalten (siehe Abschnitt2.1.2). Wenn
die involvierten Zeitskalen einer Markov–Bedingung (siehe Abschnitt2.3.3) genügen, dann wird man
auf Quantenmastergleichungen vom Lindblad–Typ beziehungsweise auf Markovsche stochastische
Prozesse im Hilbert–Raum des reduzierten Systems gef¨uhrt.

Zur Herleitung der reduzierten Dynamik aus einem mikroskopischen Modell f¨ur das Gesamtsy-
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stem wird die Wechselwirkung zwischen System und Umgebung mit Hilfe einer St¨orungsentwicklung
im Wechselwirkungsbild ber¨ucksichtigt [2, 3, 4, 5, 6, 7, 8]. Naheliegend ist zun¨achst der Fall, in dem
die freie Zeitentwicklung des Systems durch den zeitunabh¨angigen Hamilton–OperatorH0 gegeben
ist, der die Transformation des Systems ins Wechselwirkungsbild bestimmt. Der Anwendungsbereich
dieses Zugangs l¨asst sich ausweiten auf getriebene Systeme, deren Hamilton–Operator von der Form
H(t) = H0+HL(t) ist, wenn der Betrag vonHL(t) zu allen Zeiten klein im Vergleich zu den Diffe-
renzen der Energieeigenwerte vonH0 bleibt. Systeme, die diese Bedingung erf¨ullen, werden schwach
getrieben genannt. Der Antrieb kann zum Beispiel durch koh¨arente Laser- oder Maserstrahlung erfol-
gen.

Für stark getriebene Systeme verliert die St¨orungsentwicklung bez¨uglich desH0–Wechselwir-
kungsbildes ihre Geltung. F¨ur periodisch stark getriebene Systeme l¨asst sich aber mit Hilfe der
Floquet–Darstellung ein Wechselwirkungsbild bez¨uglich des exakten, freien System–Hamilton–Ope-
ratorsH(t) konstruieren. Die St¨orungsentwicklung der Wechselwirkung ist damit technisch etwas
aufwendiger, aber im Prinzip v¨ollig analog [9,10]. Referenz [9] bedient sich des reduzierten Dichte-
operators, w¨ahrend in [10] ein stochastischer Markov–Prozess f¨ur die Wellenfunktion des reduzierten
Systems hergeleitet wird. Aufgrund der besonderen Eigenschaften der Floquet–Darstellung ergeben
sich im Vergleich zu schwach getriebenen Systemen neue Effekte. Ein Beispiel daf¨ur wird in Kapitel 4
vorgestellt.

Die Referenzen [9, 10] setzen einen exakt periodischen AntriebHL(t) voraus. So ist die An-
wendung, die Referenz [9] zugrunde liegt, ein Experiment mit hochangeregten Rydberg–Atomen,
die durch ein monochromatisches koh¨arentes Mikrowellenfeld angetrieben werden. Hingegen wer-
den im optischen Frequenzbereich Intensit¨aten, die im oben definierten Sinn stark sind, experimentell
–zumindest gegenw¨artig– nur mit Laserpulsen erreicht [11]. Inhalt des Kapitels 2 ist daher die Ver-
allgemeinerung von Referenz [10] auf Antriebspulse. Hierzu wird ein Wechselwirkungsbild, das sy-
stemseitig auf einer langsam (adiabatisch) zeitabh¨angigen Floquet–Darstellung beruht, eingef¨uhrt. Im
Kapitel 1 werden die hierzu notwendigen Begriffe und Methoden aus der Theorie periodisch getriebe-
ner quantenmechanischer Systeme vorgestellt. Neben der eigentlichen Herleitung des stochastischen
Prozesses in Abschnitt2.3 enthält das zweite Kapitel in den Abschnitten2.1 und 2.2 eine Zusam-
menstellung relevanter Begriffe und Methoden aus der Theorie offener Quantensysteme und ihrer
Behandlung mittels stochastischer Wellenfunktionen. Im Abschnitt2.4 wird das Hauptresultat des
zweiten Kapitels schließlich noch als Gleichung f¨ur den reduzierten Dichteoperator formuliert.

Mit dem reduzierten Dichteoperator und der Methode der stochastischen Wellenfunktionen gibt es
zwei zunächst alternative Zug¨ange zur Theorie offener Quantensysteme. Historisch ist der reduzier-
te Dichteoperator einige Jahrzehnte ¨alter als die stochastischen Wellenfunktionsmethoden, die erst
seit Anfang der neunziger Jahre verbreitete Anwendung finden (z. B. [12, 13, 14, 15, 16, 17, 18, 8],
Review: [19]). Mathematisch ist der Dichteoperator im Formalismus der stochastischen Wellenfunk-
tionen enthalten, und zudem enth¨alt letzterer Gr¨oßen und Konzepte, die nicht mit Hilfe des Dich-
teoperators ausgedr¨uckt werden k¨onnen, am herausragendsten das der einzelnen Realisierung, aber
auch statistische Momente h¨oherer als zweiter Ordnung. Im Folgenden sollen kurz einige Punkte ge-
nannt werden, welche die Einf¨uhrung stochastischer Prozesse in die Theorie offener Quantensysteme
motiviert haben.

� Seit einigen Jahren ist es m¨oglich, Experimente an einzelnen Atomen oder Molek¨ulen, also an
einzelnen Quantensystemen, zu machen, dabei werden Quantenspr¨unge beobachtet [20,21,22,
23, 24]. Die Quantensysteme sind, weil sie beobachtet werden, notwendigerweise offen. Mit
Hilfe des reduzierten Dichteoperators lassen sich –zumindest im Rahmen der herk¨ommlichen
Interpretation– keine Aussagen ¨uber einzelne Systeme machen [25], und so wurden in der Reak-
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tion auf die Experimente theoretische Modelle mit Hilfe von stochastischen Wellenfunktionen
konstruiert [26,27,28,29].

� Im quantenoptischen Regime, das bedeutet bei UmgebungstemperaturT = 0 und bei einer Kon-
stellation der involvierten Zeitskalen, welche die Markov–Approximation rechtfertigen, lassen
sich die einzelnen Realisierungen des stochastischen Prozesses im Rahmen der kontinuierli-
chen Messtheorie interpretieren [30,31,32]. Zum Beispiel lässt sich ein Prozess konstruieren,
dessen Spr¨unge als Detektion der von einem Atom emittierten Photonen durch einen idealen
Photozähler interpretiert werden k¨onnen. Jeder Realisierung des stochastischen Prozesses ent-
spricht eineDecoherent History[33], und beiden ist die gleiche klassische Wahrscheinlichkeit
zuzuordnen [34].

� Die Entwicklung stochastischer Wellenfunktionsmethoden war von Anfang an eng verbunden
mit numerischen Anwendungen [13, 35, 14, 36, 37]. Zum Beispiel konnte damit zum ersten
Mal die Laserk¨uhlung von Atomen dreidimensional numerisch behandelt werden [38]. Vom
numerischen Standpunkt aus geh¨oren stochastische Wellenfunktionsmethoden zu den Monte–
Carlo–Simulationsmethoden, und zur Behandlung hochdimensionaler Systeme sind sie immer
wesentlich effizienter als die Integration der entsprechenden Dichtematrixgleichung [39].

Numerische Verfahren und Computersimulationen spielen f¨ur diese Arbeit eine zentrale Rolle. Der
Grund dafür ist natürlich, dass die Klasse der numerisch untersuchbaren Modelle viel gr¨oßer ist als
die der analytisch l¨osbaren. Ganz besonders gilt dies f¨ur stochastische Prozesse der Art, wie sie im
Kapitel 2 hergeleitet werden.

Die Berechnung von Erwartungswerten und von h¨oheren Momenten stochastischer Prozesse l¨asst
sich als Integration in einem in der Regel sehr hochdimensionalen Raum auffassen, und es existiert
eine Reihe effizienter Monte–Carlo–Methoden hierzu. Das dritte Kapitel enth¨alt daher zun¨achst eine
zusammenfassende Darstellung der Methoden zur Monte–Carlo–Simulation st¨uckweise deterministi-
scher Markov–Prozesse [40]. Behandelt wird sowohl der (unter gewissen Regularit¨atsbedingungen)
allgemeinste Fall wie auch die wichtigen Spezialf¨alle der Prozesse mit multiexponentieller Warte-
zeitverteilung und der reinen Sprungprozesse. Weiterhin wird im dritten Kapitel eine Methode zur
numerischen Berechnung der Floquet–Darstellung vorgestellt. Schließlich folgt eine Darstellung des
Algorithmus zur Erzeugung von Monte–Carlo–Realisierungen st¨uckweise deterministischer Prozes-
se in der Floquet–Darstellung. Das ist gerade die Art von Prozessen, die im zweiten Kapitel zur
Beschreibung gepulster, stark getriebener offener Quantensysteme eingef¨uhrt wurden.

Ein ubiquitäres Problem numerischer Methoden in der mathematischen Physik ist der Umgang
mit Unendlichkeiten, beziehungsweise deren geeignete Approximation durch finite Gr¨oßen. Be-
sonders markant ist dieser Punkt im Zusammenhang mit der Berechnung von Floquet–Indizes und
-Eigenfunktionen von Systemen mit unendlichdimensionalem Hilbert–Raum. Er wird in den Ab-
schnitten1.1.4, 1.2.2und3.4.1von mehreren Seiten her ausf¨uhrlich diskutiert.

Eine der ersten Fragen bei der Diskussion eines gegebenen stochastischen Prozesses ist die nach
der Existenz und der Form station¨arer Verteilungen. Es stellt sich heraus, dass die station¨are Ver-
teilung des generischen periodisch getriebenen anharmonischen Oszillators derart außergew¨ohnliche
Eigenschaften hat, dass sie einer eigenen Untersuchung wert ist. Hierzu wird im vierten Kapitel die
Pauli–Mastergleichung f¨ur die Diagonalelemente des Dichteoperators betrachtet. Es wird sich zei-
gen, dass die station¨are Verteilung nicht der Bedingung vom detaillierten Gleichgewicht gen¨ugt und
wesentlich vom Auftreten chaotischer Bereiche im entsprechenden klassischen Phasenraum gepr¨agt
ist.
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I
Periodisch getriebene Systeme

Der Zustand eines Quantensystems ist gegeben durch einen normierten VektorΨ aus dem Hilbert–
RaumH . Seine zeitliche Entwicklung beschreibt die Schr¨odinger–Gleichung

i~
∂
∂t

Ψ = HΨ (1.1)

mit dem Hamilton–OperatorH. Wir interessieren uns zun¨achst für die Eigenschaften von Systemen
mit periodisch zeitabh¨angigem Hamilton–OperatorH � H(t),

H(t) = H(t +T); 8t 2 R: (1.2)

Hierbei ist t die Zeitvariable undT die Periode. Der ZeitentwicklungsoperatorU(t; t0) bildet den
Systemzustand zur Zeitt0 auf den Zustand ab, der sich bis zur Zeitt gemäß (1.1) daraus entwickelt:

Ψ(t) =U(t; t0)Ψ(t0): (1.3)

1.1 Floquet–Theorie

Ausgangspunkt ist die diskrete Translationssymmetrie vonU(t; t0):

U(t; t0) =U(t +nT; t0+nT) 8n2 Z: (1.4)

Definiert man den MonodromieoperatorU =U(T;0) [41], dann lässt sichU(t; t0) zerlegen in

U(t; t0) = U(t;nT)�Un�m�U(mT; t0)

= U(t�nT;0)�Un�m�U†(t0�mT;0) (1.5)

Die ganzen Zahlenn undm können dabei so gew¨ahlt werden, dass 0� t�nT; t0�mT< T gilt. Der
komplette ZeitentwicklungsoperatorU(t; t0) für alle t und t0 ist somit bereits bestimmt durchU(t;0)
für 0� t < T und durch die ganzzahligen Potenzen vonU .
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DaU ein unitärer Operator inH ist, haben seine Eigenwerte exp(�iε jT=~) den Betrag 1, und die
reellen Größenε j , die nur moduloh=T bestimmt sind, werden Floquet–Indizes genannt. Wegen der
Analogie zu den Energieeigenwerten autonomer Systeme ist synonym auch der Begriff Quasienergien
gebräuchlich [42].

Ist fuj(0)g ein vollständiges orthonormales System von Eigenfunktionen vonU , so gilt

Um = ∑
j

juj(0)ie�iε j mT=~ huj(0)j (1.6)

Weiterhin bezeichnet man dann die durch

uj(t) = eiε j t=~U(t;0)uj(0) (1.7)

definiertenT-periodischen Funktionen als Floquet–Funktionen. Damit l¨asst sich (1.5) auch in der
Form

U(t; t0) = ∑
j
juj(t)ie�iε j (t�t0)=~ huj(t0)j (1.8)

schreiben, und jede L¨osung der Schr¨odinger–Gleichung (1.1) lässt sich bez¨uglich zeitunabḧangiger
Koeffizientenaj entwickeln:

Ψ(t) =∑
j

aj uj(t)e�iε j t=~: (1.9)

Diese Aussage wird in der Literatur [43, 44, 45] unter dem TitelFloquet–Theoriepräsentiert. Ein
vollständiges System(uj) von Floquet–Funktionen zusammen mit den Indizes(ε j) heißt Floquet–
Basis.

Für numerische Zwecke bestimmt man den Monodromieoperator direkt durch Integration der
Schrödinger–Gleichung ¨uber eine Periode bez¨uglich eines endlichen Basissatzes, und daraus durch
Diagonalisierung der resultierenden Matrix die Floquet–Indizes und –Funktionen. Hierauf wird in
Abschnitt3.4.1näher eingegangen.

1.1.1 Der erweiterte Hilbert–Raum

Für die mathematische Untersuchung des Spektrums ist der Floquet–Operator [46]

F =�i~
∂
∂t

+H(t) (1.10)

nützlich. Mit ihm nimmt die zeitabh¨angige Schr¨odinger–Gleichung (1.1) die FormFΨ = 0 an. Wei-
terhin definiert man den erweiterten Hilbert–RaumF = L2(T)
H . Dabei steht das Symbol
 für
das direkte Produkt undL2(T) ist der Raum der quadratintegrierbarenT-periodischen Funktionen auf
R. Das Skalarprodukth�j�iF für u;v2 F ist definiert durch

hujviF =
1
T

TZ

0

hu(t)jv(t)iH dt; (1.11)

dabei isth�j�iH das Skalarprodukt inH . Lösungen der Schr¨odinger–Gleichung (1.1) sind im Allge-
meinen nichtT-periodisch und daher nicht im erweiterten Hilbert–RaumF enthalten. Im Folgenden
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stehtF für die Restriktion des Floquet–Operators (1.10) auf einen geeigneten Unterraum vonF . Dann
ist F selbstadjungiert bez¨uglich des Skalarprodukts (1.11), und die Bestimmung des Spektrums vonF
ist im folgenden Sinne ¨aquivalent zur Bestimmung des Spektrums des MonodromieoperatorsU [47]:
(i) Wenn für u2 F undε 2 R gilt

Fu= εu; (1.12)

dann istu(t) eine stetige,T-periodische Funktion vont in H und die LösungΨ(t) der Schr¨odinger–
Gleichung (1.1) zur AnfangsbedingungΨ(0) = u(0) hat die Form

Ψ(t) = e�iεt=~u(t): (1.13)

(ii) Umgekehrt, wenn

UΨ0 = e�iεT=~Ψ0; (1.14)

dann ist

u(t) = eiεt=~U(t;0)Ψ0 (1.15)

die Eigenfunktion vonF zum Eigenwertε.
HatH(t) die Form von Gleichung (1.23) (siehe Abschnitt1.1.3), dann gibt es f¨ur den erweiterten

Hilbert–RaumF eine anschauliche physikalische Interpretation. In der Darstellung

F =
M
m2Z

([eiωmt]
H ); (1.16)

wobei [�] die lineare H¨ulle bezeichnet, kann[eiωmt] 
 H jeweils als der Zustandsraum f¨ur
(m Photonen)+(Teilchen) und�i~∂=∂t als der Photonenenergieoperator interpretiert werden [42,46].

1.1.2 Floquet–Funktionen

Zwischen Paaren von Floquet–Funktionen und –Indizes(u;ε) gilt f ür allem2 Z die folgende Bezie-
hung:

Fu= εu , F(ueimωt) = (ε+m~ω)u: (1.17)

Die Paare lassen sich also zuÄquivalenzklassen zusammenfassen. Im Hinblick auf die Analogie zur
Physik von Kristallen, wo eine entsprechende Symmetrie f¨ur das Quasiimpulsspektrum gilt, spricht
man auch von Quasienergie–Brillouinzonen. Im Folgenden indiziertj die verschiedenen Klassen
und m die Repräsentanten. Gelegentlich wird die abk¨urzende Schreibweiseuj � uj;0 und ε j � ε j;0

verwendet. Alle Repr¨asentanten einer Klassej erhält man durch

uj;m(t) = uj(t)e
imωt (1.18)

ε j;m = ε j +m~ω: (1.19)

Es ist wichtig festzustellen, dass wegen

e�iε j;mt=~uj;m(t) = e�iε j;m0 t=~ uj;m0(t) 8m;m0 (1.20)
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und Gleichung (1.13) alle Repräsentanten einer Klasse dieselbe Schr¨odinger–Wellenfunktion darstel-
len, so dass physikalische Gr¨oßen nicht vom Indexm abhängen. So enth¨alt die Summe (1.9) jeweils
nur einen Repr¨asentanten pro Klasse.

Weil F selbstadjungiert ist, sind Floquet–Funktionen zu verschiedenen Floquet–Indizes bez¨uglich
h�j�iF orthogonal, und ein System von Floquet–Funktionen l¨asst sich als Orthonormalsystem einrich-
ten:

huj;m juk;m0iF = δ jkδmm0 : (1.21)

Darüberhinaus sind die Floquet–Funktionen zu allen Zeitent bezüglich des Skalarproduktes inH
orthogonal [42]:

huj;m(t)juk;m0(t)iH = δ jk ei(m0�m)ωt : (1.22)

Diese Gleichung rechnet man leicht nach,

huj;m(t) juk;m0 (t)iH =
D

eiε j;mt=~U(t;0)uj;m(0) jeiεk;m0 t=~U(t;0)uk;m0(0)
E

H

= ei(εk;m0�ε j;m)t=~ huj(0) juk(0)iH :

Nun sind aberuj(0) � uj(T) und uk(0) � uk(T) Eigenvektoren des unit¨aren OperatorsU zu den
Eigenwerten exp(�iε jT=~) und exp(�iεkT=~). Daher sind sie orthogonal bez¨uglich h�j�iH wenn
ε j 6= εk. Für ε j = εk lassen sich dieuj(0) wie üblich so einrichten, dass sie orthonormal sind.

1.1.3 Drei Beispiele

Im Rahmen dieser Arbeit interessieren Hamilton–Operatoren der Form

H(t) = H0+λxcosωt

H0 =
p2

2µ
+V(x): (1.23)

H0 ist der Hamilton–Operator eines (Quasi–)Teilchens in einem Potential. In typischen Anwendungen
repräsentiert er die Dynamik eines kollektiven Freiheitsgrads eines gr¨oßeren Systems, zum Beispiel
die Vibrationsdynamik einer molekularen Bindung. Der zeitabh¨angige Term stellt die Einwirkung
einesäußeren Feldes dar, beispielsweise eines Laserpulses, dessen elektrischer Feldvektor mit dem
Dipolmoment des Oszillators wechselwirkt. Es folgen drei Beispiele:

Harmonischer Oszillator

H0 = p2=2µ+ 1
2µω2

oszx
2 besitzt nur gebundene Zust¨ande, und das Spektrum ist ein reines Punktspek-

trum mit äquidistanten Energieniveaux,σ(H0) = f( j + 1
2)~ωoszj j = 0;1; : : :g. Die Floquet–Indizes

von F sind, für ω 6= ωosz, gegeben durch [48]

ε j =

�
j +

1
2

�
~ωosz+

λ2

4µ(ω2�ω2
osz)

: (1.24)

Die dynamische Stark–Verschiebung der Oszillatorniveaux ist also exakt quadratisch in der Antriebs-
stärkeλ und für jeden Zustand identisch. Das Spektrum vonF hat die Gestalt

σ(F) = σ(H0)+ωZ+
λ2

4µ(ω2�ω2
osz)

: (1.25)

σ(F) ist also ebenfalls ein reines Punktspektrum und liegt gleichm¨aßig dicht inR, wenn ωosz=ω
irrational ist [49,50].
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Teilchen im unendlichen Kasten

Mit dem Potential

V(x) =

�
0 für jxj � a
∞ für jxj> a

(1.26)

besitztH0 ebenfalls ein reines Punktspektrum (z. B. [51])

σ(H0) =

�
π2~2

8µa2 ( j +1)2
�� j = 0;1; : : :

�
;

und die AbständeEj +1�Ej der Eigenwerte vonH0 wachsen monoton mitj. Wennπ2~=(µωa2)
irrational ist, dann folgt aus einem Satz von Weyl [49], dass im Limesλ ! 0 das Spektrum des
Floquet–OperatorsF gleichmäßig dicht inR liegt. Das Teilchen im Kasten ist ein Beispiel f¨ur einen
anharmonischen Oszillator, und allgemein wird in der Literatur zur Zeit intensiv die Frage diskutiert,
wie das Spektrum des Floquet–Operators solcher anharmonischer Oszillatoren f¨ur den Fall endlicher
Werte vonλ aussieht. Das Spektrumσ(F) ist zumindest dicht, die Abwesenheit eines kontinuierlichen
Spektrums konnte bisher aber nicht bewiesen werden, und das Beispiel desδ–gekickten Rotators
zeigt, dass sich f¨ur λ > 0 tatsächlich ein kontinuierliches Spektrum ausbilden kann [52].

Morse–Oszillator

Der eindimensionale Morse–Oszillator ist beschrieben durch den Hamilton–Operator

H0 =
p2

2µ
+D(1�e�βx)2: (1.27)

Er ist ein häufig benutztes Modell zur Beschreibung der Schwingungen molekularer Bindungen [53,
54,55,56]. Das Spektrum vonH0 besteht aus einem Punktspektrumσp(H0) mit endlich vielen Ener-
gieeigenwerten [57]

Ej = ~ωM

�
j +

1
2

�
� ~2ω2

M

4D

�
j +

1
2

�2

für j = 0;1; : : : ;

�
2D
~ωM

� 1
2

�
(1.28)

und einem Kontinuumσc(H0) =]D;∞[. Hierbei istωM =
p

2Dβ2=µ und[x] ist der ganzzahlige Anteil
vonx. Das Spektrum vonF für verschwindende Feldst¨arkeλ=0 istσ(F0) = (σp(H0)[σc(H0))+ωZ.
Es enthält also die gesamte reelle Achse, mit diskreten eingebetteten Eigenwerten, die von den ge-
bundenen Zust¨anden herr¨uhren. Wenn die Feldst¨arke λ größer als 0 wird, dann werden aus diesen
eingebetteten Eigenwerten komplexe Pole der ResolventeR(z) = (z�F)�1 des Floquet–Operators
mit negativen Imagin¨arteilen [47]. Dies bedeutet, dass die Floquet–Zust¨ande eines periodisch ge-
triebenen Morse–Oszillators metastabil sind: Selbst ein winzig kleines Feld f¨uhrt, wenn es beliebig
lange wirken darf, zur Dissoziation. Praktisch wirkt ein Laserfeld nur f¨ur eine endliche Weile auf ein
Molekül ein. Wenn diese Zeit viel kleiner als die Lebensdauer der metastabilen Zust¨ande ist, kann
man die Imagin¨arteile der Polstellen vernachl¨assigen, die Floquet–Indizes als reell und die Floquet–
Funktionen als gebunden betrachten [58].
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1.1.4 Trunkierung

Wie wir in Abschnitt 1.1.3 an den Beispielen des harmonischen Oszillators und des unendlichen
Kastenpotentials gesehen haben, hat man es bei periodisch getriebenen Oszillatoren, f¨ur dieV(x)!∞
für jxj ! ∞ gilt, mit unendlich vielen Klassen von Floquet–Indizes und –Funktionen(ε j ;uj) zu tun.
Mit Hilfe numerischer Verfahren will man nat¨urlich nur eine endliche Teilmenge davon bestimmen.
Betrachten wir also denN–dimensionalen (N < ∞) UnterraumHN von H , der von den unterenN
Energieeigenfunktionenj0i; : : : ; jN�1i von H0 aufgespannt wird. Es seiPN der Projektionsoperator
von H auf HN,

PN(H ) = HN; P2
N = PN: (1.29)

Der trunkierte Hamilton–OperatorHN(t) ist dann

HN(t) = PNH(t)PN (1.30)

und der zuHN(t) gehörende Floquet–OperatorFN = HN(t)� i∂=∂t. Die Frage ist nun, was die Ei-
genwerteεN und EigenvektorenuN von FN mit denen vonF zu tun haben. Dazu sei vorausgesetzt,
dass H(t) speziell die in (1.23) angegebene Form hat. Dann gilt f¨ur die Differenz zwischen dem
vollständigen und dem trunkierten Floquet–Operator

F�FN =

�
H0+λxcosωt� i

∂
∂t

�
�
�

PNH0PN +λPNxPN cosωt� i
∂
∂t

�
: (1.31)

Wegen der Reduzibilit¨at vonH0 vereinfacht sich dies zu

F�FN = (1�PN)H0(1�PN)+λcosωt
�
PNx(1�PN)+(1�PN)x

�
: (1.32)

Wegen(1�PN)uN = 0 folgt daraus ein Ausdruck f¨ur FuN,

FuN = FNuN +λcosωt(1�PN)xuN: (1.33)

Nun betrachten wir die Darstellung vonuN(t) bezüglich der gew¨ahlten Basis,

uN(t) =
N�1

∑
n=0

cn(t)jni; juN(t)j= 1; (1.34)

und es ergibt sich

FuN = εNuN +λcosωt ∑
n0�N

N�1

∑
n=0

jn0iDn0n cn(t) (1.35)

mit dem DipolmatrixelementDn0n = hn0jxjni. Trunkierter EigenwertεN und EigenvektoruN sind eine
gute Approximation eines Eigenwerts und Eigenvektors vonF, wenn der zweite Term auf der rechten
Seite hinreichend klein ist. Um dessen Norm abzusch¨atzen, stellen wir die folgende Forderung anuN

und an die Dipolmatrix: Es gibt eine Toleranzδ und eink, 0< k< N, so dass

(i)
N�1

∑
n=k

jcn(t)j2 < δ 8t

(ii) max
n
jDn0nj

��� 0� n< k; n0 � N
o
< δ: (1.36)
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Die erste Bedingung bedeutet, dassuN hinreichend im
”
unteren“ Bereich vonHN lokalisiert ist, die

zweite, dass der Dipoloperator kaum zwischen diesem unteren Bereich und dem Komplement vonHN

koppelt. Mit Hilfe elementarer Ungleichungen zeigt man




 cosωt ∑
n0�N

N�1

∑
n=0

jn0iDn0n cn(t)







F

� δ
�

1+ max
n<N�n0

jDn0nj
�
: (1.37)

Die Qualität eines numerisch bestimmten trunkierten Satzes von Eigenfunktionen und Eigenwerten
lässt sich nun auf die folgende Weise kontrollieren:

1. Man gibtN undk vor und bestimmt f¨ur jede Eigenfunktion jeweils den kleinsten Wert vonδ,
für den die beiden Bedingungen (i) und (ii) erf¨ullt sind. Dieser Wert gibt einen Hinweis auf die G¨ute
dieser Eigenfunktion.

2. Man gibtN und δ vor und sucht den gr¨oßtmöglichen Wert vonk, für den die Bedingungen
(i) und (ii) gleichzeitig für k orthonormale Eigenfunktionen erf¨ullt ist. Diese sind dann gute Appro-
ximationen von Eigenfunktionen des nicht trunkierten OperatorsF, während dieN� k anderen zu
verwerfen sind. Will man mehr gute Eigenfunktionen, muß manN erhöhen.

1.2 Erweiterung der Floquet–Theorie auf Pulse

1.2.1 Adiabatensatz

Bisher wurden periodische Hamilton–Operatoren der Form (1.2) betrachtet. Bezogen auf Anwen-
dungen, die ein Atom oder Molek¨ul in einem Laserfeld beschreiben, bedeutet dies, dass Amplitude
und Frequenz des Feldes konstant sind. Die Begriffe der Floquet–Theorie k¨onnen jedoch auch auf
Systeme angewendet werden, bei denen solche Parameter zeitlich variieren. Ein Beispiel daf¨ur ist
ein Molekül unter der Einwirkung eines Laserpulses, bei dem die optische Zykluszeit typischerweise
in der Größenordnung einiger Femtosekunden und die Pulsl¨ange bei einigen Hundert Femtosekun-
den liegt. Bei langsamer Variation der Parameter gilt ein effektiver Adiabatensatz, gem¨aß dem die
Besetzungswahrscheinlichkeitenjaj j2 in Gleichung (1.9) invariant sind [59,60].

Ist λ(τ) der sich mit der Zeitτ ändernde Parameter, dann nimmt die Eigenwertgleichung (1.12)
ausführlich geschrieben die Form

F(λ)u(λ) = ε(λ)u(λ) (1.38)

an. Um den Adiabatensatz zu formulieren, ist es n¨utzlich, die folgende Gleichung zu betrachten:

i
∂
∂τ

Φ(λ(τ); t) = F(λ(τ))Φ(λ(τ); t): (1.39)

Φ ist eine Funktion mit Werten inH , die sowohl explizit, viat, wie auch implizit, via ihrer Abh¨angig-
keit von λ, von der Zeit abh¨angt. Sie ist im Allgemeinen kein Element vonF . Die doppelte
Zeitabhängigkeit gestattet die Trennung der Zeitskalen der schnellen Periodizit¨at und der langsamen
Parametervariation. Die L¨osung der zeitabh¨angigen Schr¨odinger–Gleichung (1.1) zum Anfangswert
Ψ(t0) kann aus der L¨osung von Gleichung (1.39) zum AnfangswertΦ(λ(t0); t0) = Ψ(t0) konstruiert
werden, indem manΨ(t) =Φ(λ(t); t) setzt. Gleichung (1.39) hat selbst die Form einer zeitabh¨angigen
Schrödinger–Gleichung und l¨asst die Anwendung des ¨ublichen Adiabatensatzes zu (siehe z. B. [61]):
Mit der Anfangsbedingung

Φ(λ(τ); �)
���
τ=0

= ∑
j

ajuj(λ(0)) (1.40)
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und bei geeigneter Wahl der Phasen der normierten Eigenfunktionenuj(λ) konvergiert die L¨osung
von (1.39) für hinreichend langsame Parametergeschwindigkeit, das heißt im Grenz¨ubergang
maxτ k∂λ=∂τk ! 0 gegen

Φ(τ; �) = ∑
j

aj exp

0
@� i

~

τZ

0

ε j(λ(τ0))dτ0
1
Auj(λ(τ)): (1.41)

1.2.2 Zu den Voraussetzungen f ¨ ur den Adiabatensatz

Der Adiabatensatz in der obigen Form setzt voraus, dass die beteiligten Eigenwerteε j(λ) isoliert und
nicht entartet sind. Wie wir in Abschnitt1.1.3gesehen haben, besitzt jedoch der Floquet–Operator
von Systemen mit einem unendlichdimensionalen Hilbert–Raum typischerweise ein dichtes Spek-
trum. Betrachtet man den Graphen der Funktion, die jedemλ die zugeh¨origen Floquet–Indizesfε j;mg
zuordnet, dann gibt es in der N¨ahe jedes Punktes ein Avoided Crossing [62]. Ein Teil eines solchen
Graphen ist in Abbildung3.5dargestellt. Er zeigt allerdings nur einen endlichen, trunkierten Satz von
Floquet–Indizes und somit auch nur eine endliche Zahl von Avoided Crossings. F¨ur Systeme mit ei-
nem unendlichdimensionalen Hilbert–Raum ist es im Allgemeinen nicht m¨oglich, die Floquet–Indizes
und –Funktionen zu nebeneinanderliegenden Parameterwertenλ undλ+δλ einander so zuzuordnen,
dass stetige Funktionenuj;m(λ) undε j;m(λ) entstehen. Das bedeutet, dass nicht nur die Voraussetzun-
gen des Adiabatensatzes (in der oben dargestellten einfachen Form) verletzt sind, es w¨are noch nicht
einmal möglich, ihn zu formulieren. Tats¨achlich machen sich auch die Autoren eines erst k¨urzlich
erschienenen Artikels [63] darüber ernstlich Sorgen.

Die Lösung des Problems beruht darauf, dass die meisten, eventuell fast alle, Avoided Crossings
gar nichtdynamisch relevantsind und daher vernachl¨assigt werden k¨onnen [60,62]. Der adiabatische
Limes maxτ k∂λ=∂τk ! 0 darf nicht tats¨achlich ausgef¨uhrt werden:k∂λ=∂τk soll klein, aber endlich
sein. So kann man genauer betrachten, was passiert, wenn die Parametervariation ¨uber ein Avoided
Crossing führt: Die Landau–Zener–̈Ubergangswahrscheinlichkeit hat die Form [59]

Pi!f = exp

�
� π

2~
δεδλ
k∂λ=∂τk

�
: (1.42)

Hierbei istPi!f die Wahrscheinlichkeit f¨ur einen diabatischen̈Ubergang von einem Floquet–Zustand
in den anderen am Avoided Crossing beteiligten,δλ die Breite des Avoided Crossings undδε der
minimale Abstand der Floquet–Indizes. Das Abstandsmaß dabei ist, wegen der Brillouin–Zonen–
Struktur der Floquet–Indizes, eine Metrik auf dem Kreis.δε undδλ sind Eigenschaften des Floquet–
OperatorsF(λ). Die Parametergeschwindigkeit∂λ=∂τ hingegen ist eine zus¨atzliche, unabh¨angig von
F(λ) vorgegebene Gr¨oße. Ein Avoided Crossing ist nur dann dynamisch relevant, wenn der Ex-
ponent auf der rechten Seite der Gleichung (1.42) in der Größenordnung von�1 ist. Im Grenz-
fall δεδλ=k∂λ=∂τk � ~ zerfällt das Avoided Crossing in zwei adiabatische Zweige(Pi!f � 0), für
δεδλ=k∂λ=∂τk � ~ in zwei diabatische(Pi!f � 1). Somit lassen sich glatte Quasienergiehyper-
flächen konstruieren, die jeweils durch dynamisch relevante Avoided Crossings berandet und mit
anderen Quasienergiehyperfl¨achen verbunden sind. F¨ur die Variation vonλ innerhalb einer dieser
Hyperflächen gilt der Adiabatensatz. Die Gesamtheit solcher Hyperfl¨achen, die mit einem Anfangs-
zustand dynamisch relevant verbunden sind, stellt einen –im Vergleich zur Ausgangssituation we-
sentlich regul¨areren– effektiven Zustandsraum dar, der die interessierenden Prozesse zu beschreiben
gestattet. Insbesondere k¨onnen, da die dynamisch relevanten Avoided Crossings diskret liegen, Funk-
tionenuj;m(λ) undε j;m(λ) konstruiert werden, diestetig in λ sind. Zu beachten ist, dass diese Kon-
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struktion von der Wahl des Pfadesλ(τ) abhängt, das heißt, zum Beispiel, von der Flankensteilheit der
Pulsenveloppe.

1.2.3 Bewegungsgleichung in der Floquet–Darstellung

Das Ziel ist nun die Formulierung einer Bewegungsgleichung in der Floquet–Darstellung f¨ur lang-
sam modulierte,

”
fast periodische“ Systeme, das sind Systeme, deren Hamilton–Operator in der Form

H(λ(t); t) geschrieben werden kann, so dassH(λ; t) für festgehaltenesλ strikt periodisch,H(λ(t); t)
aber im Allgemeinen nicht periodisch ist.λ steht dabei f¨ur Parameter, die

”
von außen“ zeitlich modu-

liert werden können. Ein Beispiel istH(λ(t); t) =H0+λ(t)Dcosωt, hier stehtλ(t) für die Einhüllende
der Laserlichtfeldst¨arke. Damit die Floquet–Darstellung eine physikalische Bedeutung hat, mussλ(t)
auf einer Zeitskala variieren, die langsam gegen die Periodenl¨ange ist. Der Ausdruck

”
Bewegungs-

gleichung in der Floquet–Darstellung“ bedeutet, dass der SystemzustandΨ(t) in der Floquet–Basis
zum momentanen Wert des Parametersλ zur Zeit t entwickelt wird (siehe (1.9)) und eine Gleichung
für die Entwicklungskoeffizientenaj gesucht wird. Wie sich zeigen wird, ist diese Gleichung ge-
schlossen l¨osbar, und somit kann der Zeitentwicklungsoperator in geschlossener Form angegeben
werden. Die Motivation, eine Bewegungsgleichung in der Floquet–Darstellung aufzustellen, liegt
darin, dass genau dieser Zeitentwicklungsoperator in Kapitel 2 zur Herleitung der reduzierten Dyna-
mik des offenen Systems gebraucht wird.

Es liegt zunächst nahe, davon auszugehen, dass der Parameterλ(t) eine kontinuierliche Kurve im
Parameterraum durchl¨auft. Die Zeitentwicklung vonΨ bis zur Zeitt +dt setzt sich zusammen aus
zwei Komponenten: Der schnelle Anteil, bestimmt durch die explizite periodische Zeitabh¨angigkeit
von H(λ; t), ist bereits in der Floquet–Basis absorbiert, und die Koeffizientenaj in (1.9) werden da-
durch nicht ver¨andert. Der langsame Anteil ist bedingt durch die Zeitabh¨angigkeit der Basis. Liegt im
Intervall [λ(t);λ(t+dt)] kein dynamisch relevantes Avoided Crossing, dann kommt der Adiabatensatz
zur Anwendung, und bei der Parametervariation vonλ(t) nachλ(t +dt) bleiben die Koeffizientenaj

erhalten. Beim Durchgang durch ein Avoided Crossing hingegen m¨ussen die Koeffizienten geeignet
transformiert werden.

Dieser Ansatz f¨uhrt jedoch nicht sehr weit. Die Entscheidung, ob im Intervall[λ(t);λ(t +∆t)] ein
dynamisch relevantes Avoided Crossing liegt, kann in der Regel nur mit Hilfe numerischer Verfahren
gefällt werden. Dazu m¨ussen zumindest die Floquet–Indizes und –Funktionen an den Stellenλ(t)
undλ(t +∆t) berechnet werden. Weiterhin muss, zur Anwendung von (1.41), λ(t +∆t)�λ(t) hinrei-
chend klein sein, so dass insgesamt Floquet–Basen f¨ur viele Werte vonλ berechnet werden m¨ussen.
Dabei stellt sich aber sofort ein Kapazit¨atsproblem: Die numerische Berechnung der Floquet–Basis
für ein N-dimensionales System f¨ur einen Wertvon λ erfordert dieN–malige Integration einerN–
komponentigen Differentialgleichung ¨uber mindestens eine PeriodeT und die Diagonalisierung einer
N�N–Matrix. Mit der Rechenleistung und dem Speicherplatz gegenw¨artiger Rechner k¨onnten also
auf diese Weise nur ¨außerst einfache und kleine Systeme behandelt werden.

Andererseits: Die Abbildung, die die Expansionskoeffizientenaj in Gleichung (1.9) bezüglich
einer Floquet–Basis zum Parameterλ in die Koeffizienten bez¨uglich λ0 zum gleichen Zeitpunkt t
transformiert, ist einfach eine lineare Abbildung, die nur vonλ, λ0 und t abhängt. Wie im Folgen-
den gezeigt wird, l¨asst sie sich explizit angegeben. Der Ausdruck gilt exakt f¨ur endliche Differenzen
λ0�λ und hängt nicht davon ab, ob irgendwelche Avoided Crossings auf dem Weg zwischenλ und
λ0 liegen. Nichts liegt n¨aher, als anstelle einer kontinuierlichen Parametervariation den Parameterλ
während endlicher Zeitintervalle als konstant zu betrachten und zwischen diesen Intervallen sprung-
haft zuändern.

Eine Rechtfertigung dieses Ansatzes wird in Abbildung1.1 gezeigt. Das untere Diagramm zeigt
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Abbildung 1.1
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Oben: Kontinuierliche und stückweise konstante Enveloppe. Unten: Das resultierende
Signal. Siehe auch Gleichung (1.43)

die Funktion

E(t) = λ(t)sinωt; (1.43)

wobei die gestrichelte Linie der Einh¨ullendenλ(t) = sin2(πt=tp) mit tp = 11(2π=ω) und die durchge-
zogene Linie einer st¨uckweise konstanten Approximation dieser Kurve entspricht. Der Unterschied
zwischen den beiden Kurven f¨ur E(t) liegt weit unter der experimentellen Unsicherheit bei der Pr¨apa-
ration solcher Laserpulse. Modellvorhersagen sollten davon nicht abh¨angen. Es ist wohl auch m¨ußig
zu fragen, welche der beiden Kurven physikalisch realistischer ist.

Die Approximation in Abbildung1.1 oben wurde so gew¨ahlt, daß die Spr¨unge vonλ(t) an den
Nullstellen von sinωt erfolgen. Damit ist die KurveE(t) stetig.

Allgemein soll der Hamilton–OperatorH(t;λ) folgende Voraussetzungen erf¨ullen:
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I. Für festgehaltenen Parameterλ ist H periodisch in der Zeit,H(t;λ) = H(t +Tλ;λ) für alle
t 2 R. Die PeriodeTλ darf vonλ abhängen.

II. Der Parameterλ ist eine st¨uckweise konstante Funktion der Zeit. Sie ist beschrieben durch
eine Folge von Sprungstellens1;s2; : : : und Wertenλ1;λ2; : : : , so dass

λ(t) = λν für t 2 [sν�1;sν[; ν = 1;2; : : : (1.44)

III. An den Sprungstellensν ist H(t;λ(t)) stetig als Funktion von t, das heißt
H(λν;sν) = H(λν+1;sν). Weiterhin sollen die Geltungsbereiche[sν�1;sν[ etwas ausgedehnt
werden können, so dass sie ¨uberlappen:H(λν;sν + τ) � H(λν+1;sν + τ) für Zeitenτ, die
der Zeitskala des zeitlichen Coarse–Graining entsprechen, das mit der Markov–N¨aherung
verbunden ist (siehe Abschnitt2.3.3). Die Parameterschritteλν�λν�1 dürfen also nicht zu
drastisch und die Intervalle[sν�1;sν[ nicht zu kurz sein.

Zu jedem Wert vonλν gehört nun eine orthonormale Floquet–Basis(uν
j ) j mit Floquet–Indizes(εν

j ) j .
Hier wie im Folgenden z¨ahlt der Indexj die einzelnen Basisvektoren, w¨ahrend der Indexν die ver-
schiedenen Werte des Parametersλν nummeriert. Es ist nicht notwendig, dassεν

j undεν+1
j beziehungs-

weiseuν
j und uν+1

j in irgendeiner Weise benachbart sind oder adiabatisch auseinander hervorgehen.
Die Gleichung (1.9)) lautet nun ausgeschrieben

jΨ(t)i= ∑
j

aj(t) exp(� i
~

εν
j t) juν

j (t)i für t 2 [sν�1;sν[: (1.45)

Aus der Stetigkeitsbedingung

lim
t%sν

Ψ(t) = Ψ(sν) (1.46)

folgt

ak(sν) = ∑
j

Qν
k j

�
lim
t%sν

aj(t)

�
(1.47)

mit

Qν
k j = expf i

~
(εν+1

k � εν
j )sνghuν+1

k (sν) juν
j (sν)iH : (1.48)

Die Lösung der Schr¨odinger–Gleichung zur AnfangsbedingungΨ0 zur Zeits0 ist also gegeben durch
(1.45) mit

aj(s0) = exp(
i
~

ε1
j s0)hu1

j (s0) jΨ0iH : (1.49)

Innerhalb der Zeitintervalle[sν�1;sν[ sind die Koeffizientenaj(t) konstant, beim̈Uberschreiten der In-
tervallgrenzen transformieren sie sich gem¨aß der Rekursionsformel (1.47). In diesem Sinne ist (1.47)
die zu Anfang dieses Abschnittes gew¨unschte Bewegungsgleichung. Die zeitliche Entwicklung fast
periodischer Systeme wird dadurch exakt –das heißt, nicht perturbativ– erfasst, und zwar auf eine
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derartübersichtliche Weise, dass bew¨ahrte Methoden der Theorie offener Quantensysteme verwen-
det werden k¨onnen, um solche Systeme an eine dissipative Umgebung anzukoppeln. Dazu mehr im
Kapitel 2.

Das hier beschriebene
”
Treppenstufen–Verfahren“ l¨asst sich ohne weiteres auch numerisch imple-

mentieren. Zur Berechnung der MatrizenQν
k j werden nur die Floquet–Indizesεν

j und die Skalarpro-
dukte der Floquet–Funktionen jeweils zu den Zeitpunktensν benötigt, siehe (1.48).

Zeitentwicklungsoperator

Das obige Ergebnis l¨asst sich auch mit Hilfe des ZeitentwicklungsoperatorsU(t;s0) formulieren. Er
ist definiert durch

i~
∂
∂t

U(t;s0) = H(t;λ(t))U(t;s0); U(s0;s0) = 1 (1.50)

und seine Floquet–Darstellung lautet

U(t;s0) =∑
j;k

expf� i
~

εν(t)
k tg

��uν(t)
k (t)

�
Rν(t)

k j



u1

j (s0)
��: (1.51)

Hierbei istν(t) derjenige Indexν, für den giltt 2 [sν�1;sν[. Die Matrix Rν ist das Matrixprodukt

Rν = Qν�1Qν�2 � � �Q1 für ν� 2 (1.52)

undR1
k j = δk j exp( i

~
ε1

j s0). Die MatrizenQν undRν sind unitär. Die explizite Darstellung des Zeitent-
wicklungsoperatorsU(t; t0) für t � t0 lautet

U(t; t0) = U(t;s0)U
†(t0;s0)

= ∑
j;k

expf� i
~

εν(t)
k t +

i
~

εν(t0)
j t0g

��uν(t)
k (t)

�
Sν(t);ν(t0)

k j



uν(t0)

j (t0)
�� (1.53)

mit den unitären Matrizen

Sν;ν0

= Rν
�

Rν0

�†
= Qν�1Qν�2 � � �Qν0

für ν > ν0 (1.54)

undSν;ν = 1.

Anwendung und Test

Schließlich soll anhand eines numerischen Beispiels gezeigt werden, dass die auf diese Weise berech-
nete Dynamik mit dem, was man durch direkte Integration der Schr¨odinger–Gleichung
�i∂Ψ=∂t = H(t;λ(t))Ψ mit einer kontinuierlichen Parametervariationλ(t) erhält, mit großer Genau-
igkeit übereinstimmt. Abbildung1.2 zeigt die Wellenfunktion eines Morse–Oszillators, der durch
einen Laserpuls angeregt wird:

H(t;λ(t)) =
p2

2µ
+D(1�e�βx)2+λ(t)qexcosωt (1.55)

λ(t) = λmaxsin2 πt
tp
: (1.56)
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Die dabei verwendeten Parameter sind in der Tabelle 3.1 auf Seite59 aufgelistet, wo dieses System
zusätzlich mit Dissipation untersucht wird. Im Gegensatz zu (1.23) ist hier die Ladungseinheit ausλ
herausgezogen. Der Morse–Oszillator mit diesen Parametern beschreibt die Vibrationsdynamik eines
HF–(Flusss¨aure–)Molek¨uls. Die obere H¨alfte von Abbildung1.2 zeigt die Besetzungswahrschein-
lichkeitenP(0! n) = jhnjΨ(t)ij2 der untersten sieben Energieeigenzust¨andej0i; : : : ; j6i, die untere
Hälfte die Phasen arg(hnjΨ(t)i). Durch optimierte Pulsparameter (L¨ange und St¨arke des Laserpul-
ses) wird zum Beispiel eine selektive Anregung des f¨unften Energieeigenzustandes erzielt, wenn der
Oszillator vorher im Grundzustand war [53, 54, 55, 56, 64, 39]. Die �–Symbole markieren das Er-
gebnis der direkten Integration der Schr¨odinger–Gleichung mit kontinuierlicher Pulsenveloppe, die
durchgezogenen Linien das des auf der Floquet–Darstellung basierenden Verfahrens, das eine Trep-
penstufenapproximation der Pulsenveloppe verwendet. Die zeitliche Breite der Stufen istT.

Der hier durchgef¨uhrte Vergleich lässt sich nat¨urlich automatisieren. Er ist dann ein scharfer Test
für das fehlerfreie Funktionieren der numerischen Routinen. In der im Zusammenhang mit der vorlie-
genden Dissertation erstellten Simulationssoftware wird dieser Test daher f¨ur einen vollständigen Satz
von Anfangsbedingungen immer im Anschluss an die Berechnung einer Floquet–Basis durchgef¨uhrt.
Er gewährleistet die korrekte Berechnung und programminterne Repr¨asentation der Floquet–Basis.
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Abbildung 1.2
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II
Offene Quantensysteme

Im Kontext der offenen Quantensysteme interessiert man sich f¨ur die Dynamik eines SystemsS1, das
an eine UmgebungS2 gekoppelt ist.S2 agiert als ein Reservoir von Energie oder anderen extensiven
Größen, die das SystemS1 aufgrund der Wechselwirkung mitS2 abgeben oder aufnehmen kann.S2

ist so groß, dass sein Zustand sich durch die Wechselwirkung mitS1 nicht merklichändert. F¨ur die
Variablen vonS1 sind geschlossene Bewegungsgleichungen gesucht, die den Effekt der Umgebung
in statistischer Weise ber¨ucksichtigen. S1 wird wahlweise als offenes, reduziertes oder dissipatives
System bezeichnet. In dieser Arbeit soll vorausgesetzt werden, dass sichS2 im thermodynamischen
Gleichgewicht in einer kanonischen Verteilung befindet. Die vorgestellten Konzepte und Methoden
lassen sich aber auch auf andere Umgebungszust¨ande verallgemeinern [65].

Eine Theorie offener Quantensysteme folgt in den Abschnitten2.2 und 2.3. Zuvor werden in
Abschnitt 2.1 die wichtigsten mathematischen Begriffe und Methoden im Zusammenhang mit der
stochastischen Wellenfunktionsmethode zusammengestellt.

2.1 Markov–Prozesse im Hilbert–Raum

Zweck dieses Abschnitts ist die Festlegung einiger Begriffe und der Notation. Das Vorgehen richtet
sich nach der mathematischen Standardliteratur [66, 67, 40]. Die Motivation ist, dass hierin durch
die relative Neuheit und die Entstehungsgeschichte der stochastischen Wellenfunktionsmethode trotz
ihrer weiten Verbreitung in der Literatur noch ein gewisses Defizit besteht [13,14,15,16,17,35,19,68].

2.1.1 Integrationstheorie

Die stochastische Wellenfunktionsmethode benutzt Ensembles von Wellenfunktionen. Dies impliziert
den Begriff von Erwartungswerten und von Wahrscheinlichkeitsverteilungen im komplexen separa-
blen Hilbert-Raum(H ;h�j�i). Der Erwartungswert einer Funktionf : H ! R ist

E[ f ] =
Z

f (H )

f P0(d f) =
Z

H

f (ψ) P(dψ): (2.1)
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Gleichung (2.1) soll im Folgenden erl¨autert werden. Das Integral ist dasLebesgue–Integral. Damit
es wohldefiniert ist, muss die Funktionf messbarsein, das heißt, Urbilder messbarer Mengen sind
messbar. Der Begriff der Messbarkeit impliziert, dass im Definitions- und im Zielraum der Funktion
f jeweilsσ–Algebrenfestgelegt sind. Eineσ–Algebra ist eine nichtleere Teilmenge der Potenzmenge
des Grundraums, die unter der Komplementbildung, abz¨ahlbaren Vereinigungen und Schnitten ab-
geschlossen ist. In topologischen R¨aumen, insbesondere also inH und in R, gibt es immer eine
Borelscheσ–Algebra, das ist die kleinsteσ-Algebra, die alle offenen Mengen enth¨alt. H und in
R sind sogar metrische R¨aume, und ihre Borelschenσ-Algebren werden durch die offenen Kugeln
erzeugt.

Ein Maß P ist eineσ–additive Abbildung, die jeder Menge einerσ–Algebra eine positive reelle
Zahl zuordnet. EinWahrscheinlichkeitsmaßist normiert, so dass der ganze Raum den Wert 1 zugeord-
net bekommt. Ein wichtiges Beispiel f¨ur ein Wahrscheinlichkeitsmaß ist das Dirac–Maßδψ(�), das an
der Stelleψ konzentriert ist:

δψ(B) =

�
1; ψ 2 B
0; sonst

8B: (2.2)

B steht dabei f¨ur Mengen aus derσ–Algebra. Das MaßP0 im mittleren Term von (2.1) ist ein Maß
in R, integriert wirdüber die Bildmengef (H ) � R. P0 ist das Bildmaß vonP, und es giltP0(dx) =
P( f�1(dx)). Die Ausdrückedψ undd f stehen symbolisch f¨ur infinitesimale Elemente der jeweiligen
σ–Algebra.

Um konkrete Wahrscheinlichkeitsmaße anzugeben, werden oftDichtenbenutzt. Die Dichte des
WahrscheinlichkeitsmaßesP bezüglich desσ–endlichen Maßesµ ist eine messbare reellwertige Funk-
tion p, so dass

P(B) =
Z

B

p(x)µ(dx) 8B: (2.3)

In der physikalischen Literatur nennt man das Referenzmaßµ auchVolumenelement.
Im Rn wird die Verbindung zumRiemann–Integraldurch die Auszeichnung eines besonderen

Maßes, desLebesgue–Maßesλ, hergestellt. Es ist definiert auf der Borelschenσ–Algebra und erf¨ullt
insbesondereλ([a1;b1]� �� � � [an;bn]) = ∏n

j=1(bj � aj). Gewöhnlich schreibt man einfachdx�
dx1 � � �dxn anstelle vonλ(dx). Für fastüberall stetige Integranden mit abgeschlossenem Tr¨ager erge-
ben das Lebesgue–Integral mit dem Lebesgue–Maß und das Riemann–Integral denselben Wert.

2.1.2 Kinematik: Wahrscheinlichkeitsverteilungen im projektiven Hilbert–Raum

Zusammenhang mit dem Dichteoperator

Zugelassen ist die Klasse der WahrscheinlichkeitsverteilungenP, welche die folgenden beiden Bedin-
gungen erf¨ullen:

I. Der zuP gehörende KovarianzoperatorρP : H !H , definiert durch

hφ1jρPjφ2i=
Z

H

hφ1jψihψjφ2i P(dψ) 8φ1;φ2 2H (2.4)

existiert und erf¨ullt die Bedingungen, die an einen Dichteoperator gestellt werden.
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II. P ist phasenunabh¨angig und auf der Oberfl¨ache der EinheitskugelS= fψ 2 H
�� kψk2 = 1g

lokalisiert:

P(B) = P(eiχB) 8B2 B;χ 2 R;
P(B) = P(B\S) 8B2 B: (2.5)

Hier wie im Folgenden stehtB für die Borelscheσ–AlgebraüberH . Die Bedingung II bedeutet, dass
manP mit einer Wahrscheinlichkeitsverteilung im projektiven Hilbert–Raum identifizieren kann.

Zu jedem selbstadjungierten OperatorA : H !H lässt sich nun die stetige FunktionfA : H ! R

definieren,

fA(ψ) = hψjAjψi: (2.6)

Damit gilt die folgende Gleichung, welche die zentrale Aussage dieses Abschnitts enth¨alt:

Tr (AρP) =
Z

H

fA(ψ) P(dψ): (2.7)

Auf der rechten Seite von (2.7) steht derwahrscheinlichkeitstheoretische Erwartungswert(2.1), der
also gleich demquantenmechanischen ErwartungswertTr (AρP) der ObservablenA ist.

Verteilungen, die die Bedingungen I und II erf¨ullen, sowie die Gleichung (2.7) finden sich bereits
in den Referenzen [69,70,71,72], der physikalische Kontext ist dort jedoch ein anderer als hier.

Existenz

Da ρP bereits per Konstruktion positiv und selbstadjungiert ist, ist die erste Bedingung ¨aquivalent zur
Normierung

Tr ρP =
Z

H

jψj2 P(dψ) = 1: (2.8)

Die zweite Bedingung ist keine wesentliche Einschr¨ankung. Ist eine VerteilungP gegeben, die die
Bedingung I, aber nicht die Bedingung II erf¨ullt, so lässt sich die Phaseninvarianz erreichen durch

o
P (B) =

1
2π

2πZ

0

dχ P(eiχB); (2.9)

und die zugeh¨origen Kovarianzoperatoren sind gleich,ρP = ρ o
P
. Im Prinzip kann man dann daraus

auch eine Verteilung konstruieren, die auf der Einheitskugeloberfl¨ache lokalisiert ist und die wiederum
den gleichen Kovarianzoperator hat. M¨ochte man mit nicht normierten Wellenfunktionenψ arbeiten,
ist es jedoch praktischer, die Definition (2.4) zu ersetzen durch

hφ1jρPjφ2i=
Z

H

hφ1jψihψjφ2i
hψjψi P(dψ) 8φ1;φ2 2H (2.10)

und (2.6) durch

fA(ψ) =
hψjAjψi
hψjψi : (2.11)
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Ein Beispiel für eine Verteilung, welche die Bedingungen I und II erf¨ullt, ist die phaseninvariante

Version
o
δψ (B) des Dirac–Maßes (2.2),

o
δψ (B) =

1
2π

2πZ

0

dχ δψ(e
iχB) (2.12)

mit jψj2 = 1. Alle Verteilungen, die im Rahmen dieser Arbeit eine Rolle spielen, werden als normierte
Linearkombinationen von solchen phaseninvarianten Dirac–Maßen darstellbar sein, die Einf¨uhrung
von Dichten und damit eines Referenzmaßes (

”
Volumenelementes“) ist nicht notwendig.

Gelegentlich wird die folgende Notation n¨utzlich sein:

11B(ψ)� δψ(B);
o
11B (ψ)�

o
δψ (B): (2.13)

11B(�) ist die Indikatorfunktion der MengeB.

Varianzen

Es sei ausdr¨ucklich betont, dass die Vorgabe eines DichteoperatorsρP zusammen mit den Bedingun-
gen I und II die VerteilungP nicht eindeutig festlegt. Dies ist ein Ausdruck der Tatsache, dass die
VerteilungP mehr Information enth¨alt als der DichteoperatorρP. Ein Beispiel daf¨ur ist das Folgende.

Die quantenstatistische Varianz einer ObservablenAwird mit Hilfe des Dichteoperatorsρ definiert
als

Var(A) = hA2iρ�hAi2ρ = Tr(A2ρ)� (TrAρ)2: (2.14)

Mit Hilfe der Gleichungen (2.6) und (2.7) lässt sich dies auch schreiben als

Var(A) = E[ fA2]�E[ fA]
2: (2.15)

Die quantenmechanische Varianz vonA im reinen Zustandψ ist

(∆A)2(ψ) = hψjA2jψi�hψjAjψi2 = fA2(ψ)� f 2
A(ψ): (2.16)

Der Mittelwert von(∆A)2(ψ) über das Ensemble, das durch die VerteilungP beschrieben wird, ist

Var1(A) = E[ fA2� f 2
A] =

Z

H

(∆A)2(ψ) P(dψ): (2.17)

Eine entsprechende Gleichung ohne den dritten Term, das Integral, findet sich bei Gisin und Perci-
val [36, 73], und von Wiseman [74] wurde diese Gr¨oße im Zusammenhang mit der stochastischen
Dynamik eines kontinuierlich beobachteten Lasers betrachtet.

Die übliche stochastische Varianz der ZufallsvariablenfA ist

Var2(A)� Var( fA) = E[ f 2
A]�E[ fA]

2; (2.18)

und damit gilt die bemerkenswerte Aussage [75,76]:

Var(A) = Var1(A)+Var2(A): (2.19)
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Somit lässt sich die quantenstatistische Varianz Var(A) in zwei Beiträge zerlegen: Var1(A) mißt die
mittlere Abweichung des Ensembles von Eigenzust¨anden vonA. Var1(A) ist 0, wenn alle Wellen-
funktionen, die mit nichtverschwindender Wahrscheinlichkeit im Ensemble vorhanden sind, Eigen-
zustände vonA sind. Var2(A) mißt die Streuung des Ensembles. Var2(A) ist 0, wenn alle Repr¨asen-
tanten des Ensembles im gleichen reinen Zustand sind, der nicht notwendigerweise ein Eigenzustand
von A zu sein braucht.

Bemerkenswert daran ist, dass diese Zerlegung nur durch die Einf¨uhrung des Konzepts der Wahr-
scheinlichkeitsverteilungen im Hilbert–Raum m¨oglich wird. Alleine mit dem Dichteoperator lassen
sich Var1(A) und Var2(A) gar nicht definieren. Eine interessante Anwendung findet sich zum Bei-
spiel in einem (speziellen) dynamischen Modell f¨ur den quantenmechanischen Messprozess [77]. Die
beiden Varianzanteile Var1(A) und Var2(A) als Funktionen der Zeit verfolgen denÜbergang von quan-
tenmechanischer zu klassischer Wahrscheinlichkeit w¨ahrend der Messung einer ObservablenA [76].
Die Ensemble-Varianz Var2 tritt auch auf im Zusammenhang mit stochastischen Simulationen (siehe
Kapitel 3). Der Standardfehler des Mittelwerts der Simulationsergebnisse ist nichts weiter als der
Schätzer für Var2, dividiert durch die Wurzel des Stichprobenumfangs [35].

2.1.3 Dynamik: Markov–Prozesse im Hilbert–Raum

Ein stochastischer Prozess ist eine Menge von Zufallsvariablen
�
Ψ(t)

�
t2J mit einer IndexmengeJ�

R. Im Folgenden istJ = [0;∞[. Ein Markov–Prozess ist ein stochastischer Prozess, der die folgende
Eigenschaft erf¨ullt:

P[Ψ(t) 2 BjΨ(t1); : : : ;Ψ(tn)] = P[Ψ(t) 2 BjΨ(tn)] 8B2 B (2.20)

für alle endlichen Mengen von Zeitpunktenft1; : : : ; tng mit t � tn� tn�1; : : : ; t1. In Worten heißt dies,
dass alle Information ¨uber das Verhalten des Prozesses in der Zukunft bereits in dem gegenw¨artigen
Zustand enthalten und die Vergangenheit

”
vergessen“ ist.

Übergangswahrscheinlichkeiten

Ein Markov–Prozess ist vollst¨andig charakterisiert durch eine Anfangsverteilung, also die Verteilung
von Ψ0, und dieÜbergangswahrscheinlichkeitT(B; t jψ; t0), eine Funktion der Zeitvariablent � t0,
von ψ 2H undB2 B, die die folgenden Bedingungen erf¨ullt [40]:

1. Für feste Werte vont0 undt ist T ein Markov–Kern.

2. Für allet0, ψ, B ist T(B; t0 jψ; t0) = 11B(ψ) (vgl. (2.13)).

3. Für t � t0 ist
E[11B(ψt) jΨ(t0) = ψ] = T(B; t jψ; t0): (2.21)

Ein Markov–Kernist eine AbbildungK : B�H ! [0;∞], die im ersten Argument ein Wahrschein-
lichkeitsmaß und im zweiten Argument messbar ist [66]. Die gemäß der Vorschrift

E[11BΦ] = K(B;Ψ) 8B2 B (2.22)

definierte Abbildung einer ZufallsvariableΨ auf eine andere ZufallsvariableΦ entspricht der Faltung
mit dem KernK. Ein trivialer Spezialfall ist derDiracsche Kern KDirac(B;ψ) = δψ(B), die Faltung
mit dem Diracschen Kern entspricht einfach der Identit¨atsabbildung.

Gemäß Bedingung3 ist T(B; t jψ; t0) die Wahrscheinlichkeit, dassΨ(t) in der MengeB liegt,
wennΨ(t0) den Wertψ angenommen hat. Somit legtT die Verteilung vonΨ(t) bei Kenntnis des
Wertes vonΨ(t0) fest.
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Chapman-Kolmogorov–Gleichung

Übergangswahrscheinlichkeiten lassen sich hintereinanderschalten: DieÜbergangswahrscheinlich-
keit von t0 nacht muß gleich sein der Summe allerÜbergangswahrscheinlichkeiten, die vont0 über
eine beliebige Zwischenstellet 0, t0 � t 0 � t, nacht führen. Dies wird ausgedr¨uckt in der Chapman-
Kolmogorov–Gleichung

T(B; t jψ; t0) =
Z

H

T(B; t jϕ; t 0) T(dϕ; t 0 jψ; t0) 8t 0 : t0� t 0 � t: (2.23)

Differentielle Formulierung: Halbgruppen und Generatoren

Besonders elegant und –wie sich im Abschnitt2.3 noch zeigen wird– n¨utzlich ist die differentielle
Formulierung der Dynamik von Markov–Prozessen, das heißt in Form einer Differentialgleichung in
der Zeit. DieÜbergangswahrscheinlichkeiten eignen sich selbst nicht zu einer differentiellen Formu-
lierung, da man die Struktur eines Banach–Raums ben¨otigt, um ableiten zu k¨onnen,Übergangswahr-
scheinlichkeiten aber noch nicht einmal zu einem Vektorraum gemacht werden k¨onnen. Man bedient
sich daher des Banach–RaumesF(H ), das ist die Menge aller reellwertigen beschr¨ankten messbaren
Funktionenf : H ! R.

Eine zunächst sehr anschauliche M¨oglichkeit besteht darin, die Dichten von̈Ubergangswahr-
scheinlichkeiten zu betrachten [78]. Als Funktion des Zielzustands ist die Dichte vonT(B; t jψ; t0)
ein Element vonF(H ). Da Wahrscheinlichkeitsdichten normiert sein m¨ussen, sind Differentialglei-
chungen f¨ur sie immer unter der Nebenbedingung zu l¨osen, dass die Norm erhalten bleibt.

Ein etwas abstrakterer Weg beruht auf der Feststellung, dass die Kenntnis des Erwartungswertes
E[ f (Ψ)] für alle f 2 F(H ) gleichbedeutend mit der Kenntnis der gesamten Verteilung vonΨ ist. Man
definiert die AbbildungQt0;t : F(H )! F(H ) für t � t0 durch [40]

(Qt0;t f )(ψ) = E[ f (Ψ(t)) jΨ(t0) = ψ]: (2.24)

(Qt0;t f )(ψ) ist der bedingte Erwartungswert vonf zur Zeit t, gegeben die Anfangsbedingungψ zur
Zeit t0. Aus (2.21) folgt auch

(Qt0;t f )(ψ) =

Z

H

f (ϕ)T(dϕ; t jψ; t0) (2.25)

und daher ist die Kenntnis vonQt0;t äquivalent zur Kenntnis der̈Ubergangswahrscheinlichkeit. Die
Chapman–Kolmogorov–Gleichung (2.23) kann man nun ¨aquivalent mit Hilfe dieser Abbildungen for-
mulieren:

Qt0;t 0Qt 0;t = Qt0;t : (2.26)

Die ÜbergangswahrscheinlichkeitT(B; t jψ; t0) bildet eine Anfangsbedingung zur Zeitt0 auf eine
Verteilung zum sp¨ateren Zeitpunktt ab. Die AbbildungQt0;t hingegen bildet eine Funktion, deren
Erwartungswert zur Zeitt man wissen will, auf eine Funktion, die als Argument die Anfangsbedin-
gung zur früheren Zeitt0 hat, ab. In diesem Sinne wirktT vorwärts undQ rückwärts in der Zeit. Die
gewählte Reihenfolge der Zeitindizes ist konsistent mit der ¨ublichen Konvention, dass Verkn¨upfungen
von Abbildungen von rechts nach links ausgewertet werden.
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Wenn dieÜbergangswahrscheinlichkeiten zeittranslationsinvariant sind, also nur vonτ = t � t0
abhängen, dann kann manQτ � Qt0;t schreiben, die Chapman–Kolmogorov–Gleichung nimmt die
Form

QσQτ = Qσ+τ; σ;τ 2 R+ (2.27)

an und die AbbildungenQτ bilden eine Halbgruppe. Der Generator dieser Halbgruppe ist die Ablei-
tung vonQτ an der Stelleτ = 0,

G= lim
τ&0

Qτ�1
τ

: (2.28)

Genauer gesagt hat man die Grenzwertgleichung

lim
τ&0

������1τ (Qτ f � f )�G f
������= 0 (2.29)

zu betrachten. Der Definitionsbereich vonG ist die Teilmenge vonF(H ), für die diese Gleichung
erfüllt werden kann.

Im Folgenden ben¨otigen wir die Verallgemeinerung des Begriff des Generators auf den nicht zeit-
translationsinvarianten Fall,

Gt0 = lim
t&t0

Qt0;t �1
t� t0

: (2.30)

Grundsätzlich kann man nicht zeittranslationsinvarianteÜbergangswahrscheinlichkeiten immer zu-
rückführen auf den zeittranslationsinvarianten Fall, dadurch, dass man den ZustandsraumH mit
ZuständenΨ auf den RaumH �J mit Zuständen(Ψ; t0) erweitert. Um die Notation ¨ubersichtlich zu
halten, wird die Abh¨angigkeit vont0 aber im Folgenden wie in (2.30) explizit und getrennt von der
Zustandsvariable notiert.

Kolmogorov–R ¨uckw ärts– und Kolmogorov–Vorw ärts–Gleichung

Die Spezifikation des GeneratorsGt genügt, um den Prozess eindeutig festzulegen. Die Abbildung
Qt0;t genügt nämlich den folgenden Differentialgleichungen

d
dt

Qt0;t = Qt0;t Gt (2.31)

d
dt0

Qt0;t = �Gt0 Qt0;t (2.32)

mit der AnfangsbedingungQt0;t0 = 1. Der Beweis erfolgt einfach durch Benutzung der Definiti-
on (2.30) und der Chapman–Kolmogorov–Gleichung (2.26). Die Gleichung (2.31) heißt Kolmogorov–
Vorwärts–Gleichung, (2.32) heißt Kolmogorov–R¨uckwärts–Gleichung. Im zeittranslationsinvarian-
ten Fall reduzieren sich die Gleichungen (2.31) und (2.32) auf [40]

d
dτ

Qτ = GQτ = QτG; Q0 = 1: (2.33)

Mit (2.25) kann man die Kolmogorov–R¨uckwärts–Gleichung auch f¨ur dieÜbergangswahrschein-
lichkeit T formulieren,

d
dt0

T(B; t jψ; t0) =�Gt0 T(B; t jψ; t0): (2.34)
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Der GeneratorGt0 : F(H )! F(H ) wirkt auf dieψ–Abhängigkeit vonT.
Wenn dieÜbergangswahrscheinlichkeit eine DichtepT bezüglich eines Volumenelementsdφ

(vgl. Abschnitt2.1.1) hat,

T(dφ; t jψ; t0) = pT(φ; t jψ; t0)dφ (2.35)

und außerdem die zuGt bezüglich des Skalarproduktsh f jgiF(H ) =
R

H f (φ)g(φ)dφ AdjungierteG†
t

existiert, ergibt sich aus (2.31) die Kolmogorov–Vorwärts–Gleichung f¨ur pT [79]

d
dt

pT(φ; t jψ; t0) = G†
t pT(φ; t jψ; t0): (2.36)

G†
t wirkt auf dieφ–Abhängigkeit vonpT .

Die Attribute
”
Rückwärts“ und

”
Vorwärts“ stammen daher, dass in (2.36) bei festgehaltener An-

fangsbedingungψ die Zeitentwicklung nach vorw¨arts betrachtet wird, w¨ahrend (2.34) bei festgehal-
tener Endbedingung das Verhalten vonT in Richtung Vergangenheit festschreibt.

In Anwendungen in der physikalischen Literatur ist die Kolmogorov–Vorw¨arts–Gleichung sehr
beliebt, weil sie den anschaulichsten Zugang zur differentiellen Formulierung von Markov–Prozessen
bietet. Wir betrachten nun drei wichtige Beispiele.

Deterministische Prozesse

Die deterministische zeitliche Entwicklung eines Systems gem¨aß einer Gleichung der Form

i~
∂
∂t

ψ(t) = H(t)ψ(t) (2.37)

lässt sich auch als deterministischer Markov-Prozess auffassen. Ziel dieses Abschnitts ist die Herlei-
tung des GeneratorsG. Dazu definieren wir zun¨achst einen OperatorΦ(t; t0)

Φ(t; t0) = exp

�
� i(t� t0)

~
H(t0)

�
: (2.38)

Ist ψ(t) die Lösung von (2.37) zur Anfangsbedingungψ0 zur Zeitt0, dann gilt

ψ(t) = Φ(t; t0)ψ0+O
�
(t� t0)

2� : (2.39)

Φ(t; t0) erzeugt dieÜbergangswahrscheinlichkeit

T(B; tjψ; t0) = 11B(Φ(t; t0)ψ) = δΦ(t;t0)ψ(B): (2.40)

Auf der rechten Seite stehen zwei alternative Schreibweisen f¨ur das Dirac–Maß auf dem Punkt
Φ(t; t0)ψ. Durch Einsetzen von (2.40) in (2.25) erhält manQt0;t ,

(Qt0;t f )(ψ) = f (Φ(t; t0)ψ) 8 f : (2.41)

Der Generator des deterministischen Markov–Prozesses ist somit, nach Gleichung (2.30),

(GL
t0 f )(ψ) = f 0(ψ)

�
dψ
dt

����
t=t0

=� i
~

f 0(ψ)(H(t0)ψ): (2.42)
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Hierbei ist f 0(ψ0) : H ! H die Ableitung vonf an der Stelleψ0, also die lineare Abbildung, die

f (ψ) = f (ψ0)+ f 0(ψ0)(ψ�ψ0)+O((ψ�ψ0)
2) (2.43)

erfüllt. Der Index L für GL
t0 hat seinen Namen daher, dass die Kolmogorov–Vorw¨arts–Gleichung

(2.36) mit GL
t0 nichts anderes als die Liouville–Gleichung f¨ur den von der Schr¨odinger–Gleichung

(2.37) erzeugten Fluss ist [78].
In der hier gegebenen Darstellung ist der Zustandsraum des Prozesses der VektorraumH . Allge-

meiner ist nat¨urlich auch eine Formulierung auf differenzierbaren Mannigfaltigkeiten m¨oglich. Der
GeneratorG ist dann gerade dasjenige Vektorfeld, das den Fluss der deterministischen Bewegung
erzeugt [40,80].

Sprungprozesse

Markovsche Sprungprozesse sind dadurch charakterisiert, dass dieÜbergangswahrscheinlichkeit das
folgende Kurzzeitverhalten hat:

T(B; t0+ τ jψ; t0)� (1� τΓ(ψ))δψ(B)+ τΓ(ψ)K(B;ψ): (2.44)

Hierbei istK ein Markov–Kern, das heißt,K(B;ψ) ist messbar als Funktion vonψ und eine Wahr-
scheinlichkeitsmaß als Funktion vonB. Γ heißt die totale Sprungrate und ist eine FunktionΓ : H !
R
+
0 . Die Gleichung (2.44) besagt, dass bei gegebenem Anfangszustandψ nach der Zeitτ mit der

Wahrscheinlichkeit 1� τΓ(ψ) immer noch der Zustandψ vorliegt, dass also kein Sprung stattgefun-
den hat, w¨ahrend mit der komplement¨aren WahrscheinlichkeitτΓ(ψ) ein Sprung stattgefunden hat,
dessen Sprungziel gem¨aßK verteilt ist. Durch Einsetzen von (2.44) in (2.25) erhält man

(Qt0;t0+τ f )(ψ) = f (ψ)� τΓ(ψ)

8<
:
Z

H

f (ϕ)K(dϕ;ψ)� f (ψ)

9=
;+O(τ2) 8 f : (2.45)

und somit den Generator des Sprungprozesses

(GJ
t0 f )(ψ) = Γ(ψ)

8<
: f (ψ)�

Z

H

f (ϕ)K(dϕ;ψ)

9=
; 8 f : (2.46)

Oft schreibt man den Generator auch in der symmetrischeren Form

(GJ
t0 f )(ψ) =

Z

H

f (ψ)W(dϕ;ψ)� f (ϕ)W(dϕ;ψ) 8 f : (2.47)

mit der SprungrateW(B;ψ) = Γ(ψ)K(B;ψ), wobei man die Normierung
R

K(dϕ;ψ) = 1 benutzt.
Die Kolmogorov–Vorwärts–Gleichung (2.36) mit Generatoren der Form (2.47) heißt auch Master-
gleichung [81,82].

Diffusionsprozesse

Der Generator eines deterministischen Markov–Prozesses ist ein Differentialoperator erster Ordnung
(siehe Gleichung2.42). Eine weitere wichtige Klasse von Markov–Prozessen wird erzeugt von Gene-
ratoren, die Differentialoperatoren zweiter Ordnung sind. Die allgemeine Form ist

(GD
t0 f )(ψ) = f 0(ψ)(A(ψ))+

1
2

f 00(ψ)(B(ψ)) (2.48)
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Analog (2.43) ist f 00(ψ) die zweite Ableitung, eine bilineare AbbildungH �H ! H . Das Vek-
torfeld A bestimmt den Driftterm, der 2-TensorB den Diffusionsterm. Die Kolmogorov–Vorw¨arts–
Gleichung (2.36) mit einem Generator der Form (2.48) heißt Fokker–Planck–Gleichung. Man beach-
te, dass in der Adjungierten(GD)† der Drift–Term mit einem Minus–Vorzeichen ausgestattet ist. Der
Grund dafür ist die bei der Umformung auftretende partielle Integration.

Diffusionsprozesse k¨onnen als Grenzfall von Sprungprozessen aufgefaßt werden. Der Grenz¨uber-
gang beinhaltet die Annahme, dass die Sprungweiten klein sind und die Sprungraten hinreichend glatt
von Anfangs– und Zielzustand abh¨angen [79, 81, 83, 8]. Damit können aus einem mikroskopischen
Modell Ausdrücke für A undB hergeleitet werden.

Stückweise deterministische Sprungprozesse

Markov–Prozesse, deren Generator die Summe aus dem Generator eines deterministischen und eines
Sprungprozesses ist, nennt man st¨uckweise deterministische Sprungprozesse. Die Realisierungen
weisen Sprungstellen auf, zwischen denen sie sich deterministisch entwickeln. Die Kolmogorov–
Vorwärts–Gleichung (2.36) für solche Prozesse heißt Liouville–Master–Gleichung [78]. Sie spielen
eine wichtige Rolle bei der Beschreibung offener Quantensysteme.

2.2 Offene Quantensysteme

Wir betrachten zwei QuantensystemeS1 undS2, denen jeweils die Hilbert–R¨aumeH1 undH2 zuge-
ordnet sind. Der Hilbert–Raum des zusammengesetzten Systems ist der Produktraum

H = H1
H2: (2.49)

Sind (φn)n=0;1;::: und (ϕα)α=0;1;::: Basen vonH1 und H2, dann ist(φn
ϕα)n;α=0;1;::: eine Basis von
H . Es sei daran erinnert, dass im Gegensatz hierzu in der klassischen Mechanik der Phasenraum
des zusammengesetzten System das kartesische Produkt der Phasenr¨aume der Konstituenten ist. Auf
diesem Unterschied beruhen solche

”
typisch quantenmechanischen“ Ph¨anomene wie zum Beispiel die

Möglichkeit von verschr¨ankten Einstein–Podolsky–Rosen–Zust¨anden [84].

2.2.1 Reduzierter Dichteoperator

Der historisch erste Zugang zu offenen Quantensystem beruht auf dem Konzept des reduzierten Dich-
teoperators. Die Komposition zweier unkorrelierter Quantensysteme, deren Zustand durch die Dich-
teoperatorenρ1 undρ2 beschrieben ist, erfolgt einfach durch

ρ = ρ1
ρ2; (2.50)

die Reduktion via

ρ1 = TrH2
ρ: (2.51)

Reduktion bedeutet, dass man sich nur noch f¨ur Observablen interessiert, die sich ausschließlich auf
das SystemS1 beziehen, und insbesondere auch Korrelationen zwischenS1 und S2 vernachlässigt.
Zur Herleitung geschlossener Gleichungen f¨ur den reduzierten Dichteoperator gibt es verschiede-
ne Näherungstechniken [2, 1]. Die prominenteste N¨aherung dieser Art ist die Markov–N¨aherung.
Zusammen mit einigen weiteren Annahmen erh¨alt man damit die sogenannte Quantenmasterglei-
chung [4,5,6,7,85,86].
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2.2.2 Komposition und Reduktion von Verteilungen

Sind für die SystemeS1 undS2 jeweils WahrscheinlichkeitsverteilungenP1 undP2 definiert und sind
die beiden Systeme (zu einem gewissen Zeitpunkt, zum Beispiel vor Beginn der Wechselwirkung)
statistisch unabh¨angig, dann bedeutet das, dass die WahrscheinlichkeitsverteilungP = P1
P2 des
zusammengesetzten Systems auf der Untermenge vonH der Produktzust¨ande konzentriert ist, und
sie hat die Form [18]

P(B) =
Z

H1

Z

H2

11B(ψ1
ψ2)P1(dψ1)P2(dψ2) 8B2 B: (2.52)

Das Hauptziel des gesamten hier vorgestellten Formalismus der Wahrscheinlichkeitsverteilungen im
Hilbert–Raum ist die Herleitung eines stochastischen Prozesses f¨ur den Zustandψ1 des reduzier-
ten Systems aus einem mikroskopischen Modell f¨ur das Gesamtsystem. Hierzu wird eine Vorschrift
benötigt, wie aus dem Zustand des Gesamtsystems durch eine Art Projektion eine Wahrscheinlich-
keitsverteilung f¨ur das reduzierte System zu ermitteln ist. Den Verteilungen entspricht jeweils ein
Dichteoperator, und die Reduktionsvorschrift muss vertr¨aglich sein mit der Reduktion (2.51) des
Dichteoperators [18]. Dies wird im folgenden Schema angedeutet:

WahrscheinlichkeitsverteilungP
für das Gesamtsystem

Wahrscheinlichkeitsverteilung
P1 für das reduzierte System

DichteoperatorρP für das
Gesamtsystem

DichteoperatorρP1 für das
reduzierte System

-

-

? ?

Reduktionsvorschrift ρP1 = Tr2fρPg

Gleichung (2.4)

Gleichung (2.4)

Eine Möglichkeit hierzu besteht darin, eine vollst¨andige orthonormale Basis(ϕα)α=0;1;::: des Hilbert–
RaumsH2 der Umgebung festzulegen. Ist das Gesamtsystem im reinen Zustandψ 2 H , kann das
reduzierte System durch ein Gemisch der folgenden normierten Zust¨ande beschrieben werden

χα(ψ) =
hϕα jψi2
khϕα jψi2k1

� wα(ψ)�1=2hϕα jψi2: (2.53)

Hierbei isth�j�i2 das Skalarprodukt inH 2 undk �k1 ist die Norm inH 1. Der Zustandχα(ψ) 2H 1 ist
in dem Gemisch mit dem Gewicht

wα(ψ) = khϕα jψi2k21 (2.54)

vertreten. Die WahrscheinlichkeitsverteilungP1 in H 1, die dieses Gemisch beschreibt, schreibt sich

Pψ
1 (B) = ∑

α
wα(ψ)11B(χα(ψ)): (2.55)
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Ist der Zustand des Gesamtsystems selbst durch eine WahrscheinlichkeitsverteilungP beschrieben,
dann ergibt sichP1 durch die Mittelung vonPψ

1 überP,

P1(B) =
Z

H

�
∑
α

wα(ψ)11B(χα(ψ))

�
P(dψ): (2.56)

Die Reduktionsvorschrift ist der konzeptuelle Kern der Beschreibung offener Quantensysteme mit
Hilfe von Wahrscheinlichkeitsverteilungen im Hilbert–Raum. Zwei wichtige Punkte sollten an die-
ser Stelle erw¨ahnt werden: Erstens, die reduzierte VerteilungP1 enthält keine Information mehr ¨uber
Korrelationen zwischen reduziertem System und Umgebung. Darauf werde ich am Ende des Ab-
schnitts2.3.2zurückkommen. Zweitens, das ResultatP1 in (2.56) hängt von der Wahl der Basis(ϕα)
ab. Dies kann, zumindest im quantenoptischen Grenzfall –der auf Seite38 definiert wird– und f¨ur
eine Umgebung der TemperaturT = 0, im Sinne einer vollst¨andigen orthogonalen Messung des Um-
gebungszustands verstanden werden [32]. Die Wahl der Basis(ϕα) wird dann durch den Typ des
Detektors bestimmt. Allgemein kann man vermuten, dass die richtige Wahl der Basis durch physika-
lische Eigenschaften der Umgebung bestimmt wird.

Entscheidend ist, dass der auf dem Weg ¨uber die reduzierte VerteilungP1 gewonnene reduzierte
Dichteoperator in jedem Fall nicht von der Wahl der Basis(ϕα) abhängt, dass also das obige Dia-
gramm kommutiert.

2.3 Herleitung des stochastischen Prozesses

2.3.1 Das mikroskopische Modell

Im Folgenden betrachten wir ein gebundenes Quantensystem, zum Beispiel ein Atom oder Molek¨ul, in
einemäußeren Laserfeld. Das Laserfeld ist makroskopisch und wird klassisch, das heißt als komplexer
Skalar, beschrieben [87,88,89]. Der Hamilton–Operator ist also

H1(t) = HM +HL(t); (2.57)

wobeiHM der Hamilton–Operator des freien Molek¨uls undHL(t) die Wechselwirkung des Molek¨uls
mit dem Laserfeld beinhaltet. In der Dipoln¨aherung gilt

HL(t) =�qe~D � ~EL(t) (2.58)

mit dem Dipoloperator~D, der Ladungseinheitqe und der elektrischen Feldst¨arke ~EL(t) des Laser-
pulses.~EL(t) kann zum Beispiel ein amplitudenmodulierter, nahezu monochromatischer Puls wie in
Abbildung1.1, aber auch ein gechirpter, das heißt frequenzmodulierter Puls sein. Auf jeden Fall soll
HL(t) die Voraussetzungen f¨ur die Anwendung des Floquet–Bildes, die in Abschnitt1.2.3aufgestellt
wurden, erfüllen.

Der Hamilton–OperatorH1(t) repräsentiert das SystemS1, das an eine UmgebungS2, nämlich
an die quantisierten Moden des elektromagnetischen Feldes in einem Hohlraum, gekoppelt ist. Der
Hamilton–Operator vonS2 ist [4]

H2 = ∑
~k;~λ

~ωk

�
b†
~k;~λ

b~k;~λ +
1
2

�
: (2.59)

Hier ist das Strahlungsfeld zerlegt in die Fourier–Moden eines Hohlraums mit periodischen Rand-
bedingungen und des VolumensV. Die Moden sind indiziert durch den Wellenvektor~k und zwei
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jeweils dazu senkrechte Polarisationsvektoren~λ. Die Dispersionsrelation seiωk = cj~kj mit der Licht-
geschwindigkeitc. Die Feldoperatoren gehorchen der Vertauschungsregelh

b~k;~λ; b†
~k0;~λ0

i
= δ~k~k0

δ~λ~λ0
: (2.60)

Die Energieeigenzust¨ande vonH2 sind orthonormalisierte Fock–Zust¨ande, die im Folgenden durchϕα
bezeichnet werden. Zu jedem Wert des Indexα gehört ein vollständiger Satz von Besetzungszahlen
N~k;~λ zu allen Werten von~k und~λ,

ϕα �
��(Nα

~k;~λ
)~k;~λ
�
: (2.61)

Die dazugeh¨orenden Eigenenergien sind

Eα = ∑
~k;~λ

~ωk

�
Nα
~k;~λ

+
1
2

�
: (2.62)

Der Operator, der die Wechselwirkung zwischen Materie und elektromagnetischem Feld beschreibt,
lautet in Dipolnäherung

HI =�qe~D �~E: (2.63)

Hierbei ist~E der Operator des quantisierten elektrischen Feldes im Schr¨odinger–Bild,

~E = i ∑
~k;~λ

r
2π~ωk

V

�
b~k;~λ

~λ�b†
~k;~λ
~λ�
�
: (2.64)

Damit nimmt schließlich der Hamilton–Operator, der das Gesamtsystem beschreibt, das aus dem
lasergetriebenen Molek¨ul zusammen mit dem elektromagnetischem Feld besteht, die folgende Form
an:

H(t) = H1(t)+HI +H2 = HM +HL(t)+HI +H2: (2.65)

Der vonH(t) erzeugte ZeitentwicklungsoperatorU(t; t0) ist definiert durch

i~
∂
∂t

U(t; t0) = H(t)U(t; t0); U(t0; t0) = 1: (2.66)

Wechselwirkungsbild. Der WechselwirkungstermHI (t; t0) im Wechselwirkungsbild bez¨uglich
H1(t)+H2 ist definiert durch

HI (t; t0) =U†
1 (t; t0)U

†
2 (t; t0)HI U1(t; t0)U2(t; t0): (2.67)

Hierbei istU2(t; t0) der Zeitentwicklungsoperator des freien Strahlungsfelds,

U2(t; t0) = exp

�
� i
~
(t� t0)H2

�
(2.68)

undU1(t; t0) der Zeitentwicklungsoperator des Molek¨uls im Laserfeld,

i~
∂
∂t

U1(t; t0) = H1(t)U1(t; t0); U1(t0; t0) = 1: (2.69)

Die explizite Darstellung vonU1(t; t0) im Floquet–Bild ist in Gleichung (1.53) gegeben.
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2.3.2 Exakte Dynamik des reduzierten Systems

Ziel dieses Abschnittes ist die Herleitung eines exakten Ausdrucks f¨ur die Dynamik des reduzierten
Systems, das heißt f¨ur dieÜbergangswahrscheinlichkeitT(�; tjψ1; t0). Die Vorgehensweise entspricht
der in den Referenzen [8,10] und ist in folgendem Schema angedeutet:

Zeit t0

Gesamtsystem mit der
VerteilungP= δψ1
P2

Reduziertes System im Zustand
ψ1

Zeit t = t0+ τ

Gesamtsystem mit der
VerteilungP�U(t; t0)�1

Reduziertes System mit der
VerteilungT(�; tjψ1; t0)

-

-

6

?

exakte unitäre
Dynamik

stochastische
Markovsche Dynamik

Komposition (2.52) Reduktion (2.56)

Das Strahlungsfeld wird beschrieben durch eine station¨are, thermische Verteilung mit der Temperatur
T [8],

P2(B2) = ∑
β

pβ
o
δϕβ (B2) 8B2 2 B2: (2.70)

pβ ist der Boltzmann–FaktorZ�1exp(�Eβ=kBT), Z ist die kanonische Zustandssumme,
o
δϕβ das pha-

seninvariante Dirac–Maß am Punktϕβ, siehe (2.12), undB2 ist dieσ–Algebra inH2.
Zur Zeit t0 seien die Freiheitsgrade des Molek¨uls und des Strahlungsfelds statistisch unabh¨angig.

Ist das Molek¨ul im Zustandψ1, so ist die VerteilungP1 = δψ1, und die VerteilungPt0 = P1
P2 des
Gesamtsystems lautet gem¨aß der Kompositionsformel (2.52)

Pt0(B) =∑
β

pβ

2πZ

0

dχ
2π

δψ1
eiχϕβ
(B) 8B2 B: (2.71)

Während des Zeitraums[t0; t] entwickelt sich die Verteilung des Gesamtsystems als deterministischer
Prozess gem¨aß der Schr¨odinger–Gleichung zum Hamilton–OperatorH(t). Die Verteilung des Zu-
stands des GesamtsystemsΨ(t) ist daher

Pt = Pt0 �U†(t; t0): (2.72)

Die reduzierte Verteilung vonΨ1(t) ergibt sich dann aus der Reduktionsformel (2.56)

P[Ψ1(t) 2 B1]� T(B1; t jψ1; t0) =
Z

H

�
∑
α

wα(ψ)11B1(χα(ψ))

�
Pt(dψ): (2.73)
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Mit (2.72) lässt sichPt zugunsten vonPt0 eliminieren,

T(B1; t jψ1; t0) =
Z

H

�
∑
α

wα(U(t; t0)ψ)11B1(χα(U(t; t0)ψ))

�
Pt0(dψ): (2.74)

Die Gewichtungsfaktorenwα sind (siehe (2.54))

wα(U(t; t0)ψ) = khφα jU(t; t0)ψik21 (2.75)

und die Abbildungenχα : H !H1 (siehe (2.53)) lauten

χα(U(t; t0)ψ) = wα(U(t; t0)ψ)�1=2 hϕα jU(t; t0)ψi2: (2.76)

Schließlich setzen wir (2.71) in (2.74) ein, zerlegen in den diagonalen und den nebendiagonalen An-
teil,

T = Td+Tnd; (2.77)

und erhalten [90,8]

Td(B1; t jψ1; t0) = ∑
α

wαα pα
o
11B1 (w

�1=2
αα Lαα ψ1); (2.78)

Tnd(B1; t jψ1; t0) = ∑
α 6=β

wαβ pβ
o
11B1 (w

�1=2
αβ Lαβ ψ1): (2.79)

Hierbei wurden die OperatorenLαβ : H 1!H 1 und die Zahlenwαβ eingeführt,

Lαβ(ψ1) = hϕα jU(t; t0)ψ1
ϕβi2; (2.80)

wαβ = kLαβ(ψ1)k21; (2.81)

und es gilt

w�1=2
αβ Lαβ(ψ1) = χα(U(t; t0)ψ1
ϕβ): (2.82)

Das phaseninvariante Dirac–Mass
o
11B (ψ) ist in Gleichung (2.13) definiert. Die Gleichungen (2.77)–

(2.81) für die Übergangswahrscheinlichkeit sind exakt. Es wird allerdings vorausgesetzt, dass das
reduzierte System zu einer Zeitt > t0 überhaupt durch eine Wahrscheinlichkeitsverteilung inH1 be-
schrieben werden kann. Anders ausgedr¨uckt, die Anwendung der Reduktionsformel vernichtet alle
Informationüber Korrelationen zwischen reduziertem System und Umgebung. Die Iteration der hier
dargestellten Prozedur entspricht also Boltzmanns Annahme vommolekularen Chaos(z. B. [91]).
Diese steht in enger Beziehung zu der sogenannten Markov–N¨aherung, die im nun folgenden Ab-
schnitt diskutiert wird.

2.3.3 Elimination der Umgebungsvariablen

Ziel dieses Abschnittes ist, aus dem Ausdruck (2.80), der in dieÜbergangswahrscheinlichkeit ein-
geht, die Umgebungsvariablenϕβ zu eliminieren, so dass die Berechnung vonLαβ(ψ1) nur eine
Zeitentwicklung inH1 impliziert. Alle Information über die Umgebung steckt dann in den Para-
metern dieser Zeitentwicklung. Die Elimination erfolgt in Form einer N¨aherung, die den sogenannten
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quantenoptischen Grenzfall voraussetzt. Damit bezeichnet man die folgende Relation zwischen drei
Zeitskalen [4]:

τ2� τR; τM� τR: (2.83)

Hierbei ist

� τ2 die Korrelationszeit der quantisierten Moden des Strahlungsfeldes im thermischen Gleich-
gewicht. Für ein thermisches Strahlungsfeld liegtτ2 in der Größenordnung~=kBT � 10�12=T
Ks [7].

� τR ist die Relaxationszeit des reduzierten Systems, das ist die Zeitskala, in der es sich einem
stationären Gleichgewichtszustand ann¨ahert. τ�1

R ist von der Gr¨oßenordnung der nat¨urlichen
Linienbreite, also 10�8 s oder noch viel gr¨oßer [92].

� τM ist das Maximum der inversen Frequenzen der beteiligten atomaren oder molekularenÜber-
gänge, oder allgemeiner, der relevanten inversen Quasienergiedifferenzen. Eine typischer Wert
ist 10�14 s.

Der in der Näherung erhaltene Ausdruck f¨ur die Übergangswahrscheinlichkeit ist g¨ultig für Zeiten
τ = t� t0, die die Bedingung

τ� τ2; τ� τM; τ� τR (2.84)

erfüllen. Die erste Bedingung erlaubt, die Markov–N¨aherung zu machen, mit der die Umgebungsva-
riablen eliminiert werden. Danach erlauben die zweite und die dritte Bedingung, aus dem Kurzzeit-
verhalten der so erhaltenenÜbergangswahrscheinlichkeit den Generator des stochastischen Prozesses
abzuleiten [18].

Es ist nützlich, die nachfolgende Rechnung im Wechselwirkungsbild bez¨uglich H1(t)+H2 (siehe
Gleichungen (2.67) bis (2.69)) zu machen. Der Zeitentwicklungsoperator im Wechselwirkungsbild
UI (t; t0) bis zur zweiten Ordnung inHI ist

UI (t; t0) = 1� i
~

tZ

t0

dt0HI (t
0; t0)�

1
~2

tZ

t0

dt0
t 0Z

t0

dt00HI (t
0; t0)HI (t

00; t0): (2.85)

Es soll betont werden, dass dieser Ansatz eine St¨orungsentwicklung bez¨uglich der Wechselwirkung
zwischen reduziertem System und umgebendem Strahlungsfeld darstellt, w¨ahrend die Wechselwir-
kung zwischen Molek¨ul und Laserfeld, das heißtHL(t), exaktbehandelt wird. Durch Einsetzen von
(2.63) in (2.67) erhält man

HI (t; t0) = qe~D(t; t0) �~E(t� t0) (2.86)

mit dem Operator des elektrischen Feldes im Wechselwirkungsbild

~E(τ) = U†
2 (t0+ τ; t0)~EU2(t0+ τ; t0) (2.87)

= i ∑
~k;~λ

r
2π~ωk

V

�
b~k;~λ

~λe�iωkτ�b†
~k;~λ
~λ�eiωkτ

�
: (2.88)

und dem Dipoloperator im Wechselwirkungsbild

~D(t; t0) =U†
1 (t; t0)~DU1(t; t0): (2.89)
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Der ZeitentwicklungsoperatorU1(t; t0) besitzt nun die folgende explizite Darstellung im Floquet–
Bild (siehe Abschnitt1.2.3):

U1(t; t0) = ∑
j;k

exp

�
� i
~

εν
kt +

i
~

εν
j t0

� ��uν
k(t)
�


uν
j (t0)

��: (2.90)

Zur Erinnerung:ν � ν(t0) ist der Index, der die zur Zeitt0 anwendbare Floquet–Basis angibt. F¨ur
ν(t) = ν(t0) ergibt sich (2.90) unmittelbar aus Gleichung (1.53). (2.90) gilt aber auch, wennν(t) >
ν(t0). Letzteres folgt aus der BedingungIII , die an den zeitabh¨angigen Parameterλ(t) des Laserfeldes
gestellt wurde (siehe Seite18).

Durch Einsetzen von (2.90) in (2.89) findet man eine mindestens im Zeitintervallτ 2 [0; t � t0]
gültige Darstellung des Dipoloperators als Reihe von Exponentialfunktionen

~D(t0+ τ; t0) = ∑
ω

~A†
ν(ω; t0)exp(iωτ) = ∑

ω

~Aν(ω; t0)exp(�iωτ)

= ∑
ω�0

~A†
ν(ω; t0)exp(iωτ)+ ∑

ω>0

~Aν(ω; t0)exp(�iωτ): (2.91)

Die Symmetrie der Operatoren

~Aν(ω; t0) = ~A†
ν(�ω; t0) (2.92)

folgt daraus, dassD(t; t0) selbstadjungiert ist. Ihre Darstellung bez¨uglich der Floquet–Basis ist

~A†
ν(ω; t0) = ∑

( j;k;m)2Jν(ω)
juν

k;m(t0)i huν
k;m j~D juν

j iF huν
j (t0)j: (2.93)

Diese Darstellung ist m¨oglich, weil sich die Floquet–Funktionenuν
j (t) aufgrund ihrer Periodizit¨at in

einer Fourier–Reihe entwickeln lassen. Zur Erinnerung:uν
k;m(t) = uν

k(t)exp(imωνt), siehe (1.18).
h�j�iF ist das Skalarprodukt im erweiterten Hilbert–Raum, siehe (1.11). Jν(ω) ist die Menge aller
Indextripel( j;k;m), für die gilt

εν
k;m� εν

j = ~ω: (2.94)

Die Menge der Frequenzenω, für die Jν(ω) 6= /0, ist abzählbar und in der Regel dicht inR (siehe
Abschnitt 1.1.3). WennJν(ω) 6= /0, dann enth¨alt Jν(ω) im Allgemeinen sogar mehrere Indextripel
( j;k;m). Eine entscheidende Einschr¨ankung ist die Bedingung���huν

k;m j~D juν
j iF
���> δ (2.95)

für einδ > 0. Nur wenn diese Ungleichung f¨ur mindestens ein Indextripel inJν(ω) erfüllt ist, ist der
Operator~A†(ω; t0) überhaupt signifikant von Null verschieden. Insbesondere kann man erwarten, dass
die Fourieranteile des Dipolmatrixelements mit hoher Frequenz gegen Null gehen,

lim
jmj!∞

huν
k;m j~D juν

j iF = 0: (2.96)

Im Folgenden sollΩν
rad die Menge aller Frequenzenω bezeichnen, f¨ur die Jν(ω) 6= /0 und die

Ungleichung (2.95) erfüllt sind. Die positiven Frequenzen inΩν
rad bestimmen die Peaks des vom

System emittierten Strahlungsspektrums.
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Die oben formulierte Bedingungτ� τM (vgl. Seite38) lässt sich nun konkretisieren: Zu einem
gegeben Paar(ϕα;ϕβ) von Umgebungszust¨anden gibt es h¨ochstens einω 2Ωrad, so dass

Eβ�Eα 2 [~ω�δE;~ω+δE]; (2.97)

wobei δE � ~=τ die der Wechselwirkungszeitτ entsprechende Energieunsch¨arfe ist und die Energi-
en Eα und Eβ in (2.62) definiert wurden. Das bedeutet, dass der Erzeugung oder Vernichtung eines
Photons im Strahlungsfeld eindeutig ein OperatorAν(ω; t0) zugeordnet werden kann. Wie sich zeigen
wird, entsprechen die OperatorenÜbergängen zwischen molekularen Zust¨anden. Liegen einige Fre-
quenzenω1; : : : ;ωn 2 Ωrad so dicht zusammen, dass die Bedingung (2.97) nicht erfüllt werden kann,
so kann man eventuell durch einCoarse GrainingAbhilfe schaffen. Dazu werden die Operatoren
geeignet zusammengefasst,

~A0ν(ω
0; t) = ∑

ω2fω1;::: ;ωng

~Aν(ω; t); (2.98)

undω0 ist der Schwerpunkt der Frequenzenω1; : : : ;ωn. Im Folgenden k¨onnen wir also davon ausge-
hen, dass die Bedingung (2.97) erfüllt ist.

Die Operatoren (2.93) sind Eigenoperatoren des Floquet–OperatorsFν =�i∂=∂t +H(t;λν), das
heißt, sie haben die Eigenschaft

[Fν;~A
†
ν(ω; t)] = ~ω~A†

ν(ω; t);
[Fν;~Aν(ω; t)] = �~ω~Aν(ω; t): (2.99)

Das weitere Vorgehen bei der Elimination der Umgebungsvariablen ist v¨ollig analog zu dem bei
zeitunabh¨angigen [8] beziehungsweise strikt periodischen [10] System–Hamilton–Operatoren. Die
detaillierte Rechnung ist dort ausf¨uhrlich dargestellt.

Driftterm. Mit der Markov–Annahmeτ2� τ und der Approximation des Spektrums des Strah-
lungsfeldes durch ein Kontinuum (siehe z. B. [4]) erhält man im Wechselwirkungsbild [8,10]

Td(B1; t0+ τ jψ1; t0) = f1� τΓt0(ψ1)g11B1(L
ν
t0+τ;t0(ψ1))+O(τ2): (2.100)

Hierbei istΓt0(ψ1) die Rate

Γt0(ψ1) = ∑
ω2Ων

rad

γ(ω)N̄(ω)


ψ1 j~Aν(ω; t0) �~A†

ν(ω; t0) jψ1
�

1; (2.101)

γ(ω) ist die Zustandsdichte

γ(ω) =
4q2

ejωj3
3~c3 ; (2.102)

N̄(ω) die mittlere Photonenzahl

N̄(ω) =

�
(exp(~ω=kBT)�1)�1; für ω > 0
N̄(�ω)+1; für ω < 0

(2.103)

undLν
t0+τ;t0 : H1!H1 die nichtlineare Abbildung

Lν
t0+τ;t0(ψ1) =

�
1+

τ
2

Γt0(ψ1)�
τ
2 ∑

ω2Ων
rad

γ(ω)N̄(ω)~Aν(ω; t0) �~A†
ν(ω; t0)

�
ψ1: (2.104)
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Im Vergleich zu Gleichung (2.78) ist in (2.100) die Phasenmittelung weggelassen, das heißt, (2.100)

enthält die Indikatorfunktion 11B1(�) anstelle von
o
11B1 (�) in (2.78). Dies ist zulässig wegen der Linea-

rität vonLαβ und der Phaseninvarianz der Anfangsbedingung [8].
Der Vergleich von (2.100) mit Gleichung (2.40) zeigt, dassTd –bis auf den Faktor(1�τΓt0(ψ1))–

die Übergangswahrscheinlichkeit eines deterministischen Prozesses ist. Die Rolle des Propagations-
operators in (2.40) spielt hierLν

t0+τ;t0. Dieser Operator ist nichtlinear und erh¨alt die Norm vonψ1,

kLν
t0+τ;t0(ψ1)k2 = 1: (2.105)

Der Faktor 1�τΓt0(ψ1) in Td sorgt dafür, daß der Anteil vonTd an derÜbergangswahrscheinlich-
keit T mit der Zeit abnimmt:

Td(H1; t0+ τ jψ1; t0) = 1� τΓt0(ψ1): (2.106)

Zu Beginn, für τ � 0, wird T also vonTd dominiert, während für wachsendesτ der nebendiagonale
Anteil Tnd eine immer gr¨oßere Rolle spielt.

Sprungterm. Für Tnd erhält man im Wechselwirkungsbild

Tnd(B1; t0+ τ jψ1; t0) = τWt0(B1;ψ1)+O(τ2) (2.107)

mit

Wt0(B1;ψ1) = ∑
ω2Ων

rad

γ(ω)N̄(ω)

Z
dΩ(~e) k~e�~A†

ν(ω; t0)ψ1k2
o
11B1

 
~e�~A†

ν(ω; t0)ψ1

k~e�~A†
ν(ω; t0)ψ1k

!
: (2.108)

Der Vektor~e ist der Polarisationsvektor. Gleichung (2.108) setzt der Einfachheit halber voraus, dass~e
reell ist. Wenn man zwischen rechts- und linkszirkular polarisierten Photonen unterscheiden m¨ochte,
ist es praktisch, mit komplexen Polarisationsvektoren zu arbeiten [75]. Dann muß in denjenigen
Summanden in (2.108), bei denenω < 0 ist,~e durch~e� ersetzt werden [10]. Das Integral mit dem
rotationsinvarianten MaßΩ(~e) erstreckt sich ¨uber alle m¨oglichen Polarisationsrichtungen. Das Maß
erfüllt die Normierungsbedingung

Z
dΩ(~e)e�i ej = δi j : (2.109)

Es gilt die wichtige Beziehung

Wt0(H1;ψ1) = Γt0(ψ1): (2.110)

Dadurch wird, zusammen mit (2.107) und (2.106), sichergestellt, dassT = Td+Tnd tatsächlich die
NormierungsbedingungT(H 1; t0 + τ jψ1; t0) = 1 erfüllt. (2.110) lässt sich leicht direkt aus (2.108)
erhalten, wenn man die Normierung (2.109) des MaßesΩ(~e) berücksichtigt.

Tnd(B1; t0 + τ jψ1; t0) ist die Wahrscheinlichkeit, dass das System w¨ahrend der Zeitτ vom Aus-
gangszustandψ1 in einen Zustand in der MengeB1 springt. Für Γt0(ψ1) 6= 0 istWt0(B1;ψ1)=Γt0(ψ1)
ein Markov–Kern. Er gibt die bedingte Wahrscheinlichkeit f¨ur einen Sprung nachB1 an, gegeben dass
überhaupt ein Sprung stattfindet.
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Der Generator. Durch die Spezifikation der̈UbergangswahrscheinlichkeitT = Td + Tnd in den
Gleichungen (2.100) und (2.107) ist der stochastische Prozess, der die Dynamik des reduzierten
Systems beschreibt, vollst¨andig definiert. Eine ¨aquivalente, etwas elegantere und kompaktere Be-
schreibung des Prozesses in differentieller Form gibt der Generator (siehe Abschnitt2.1.3). Dazu
konstruieren wir zun¨achst die gem¨aß der Gleichung (2.25) zu T gehörende Halbgruppenabbildung
QI

t0;t : F(H )! F(H ) im Wechselwirkungsbild

(QI
t0;t0+τ f )(ψ1) = f1� τΓt0(ψ1)g f (Lν

t0+τ;t0(ψ1))

+ τ ∑
ω2Ων

rad

γ(ω)N̄(ω)
Z

dΩ(~e)

2πZ

0

dχ
2π
k~e�~A†

ν(ω; t0)ψ1k2 f

 
eiχ ~e�~A†

ν(ω; t0)ψ1

k~e�~A†
ν(ω; t0)ψ1k

!

+ O(τ2): (2.111)

Die Halbgruppenabbildung im Schr¨odingerbild ist

Qt0;t f = QI
t0;t( f �U1(t; t0)) (2.112)

Diesen Zusammenhang macht man sich am einfachsten anhand von (2.24) klar. Durch Ableiten von
(2.112) nacht erhält man sofort den Generator (2.30) des stochastischen Prozesses

(Gt f )(ψ1) = f 0(ψ1)

�
� i
~

Ĥ1(t)ψ1+
1
2

Γt(ψ1)ψ1

�

+

Z

H1

f (ϕ)Wt (dϕ;ψ1)� f (ψ1)Wt(dϕ;ψ1) (2.113)

mit dem linearen, nicht–hermiteschen Operator

Ĥ1(t) = H1(t)�
i~
2 ∑

ω2Ων
rad

γ(ω)N̄(ω)~Aν(ω; t) �~A†
ν(ω; t): (2.114)

ν � ν(t) ist der Index, der die zur Zeitt anwendbare Floquet–Basis angibt, siehe Abschnitt1.2.3.
Anhand des Generators (2.113) wird die Natur des stochastischen Prozesses am unmittelbarsten deut-
lich: Die erste Zeile entspricht offenbar dem Generator eines deterministischen Prozesses (vergleiche
(2.42)), bei dem die einzelnen Realisierungen der deterministischen Gleichung

i~
∂
∂t

ψ(t) =

�
Ĥ1(t)+

i~
2

Γt(ψ(t))

�
ψ(t) (2.115)

gehorchen. Die zweite Zeile ist der Generator eines Sprungprozesses mit SprungratenWt(B;ψ1) (ver-
gleiche (2.47)). Insgesamt erzeugt der Generator (2.113) einen st¨uckweise deterministischen Sprung-
prozess.

Mit der Spezifikation des Generators (2.113) ist das Ziel dieses Kapitels, die Verallgemeinerung
der Theorie dissipativer Quantensysteme in starken Feldern vom strikt periodischen Fall [10] auf den
für Anwendungen wichtigen Fall modulierter Felder, insbesondere also auf Laserpulse, erreicht.
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2.4 Gleichung f ¨ur den Dichteoperator

Der reduzierte Dichteoperatorρ1 ist der Kovarianzoperator des stochastischen Prozesses, und die
Bewegungsgleichung f¨ur ρ1 folgt aus (2.7) und (2.113) [10]:

∂
∂t

ρ1(t) =
1
i~
[H1(t);ρ1(t)]+ ∑

ω2Ων
rad

γ(ω)N̄(ω) (2.116)

�
�
~A†

ν(ω; t)ρ1(t)~Aν(ω; t)�
1
2
~Aν(ω; t)~A

†
ν(ω; t)ρ1(t)�

1
2

ρ1(t)~Aν(ω; t)~A
†
ν(ω; t)

�
:

Die Gleichung besitzt die Lindblad–Form [85], somit sind Spur, Hermitizit¨at und Positivität des Dich-
teoperators unter der Zeitentwicklung erhalten.
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III
Numerische Methoden

3.1 Stochastische Simulation

3.1.1 Schätzen von Erwartungswerten aus Stichproben

Ziel der stochastischen Simulation ist die Erzeugung einer Stichprobe von Realisierungen des sto-
chastischen ProzessesΨ(t). Der Erwartungswert zur Zeitt einer Funktion f , die aufH definiert
ist,

Et [ f ] =
Z

f (H )

f P0t (d f) =
Z

H

f (Ψt) P(dΨt); (3.1)

wird dann durch den Sch¨atzer

f̂t =
1
R

R

∑
r=1

f (ψ(r)(t)) (3.2)

bestimmt. Der Simulationsalgorithmus liefert eine repr¨asentative Stichprobe von Realisierungen
ψ(1); : : : ;ψ(R) des Prozesses, wenn der Erwartungswert E[ f̂t ] gleich Et [ f ] ist. Sind die Realisierun-
gen (zumindest n¨aherungsweise) unabh¨angig, dann ist die Sch¨atzung konsistent. Ein bedeutender
Spezialfall ist die Funktion

fρ : jψi 7! jψihψj; (3.3)

denn ihr Erwartungswert ist gerade der Dichteoperator

Et [ fρ] = ρ(t): (3.4)

Hat man auf diese Weise einen Sch¨atzerρ für den Dichteoperator bestimmt, dann kann der Erwar-
tungswert jeder beliebigen ObservablenA via

Â= Tr(Aρ̂) (3.5)

bestimmt werden. Dies ist ¨aquivalent dazu, den Erwartungswert vonA direkt mit Hilfe der Funktion
fA aus Gleichung (2.6) zu schätzen.
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3.1.2 Monte–Carlo–Methode

Die näherungsweise numerische Auswertung hochdimensionaler Integrale wie auf der rechten Sei-
te von (3.1) durch endliche Summen der Art (3.2) wird oft unter dem Titel Monte–Carlo–Methode
geführt. Der wesentliche Punkt dabei ist, dass das in dem Integral auftretende Maß, beziehungsweise
seine Dichte, nicht explizit berechnet wird. Im Unterschied dazu beruht die naheliegende Methode zur
Auswertung niedrigdimensionaler Integrale auf einer hinreichend feinen Diskretisierung des Integra-
tionsbereiches und der Approximation durch eine endliche Riemann–Summe. Ist jedoch der Integrati-
onsbereich sehr hochdimensional, dann ist solch eine vollst¨andige Abtastung des Integrationsbereich
nicht möglich. Hinter der Monte–Carlo–Methode steht die Idee, dass unter den M¨oglichkeiten der
unvollständigen Abtastung des Integrationsbereichs ein stochastisches Vorgehen besser ist als jedes
systematische. Die Monte–Carlo–Methode setzt nicht voraus, dass die zu berechnende Gr¨oße ein
wahrscheinlichkeitstheoretischer Erwartungswert ist: es kann irgendein Integralausdruck sein, der ei-
ne positiv definite, normierte Dichte involviert. Der Simulationsalgorithmus interpretiert diese Dichte
jedoch als eine Wahrscheinlichkeitsverteilung, gem¨aß der die Stichproben realisiert werden. In der
Physik treten hochdimensionale Integrale, die Anwendung der Monte–Carlo–Methode nahelegen, vor
allem dann auf, wenn ¨uber alle m¨oglichen Konfigurationen eines Systems oder ¨uber alle m¨oglichen
Pfade summiert werden soll.

Entscheidend f¨ur den Nutzen der Monte–Carlo–Methode ist das Konvergenzverhalten. Ein Maß
für die statistische Unsicherheit der Sch¨atzung des Erwartungswertes Et [ f ] mittels (3.2) ist die Varianz

Var( f̂ ) =
1
R

Var( f ) =
1
R

�
E[ f 2]�E[ f ]2

�
: (3.6)

Der Übersichtlichkeit halber wird der Zeitindext hier weggelassen. Ein Sch¨atzer für Var( f̂ ) ergibt
sich aus der Stichprobenvarianz,

σ2
f =

1
R(R�1)

R

∑
r=1

�
f 2(ψ(r))� f̂ 2

�
: (3.7)

σ f heißt der Standardfehler des Mittelwerts. Er sinkt mit zunehmendem Stichprobenumfang, wenn
die Stichproben unabh¨angig sind,

σ f �
1p
R
: (3.8)

Auf diese Weise bestimmt die gew¨unschte Genauigkeit des Simulationsresultats die erforderliche An-
zahl der Realisierungen.

Deterministische Verfahren sind, wenn sie durchf¨uhrbar sind, immer
”
besser“ als Monte–Carlo–

Verfahren in dem Sinne, dass die Genauigkeit ihrer Ergebnisse, die durch numerische Approxima-
tionen und durch die Fließkommaaufl¨osung des Prozessors bestimmt ist, in der Regel um Gr¨oßen-
ordnungen besser als der statistische Fehler des Monte–Carlo–Resultats ist. Entscheidend bei dieser
Aussage ist die Klausel

”
wenn sie durchf¨uhrbar sind“. Die Durchf¨uhrbarkeit wird limitiert durch

Rechenzeit- und Speicherplatzbedarf. In Referenz [39] wird dieserTrade–Offzwischen Durchf¨uhr-
barkeit und Genauigkeit am Beispiel des Vergleichs der stochastischen Wellenfunktionsmethode mit
der numerischen Integration der Dichtematrixgleichung genauer dargestellt. Das zentrale Resultat ist
enthalten in den Skalierungsgesetzen

TDME = k1Nα+1; (3.9)

TStS = k2Nα�x: (3.10)
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Hierbei istTDME die CPU–Zeit für die Integration der Dichtematrixgleichung,k1 undα sind Konstan-
ten, die von spezifischen Eigenschaften des Problems wie auch von der numerischen Implementation
abhängen. TStS ist die CPU–Zeit f¨ur die stochastische Simulation undk2 ist eine Konstante analog
zu k1, in die aber zus¨atzlich via (3.8) die gewünschte Genauigkeit eingeht.x ist ein Parameter zwi-
schen 0 und 1, der von derSelf–Averaging–Eigenschaft [93] der untersuchten Observable abh¨angt.
N schließlich ist die Systemgr¨oße, das heißt die Anzahl der Variablen. Selbst wenn der Wert von
k2, zum Beispiel wegen geforderter hoher Genauigkeit, viel gr¨oßer als der vonk1 ist, ist die Monte–
Carlo–Methode f¨ur große Systeme immer schneller, und der Unterschied der Rechenzeiten kann ¨uber
die Durchführbarkeit oder Nichtdurchf¨uhrbarkeit entscheiden. Eine analoges Resultat kann man auch
hinsichtlich des Speicherplatzbedarfs formulieren.

Die stochastische Wellenfunktionsmethode eignet sich nahezu ideal f¨ur Parallelrechner mit ver-
teiltem Speicher, da die einzelnen Realisierungen v¨ollig unabhängig voneinander erzeugt werden.
Solange die Zahl der Realisierungen gr¨oßer ist als die der Prozessoren, skaliert derSpeed–Up, das ist
das Verhältnis der ben¨otigten Realzeiten mit einem und mehreren Prozessoren, ann¨ahernd linear mit
der Zahl der Prozessoren. Da außer dem Setzen der Startwerte und derÜbermittlung des Endresultats
keine Kommunikation zwischen den verschiedenen Prozessoren notwendig ist, ist die Programmie-
rung solcherDistributed Memory–Applikationen kaum komplizierter als der entsprechende Code f¨ur
einen Prozessor. So wurden zum Beispiel die Simulationen, die der Referenz [39] zugrundeliegen,
wurden auf einem Cluster von 7 IBM RS/6000 Workstations mit Hilfe des MPI–Protokolls (Message
Passing Interface) parallel ausgef¨uhrt.

3.1.3 Realisierungen des Prozesses und Wartezeit

Ausgangspunkt ist die folgende Integralgleichung f¨ur Qt0;t

(Qt0;t f )(ψ) = f1�F(ψ; t; t0)g f (Vt;t0 ψ)

+

tZ

t0

ds
Z

H

f1�F(φ; t;s)g f (Vt;sφ) (Qt0;sWs(dφ; �))(ψ) (3.11)

mit der Wartezeitverteilungsfunktion

F(ψ; t; t0) = 1�exp

0
@� tZ

t0

dsΓs(Vs;t0ψ)

1
A (3.12)

und dem Zeitentwicklungsoperator des deterministischen Anteils

d
dt

Vt;t0ψ =

�
� i
~

Ĥ(t)+
1
2

Γt(Vt;t0ψ)

�
Vt;t0ψ; Vt0;t0ψ = ψ: (3.13)

Durch Einsetzen pr¨uft man nach, dass die rechte Seite von (3.11) die Lösung der Kolmogorov–Vor-
wärtsgleichung

d
dt

Qt0;t = Qt0;t Gt (3.14)

zur AnfangsbedingungQt0;t0 = 1 mit dem GeneratorGt aus (2.113) ist.
(3.11) entspricht der Gleichung (47) in Referenz [94] und ist dort der Ausgangspunkt f¨ur die

Pfadintegraldarstellung des stochastischen Prozesses. Mit Hilfe der Pfadintegraldarstellung l¨asst sich
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beweisen, dass die Realisierungen des Prozesses, die durch den im Folgenden vorgestellten Algo-
rithmus erzeugt werden, tats¨achlich eine repr¨asentative Stichprobe darstellen. Die Realisierungen
–manchmal auch Trajektorien genannt– bestehen aus deterministischen Abschnitten und sind durch
Sprungstellen unterbrochen. W¨ahrend der deterministischen Abschnitte gen¨ugt Ψ(t) der determini-
stischen Dynamik (3.13), die Sprünge sind durch die SprungratenWt (vgl. (2.47)) bestimmt. Durch
die Reihendarstellung der rechten Seite von (3.11) in Potenzen vonW bzw. eines mitW assoziier-
ten Entwicklungsparameters erh¨alt man die verschiedenen Beitr¨age zuQt0;t , die von Trajektorien mit
0;1;2; : : : Sprüngen herstammen. Der Beitrag der Trajektorie, die ¨uberhaupt keinen Sprung enth¨alt,
hat nach Gleichung (3.11) das Gewicht 1�F(ψ; t; t0). Betrachten wir den Prozess, der durch die An-
fangsbedingungΨ(t0) = ψ festgelegt ist, dann heißt das, dass diejenige Trajektorie des stochastischen
Prozesses, die im Intervall[t0; t] keinen Sprung enth¨alt, mit der Wahrscheinlichkeit 1� F(ψ; t; t0)
realisiert ist.

Der Terminus
”
Sprung“ suggeriert, dass sich die Trajektorien zwischen den einzelnen Spr¨ungen

kontinuierlich gem¨aß der deterministischen Dynamik entwickeln. Im Prinzip jedoch kann die deter-
ministische Dynamik selbst auch Singularit¨aten und Spr¨unge enthalten [40,80]. Im Zusammenhang
mit dissipativen Quantensystemen ist aber der deterministische Anteil an der Dynamik durch eine
der Schr¨odinger–Gleichung ¨ahnliche Gleichung beschrieben und typischerweise stetig. Daher bleibt
für die Zwecke dieser Arbeit der Begriff

”
Sprung“ für die stochastischen Ereignisse, die durch die

SprungratenWt bestimmt sind, reserviert.
Ein wesentlicher Begriff f¨ur das Folgende ist die Wartezeitt� [95]. Betrachten wir wiederum die

AnfangsbedingungΨ(t0) = ψ, so istt� der Zeitpunkt des ersten Sprunges.t� ist eine Zufallsvariable.
In der mathematischen Literatur werden Zufallsvariablen dieser Art auch Stoppzeit, Optionszeit oder
Markov–Zeit genannt [66]. Aus dem Gesagten folgt, dass die Verteilungsfunktion vont� durch (3.12)
gegeben ist,

P[t� < t] = F(ψ; t; t0): (3.15)

3.2 Simulationsalgorithmus

Die eben diskutierten Eigenschaften der Wartezeitt� bilden die Grundlage des Simulationsalgorith-
mus. Er hat die folgende Struktur:

1. SeiΨ(t0) = ψ.

2. Ziehe eine Zufallszahl, die Wartezeitt�, gemäß der Verteilungsfunktion (3.12).

3. Bestimme für t 2 [t0; t�] die LösungΨ(t) =Vt;t0ψ der Differentialgleichung (2.115).

4. Ziehe ein Sprungzielψ� gemäß der VerteilungKt�(�;Ψ(t�))�Wt�(�;Ψ(t�))=Γt�(Ψ(t�)).

5. Gehe zu Schritt 1, mitt0 t� undψ ψ�.

Im Folgenden sollen drei F¨alle zunehmender Komplexit¨at diskutiert werden.
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3.2.1 Exponentielle Wartezeitverteilung

Im einfachsten Fall ist die Wartezeit exponentialverteilt,F(ψ; t; t0) = 1� exp(�γ(t � t0)). Das ist
genau dann der Fall, wenn die Sprungrate zeitunabh¨angig ist, alsoΓs(Vt;t0ψ) = γ für allet � t0. Ist η
eine im Intervall[0;1] gleichverteilte Zufallszahl, so ergibt sicht� als Lösung der Gleichung

F(ψ; t�; t0) = η (3.16)

zu [82]

t�� t0 =�
1
γ

lnη: (3.17)

Typischerweise l¨aßt sich in solchen F¨allen auch eine geschlossene Formel f¨ur die deterministische
Propagation in Schritt 3 angeben. Insbesondere ist dies bei reinen Sprungprozessen der Fall, bei
denenVt;t0 = 1 gilt. Der dominierende Anteil des Simulationsalgorithmus, sowohl was die algorith-
mische Komplexit¨at wie auch den Rechenzeitbedarf betrifft, ist dann der Schritt 4. Wenn daf¨ur ein
einfaches Verfahren wie die lineare Suche [96] oder die Verwerfungsmethode [97] angemessen ist,
dann gen¨ugen im Prinzip zehn bis zwanzig Zeilen Programmcode f¨ur den gesamten Simulationsalgo-
rithmus. Der Schritt 4, die Auswahl des Sprungziels, wird in Abschnitt3.2.5genauer er¨ortert.

3.2.2 Multiexponentielle Wartezeitverteilung

Sind die Sprungraten zeitunabh¨angig, dann lassen sie sich in der Form

W(B;ψ) = ∑
i

gi

o
11B

�
Aiψ
kAiψk

�
: (3.18)

mit irgendwelchen linearen OperatorenAi darstellen. Das phaseninvariante Dirac–Maß
o
11B ist in

Gleichung (2.13) definiert. Dieser Fall tritt grunds¨atzlich immer ein, wenn der Zustand der Umgebung
und die Wechselwirkung zwischen Umgebung und System nicht explizit von der Zeit abh¨angen [18].
Der effektive Hamilton–Operator hat dann die Gestalt

Ĥ = H� i~
2 ∑

i

giAiA
†
i : (3.19)

Auch die Sprungraten (2.108) für periodisch getriebene Systeme sind in der Floquet–Darstellung nicht
explizit zeitabhängig. Darauf werde ich in Abschnitt3.4.2ausführlicher eingehen.

Wenn die OperatorenAi Eigenoperatoren vonH sind, das heißt, wenn gilt

[H;A†
i ] = ~ωiA

†
i ; [H;Ai] =�~ωiAi ; (3.20)

dann gibt es eine Basis(j ji) j , in der simultan die OperatorenAiA
†
i für alle i wie auchH diagonal sind,

d. h. Hj ji= Ej j ji undAiA
†
i j ji= α ji j ji mit reellen EigenwertenEj undα ji � 0. Somit ist auchĤ in

dieser Basis diagonal,

Ĥj ji=
�

Ej�
i~
2

Γ j

�
j ji mit Γ j =∑

i

giα ji � 0; (3.21)
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und man kann den Zeitentwicklungsoperator des deterministischen Teils explizit angeben. F¨ur die
Wartezeitverteilung ergibt sich

F(ψ; t; t0) = 1�∑
j

jh jjψij2 exp(�Γ j(t� t0)): (3.22)

F ist stetig und es giltF(ψ; t0; t0) = 0, aber es kann passieren, dass mit endlicher Wahrscheinlichkeit
überhaupt kein Sprung mehr passiert, das heißt,

lim
t!∞

F(ψ; t; t0) = 1�q: (3.23)

mit 0� q< 1. Wennq> 0, spricht man von einer defekten Wartezeitverteilung [95]. Dies ist der Fall,
wenn für ein j mit h jjψi 6= 0 gilt Γ j = 0.

Defekte Wartezeitverteilungen lassen sich reparieren, wenn man den Wertebereich vont� um den
Wert∞ erweitert undF(ψ;∞; t0) =1 setzt. Weil Gleichung (3.16) mit der multiexpontiellen Verteilung
(3.22) nicht nacht� aufgelöst werden kann, wirdt� numerisch bestimmt.

3.2.3 Allgemeine Wartezeitverteilungen

Wir betrachten nun also den Fall, dass die L¨osungΨ(t) =Vt;t0ψ der deterministischen Dynamik nur
numerisch bestimmt werden kann und man keinen expliziten Ausdruck der Art (3.22) für die Warte-
zeitverteilungsfunktion findet.

Die VerteilungsfunktionF(ψ; t; t0) als Funktion vont erfüllt die folgenden Eigenschaften:

F(ψ; �; t0) : [0;∞]! [0;1] (3.24)

F(ψ; t0; t0) = 0 (3.25)

F(ψ;∞; t0) = 1: (3.26)

Der Wert∞ gehört zum Definitionsbereich vonF, damit istF eine wohldefinierte Verteilungsfunktion,
auch wenn (3.23) mit q > 0 gilt. Die Funktion ist monoton wachsend und rechtsseitig stetig. Im
Allgemeinen ist sie nicht stetig und nicht surjektiv. Zum Ziehen einer Realisierung der Wartezeitt�

tritt daher an die Stelle von (3.16) die Vorschrift

t� = min
t
ft jF(ψ; t; t0)� ηg (3.27)

Da manüber keinen expliziten Ausdruck f¨ur F verfügt, werden zun¨achst die Schritte 2 und 3
(siehe S.48) etwas abgewandelt:

2. Ziehe eine im Intervall[0;1] gleichverteilte Zufallszahlη.

3. BestimmeΨ(t) als Lösung der Differentialgleichung (2.115), solange bis zur Zeitt� die End-
bedingung (3.27) erfüllt ist.

Durch eine weitere Modifikation des Algorithmus vereinfacht sich seine praktische Implementie-
rung. Dies beruht auf den folgenden zwei Feststellungen:
1. Ist Ψ̃(t) die Lösung der Differentialgleichung

d
dt

Ψ̃(t) =� i
~

Ĥ(t)Ψ̃(t) (3.28)



3.2 Simulationsalgorithmus 51

zur Anfangsbedingung̃Ψ(t0) = ψ, so gilt

Vt;t0ψ =
Ψ̃(t)

kΨ̃(t)k
: (3.29)

Ψ̃(t) ist nicht normiert,kΨ̃(t)k � 1.
2. Es ist

F(ψ; t; t0) = 1�kΨ̃(t)k2: (3.30)

kΨ̃(t)k2 ist eine monoton fallende Funktion vont.
Der numerische Aufwand ist also deutlich geringer, wenn man f¨ur den Schritt 3 die unnormierte

Wellenfunktion Ψ̃(t) mit der linearen Differentialgleichung (3.28) anstelle der normierten Wellen-
funktion Ψ(t) und der nichtlinearen Differentialgleichung (2.115) und für die Berechnung der Warte-
zeitverteilungsfunktion die Gleichung (3.30) anstelle von (3.12) verwendet.

Zur Übersicht sei der Algorithmus, der in numerisch effizienter Weise die Simulation von Prozes-
sen mit allgemeinen Wartezeitverteilungen gestattet, noch einmal im Zusammenhang dargestellt:

1. SeiΨ(t0) = ψ.

2. Ziehe eine im Intervall[0;1] gleichverteilte Zufallszahlη.

3. BestimmeΨ̃(t) als Lösung der linearen Differentialgleichung (3.28), solange bis zur Zeitt = t�

die Endbedingung

kΨ̃(t)k2 � η (3.31)

erfüllt ist

4. Ziehe ein Sprungzielψ� gemäß der VerteilungWt�(�;Ψ(t�)), wobeiΨ(t�) = Ψ̃(t�)=kΨ̃(t�)k.

5. Gehe zu Schritt 1, mitt0 t� undψ ψ�.

Die Schätzung von Observablen gem¨aß (3.2) aus Realisierungen des Prozesses wird nat¨urlich aus
einer Stichprobe normierter VersionenΨ(t) = Ψ̃(t)=kΨ̃(t)k der Wellenfunktion berechnet.

3.2.4 Deterministischer Anteil der Dynamik

Bei dem in Abschnitt3.2.2diskutierten Typ von Prozessen stellt man die WellenfunktionΨ̃ zweck-
mäßigerweise in der Basis dar, diêH diagonalisiert.Vt;t0 = exp(�iĤ(t� t0)) lässt sich dann explizit
angeben. F¨ur reine Sprungprozesse (siehe Abschnitt3.2.1) ist die deterministische Propagation trivial.

Im allgemeinen Fall aber (Abschnitt3.2.3) muss die lineare Differentialgleichung (3.28) nume-
risch integriert werden. Dazu gibt es nat¨urlich eine Fülle von Bibliotheksroutinen (z. B. [98,99]). Die
Integrationsroutine muss zum einen die M¨oglichkeit bieten, die Integration zu vorgegebenen Zeit-
punkten zu unterbrechen, um den Zustand f¨ur die spätere Berechnung von Observablen zu speichern,
zum anderen st¨andig auf die Endbedingung (3.31) testen.

Für die Simulationen, die im Zusammenhang mit der vorliegenden Arbeit durchgef¨uhrt worden
sind (siehe3.3), wurdenrkqs und eine angepasste Version vonodeint aus Numerical Recipes [98]
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verwendet.odeint besitzt eine adaptive Schrittweitensteuerung, und die Endbedingung (3.31) wird
am Ende jedes Zeitschritts getestet. Sobald sie erf¨ullt ist, wird als Sprungzeitpunkt das Ende des Zeit-
schritts gew¨ahlt. Tatsächlich liegtt�, gemäß Gleichung (3.27), irgendwo innerhalb dieses Zeitschrit-
tes. Es ist also notwendig, sicherzustellen, dass der Fehler, den man dadurch macht, vernachl¨assigbar
klein ist. Um den Fehler absch¨atzen, m¨ussen die folgenden Verteilungen verglichen werden:

Wt2(�;Vt2;t1ψ)�
Z

H

T(�; t2 jϕ; t�)Wt�(dϕ;Vt�;t1ψ): (3.32)

Hierbei sindt1 undt2 Anfang und Ende des Zeitschritts,t1 < t�� t2, undψ ist der Zustand am Anfang.
Die linke Seite von (3.32) ist die vom Simulationsalgorithmus erzeugte Verteilung des Systemzustands
am Ende des Zeitschritts. Die rechte Seite ist die

”
wahre“ Verteilung, bei der ein Sprung zur Zeitt�

stattfindet. Sie folgt aus der Chapman–Kolmogorov–Gleichung.

Zeit t1 Zeit t�

Zeit t2

Simulation

Ideal

SprungWt� SprungWt2

Vt2;t�

Vt2;t�Vt�;t1
- -

?

? -

Wenn das Intervall[t�; t2] so
kurz ist, dass weitere Spr¨unge
–außer dem zur Zeitt�– ver-
nachlässigt werden k¨onnen, dann
lässt sich die Forderung nach
der Gleichheit der Verteilungen
(3.32) etwas plakativer ausdr¨ucken:
Die deterministische Propagation
und der Sprung sollen, wie in dem Diagramm angedeutet, vertauschbar sein. Die Absch¨atzung des
Fehlers geschieht zweckm¨aßigerweise in einem Probelauf nach der Implementation des Simulations-
algorithmus auf einen

”
neuen“ stochastischen Prozess oder nach einer signifikanten Parameter¨ande-

rung. Hierzu vergleicht man nach jedem Sprung das Sprungziel, das ¨uber den mit
”
Simulation“ in

dem Schema markierten Weg erreicht wurde, mit Sprungzielen, die zu verschiedenen (eventuell aus-
gewürfelten) Zwischenwerten ¨uber den mit

”
Ideal“ markierten Weg erreicht wurden. Berechnet wer-

den dann die maximale und die mittlere Abweichung. Wenn der Fehler innerhalb der Toleranzgrenze
liegt, kann dieser sehr rechenzeitintensive Kontrollmechanismus f¨ur die folgenden Simulationen ab-
geschaltet werden.

Bei der in Abschnitt3.3vorgestellten Anwendung des Algorithmus h¨angt die SprungverteilungWt

nicht explizit von der Zeit und in
”
glatter“ Weise vom Zustandψ vor dem Sprung ab. Es zeigte sich,

dass der von der Schrittweitensteuerung der numerischen Integrationsroutine gelieferte Zeitschritt so
klein ist, dass der hier diskutierte Fehler in diesem Fall v¨ollig vernachlässigbar ist.

3.2.5 Sprung

Die allgemeine Form der Sprungverteilung ist

Kt(B;ψ) =
1

Γt(ψ)
Wt (B;ψ) (3.33)

mit

Wt(B;ψ) = ∑
i2I

gi(t)
o
11B

�
Ai(t)ψ
kAi(t)ψk

�
(3.34)

Γt(ψ) = Wt(H ;ψ): (3.35)
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Γt(ψ) ist die Gesamtsprungrate undWt(B;ψ) ist die Sprungrate f¨ur einen Sprung vonψ in einen
Zustand in der EreignismengeB. Kt ist ein Markov–Kern:Kt(B;ψ) gibt die Wahrscheinlichkeit f¨ur
einen Sprung vonψ nachB an, gegeben, dass ¨uberhaupt ein Sprung stattfindet.

Da die Verteilung (3.33) aus einer diskreten Summe von Dirac–Maßen besteht, l¨asst sich ein
Algorithmus zur Generierung von entsprechend verteiltenÜbergängen wie folgt formulieren:

1. Seiψ der Zustand unmittelbar vor dem Sprungzeitpunktt�.

2. Ziehe einen Indexi 2 I mit der Wahrscheinlichkeitpi = gi(t�)=Γt�(ψ).

3. Setze

Ψ(t�) =
Ai(t)ψ
kAi(t)ψk

: (3.36)

Wenn die IndexmengeI klein ist, kann man den Index i mit dem Verfahren derlinearen Suche[96]
ziehen. Pseudocode f¨ur die lineare Suche sieht aus wie folgt:

float x := rnd()
integer i := 0
while (x>p[i]) begin

x := x-p[i] // p[i] � pi

i := i+1
endwhile

Hierbei stehtrnd() für einen Zufallszahlengenerator, der Zufallszahlen aus der Gleichverteilung
auf [0;1[ liefert [99]. Die einzelnen Wertepi dürfen dabei nicht so klein sein, dass die K¨ornung des
Zufallszahlengenerators eine Rolle spielt [100]. Wenn die Werte vonpi ungefähr alle gleich groß sind,
dann eignet sich die Verwerfungsmethode [97]:

float mp := Maximum allerpi

integer ni := Anzahl der Elemente der IndexmengeI
repeat

i := floor(ni*rnd()) // floor() liefert die nächstkleinere ganze Zahl
until (rnd() < p[i]/mp)

Der Vorteil der Verwerfungsmethode gegen¨uber der linearen Suche ist, dass erstere auch dann effektiv
arbeitet, wenn die Anzahl der Elemente vonI sehr groß ist. Allerdings sollte das Produkt vonmpund
ni nicht viel größer als 1 sein. Eine Variation ist die Nullprozessmethode [100].

Sowohl lineare Suche wie auch Verwerfungsmethode werden ineffizient, wenn die Indexmenge
groß und die Verteilung der Wahrscheinlichkeitenpi sehr inhomogen ist. Es gibt eine Reihe von
Verfahren, die auf einer Gruppierung der m¨oglichen Spr¨unge in logarithmischen Klassen [101] oder
in Suchbäumen [102, 103] basieren. Die Zeitersparnis bei der Suche wird allerdings durch einen
eventuell betr¨achtlichen Zeitaufwand bei der Aktualisierung der entsprechenden Datenstrukturen er-
kauft [104].

3.3 Anwendung: Schwach getriebene dissipative Oszillatoren

In den ersten beiden Kapiteln wurde die dissipative Dynamik getriebener periodischer Systeme unter-
sucht. Die dabei verwendeten Methoden sind zum einen die Floquet–Darstellung und zum anderen
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die Quantenstochastik [18, 8, 10]. In der Tat wurde letztere Methode unabh¨angig von der Floquet–
Darstellung entwickelt, und es gibt viele Anwendungen, die in der Energiedarstellung, die nat¨urlich
wesentlich einfacher zu handhaben ist, formuliert werden. Die Verwendung der Energiedarstellung
ist angemessen f¨ur schwach getriebeneSysteme. Namentlich geht im Grenzfall schwachen Antriebs
die Floquet–Darstellung ¨uber in die Energiedarstellung.

Im einfachsten Fall betrachtet man den Hamilton–Operator eines Teilchens der effektiven Masse
µ im PotentialV(x) unter dem Einfluss eines Laserpulses,

Hosz =
p2

2µ
+V(x) (3.37)

H(t) = Hosz+qeDλ(t)cosωLt: (3.38)

x und p sind die Operatoren des Ortes und des Impulses,D ist der Dipoloperator undqe die effektive
Ladung.λ(t) ist die Einhüllende des Laserpulses und hat die Dimension einer elektrischen Feldst¨arke.
Für die in dieser Arbeit pr¨asentierten Simulationen wurdeD = x und

λ(t) =

8<
: λmaxsin2

�
πt
tp

�
; 0� t � tp

0; sonst
(3.39)

verwendet. Diese Funktion besitzt zwei Parameter, die Pulsl¨angetp und die maximale Feldst¨arke
λmax. Aufgrund der experimentellen Unsicherheit bei der Pr¨aparation von Laserpulsen ist die Wahl
des speziellen funktionalen Ausdrucks (3.39) willk ürlich, und nur die ungef¨ahre Form der Enveloppe
und globale Parameter wie Pulsl¨ange, -h¨ohe, -fläche haben physikalische Bedeutung.

Die Wellenfunktion des Oszillators wird in der Energiedarstellung des Hamilton–OperatorsHosz

des freien Oszillators repr¨asentiert. Zwei F¨alle sind typisch: Erstens, das Spektrum vonHosz enthält
eine endliche Zahl diskreter Eigenwerte sowie ein Kontinuum. Dies ist zum Beispiel beim Morse–
Oszillator der Fall, siehe Abschnitt3.3.2. Dann muss die Dynamik auf den Unterraum der gebun-
denen Zust¨ande beschr¨ankt sein und Dissoziation darf keine Rolle spielen. Zweitens, das Spektrum
ist ein unendliches diskretes Punktspektrum. Beispiele hierf¨ur sind der harmonische Oszillator, Ab-
schnitt 3.3.1, und das unendliche Kastenpotential. Dann muss die Dynamik auf einen Unterraum,
der von einer endlichen Anzahl von Energieeigenfunktionen aufgespannt wird, beschr¨ankt bleiben.
Sinngemäß lassen sich im zweiten Fall die Betrachtungen von Abschnitt1.1.4übertragen. Es ist also

jΨ(t)i=
N�1

∑
n=0

ψn(t)jni; (3.40)

und der Hamilton–Operator ist durch die OszillatoreigenenergienhnjHoszjni = En, die Dipolmatrix-
elementehnjDjmi und die ParameterωL, tp, λmax undN vollständig beschrieben.

Der dissipative Anteil der Dynamik ist durch eine Anzahl von Sprungoperatoren und die zugeh¨ori-
gen Ratenkoeffizienten bestimmt (siehe etwa Gleichung (3.34)). Er kann entweder aus einem mikro-
skopischen Modell hergeleitet oder ph¨anomenologisch postuliert werden. Die mikroskopische Herlei-
tung berücksichtigt im Fall schwach getriebener Systeme zun¨achst nur die Wechselwirkung zwischen
dem ungest¨orten, zeitunabh¨angigen System und seiner Umgebung. Der Antrieb wird danach einfach
zum kohärenten Teil der Dynamik hinzuaddiert. Dies entspricht einer St¨orungsentwicklung, in der
der Antrieb nicht von h¨oherer Ordnung als die Wechselwirkung zwischen System und Umgebung ist.
Für den Fall, dass die Umgebung das elektromagnetische Strahlungsfeld ist, findet sich eine mikro-
skopische Herleitung in den Referenzen [18,8]. Der Operator der Wechselwirkung zwischen System,
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einem Atom oder Molek¨ul, und Umgebung hat dann die Form

HI =�qeD �E (3.41)

mit dem DipoloperatorD und dem elektrischen FeldoperatorE. Im Unterschied zu der mikrosko-
pischen Herleitung, die im Abschnitt2.3 durchgeführt wird und die die Floquet–Darstellung be-
nutzt, ergeben sich hier die Sprungoperatoren aus einer Zerlegung vonD nach EigenoperatorenAi

des System–Hamilton–Operators

D = ∑
i

Ai +A†
i [Hosz;A

†
i ] = ~ωiA

†
i : (3.42)

In der Zerlegung (3.42) treten die Eigenoperatoren immer in Paaren wie in Gleichung (3.42) auf, daD
selbstadjungiert ist, w¨ahrend für alle nichttrivialen EigenoperatorenAi 6= A†

i gilt. Dem Eigenoperator
A†

i ist die Energiedifferenz~ωi > 0 (siehe Gleichung (3.20)) zugeordnet, und er bewirkt Spr¨unge, bei
denen der Energieerwartungswert nach dem Sprung gr¨oßer als vorher ist. Die zugeh¨orige Sprungrate
ist g+i = γ(ωi)N(ωi) mit der Zustandsdichteγ(ωi) und der thermischen VerteilungN(ωi) der Umge-
bung, siehe Gleichungen (2.102) und (2.103). Entsprechend geh¨ort �~ωi zu Ai, und die Sprungrate
ist g�i = γ(�ωi)(N(�ωi)+1). Die resultierende Relation

g�i
g+i

= e~ωi=kBT (3.43)

gewährleistet unter gewissen Voraussetzungen, die Inhalt des Abschnittes4.2.2sind, dass das System
schließlich ins thermische Gleichgewicht relaxiert.

Grundsätzlich lassen sich mikroskopische Modelle auch f¨ur Anwendungen konstruieren, bei de-
nen nicht (nur) das elektromagnetische Strahlungsfeld, sondern auch die Wechselwirkung mit ande-
ren Molekülen per Stoß oder mit anderen Freiheitsgraden desselben großen Molek¨uls als Umgebung
behandelt wird (z. B. [86]). Im Folgenden wird jedoch einfach angenommen, dass die Sprungopera-
toren ebenfalls durch die Zerlegung des Dipoloperators in Eigenoperatoren des ungest¨orten System–
Hamilton–OperatorsHosz bestimmt sind, und dass f¨ur die Sprungraten die Gleichung (3.43) gilt.

Spezielle Eigenoperatoren vonHosz sind die Operatoren

Ajk = j jihkj (3.44)

mit Indexpaarenj;k2 f0; : : : ;N�1g, die die Rolle des bisher verwendeten Indexi übernehmen. F¨ur
sie gilt

[Hosz;Ajk] = (Ej �Ek)Ajk: (3.45)

Wenn jeder Energiedifferenz im Spektrum eindeutig ein Indexpaar( j;k) zugeordnet ist, wenn al-
so Ej �Ek = Ej 0 �Ek0 genau dann wenn( j;k) = ( j 0;k0), dann sindalle Eigenoperatoren von der
Form (3.44). Beim Morse–Oszillator, der im Abschnitt3.3.2diskutiert wird, ist dies typischerwei-
se der Fall. Sind die Energiedifferenzen hingegen entartet, dann sind auch entsprechende Linear-
kombinationen von Operatoren (3.44) Eigenoperatoren. Ein wichtiges Beispiel ist der harmonische
Oszillator, bei dem die Energiedifferenzen aller benachbarten Zust¨ande gleich sind und bei dem der
Dipoloperator die Summe von nur zwei Eigenoperatoren, den Auf- und Absteigeoperatorena unda†,
ist.

Aus dem bisher Vorgebrachten ergibt sich, dass die Sprungoperatoren keine Eigenoperatoren des
WechselwirkungstermsDλ(t)cosωLt mit dem Laser (siehe (3.38)) und daher auch keine des gesamten
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Abbildung 3.1

Eine Realisierung der stochastischen Wellenfunktion in der Ortsdarstellung des eindi-
mensionalen, getriebenen, dissipativen harmonischen Oszillators. Die Ortskoordinate
verläuft von unten Mitte nach rechts oben, die Zeitkoordinate von unten Mitte nach links
oben, aufgetragen ist der Betragjψ(x; t)j2 der Wellenfunktion.

System–Hamilton–OperatorsH(t) sind. Die Wartezeitverteilung ist daher
”
allgemein“ im Sinne von

Abschnitt3.2.3, und hinsichtlich der Simulation gilt das dort Gesagte.

Die Gleichung für den reduzierten Dichteoperator, die aus dem hier spezifizierten stochastischen
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Abbildung 3.2

Eine weitere Realisierung, siehe Untertitel von Abbildung3.1.

Prozess folgt, (siehe Gleichung (2.116) in Abschnitt2.4) lautet in der Energiedarstellung [39]

dρ jk

dt
= � i

~
(Ej �Ek)ρ jk�

iqe

~
∑
l

(Djl ρlk�Dlkρ jl )λ(t)cosωLt

+ δ jk

 
∑
l

gjl ρll

!
� 1

2
(Γ j +Γk)ρ jk: (3.46)

Hierbei sindEj die Eigenenergien vonHosz, ρ jk = h j jρ jki die Matrixelemente des Dichteoperators
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und Djk = h j jD jki die Matrixelemente des Dipoloperators bez¨uglich der Energiebasis.Γ j = ∑l gl j

schließlich ist die Gesamtrate f¨ur Übergänge weg vonj ji.

3.3.1 Harmonischer Oszillator

Die Motivation, den periodisch getriebenen harmonischen Oszillator zu betrachten, liegt in seiner
Einfachheit und, damit verbunden, in der Existenz analytischer L¨osungen. Diese werden dazu benutzt,
die numerischen Verfahren zu validieren, um sie danach auf anharmonische Oszillatoren anzuwenden.
Beispielsweise zeigt die Abbildung3.3 die numerisch bestimmten Erwartungswerte von Orts– und
Impulsoperator als Funktion der Zeit im Vergleich zur analytischen L¨osung. In den Abbildungen3.1
und3.2werden einzelne Realisierungen des stochastischen Prozesses illustriert.

3.3.2 Morse–Oszillator

Das Konzept durch Laserpulse gesteuerter chemischer Reaktionen hat in den letzten Jahren betr¨acht-
liches Interesse erregt (siehe zum Beispiel [11]). Als einfachstes Modell betrachtet man einen einzel-
nen molekularen Freiheitsgrad innerhalb einer elektronischen Potentialenergiefl¨ache. F¨ur den Morse–
Oszillator gilt

V(x) = D(1�e�βx)2: (3.47)

Bei geeigneter Wahl der ParameterD, β undµ liefert der Morse–Oszillator ein realit¨atsnahes Modell
der Vibrationsdynamik der lokalen O-H–Bindung im Wassermolek¨ul oder der Bindung des H-F–
Moleküls [53,54,55,56].

Bereits vor einigen Jahren wurde in der Literatur anhand der numerischen L¨osung der zeitabh¨angi-
gen Schr¨odinger–Gleichung mit dem Hamilton–OperatorH(t) = HM +HL(t) die Möglichkeit der se-
lektiven Anregung ausgew¨ahlter Energieeigenzust¨ande vonHM durch entsprechend optimierte Pulse
berichtet [105]. Die Betrachtung der Dynamik in der Floquet–Repr¨asentation bietet eine ¨ubersichtli-
che Darstellung der involvierten Prozesse und Kriterien f¨ur die optimalen Pulsparameter [55,56].

Die Hinzunahme dissipativer Prozesse zur Dynamik wird notwendig, wenn das betrachtete Mo-
lekül in einen Festk¨orper oder eine Fl¨ussigkeit eingebettet ist, oder wenn es eine große Anzahl weite-
rer Freiheitsgrade besitzt. Relaxation und Dephasierung haben dann einen signifikanten Einfluss auf
den Anregungsmechanismus. Im Unterschied zum rein koh¨arenten Fall sinkt die optimal erzielbare
Selektivität der Anregung [106,64].

Das im Zusammenhang mit dieser Arbeit numerisch untersuchte Modell [39] ist nun spezifiziert
wie folgt: Die Energieeigenwerte der gebundenen Zust¨ande sind (siehe Gleichung (1.28))

Ej = ωM

�
j +

1
2

�
� ω2

M

4D

�
j +

1
2

�2

für j = 0;1; : : : ;

�
2D
ωM
� 1

2

�
: (3.48)

Dabei istωM =
p

2Dβ2=µ und [x] ist der ganzzahlige Anteil vonx. Die DipolmatrixelementeDk j =



3.3 Anwendung: Schwach getriebene dissipative Oszillatoren 59

Djk = h j jx�xeqjki berechnen sich am einfachsten mit Hilfe einer Rekursionsformel [64]

Dj j =
1
zβ

 �
3
2
+3 j

�
+

13
12+

7
2 j( j +1)

z
+

( j +1)4

z2

!

Dj; j+1 =
1

β(z�2 j�2)

s
j +1

z� j�1
(z�2 j�3)(z�2 j�1) (3.49)

Dj;k+1 = Dj;k
( j�k)(z� j�k�1)

(k+1� j)(z� j�k�2)

s
(k+1)(z�2k�3)

(z�k�1)(z�2k�1)
(k> j)

Hierbei ist z= 4D=(~ωM) ein dimensionsloser Parameter. Die Sprungoperatoren sind schließlich
gegeben durch (3.44), mit den Sprungraten

gjk = γ0D2
jkN̄(Ej �Ek): (3.50)

Dem liegt der Einfachheit halber eine flache Zustandsdichteγ(ω) � γ0 zugrunde.

Tabelle 3.1

Reduzierte Masseµ 1744.805 mel

PotentialtiefeD 0.22509 hartree

Morse–Parameterb 1.1741 a�1
0

Effektive Ladungqe 0.3099 qel

Laseramplitudeλmax 0.0431 hartree=(qela0)

LaserfrequenzωL 0.016489 hartree/~

Laserpulslängetp 100�2π=ωL =̂922 fs

TemperaturT 300 K

Dissipationsst¨arkeΓ5 2 t�1
p

Zur Simulation verwendete Parameter des Morse–Oszillators

Die Tabelle zeigt die Simu-
lationsparameter des Morse–
Oszillators und des Laserpul-
ses, die den Abbildungen1.2
und 3.4 zugrundeliegen. mel

ist die Elektronenmasse,qel

die Elementarladung, a0 =
5:29177� 10�11 m der Bohr–
Radius und 1 hartree entspricht
4:35 � 10�18 J. Der Morse–
Oszillator mit diesen Parame-
tern beschreibt die Vibrations-
dynamik eines HF–Molek¨uls
(Flusssäure). Ohne Dissipation
(γ0 = 0) wird durch daf¨ur op-
timierte Pulsparameter (L¨ange
und Stärke des Laserpulses) ei-
ne nahezu perfekte selektive

Anregung zum Beispiel des f¨unften Energieeigenzustandes erzielt, wenn der Oszillator vorher im
Grundzustand war. Bei eingeschalteter Dissipation beschreibt der ParameterΓ�1

5 die mittlere Lebens-
dauer des f¨unften angeregten Zustands. Der hier verwendete Wert entspricht einer Rate von etwa
zwei Sprüngen während einer Pulsl¨ange. Die Spezifikation vonΓ5 ist wegenΓ j = ∑l gl j und (3.50)
äquivalent zu der vonγ0. Nach dem Ende des Pulses ist der f¨unfte Energieeigenzustand zwar immer
noch mit einer Wahrscheinlichkeit von etwa 0:5 besetzt, die Anregung verteilt sich aber auch auf die
darunterliegenden Zust¨ande. Dieser Effekt wird um so ausgepr¨agter, je gr¨oßer die Dissipationsst¨arke
ist.

Betrachtet man die Selektivit¨at der Anregung (zum Beispiel gemessen durch die Besetzungswahr-
scheinlichkeit des Zielzustand zu einem definierten Zeitpunkt nach dem Puls) als Funktion der Pul-
sparameter, dann bedeuten die obigen Ergebnisse, dass diese Funktion im nichtdissipativen Fall ein
Maximum im Inneren des zugelassenen Parameterbereichs hat, und dass dieses Maximum die H¨ohe
1 erreicht. In Gegenwart von Dissipation bei gleichen Pulsparametern sinkt die Selektivit¨at. So-
mit stellt sich die Frage, ob die Dissipation das Maximum eventuell verschiebt, so dass mit anderen



60 Numerische Methoden

Abbildung 3.3
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Die Erwartungswertehx(t)i und hp(t)i des quantenmechanischen getriebenen dissipa-
tiven harmonischen Oszillators. Der obere Graph zeigt die anregende Kraft E(t), die
in Gleichung (3.38) λ(t) heißt. Die durchgezogenen Linien in den unteren beiden Gra-
phen markieren die analytische Lösung, die�–Symbole die numerischen Lösungen, die
mit der stochastischen Wellenfunktionsmethode beziehungsweise durch Integration der
Dichtematrixgleichung erzeugt wurden.

Pulsparametern die Selektivit¨at wieder erh¨oht werden kann. Das Ergebnis einer systematischen nu-
merischen Untersuchung [64] ist jedoch, dass der Ort des Maximums durch die Dissipation nicht
merklich verändert wird.

Im Rahmen dieser Arbeit diente die numerische Untersuchung des schwach getriebenen dissipati-
ven Morse–Oszillators vor allem zwei Zielen: Zum einen als Referenz und als Vorstudie f¨ur den stark
getriebenen Oszillator, dessen Untersuchung technisch aufwendiger ist. Eine interessante, in dieser
Arbeit schließlich nicht mehr weiter verfolgte Frage in diesem Zusammenhang ist, in welchen F¨allen
und auf welche Weise die Verschiedenheit der Dissipationsmechanismen zu physikalischen Effek-
ten führt. Zum anderen wurde am Beispiel des schwach getriebenen dissipativen Morse–Oszillators
eine umfassende Vergleichsstudie zwischen der stochastischen Wellenfunktionsmethode und der nu-
merischen Integration der reduzierten Dichtematrixgleichung hinsichtlich der numerischen Effizienz
durchgeführt [39].
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Abbildung 3.4
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Einfluss der Dissipation auf die selektive Anregung. Aufgetragen sind die Besetzungs-
wahrscheinlichkeiten P(0! n) = jhnjΨ(t)ij2 der untersten sieben Energieeigenzustände
j0i; : : : ; j6i gegen die Zeit. Der betrachtete Zeitraum entspricht der Länge des Laser-
pulses. Die gestrichelten Linien stellen den nicht–dissipativen Fall (Γ5 = 0) dar, in
der eine nahezu vollständige Besetzung des fünften Eigenzustands erzielt werden kann.
Die durchgezogenen Linien zeigen eine Situation, in der aufgrund einer Wechselwirkung
mit der Umgebung ein Relaxationsmechanismus vorhanden ist. Die Relaxationsrate ist
Γ5 = tp=2.

3.4 Numerische Aspekte der Floquet–Darstellung

3.4.1 Berechnung der Floquet–Basis

Die Eigenschaften der Floquet–Basis und die hier verwendete Notation wurden im Abschnitt1.1.2
eingeführt. Eine endliche Floquet–Basis zum periodischen Hamilton–OperatorH(λν; t) besteht aus
N periodischen Floquet–Funktionenuν

j (t), die orthonormal gew¨ahlt werden k¨onnen, und Floquet–
Indizesε j , j = 0; : : : ;N�1. Der Parameterλν kann verschiedene Werte annehmen, die durch den
Indexν = 0; : : : ;νmax�1 nummeriert werden. Zur Erinnerung: mit Hilfe des Parametersλν kann zum
Beispiel eine Amplituden– oder Frequenzmodulation des treibenden Feldes ber¨ucksichtigt werden, als
Funktion der Zeit ist er eine Treppenfunktion,λ(t)� λν(t), vgl. Abschnitt1.2.3.

Die Floquet–Funktionen werden bez¨uglich irgendeiner dem Problem angemessenen zeitunabh¨angi-
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gen Basis(jni)n=0;1;::: ;N�1 von H dargestellt,

juν
j (tµ)i=

N�1

∑
n=0

f ν
jnµ jni: (3.51)

Bei den Oszillatoren aus Abschnitt3.3 bietet sich zum Beispiel die Energieeigenbasis vonHosz an.
Als Funktion vont sind die Floquet–Funktionenuν

j periodisch mit der PeriodeTν und werden zu dis-
kretenäquidistanten Zeitentµ = µTν=mmax gespeichert.mmax ist die Anzahl der Samplingzeitpunkte,
µ= 0; : : : ;mmax�1, und muss groß genug sein, um alle relevanten Details der Zeitabh¨angigkeit der
Floquet–Basis aufzul¨osen. Das hierf¨ur ausschlaggebende Kriterium wird mit der Gleichung (3.64) im
Abschnitt3.4.2aufgestellt.

Der Speicherbedarf des Feldesf ν
jnµ kann erheblich sein: mitN = 32 undmmax = 2048 –Zahlen,

die zum Beispiel der Abbildung4.2 zugrundeliegen– und 16 Byte pro komplexer Fließkommazahl
ergeben sich bereits 32 Megabyte f¨ur jeden einzelnen Wert, den der Parameterλν annimmt.

Ein effizientes und numerisch einfach zu implementierendes Verfahren zur Bestimmung einer
Floquet–Basis beruht auf der Diagonalisierung des MonodromieoperatorsU(t+T; t) (siehe Abschnitt1.1).
Das Verfahren besteht aus drei Schritten:

1. Berechnung des Monodromieoperators: Bez¨uglich der gew¨ahlten Basis(jni) wird der Mono-
dromieoperator durch dieN�N-Matrix hrjUν(T;0)jni dargestellt. Sie wird berechnet durch
numerische Integration der Schr¨odinger–Gleichung mit dem Hamilton–OperatorH(t;λν) zu
den Anfangsbedingungenψ(0) = j0i; : : : ;ψ(0) = jN�1i über eine PeriodeTν.

2. Diagonalisierung des Monodromieoperators: Zur Diagonalisierung der komplexen Matrix
hrjUν(T;0)jni wurden die Routinenf01amf und f02arf aus der NAG–Bibliothek [99] ver-
wendet. Da der Monodromieoperator unit¨ar ist, haben die Eigenwertecν

j den Betrag 1 und die
Floquet–Indizesεν

j erhält man gem¨aß der Gleichung (1.14) auscν
j = exp(�iεν

j Tν=~).

3. Berechnung der Floquet–Funktionen: Die Floquet–Funktionuν
j (t) erhält man gem¨aß (1.15) aus

der Integration der Schr¨odinger–Gleichung ¨uber eine PeriodeTν. Der Anfangswert ist dabei der
normierte j-te Eigenvektor. Zur Integration wird nat¨urlich dieselbe Routine wie im Schritt 1
verwendet.

Ordnung. Wichtig ist, dass die Floquet–Indizesεν
j nur moduloh=Tν und die Floquet–Funktionen

uν
j (t) nur bis auf Phasenfaktoren exp(2πi t=Tν) bestimmt sind. Dies ist die in Abschnitt1.1.2darge-

stellte Klassenstruktur der Floquet–Basis. Die verschiedenen Repr¨asentanten der Klassej werden mit
dem Indexmnummeriert und sind physikalisch v¨ollig äquivalent. Die Numerierung der Klassen mitj
ist willk ürlich, jede Permutation davon ist ebenso zul¨assig. Insbesondere gibt es keine offensichtliche,
physikalisch bedeutsame Ordnungsrelation zwischen den Floquet–Indizes. Es ist aber m¨oglich, mit
Hilfe zusätzlicher Kriterien sinnvolle Ordnungsrelationen f¨ur Floquet–Basen zu konstruieren. Zwei
Möglichkeiten sollen genannt werden: Zum einen k¨onnen die Floquet–Funktionen anhand ihrer mitt-
leren Energie (4.21), einer reellen Zahl, die nur vonj und nicht vonmabhängt, charakterisiert werden.
Dies wird sich im Kapitel 4 als zweckm¨aßig herausstellen. Weiterhin kann man versuchen, wie in Ab-
schnitt1.2.2diskutiert, die Floquet–Indizes durch adiabatisches Verbinden zu stetigen Funktionen des
Parametersλ zu machen. Ausgezeichnet ist dann jeweils derjenige Repr¨asentant, der f¨ur λ! 0 mit
einem Energieeigenwert des zeitunabh¨angigen Systems ¨ubereinstimmt [60].



3.4 Numerische Aspekte der Floquet–Darstellung 63

Abbildung 3.5
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Quasienergiespektrum des trunkierten periodisch getriebenen harmonischen Oszillators,
siehe Gleichung (3.38), mit V(x) = 1

2µω2
0x2, ω0 = 0:9, ω = 1. Das Spektrum wurde

nach dem in Abschnitt3.4.1 beschriebenen Verfahren ausgehend von der bei N= 10
trunkierten Energiebasis des ungetriebenen Oszillators berechnet.

Validierung und Trunkierungseffekte. Das für diese Arbeit geschriebene Programm wurde
anhand der analytisch bekannten Floquet–Basis des periodisch getriebenen harmonischen Oszillators
getestet. Da in das Programm die Eigenschaften des Oszillatorpotentials nur in Form der Eigenener-
gien vonHoszund der DipolmatrixelementeDjk eingehen, lassen sich mit demselben Programm dann
auch anharmonische Oszillatoren behandeln.

Die Floquet–Indizes des harmonischen Oszillators sind [48,10]

ε j = ~ω0

�
j +

1
2

�
+

λ2

4µ(ω2�ω2
0)
; (3.52)

die Floquet–Funktionen

uj(t) = eiϕ(t)D(w(t)) j ji: (3.53)

Dabei sindj ji die Energieeigenzust¨ande des ungetriebenen Oszillators,ϕ(t) und w(t) sind gegeben
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durch

ϕ(t) = � 3λ2

4µω(ω2�ω2
0)

sinωt cosωt; (3.54)

w(t) =
iλ

2
p

2µω0

�
eiωt

ω0+ω
� e�iωt

ω0�ω

�
(3.55)

undD(w(t)) ist die Erzeugende der koh¨arenten Zust¨ande (siehe z. B. [107])

D(w) = exp
�
wa†�w�a

�
: (3.56)

Zur expliziten Berechnung von (3.53) verwendet man die Beziehung

D(w)j ji= 1p
j!

�
a†�w�

� j
exp

�
�jw

2j
2

� ∞

∑
n=0

wn
p

n!
jni: (3.57)

Zur Validierung des numerischen Verfahrens wurde die numerisch bestimmte Floquet–Basis mit
(3.52) und (3.53) verglichen. Abbildung3.5 –die der Abbildung 1 in [59] entspricht– zeigt zun¨achst
die numerisch bestimmten Floquet–Indizes als Funktion der Amplitudeλ des Antriebs. Die exakten
Floquet–Indizes h¨angen, gem¨aß (3.52), von λ quadratisch ab. Ein genauer Vergleich der numerisch
ermittelten Werte mit (3.52) ergibt Folgendes: F¨ur λ = 0 findet man, im Rahmen der Rechengenau-
igkeit, kompletteÜbereinstimmung. F¨ur kleine Antriebsamplituden (λ=µ2� 0:05) stimmen noch alle
bis auf einen Floquet–Index der numerischen L¨osung mit (3.52) überein, doch mit zunehmendemλ
weichen immer mehr derε j(λ)–Kurven von der Parabelform ab, bis schließlich f¨ur λ=µ2 & 0:6 die
numerische L¨osung mit (3.52) nichts mehr zu tun hat. Dieses Verhalten der numerischen L¨osung ist
ein Effekt der Trunkierung, das heißt der Tatsache, dass der harmonische Oszillator zwar einen unend-
lichdimensionalen Hilbert–Raum hat, die numerische Rechnung aber auf den endlichdimensionalen
Unterraum beschr¨ankt ist, der von den unterenN Energieeigenfunktionen aufgespannt wird (siehe
auch Abschnitt1.1.4).

Ein erster Hinweis auf Trunkierungseffekte folgt aus der Spuridentit¨at [46], die für endlichdi-
mensionale System die Summe der Floquet–Indizes festlegt. Diese Nebenbedingung existiert f¨ur
die exakte L¨osung (3.52) nicht. Die Abweichung der Kurve des einen Floquet–Indizes, die bei
ε j(λ = 0) � 0:55 startet, von der Parabelform l¨asst sich also damit plausibel machen, dass dieser
Index die unphysikalische Nebenbedingung

”
auf sich nimmt“. Eine genauere Betrachtung ergibt,

dass die zugeh¨orige Floquet–Funktion am oberen Ende desN–dimensionalen Unterraums lokalisiert
ist. Mit zunehmender Antriebsamplitude werden dann auch dieε j(λ)–Kurven weiterer Indizes von
der Parabelform weggebogen [59,52].

Andererseits stimmen f¨ur nicht zu große Antriebsst¨arke die Werte der meisten numerisch ermit-
telten Floquet–Indizes mit (3.52) überein. Eine genauere Analyse ergibt, dass (i) die zugeh¨origen
Floquet–Funktionen im unteren Bereich desN–dimensionalen Unterraums lokalisiert sind und dass
(ii) auch die zugeh¨origen numerisch ermittelten Floquet–Funktionen mit (3.53) übereinstimmen.

Die Moral aus dieser Betrachtung ist, dass bei Quantensystemen mit unendlichdimensionalem
Hilbert–Raum Trunkierungseffekte bei der numerischen Berechnung der Floquet–Basis mit großer
Sorgfalt ber¨ucksichtigt werden m¨ussen. Durch die Trunkierung kommt es zwangsl¨aufig dazu, dass
manche numerisch ermittelten Floquet–Funktionen und –Indizes nichts mit denen des unendlichdi-
mensionalen Systems zu tun haben. Bei nicht zu großer Antriebsst¨arke betrifft dies aber nur eine
oder mehrere Floquet–Funktionen, die im oberen Bereich desN–dimensionalen Unterraums lokali-
siert sind. Hingegen werden die, die im unteren Bereich lokalisiert sind, durch das hier beschriebene
Verfahren und mit dem f¨ur diese Arbeit verwendeten Programm richtig berechnet.
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3.4.2 Simulation des Prozesses aus Abschnitt 2.3

Ausgangspunkt ist der im Abschnitt2.3 aus einem mikroskopischen Modell hergeleitete und durch
(2.113), (2.114), (2.108) und (2.101) definierte Prozess. Um den Simulationsalgorithmus als Com-
puterprogramm zu implementieren, wird in diese Gleichungen nun die explizite Darstellung aller
beteiligten Gr¨oßen bez¨uglich der Floquet–Basis eingesetzt. Es ist n¨utzlich, die Floquet–Funktionen
juν

j (t)i mit den zu den Floquet–Indizes geh¨orenden Phasenfaktoren exp(� i
~

εν
j t) zu den Floquet–

Basisfunktionenjψν
j (t)i zusammenzufassen:

jψν
j (t)i= exp(� i

~
εν

j t) juν
j (t)i: (3.58)

Die Floquet–Darstellung derWellenfunktion jψ(t)i ist gemäß (1.45)

jψ(t)i =
N�1

∑
j=0

aj(t)jψν
j (t)i für t 2 [sν�1;sν[: (3.59)

Im Simulationsprogramm wird die Wellenfunktion also durchN komplexe Koeffizientena0; : : : ;aN�1

dargestellt. W¨ahrend eines Intervallst 2 [sν�1;sν] lässt die vomHamilton–Operator H(t) erzeugte
Zeitentwicklung die Koeffizienten per Konstruktion konstant. BeimÜbergang von einem Intervall ins
Nächste transformieren sich die Koeffizienten gem¨aß (1.47).

Die Sprungoperatorenhaben die Darstellung (2.93)

A†
ν(ω; t) = ∑

( j;k;m)2Jν(ω)
juν

k;m(t)i Dν
jkmhuν

j (t)j: (3.60)

Hierbei ist

Dν
jkm = huν

k;m jD juν
j iF =

1
Tν

TνZ

0

e�imωthuν
k(t) jD juν

j (t)iH dt (3.61)

diem-te Fourier–Komponente des periodisch zeitabh¨angigen Dipolmatrixelements bez¨uglich der Flo-
quet–Basisfunktionenuν

k unduν
j , undJν(ω) ist die Menge aller Indextripel( j;k;m), die Übergängen

der Frequenzω entsprechen, das heißt f¨ur die

εν
k;m� εν

j = ~ω (3.62)

gilt, siehe Gleichung (2.94). Die Menge aller relevanten Frequenzenω, für die Jν(ω) nicht leer ist,
wird mit Ων

rad bezeichnet. Jeder Frequenzω 2 Ων
rad entspricht genau ein Sprungoperator (3.60). Ων

rad
wurde im Abschnitt2.3.3im Zusammenhang mit der Gleichung (2.96) definiert. Dort wird begr¨undet,
dassΩν

rad endlich ist oder zumindest in sinnvoller Weise abgeschnitten werden kann.Jν(ω) ist dann
ebenfalls endlich. Der Einfachheit halber wird hier die Polarisierung der emittierten oder absorbierten
Strahlung vernachl¨assigt, daher sind im Vergleich zum zweiten Kapitel bei den Sprungoperatoren und
beim Dipoloperator die Vektorpfeile weggelassen.

Numerisch wird (3.61) in diskretisierter Form zum Beispiel mit Hilfe der Routinedfour1 [98]
berechnet,

Dν
jkm =

mmax�1

∑
µ=0

N�1

∑
n;n0=0

e�imµωT=mmax � f ν
knµ

��
Dn;n0 f ν

jn0µ: (3.63)
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Die Indizes j undk laufen von 0 bisN�1, und der Indexm nummeriert die Fourier–Komponenten.
Wegen der SymmetrieDν

k j;�m = (Dν
jkm)

� genügt es, nur Feldelemente mit positivemm zu speichern,
somit läuft m von 0 bismmax�1. Im Allgemeinen gibt es keine weiteren Symmetrien. Der Speicher-
bedarf des FeldesDν

jkm ist signifikant, er entspricht dem vonf ν
jnµ (siehe Abschnitt3.4.1). Fourier–

Komponenten mitjmj �mmax sollen vernachl¨assigbar sein, es soll also zum Beispiel gelten

∑
m�mmax

jDν
jkmj< δ 8 j;k;ν (3.64)

mit einer Schwelleδ. Damit (3.64) erfüllt ist, müssen die Fourier–Komponenten f¨ur hohe Frequenzen
schnell genug abfallen, undmmax muss groß genug sein. Ob dies der Fall ist, l¨asst sich allerdings nur
aufgrund der Kenntnis der diskretisierten Floquet–Funktionen innerhalb der numerischen Routinen
nicht entscheiden. Um das asymptotische Verhalten der Fourier–Komponenten bei hohen Frequenzen
zu verstehen, sind daher entweder analytische Absch¨atzungen oder ausf¨uhrliche numerische Untersu-
chungen im Vorfeld der eigentlichen Simulationen notwendig. Die Gr¨oßenordnung einer vern¨unftigen
Wahl vonmmax ergibt sich aus der Differenz der gr¨oßten und der kleinsten im Problem vertretenen
Frequenz, zum Beispiel also als Differenz des gr¨oßten und des kleinsten Energieeigenwertes vonHosz.
Weiterhin muss nach der Berechnung des FeldesDν

jkm überprüft werden, ob die Ungleichung (3.64)
plausibel ist. Dies kann automatisiert durch Extrapolation oder interaktiv durch visuelle Inspektion
geschehen.

Die SprungoperatorenA†
ν(ω; t) werden also numerisch durch das vierdimensionale komplexwer-

tige FeldDν
jkm und durch Listen, die f¨ur jedesν die Menge allerω in Ων

rad zusammen mit den dazu-
gehörigen Indextripeln( j;k;m) enthalten, repr¨asentiert.

Die Sprungraten W(B;ψ) haben, mit (2.108) und (3.60), die Form

W(B;ψ) = ∑
ω2Ων

rad

γ(ω)N̄(ω) �

� ∑
( j;k;m)2Jν(ω)

jDν
jkmhuν

j (t) jψij2
o
11B

0
BB@

∑
( j;k;m)2Jν(ω)

juν
k;m(t)iDν

jkmhuν
j (t) jψi

∑
( j;k;m)2Jν(ω)

jDν
jkmhuν

j (t) jψij2

1
CCA : (3.65)

Wegen (3.59) ist

jhuν
j (t) jψij2 = jaj(t)j2 (3.66)

und dies bedeutet, dass die Sprungraten nicht explizit von der Zeit abh¨angen, sondern nur von den
Entwicklungskoeffizientenaj(t) des Zustandsψ bezüglich der mitbewegten Floquet–Basis. Es gelten
daher die Feststellungen aus Abschnitt3.2.2. Insbesondere ist die Wartezeitverteilung multiexponen-
tiell. Allerdings trifft dies nur zu, solange der Indexν sich nichtändert, das heißt solange die Dynamik
des abgeschlossenen Systems exakt periodisch ist. Ist dies nicht der Fall, werden also zum Beispiel
Laserpulse betrachtet, dann sind die Sprungraten zeitunabh¨angig innerhalb der Intervalle[sν�1;sν[
undändern sich jeweils beim̈Ubergang zwischen den Intervallen.

Die Darstellung deslinearen nicht-hermiteschen OperatorsĤ aus Gleichung (2.114) bezüglich
der Floquet–Basis ist schließlich

Ĥ =� i~
2 ∑

ω2Ων
rad

γ(ω)N̄(ω) ∑
( j;k;m)2Jν(ω)

jDν
jkmj2 jψν

j (t)ihψν
j (t)j: (3.67)
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Ĥ bestimmt die deterministischen Zeitentwicklung der unnormierten Versionψ̃(t) der Wellenfunktion
gemäß der Gleichungi~ d

dt ψ̃(t) = Ĥψ̃(t). Wird ψ̃ gemäß (3.59) durch Koeffizienten ˜aj(t) bezüglich
der Floquet–Basis(ψ j) repräsentiert, dann nimmt diese Gleichung die Form

d
dt

ãj(t) =�
Γν

j

2
ãj(t) (3.68)

mit

Γν
j =

N�1

∑
k=0

w
ν
k j (3.69)

w
ν
k j = ∑

m2Z

w
ν
k jm�

mmax�1

∑
m=�mmax+1

w
ν
k jm (3.70)

w
ν
k jm = γ(ων

k jm)N̄(ων
k jm)jDν

jkmj2 (3.71)

ων
k jm =

εν
j � εν

k;m

~
(3.72)

an. w
ν
k jm, wν

k j und Γν
j sind Ratenkoeffizienten der Dimension (Zeit)�1. An (3.68) zeigt sich ganz

offensichtlich, dassĤ nicht explizit von der Zeit abh¨angt. Der Vollständigkeit halber sei noch die
Gleichung für die Koeffizienten der normierten Versionψ = ψ̃=kψ̃k der Wellenfunktion angegeben,

d
dt

aj(t) =
�Γν

j +Γν
tot(a0; : : : ;aN�1)

2
aj(t); (3.73)

Γν
tot(a0; : : : ;aN�1) = ∑

k

Γν
k jakj2: (3.74)

Im nichtentarteten Fall kann schließlich die Notation der Sprungoperatoren und –raten vereinfacht
werden: Dann entspricht jeder Frequenzω höchstens ein Indextripel( j;k;m), das die Bedingung
(3.62) erfüllt, und Sprungoperatoren sind durch( j;k;m) sowie gegebenenfalls den Indexν bereits
eindeutig festgelegt, man kann also setzen

A†
ν; jkm(t) = ju

ν
k;m(t)i Dν

jkmhuν
j (t)j: (3.75)

Der Zielzustand des vonA†
ν; jkm(t) bewirkten Sprunges istuν

k;m(t) multipliziert mit einem beliebigen
Phasenfaktor. Daher kann man auch die Floquet–Basisfunktionψν

k als Zielzustand w¨ahlen, und die
Gesamtrate aller Spr¨unge von einem Ausgangszustandψ nachψν

k ist

Wν(ψν
k;ψ) =

N�1

∑
j=0

w
ν
k j jaj j2: (3.76)

Insbesondere istwν
k j die Gesamtrate aller Spr¨unge vonψ j nachψk, undΓν

j aus Gleichung (3.69) ist
die Gesamtrate aller Spr¨unge weg vonψ j .

Die Implementation des Simulationsalgorithmus erfolgt nun auf der im Abschnitt3.2für Prozesse
mit zeitunabh¨angiger Sprungrate dargestellten Weise. Zum Schluss ist in Abbildung3.6der gesamte
Algorithmus noch einmal im Zusammenhang dargestellt.
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Abbildung 3.6

// Initialisierung
FOR ν:=0 TO νmax�1 DO BEGIN

1.-3 Berechnung und Diagonalisierung des Monodromieoperators, Berechnung der Floquet–
Basis zum Parameterwertλν. Resultat:die Felderεν

j und f ν
jnµ.

4. Berechnung der Dipolmatrixelemente und Test auf ausreichende Zeitaufl¨osung.Resultat:
das FeldDν

jkm.

5. Berechnung der Sprungraten (siehe Gleichungen (3.69)–(3.71)). Resultat: die Felder
w

ν
k jm, wν

k j undΓν
j .

ENDFOR
// Äußere Schleife ¨uber die Realisierungen
REPEAT

6. Setze zur Zeits0 die Anfangsbedingung:aj := hψ1
j (s0) jψ(s0)i, t0 := s0, ν := 1.

7. Ziehe den Zeitpunktt� des nächsten Sprunges gem¨aß der Wartezeitverteilungsfunktion
(siehe (3.22))

F(t�; t0) = 1�∑
j
jaj j2 exp(�Γν

j (t
�� t0)) für t� < sν

F(t�; t0) = 1�∑
j

jaj j2 exp(�Γν
j (sν� t0)�Γν+1

j (t��sν)) für sν � t� < sν+1

: : : usw. : : :

8. Falls ν(t�) > ν, berechneaj zur Zeit t� gemäß Gleichung (1.47). Ansonsten ¨andert sich
aj nicht. Setzet0 := t�, ν = ν(t�).

9. Ziehe den Indexω eines SprungoperatorsA†
ν(ω; t0) aus der MengeΩν

rad mit der relativen
Wahrscheinlichkeit

∑
( j;k;m)2Jν(ω)

w
ν
k jmjaj j2;

setze

ak := ∑
( j;k;m)2Jν(ω)

Dν
jkmaj

und normiere anschließend die Koeffizienten auf∑ j jaj j2 = 1.

10. Wennt0 < tend, gehe zu Schritt 7.

UNTIL genügend Realisierungen erzeugt



IV
Station ärer Zustand periodisch

getriebener Systeme

Im Abschnitt2.3wurde der stochastische Prozess hergeleitet, der die reduzierte Dynamik eines gebun-
denen Quantensystems –zum Beispiel eines Atoms oder Molek¨uls– beschreibt, das durch ein ¨außeres
Feld –zum Beispiel Laserlicht– getrieben ist und das ¨uber sein Dipolmoment an das elektromagne-
tische Strahlungsfeld in einem thermischen Zustand gekoppelt ist. Die Herleitung geht aus von der
exakten, unit¨aren Dynamik des Gesamtsystems, und die zur reduzierten Dynamik f¨uhrenden N¨ahe-
rungen sind die Markov–N¨aherung und die st¨orungstheoretische Behandlung der Kopplung zwischen
Atom und Umgebung. Die Wechselwirkung zwischen dem treibenden Feld und dem Atom hingegen
wird, durch Verwendung der Floquet–Darstellung, exakt behandelt. Um die Floquet–Darstellung an-
wenden zu k¨onnen, muss das treibende Feld

”
fast“ periodisch sein, das heißt, es muss durch eine exakt

periodische Funktion beschrieben werden k¨onnen, die durch einen langsam zeitlich variierenden Para-
meterλ(t) moduliert ist (siehe Abschnitt1.2.3). Laserpulse bis hinab zu einigen Zehn Femtosekunden
Pulslänge fallen in diese Kategorie. In diesem Kapitel nun befassen wir uns mit der Frage, ob und in
welchem Sinne ein station¨arer Zustand f¨ur exakt periodische treibende Felder existiert. Physikalisch
bedeutet dies, dass die Zeitskala, auf der sichλ(t) ändert, sehr viel gr¨oßer ist als die Relaxationszeit
zum Erreichen dieses station¨aren Zustands.

4.1 Pauli–Mastergleichung

Setzt man die Darstellung (3.60) der OperatorenA†(ω; t) in die Gleichung f¨ur den reduzierten Dich-
teoperator (2.116) ein1, so erhält man für die Diagonalelementepj(t) = hψ j(t)jρ(t)jψ j (t)i des Dich-
teoperators bez¨uglich der Floquet–Basisfunktionenjψ j(t)i (siehe (3.58)) die Pauli–Mastergleichung

d
dt

pj(t) = ∑
k6= j

w jk pk(t)�wk j pj(t): (4.1)

1Der Indexν wird in diesem Kapitel unterdr¨uckt.
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Voraussetzung ist, dass das Floquet–Spektrum nicht entartet ist, das heißtε j 6= εk für j 6= k. Es gehen
keine Näherungen ein.

Wenn die Nebendiagonalelementeρ jk(t) = hψ j(t)jρ(t)jψk(t)i für j 6= k alle verschwinden, dann
lässt sich der Dichteoperator darstellen durch

ρ(t) = ∑
j

jψ j(t)i pj(t)hψ j (t)j; (4.2)

und die im Folgenden betrachtete station¨are Lösung der Pauli–Mastergleichung (4.1) definiert ver-
mittels (4.2) einen global attraktiven Fixpunkt der Dichteoperatorgleichung (2.116). Hinreichende
Bedingungen daf¨ur, dass die Nebendiagonalelemente f¨ur t ! ∞ verschwinden, sind: (i) Die Qua-
sienergiedifferenzen sind nicht entartet, jeder Frequenzω entspricht also h¨ochstens ein Indextripel
( j;k;m), welches die Bedingung~ω = εk;m� ε j erfüllt. (ii) Es gibt höchstens einen Zustand mit
Γ j = 0 (vgl. (3.69)).

ψ1

ψj

. .
 . 

. .
 . 

.

time

F
lo

qu
et

 s
ta

te
s Diese Aussagen lassen sich ohne M¨uhe

aus (2.116) folgern. An dieser Stelle sei
ein weiterer, anschaulicher Zugang vorgestellt,
der von dem st¨uckweise deterministischen sto-
chastischen Prozess aus Abschnitt2.3 aus-
geht. Bedingung (i) besagt dann, dass die
Zielzustände der Spr¨ungeAjkm(t) (siehe Glei-
chung (3.75)) immer Floquet–Zust¨andeψk –
und nicht etwa Linearkombinationen daraus–
sind. Gem¨aß Bedingung (ii) muss ein
(Anfangs-) Zustand, der eine Linearkombina-
tion von Floquet–Zust¨anden ist, nach endli-

cher Zeit zerfallen. Ist der Prozess in einem Floquet–Zustandψk, dannändert der deterministische
Teil der Dynamik daran nichts,ai(t) = δki ist eine Lösung der Gleichung (3.73). Die Realisierungen
des Prozesses sind also, wie in der Skizze angedeutet, st¨uckweise Floquet–Funktionen: in der Darstel-
lung (3.59) des Prozesses ist zu jeder Zeitt jeweils genau einaj(t) von Null verschieden und hat den
Betrag 1. Die Gesamtrate aller Spr¨unge vom Floquet–Zustandψ j nachψk ist wk j, siehe Gleichungen
(3.76) und (3.70), und hängt nicht von der Zeit ab. Unterscheidet man nicht zwischen den –durch den
Indexmunterschiedenen– Spr¨ungen, die vonψ j nachψk führen, dann ist dem stochastischen Prozess
aus Abschnitt2.3also ein reiner Sprungprozess mit dem Zustandsraumf jj j = 0; : : : ;N�1g und der
Mastergleichung (4.1) assoziiert.

4.2 Eigenschaften der station ären L ösung

Jede Mastergleichung besitzt eine station¨are Lösung. Schreibt man die Mastergleichung in der Form
ṗj = Mjk pk mit

Mjk = w jk�δ jk ∑
i

wi j ; (4.3)

dann ist wegen der Normerhaltung(1; : : : ;1) ein linker Eigenvektor der quadratischen MatrixM zum
Eigenwert 0, und somit gibt es auch einen rechten Eigenvektor [81]

p� = (p�0; : : : ; p
�
N�1); (4.4)
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der normiert gew¨ahlt werden kann und eine station¨are Lösung der Mastergleichung ist. Ziel des Kapi-
tels ist die Klärung der Eigenschaften dieser station¨aren Verteilung. Im Folgenden werden zu diesem
Zweck in den Abschnitten4.2.1 und 4.2.2 zunächst zwei wichtige Konzepte aus der statistischen
Mechanik eingef¨uhrt.

4.2.1 Detailliertes Gleichgewicht

Die stationäre Lösungp� hat die Eigenschaft des detaillierten Gleichgewichts, wenn gilt [81]

wk j p�j = w jk p�k 8 j;k: (4.5)

Das bedeutet, dass die Anzahl derÜbergänge vonj nachk pro Zeiteinheit im station¨aren Zustand
gleich der derÜbergänge vonk nach j ist. Liegt die Symmetrie (4.5) vor, dann ist die MatrixMjk

aus (4.3) diagonalisierbar, und die Eigenwerte sind kleiner oder gleich 0.

4.2.2 Kubo–Martin–Schwinger–Bedingung

Die Motivation, an dieser Stelle die Kubo–Martin–Schwinger–Bedingung [108,109] zu betrachten, ist
der Zusammenhang zwischen der Rateg(ω) einesÜbergangs der Frequenzω im reduzierten System
mit den Korrelationsfunktionen Trfρ2E†(t)Eg und Trfρ2E(t)E†g desjenigen Umgebungsoperators
E, der im Wechselwirkungsterm auftritt [8]:

g(ω) �

8<
:
R
R

dt e�iωt Trfρ2E†(t)Eg ω > 0;
R
R

dt e�iωt Trfρ2E(t)E†g ω < 0:
(4.6)

In dem Modell von Abschnitt2.3 ist beispielsweiseE der Operator des elektrischen Feldes.
Die Kubo–Martin–Schwinger–Bedingung etabliert einen Zusammenhang zwischen den beiden

Korrelationsfunktionen auf der rechten Seite von (4.6) mit der Temperatur der kanonischen Verteilung.
Hierzu wird für reellest die Funktion

FAB(t) = Trfρ2A(t)Bg (4.7)

mit den Heisenberg–OperatorenA(t) = exp(iH2t)Aexp(�iH2t) undB(t) definiert. Dann existiert die
analytische Fortsetzung vonFAB(z) auf einen Streifenfz2 C j � β < Im(z) � 0g mit β > 0. Der
Umgebungszustandρ2 sei station¨ar, [ρ2;H2] = 0. Er erfüllt die Kubo–Martin–Schwinger–Bedingung,
wenn gilt

FBA(t) = FAB(t� iβ) (4.8)

für eine dichte Menge von OperatorenA, B. Die Bedingung ist bei endlichen Systemen genau dann
erfüllt, wennρ2 die kanonische Verteilung ist, und stets im thermodynamischen Limes [86]. Aus (4.8)
und (4.6) folgt unmittelbar

g(ω)

g(�ω)
= e�β~ω: (4.9)
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4.2.3 Zeitunabh ängige Systeme

Zunächst betrachten wir ein System, in dem

wk j = g(ωk j) (4.10)

mit ~ωk j = Ej �Ek gilt. Dies ist zum Beispiel der Fall, wenn dieEj Eigenenergien des isolierten
Systems sind und wenn die Wechselwirkung mit der Umgebung die Gesamtenergie erh¨alt. Dann
impliziert die Kubo–Martin–Schwinger–Bedingung via (4.9) die Existenz einer station¨aren Lösung,
die die Bedingung des detaillierten Gleichgewichts erf¨ullt:

p�j =
1
Z

e�βEj : (4.11)

4.2.4 Periodisch getriebene Systeme

Für periodisch getriebene Systeme ist

wk j = ∑
m2Z

g(ωk jm) (4.12)

mit

g(ωk jm) = γ(ωk jm)N̄(ωk jm)jDjkmj2: (4.13)

Diese beide Gleichungen entsprechen (3.70) und (3.71), wobei zum Zweck der folgenden Diskussion
die Rateg(ωk jm) � wk jm eingeführt wird. ~ωk jm = ε j � (εk +m~ωL) ist die Energie des Photons,
das bei demÜbergang emittiert oder absorbiert wird, der durch den SprungoperatorA†(ωk jm; t) be-
schrieben wird, undωL = 2π=T ist die Antriebsfrequenz. Die Rate des entgegengesetztenÜbergangs
ist

g(�ωk jm) = γ(�ωk jm)N̄(�ωk jm)jDk j;�mj2; (4.14)

und wegenDk j;�m = (Djkm)
� und mit (2.102) und (2.103) ergibt sich für das Verh¨altnis der beiden

Raten

g(ωk jm)

g(�ωk jm)
= exp

�
�β~ωk jm

�
: (4.15)

Gleichung (4.15) entspricht (4.9). Dies bedeutet, dass das Modell aus Abschnitt2.3 mit der Kubo–
Martin–Schwinger–Bedingung vertr¨aglich ist.

Periodisch getriebener harmonischer Oszillator

Für den periodisch getriebenen harmonischen Oszillator,

H(t) =
~2

2µ
d2

dx2 +µω2
0x2+λxsinωLt

= ~ω0

�
a†a+

1
2

�
+λ

s
~

2µω0
(a†+a)sinωLt (4.16)
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lässt sich das DipolmatrixelementDjkm schreiben als [10]

Djkm = δm;0

�
δ j+1;k

p
j +1 +δ j�1;k

p
j
�s

~

2µω0
: (4.17)

Für j j � kj 6= 1 ist alsow jk = wk j = 0, und für j j � kj = 1 kollabiert die Summe (4.12) auf einen
Summanden,

w j+1; j = γ(ω0)N̄(ω0)
j +1
2ω0

; w j; j+1 = γ(�ω0)N̄(�ω0)
j +1
2ω0

: (4.18)

Mit (2.102) und (2.103) ist

p�j =
1
Z

e�ε j=kBT ; ε j = j~ω0+const. (4.19)

eine station¨are Lösung der Pauli–Mastergleichung (4.1) [10], die die Eigenschaft des detaillierten
Gleichgewichts besitzt. In den Exponenten von (4.19) treten Quasienergien auf. Dies ist –trotz der
Klassenstruktur des Quasienergiespektrums– sinnvoll, da jeweils genau ein Repr¨asentantε j durch
adiabatisches Verbinden mit einem Energieeigenwert des ungetriebenen Oszillators ausgezeichnet
ist. Genau dieser Repr¨asentant ist in (4.19) einzusetzen. Diese M¨oglichkeit der Auszeichnung ei-
nes Repr¨asentanten ist eine besondere, sehr spezielle Eigenschaft des harmonischen Oszillators. Die
Floquet–Indizes als Funktion vonλ sind quadratische Funktionen (siehe Gleichung (3.52) auf Sei-
te 63), die untereinander einen vonλ unabhängigen, konstanten Abstand haben. Es treten also keine
Avoided Crossings auf (siehe Abschnitt1.2.2). Im allgemeinen Fall ist eine solche eindeutige Auszei-
chung eines bestimmten Repr¨asentanten nicht gegeben.

Periodisch getriebener anharmonischer Oszillator

Für anharmonische Oszillatoren sind in der Regel die DipolmatrixelementeDjkm zu gegebenenj,
k für mehrere verschiedenem von Null verschieden. Die Summen (4.12) kollabieren daher nicht,
und es ist nicht m¨oglich, aus (4.15) eine allgemeine Aussage ¨uber die station¨are Lösung der Pauli–
Mastergleichung (4.1) zu gewinnen. Sie muss numerisch bestimmt werden. Es stellt sich heraus, dass
sie nicht der Bedingung (4.5) vom Detaillierten Gleichgewicht gen¨ugt.

4.3 Numerische Bestimmung der station ären Verteilung

Die numerische Berechnung verl¨auft in drei Schritten:

1. Berechnung der Floquet–Basis (siehe Abschnitt3.4.1)

2. Berechnung der DipolmatrixelementeDjkm (siehe Abschnitt3.4.2) und daraus der Masterglei-
chungsmatrixM (siehe Gleichung (4.3))

3. Bestimmung des normierten Eigenvektors vonM zum Eigenwert 0.

Für Schritt 3 wurde die Singul¨are–Werte–Zerlegung (SVD) vonM berechnet. Der Null–Eigenvek-
tor ist eindeutig bestimmt, wenn der kleinste singul¨are Wert um mehrere Gr¨oßenordnungen kleiner ist
als der nächstgr¨oßere. Bei den in dieser Arbeit pr¨asentierten Ergebnissen war er immer mindestens
um den Faktor 104 kleiner als der n¨achstgr¨oßere.
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Abbildung 4.1

Stationary distribution

0 2 4 6 8 10
quasienergy

0.00

0.10

0.20

0.30

0.40

0.50
p

-12

-10

-8

-6

-4

-2

0

lo
g 

p
Station̈are Verteilung des getriebenen dissipativen harmonischen Oszillators. Aufgetra-
gen ist die Besetzungswahrscheinlichkeit der Floquet–Zustände gegen ihre Quasienergie.
Die +-Symbole entsprechen der linearen, die�-Symbole der logarithmischen Ordina-

tenskala. Die Parameter sindω0 = 11
13 ωL, λ = 0:046

q
2µ~ω3

0, siehe Gleichung (4.16),

die Temperatur ist kBT = 1:5~ωL und N= 12, mmax= 256.

Zunächst wurde der periodisch getriebene harmonische Oszillator betrachtet. Abbildung4.1zeigt
die Besetzungswahrscheinlichkeitpj der Floquet–Zust¨ande gegen ihre Quasienergieε j . Das numeri-
sche Resultat stimmt ¨uberein mit (4.19).

Als einfaches, generisches Beispiel f¨ur einen anharmonischen Oszillator mit abz¨ahlbar unend-
lichem, diskretem Spektrum wurde das Teilchen im unendlichen Kastenpotential untersucht. Der
Hamilton–Operator mit periodischem Antrieb ist

H(t) = �~
2

2µ
d2

dx2 +V(x)+λxsinωLt; (4.20)

V(x) =

�
0 für jxj � a
∞ für jxj> a:

Im Unterschied zum periodisch getriebenen harmonischen Oszillator ist es nun aber nicht m¨oglich,
wie in Abbildung 4.1 die Besetzungswahrscheinlichkeiten der Floquet–Zust¨ande gegen ihre Quasi-
energie aufzutragen: der Grund daf¨ur ist die Klassenstruktur der Floquet–Basis, das heißt, zu jedem
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Floquet–Zustandψ j gibt es eine ganze Klassefε j +m~ωL jm2 Zg von Repräsentanten der Qua-
sienergie, und im Gegensatz zum harmonischen Oszillator ist kein Repr¨asentant in offensichtlicher
Weise ausgezeichnet. Ebenso ist auch die Indizierung der Floquet–Funktionen mit dem Indexj völlig
willk ürlich, so dass sich bei anharmonischen Oszillatoren die Frage stellt, welche Gr¨oßeüberhaupt
für die Abszisse von Graphen nach der Art von Abbildung4.1verwendet werden soll.

Eine sinnvolle Definition ist die mittlere Energie

Ēj =
1
T

TZ

0

dt huj(t) jH(t)juj (t)i: (4.21)

Sie hängt offenbar nicht von Phasenfaktoren in den Floquet–Funktionen und somit von der Wahl des
Repräsentanten ab.

Die resultierende Darstellung der station¨are Verteilung zeigt die Abbildung4.2. Diese bemer-
kenswerte Verteilung l¨aßt sich in zwei Gebiete aufteilen: Auf der einen Seite, bei kleinen mittleren

Abbildung 4.2

Stationary distribution
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Station̈are Verteilung des getriebenen dissipativen Teilchens im unendlichen Kastenpo-
tential. Aufgetragen ist die Besetzungswahrscheinlichkeit der Floquet–Zustände gegen
ihre mittlere Energie. Die+-Symbole entsprechen der linearen, die�-Symbole der
logarithmischen Ordinatenskala. Die Parameter sindα = 20, β = 0:29, siehe Glei-
chung (4.23), die Temperatur ist̂T = 5, N = 32, mmax= 2048.
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Abbildung 4.3

Stationary distribution
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Station̈are Verteilung bei verschwindender Antriebsstärkeβ = 0, vgl. Abbildung4.2.

Energien, ein Plateau: Hier hat eine ganze Anzahl von Floquet–Zust¨anden ann¨ahernd die gleiche
Besetzungswahrscheinlichkeit und dar¨uberhinaus auch ¨ahnliche mittlere Energien. Oberhalb einer
ziemlich scharf definierten Schwelle folgt die Verteilung einer Exponentialfunktion.

Das Verhalten der Verteilung oberhalb dieser Schwelle l¨asst sich qualitativ recht gut verstehen:
Die Floquet–Funktionen entsprechen dort im Wesentlichen zeitunabh¨angigen Energieeigenfunktio-
nen, deren Eigenenergie so groß ist, dass sie durch den periodischen Antrieb nur schwach gest¨ort wer-
den. Die mittlere Energie (4.21) liegt dann nat¨urlich nahe bei der Eigenenergie, und man kann erwar-
ten, dass in diesem Bereich in guter N¨aherung die Ausf¨uhrungen in Abschnitt4.2.3gelten. Tats¨achlich
stimmt die Steigung der

”
gefitteten“ Geraden im Rahmen der numerischen Aufl¨osung mit der vor-

gegebenen Umgebungstemperatur ¨uberein. Die Sch¨arfe der Grenze l¨aßt sich darauf zur¨uckführen,
dass die Eigenenergien des ungetriebenen Teilchens im Kasten quadratisch mit der Hauptquanten-
zahl wachsen. Verdeutlicht wird dieseÜberlegung in Abbildung4.3, die die station¨are Verteilung f¨ur
verschwindende Antriebsst¨arkeλ = 0 zeigt.

Die Form der station¨aren Verteilung in Abbildung4.2 lässt sich zur¨uckführen auf dieÜbergangs-
raten der Mastergleichung (4.1). Abbildung 4.4 zeigt eine graphische Darstellung der Matrixw jk.
Die Zustände j = 0; : : : ;15 sind offenbar alle mit allen durch Spr¨unge verbunden. Dabei h¨angen die
Sprungratenw jk in unregelmäßiger Weise von den Anfangs- und Zielzust¨andenj undk ab. Die Größe
der einzelnen Raten h¨angt, was in dieser Abbildung allerdings nicht zu sehen ist, ebenfalls in irre-
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Abbildung 4.4

Darstellung der N�N–Matrix wk j mit denÜbergangsraten der Mastergleichung (4.1)
für das periodisch getriebene Teilchen im Kasten mit den Parameternα = 20, β = 0:41
(siehe Gleichung (4.23)), T̂ = 4:5, N = 32, mmax = 2048. Das Matrixelementw00 ist
rechts oben.

gulärer Weise von den Parameternβ und T̂ ab, das qualitative Bild bleibt jedoch gleich. Oberhalb
einer scharf definierten Schwelle, die in Abbildung4.2bei j = 15 liegt, ergibt sich eine v¨ollig andere
Situation: die Ratenw jk mit j j�kj 6= 1 sind sehr klein, und dominierend sind dieÜbergänge zwischen
benachbarten Zust¨anden. F¨ur ihr Verhältnisw j; j�1=w j�1; j gilt eine Beziehung analog zu (4.18).
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Abbildung 4.5

Stationary distribution
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Station̈are Verteilung f̈ur verschiedene Temperaturen̂T=0.5, 1, 1.5,: : : , 8 analog Ab-
bildung 4.2. Die Ordinatenskala ist logarithmisch, und die Parameter sindα = 20,
β = 0:248.

4.4 Abh ängigkeit von den Parametern

Um das in Abbildung4.2 gezeigte Resultat besser zu verstehen, wird im Folgenden der Einfluss der
Parameter auf die Form der Verteilung untersucht.

Der Hamilton–Operator (4.20) des nicht–dissipativen, getriebenen Oszillators h¨angt zunächst von
den fünf Parameternλ, ωL, a, µ, ~ ab. Durch die Einf¨uhrung dimensionsloser Gr¨oßen

x̂=
x
a
; p̂=

p
maωL

; t̂ = ωLt (4.22)

lässt sich die Schr¨odinger–Gleichung mit dem Hamilton–Operator (4.20) in die Form

i
α

d
dt̂

ψ(t̂) =

�
� 1

2α2

d2

dx̂2 +V̂(x̂)+βx̂sint̂

�
ψ(t) (4.23)
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mit

α =
ma2ωL

~
; β =

λ
maω2

L

; V̂(x̂) =
V(ax̂)

ma2ω2
L

: (4.24)

bringen, so dass ihre Eigenschaften tats¨achlich nur noch von zwei Parametern abh¨angen.β� 0 kon-
trolliert die Stärke des Antriebs, undα misst die relative Gr¨oße von~: je kleinerα, desto

”
quantenme-

chanischer“, je gr¨oßer, desto
”
klassischer“ verh¨alt sich das System. Die dimensionslosen Operatoren ˆx

und p̂ genügen der Vertauschungsrelation[x̂; p̂] = i=α, die Skalierung (4.22) ist also keine kanonische
Transformation. Die Energieeigenwerte des ungetriebenen Oszillators (β = 0) sind

Ej = α~ωL Êj ; Êj =
π2( j +1)2

8α2 ; j = 0;1;2; : : : (4.25)

mit den Energieeigenfunktionenψ j , und die Dipolmatrixelemente berechnen sich zu

hψ j j x̂jψki=

8<
:

0; j�k gerade
4
π2

�
1

( j +k+2)2 �
1

( j�k)2

�
; j�k ungerade

(4.26)

unabhängig vonα.
Setzt man der Einfachheit halberγ(ω) = γ0, dann hängt der dissipative Anteil der Dynamik von

zwei weiteren Parametern, n¨amlich vonγ0 und der TemperaturT ab. Da die Modendichteγ0 gleicher-
maßen linear in allëUbergangsraten eingeht, bestimmt sie zwar die Relaxationszeit des Prozesses, die
stationäre Verteilung h¨angt aber nicht von ihr ab. Der dissipative Anteil der Dynamik wird also allein
durch die dimensionslose TemperaturT̂ = kBT=~ωL charakterisiert.

Abbildung4.5zeigt die station¨are Verteilung f¨ur verschiedene TemperaturenT̂=0.5, 1, 1.5,: : : , 8.
Die Temperatur bestimmt die Steigung der exponentiellen Verteilung rechts der Schwelle, w¨ahrend die
Größe des Plateaus und der Ort der Schwelle davon praktisch unabh¨angig sind. Diese Unabh¨angigkeit
von der Temperatur ist nicht selbstverst¨andlich, da sie in die Sprungraten (4.13) in nichttrivialer Weise
eingeht.

In der Abbildung4.6 wird untersucht, wie die Lage der Schwelle von der Amplitudeβ des An-
triebs abh¨angt. Die Lage l¨asst sich zum einen charakterisieren durch die mittlere Energie der Kante
in Graphen der Art von Abbildung4.5, zum anderen durch die Anzahl von Floquet–Zust¨anden im
Plateau. Eine Interpretation des in dieser Abbildung gezeigten Resultats folgt im n¨achsten Abschnitt.

4.5 Das klassische Pendant

Die Hamilton–Funktion des (4.23) beziehungsweise (4.20) entsprechenden klassischen Systems ist

Ĥ(x̂; p̂; t̂) =
p̂2

2
+V(x̂)+βx̂sint̂: (4.27)

V(x̂) ist ein unendliches Kastenpotential mit W¨anden bei ˆx=�1. Die Hamilton–Funktion h¨angt nur
von dem einen Parameterβ ab. Die Lösung(x̂(t̂); p̂(t̂)) der Hamiltonschen Bewegungsgleichungen
zur Anfangsbedingung(x̂0; p̂0; t̂0) für t̂0� t̂ � t̂bump lautet

x̂(t) = x̂0+(p̂0+βsint̂0)(t̂� t̂0)+β(cost̂�cost̂0) (4.28)

p̂(t) = p̂0�β(sint̂�sint̂0): (4.29)
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Abbildung 4.6
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Abḧangigkeit der Schwelle von der Amplitude des Antriebs. Die�–Symbole im lin-
ken Graphen zeigen die zu der Kante gehörende mittlere Energie als Funktion der An-
triebssẗarke β, die�–Symbole des rechten Graphen die Anzahl von Floquet–Zuständen
im Plateau. Die4–Symbole zeigen die entsprechenden Größen, die aus der Chaosgrenze
des klassischen Systems berechnet wurden, siehe Abschnitt4.5.

t̂bump ist dabei der erste Zeitpunkt nacht̂0, an dem das Teilchen an die Wand st¨oßt, es soll also gel-
ten jx̂(t̂)j < 1 für t̂0 � t̂ < t̂bump und jx̂(t̂bump)j = 1. Zur Zeit t̂bump wird das Teilchen an der Wand
reflektiert, das heißt, das Vorzeichen von ˆp kehrt sich um. Da sich (4.28) im Allgemeinen nicht durch
elementare Funktionen nacht̂ auflösen lässt, musŝtbump numerisch bestimmt werden. F¨ur bestimmte
Konstellationen der Parameter und der Anfangsbedingungen kann es aber passieren, dassjx̂(t̂)j viele
Male in die Nähe der 1 kommt, ohne sie zu erreichen. Um dieersteNullstelle der Funktionjx̂(t̂)j�1
numerisch auf stabile Weise zu bestimmen, eignet sich zum Beispiel die Routinezbrent aus [98]
zusammen mit einem Bracketierungsalgorithmus, der sich an den Extrema von ˆx(t̂), derent̂–Werte
elementar bestimmbar sind, entlanghangelt.

Abbildung 4.7 zeigt einen Poincar´e-Schnitt einer Schar auf solche Weise bestimmter L¨osungen
[110, 60]. Der Phasenraum zerf¨allt offenbar in zwei Bereiche: Im ¨außeren Bereich, f¨ur hinreichend
großen Impuls, sind die Bahnen regul¨ar. Das Teilchen fliegt zwischen den W¨anden regelm¨aßig hin-
und her und wird durch das Feld dabei nur wenig gest¨ort. Im inneren Bereich hingegen sind die
Bahnen chaotisch. Wenn der Impuls klein genug ist, kann die ¨außere Kraft das Teilchen ein oder
auch viele Male zum Umkehren zwingen, bevor es die andere Wand trifft. Da dies sensitiv von den
Anfangswerten abh¨angt, ergeben sich chaotische Bahnen.

Die4-Symbole in Abbildung4.6 zeigen nun die beiden folgenden Gr¨oßen: Im linken Graphen
ist, in Analogie zu (4.21), die mittlere Energie

Ē(x̂0; p̂0) = lim
t̂!∞

1
t̂� t̂0

t̂Z

t̂0

H(x̂(t 0); p̂(t 0); t 0)dt0 = lim
t̂!∞

1
2(t̂� t̂0)

t̂Z

t̂0

p̂2(t 0)dt0 (4.30)
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Abbildung 4.7
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Poincaŕe-Schnitt einer Schar von Lösungen zu (4.27) zu den Zeiten t= 0; T, 2T; : : : ;
600T . Die Anfangsbedingungen waren q0 = �1, p0 = 1:00, 1:05, 1:10; : : : ; 1:2 und
p0 = 1:95;2:00;2:05; : : : ;2:55.

einer regulären Bahn unmittelbar am Rand der Chaosgrenze dargestellt. Der rechte Graph zeigt die
Fläche –im Phasenraum– des chaotischen Bereichs multipliziert mitα=2π. Dahinter steckt die Quan-
tisierungsregel [48]

I
pdq= nh ,

I
p̂dq̂= n

2π
α
: (4.31)

Sowohl die mittlere Energie (4.30) wie auch die Phasenraumfl¨ache wurden numerisch aus Scharen
von Lösungen zu verschiedenen Anfangsbedingungen und zu verschiedenen Werten des Parameters
β bestimmt. Offenbar gelten die folgenden Korrespondenzen zwischen den Bahnen des klassischen
Systems und der station¨aren Verteilung des dissipativen quantenmechanischen Systems

Reguläre Bahnen , Exponentielle Verteilung,pj � exp(�Ēj=kT)
Chaotische Bahnen, Gleichverteilung,pj=const.

Chaosgrenze , Schwelle

Bemerkenswert mag erscheinen, dass die station¨are Verteilung desdissipativenquantenmechanischen
Systems anhand der Bahnen des unged¨ampften klassischen Systems verstanden werden kann. Be-
trachtet man noch einmal Abbildung4.4 und die Definition der Sprungraten (3.70), dann ist klar,
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dass die beiden Bereiche der station¨aren Verteilung sich dadurch unterscheiden, dass im Plateau
die Floquet–Funktionen untereinander einen großenÜberlapphuk;m jD jujiF bezüglich des Dipol-
operators haben, siehe Gleichung (3.61), während rechts der Schwelle offenbar nur n¨achste Nach-
barn überlappen, und dies auch nur bez¨uglich einer, der nullten, Fourier–Mode. DerÜberlapp der
Floquet–Funktionen jedoch ist eine Eigenschaft, die bereits durch den Hamilton–OperatorH(t) des
abgeschlossenen getriebenen Systems ohne Dissipation bestimmt ist. Der Dissipationsmechanismus
führt dann dazu, dass̈Ubergänge zwischen den Floquet–Zust¨anden m¨oglich werden, in deren Rate der
Überlapp eingeht.

In Referenz [60] wurden klassische getriebene Oszillatoren

Ĥ(x̂; p̂; t̂) =
p̂2

2
+ x̂q+βx̂sint̂ (4.32)

mit q= 2;4;6;8: : : untersucht. (4.27) ergibt sich als Speziallfall im Grenz¨ubergangq! ∞. Die hier
berichtete Zweiteilung des Phasenraums existiert analog auch f¨ur Oszillatoren der Art (4.32). Infolge
der oben gemachten̈Uberlegungen kann man annehmen, dass qualitativ die Ergebnisse dieses Kapitels
allgemein für Oszillatoren gelten, bei denen das Spektrum vonHosz= p̂2=2+V(x̂) diskret ist und bei
denen der Abstand zwischen den Energieeigenwerten mit zunehmender Energie gr¨oßer wird.



Schluss

Zusammenfassung

Die folgenden f¨unf Punkte geben einen̈Uberblicküber die Resultate dieser Arbeit.

1. Floquet–Darstellung und Pulse. Die Floquet–Theorie ist zun¨achst auf strikt periodische,
lineare Differentialgleichungen –und somit insbesondere auf periodisch getriebene quantenmechani-
sche Systeme– anwendbar. Sie l¨asst sich aber verallgemeinern auf fast periodische, das heißt modu-
lierte oder gepulste Systeme, deren Hamilton–Operator in der FormH1(λ(t); t) geschrieben werden
kann, so dassH1(λ; t) für festgehaltenesλ strikt periodisch ist. Ein Beispiel ist

H1(λ; t) = H0+λ(t)xcosωt:

In einem durch die jeweilige Anwendung gegebenen Sinne mussλ(t) langsam im Vergleich zur Pe-
riodenlänge variieren. Je nach Zielsetzung gibt es zwei verschiedene Ans¨atze: Zum einen gibt es
das Konzept einer sich mit dem langsam ver¨anderlichen, kontinuierlichen Parameterλ adiabatisch
mitbewegenden Floquet–Basis. Hiermit l¨asst sich eine Verallgemeinerung des Adiabatensatzes for-
mulieren, aus der eine Reihe

”
analytischer“ oder auch qualitativer Ergebnisse folgt. Im Hinblick auf

die Anwendung auf offene Quantensysteme f¨uhrt dieses Konzept jedoch zu nicht unerheblichen tech-
nischen Komplikationen, die in Abschnitt1.2.2kurz angerissen werden.

Die Komplikationen k¨onnen umgangen werden, wennλ als stückweise konstante Treppenfunk-
tion angesehen wird und insbesondere keine speziellen Voraussetzungen ¨uber die Beziehung zweier
Floquet–Basen zu benachbarten Werten vonλ gemacht werden. Physikalisch sind die Treppen- und
die kontinuierliche Funktion gleichberechtigte mathematische Modelle, denn das Kurzzeitverhalten
der Funktionλ(t) ist aufgrund der Zeit–Frequenz–Unsch¨arferelation gar nicht exakt festgelegt. Die
Entwicklung des zweiten Ansatzes wurde in Kapitel 1 vorgestellt. Sie war eine Voraussetzung f¨ur
den nächsten Punkt in dieser Aufz¨ahlung. Weiterhin wurde dadurch, dass die Funktionλ(t) bereits
per Konstruktion diskret ist, auch eine relativ unkomplizierte numerische Behandlung dissipativer,
gepulster Systeme m¨oglich.

2. Stark getriebene offene Quantensysteme. Im Rahmen der vorliegenden Arbeit konnte
die Theorie dissipativer Quantensysteme in starken Feldern vom strikt periodischen Fall [10] auf
den für Anwendungen wichtigen Fall modulierter Felder, insbesondere also auf Laserpulse, erweitert
werden. Hierzu wurde in Kapitel 2 der Generator eines Markovschen stochastischen Prozesses f¨ur
die System–Wellenfunktion aus einem mikroskopischen Modell hergeleitet. Daraus folgt unmittelbar
auch die Lindblad–Gleichung f¨ur den reduzierten Dichteoperator. Das mikroskopische Modell ist
enthalten in einem Hamilton–Operator

H1(t)+HI +H2:
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Dabei sindH1(t) undH2 die Hamilton–Operatoren des abgeschlossenen Systems und der Umgebung.
Die Herleitung besteht in der perturbativen Ber¨ucksichtigung des WechselwirkungsoperatorsHI im
Wechselwirkungsbild bez¨uglich H1(t)+H2 und der anschließenden Mittelung ¨uber die Umgebung.
Entscheidend ist, dassH1(t) die Dynamik desgetriebenen Systemsenthält, also zum Beispiel Mo-
lekül und Laserfeld. Der Antrieb wird somit nichtperturbativ und exakt behandelt. Technisch ist dies
möglich durch die Verwendung der im vorhergehenden Punkte angesprochenen Floquet–Darstellung.

3. Numerische Berechnung von Floquet–Basen. Es wurde ein Computerprogramm ent-
wickelt, mit dessen Hilfe Floquet–Basen f¨ur beliebige endlichdimensionale Systeme, deren Hamil-
ton–Operator sich in der Form

H1(t) = H0+ f (t)Hd

mit einer periodischen Funktionf (t) schreiben l¨asst, numerisch bestimmt werden k¨onnen. Eine
Floquet–Basis ist ein vollst¨andiger orthonormaler Satz von Floquet–Indizes und -Funktionen, also von
Eigenwerten und -funktionen des Floquet–OperatorsF =�i~∂t +H1(t). Hierzu gen¨ugt die Kennt-
nis der EigenwerteEn von H0 und der MatrixelementehnjHd jmi des OperatorsHd bezüglich der
H0–Eigenbasis. Die berechneten Floquet–Funktionen werden ebenfalls bez¨uglich derH0–Eigenbasis
dargestellt. Zur Behandlung unendlichdimensionaler Systeme wird ein Kriterium eingesetzt, das die
Genauigkeit eines durch Trunkierung erhaltenen Ergebnisses kontrolliert.

4. Simulationsalgorithmus. Der numerische Aspekt der theoretischen Behandlung offener Quan-
tensysteme mit Hilfe stochastischer Prozesse ist die Monte–Carlo–Wellenfunktionsmethode. Hierzu
werden die dabei auftretenden Prozesse gem¨aß ihrer Wartezeitverteilung klassifiziert: je nachdem,
ob deren Verteilungsfunktion eine einfache Exponentialfunktion, eine Summe von Exponentialfunk-
tionen oder eine allgemeinere Funktion ist, sind verschiedene, im Kapitel 3 zusammengestellte Al-
gorithmen anzuwenden. Weiterhin sind die Prozesse nach den Eigenschaften ihrer Sprungverteilung
zu klassifizieren. Auch hierbei gibt es verschiedene, jeweils optimierte Algorithmen. Dieser Aspekt
wurde bereits ausf¨uhrlich in einer früher publizierten Arbeit untersucht [104].

In einer weiteren Arbeit [39] wurde darüberhinaus gezeigt, dass die Monte–Carlo–Wellenfunkti-
onsmethode f¨ur hochdimensionale Systemeimmerwesentlich effizienter als die Integration der ent-
sprechenden Dichtematrixgleichung ist. Sie ist somit die Methode der Wahl f¨ur numerische Untersu-
chungen an offenen Quantensystemen ¨uberhaupt.

Das Hauptergebnis des dritten Kapitels ist ein Simulationsalgorithmus zur Erzeugung von Reali-
sierungen des im Kapitel 2 hergeleiteten stochastischen Prozesses, der die Dynamik stark getriebener
dissipativer Quantensysteme beschreibt. Er baut auf dem Algorithmus f¨ur Prozesse mit multiexpo-
nentieller Wartezeitverteilung auf, hinzu kommen Transformationen des Zustandsvektors zwischen
verschiedenen Floquet–Basen und der Energiebasis und die Berechnung derÜbergangsraten aus Ma-
trixelementen vonf (t)Hd bezüglich Floquet–Funktionen.

5. Station äre Verteilung. Im vierten Kapitel wurde die station¨are Verteilung periodisch stark
getriebener offener Quantensysteme untersucht. Der nichtdissipative Teil der Dynamik wird dabei
durch einen Hamilton–OperatorH1(t) = p2=2m+V(x)+λxsinωLt beschrieben, und der Begriff der
stationären Verteilung meint die station¨are Lösung der Pauli–Mastergleichung f¨ur die Besetzungs-
wahrscheinlichkeiten der Floquet–Zust¨ande. Es handelt sich offenbar um einen Zustand fernab vom
Gleichgewicht. Bemerkenswert ist, dass die Besetzungswahrscheinlichkeiten nur bez¨uglich der

”
ro-

tierenden“ Floquet–Basis station¨ar, also zeitunabh¨angig sind. Bez¨uglich einer anderen Basis, zum
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Beispiel in der Energie- oder in der Ortsdarstellung, sind die Besetzungs- oder Aufenthaltswahrschein-
lichkeiten in komplizierter Weise zeitabh¨angig.

Stationary distribution
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Für den numerischen Teil der Analyse wurde das Beispiel des
periodisch getriebenen Teilchens im unendlichen Kasten verwendet.
Man kann aber erwarten, dass das wesentliche Resultat f¨ur eine allge-
meine Klasse anharmonischer Oszillatoren gilt, n¨amlich für solche,
bei denen das Spektrum vonHosz= p2=2m+V(x) diskret ist und bei
denen der Abstand zwischen den Energieeigenwerten mit zunehmen-
der Energie gr¨oßer wird. Hierauf deuten zum einen die allgemeinen
Überlegungen des Abschnitts4.2, insbesondere aber der Vergleich
mit dem klassischen Pendant in Abschnitt4.5zusammen mit den Er-
gebnissen der Referenzen [60,110].

Das wesentliche Resultat ist die Separation des Zustandsraums in
zwei Bereiche. Der eine Bereich wird durch eine endliche Zahl von
Floquet–Funktionen aufgespannt, und in der station¨aren Verteilung
ist jeder dieser Floquet–Zust¨ande mit etwa der gleichen Wahrscheinlichkeit besetzt. Die Sprungra-
ten in der Pauli–Mastergleichung f¨ur Sprünge innerhalb dieses Bereichs erf¨ullen nicht die Bedin-
gung des detaillierten Gleichgewichts. Im anderen Bereich, dem Komplement, stimmen die Floquet–
Funktionen n¨aherungsweise mit den zeitunabh¨angigen Energieeigenfunktionen ¨uberein, und es ergibt
sich eine Boltzmann–Verteilung. Die beiden Bereiche lassen sich, wie in Abschnitt4.5 gezeigt wur-
de, den chaotischen und regul¨aren Bereichen des Phasenraums des entsprechenden klassischen, un-
gedämpften Systems zuordnen. Die station¨are Verteilung ist bestimmt durch zwei Parameter, zum
einen die Temperatur der Umgebung, sie bestimmt die erw¨ahnte Boltzmann–Verteilung, und zum an-
deren die Antriebsst¨arkeλ. Die Anzahl von Floquet–Zust¨anden im Plateau–Bereich h¨angt nur vonλ
ab.

Perspektiven

Es bieten sich mehrere Ansatzpunkte f¨ur Anwendungen und f¨ur weitergehende theoretische Untersu-
chungen.

Die naheliegendste Frage ist zun¨achst wohl die nach dem Absorptions- und Emissionsspektrum
von periodisch stark getriebenen Systemen der Art, die im Kapitel 4 betrachtet wurde. Die Frequenzen
der emittierten oder absorbierten Photonen sind durch

ε j� εk

~
�mωL

bestimmt, wobei der Betrag vonm große ganzzahlige Werte annehmen kann. In den Begriffen der
Störungstheorie entsprechen solcheÜbergänge mit großenjmj Multiphotonenprozessen. Intensitäten
und Linienbreiten lassen sich aus der station¨aren Verteilung und den̈Ubergangsraten berechnen. Die
Ergebnisse von Kapitel 4 k¨onnten n¨utzlich bei der Untersuchung von Ionen in Fallen (vgl. z. B. [111])
oder von Rydberg–Atomen in Mikrowellenfeldern [9] sein.

Im Zusammenhang mit durch starke optische Laserpulse angetriebenen elektronischen Prozes-
sen wird die emittierte Strahlung in der Literatur unter dem StichwortHigh Harmonic Generation
(z. B. [112, 113, 114]) diskutiert. Experimentell werden dabei f¨ur m Werte bis zur Gr¨oßenordnung
102 gefunden. Die Erzeugung entsprechend starker Felder ist nicht im Dauerbetrieb, sondern nur in
Pulsen m¨oglich. Außerdem ist bei Molek¨ulen die Ionisationsenergie von der gleichen Gr¨oßenordnung
wie die der optischen̈Ubergänge, so dass Ionisation oder Dissoziation eine Rolle spielen. Sind deren
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inverse Raten jedoch hinreichend groß im Vergleich zur Zykluszeit, so l¨asst sich ein in einem ge-
bundenen Anfangszustand startender Prozess weiterhin mit Hilfe der Floquet–Darstellung verfolgen.
Ionisation und Dissoziation k¨onnen durch endliche Lebensdauern der Floquet–Zust¨ande modelliert
werden, ein Konzept, das in der stochastischen Wellenfunktionsmethode ohnehin bereits vorhanden
ist.

Ein weiterer Anwendungsbereich ist die Anregung molekularer Schwingungen durch infrarote
Laserpulse (z. B. [11]). Hier öffnet sich das weite Feld der Laserchemie mit dem Fernziel der selekti-
ven Steuerung chemischer Reaktionen mit Hilfe definierter Laserpulse. Im Zusammenhang mit dieser
Arbeit steht dabei vor allem die Frage, wie sich die Dissipationsmechanismen im schwach getriebenen
und im stark getriebenen Fall unterscheiden.
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vielfältige und tiefgehende Anregungen und Diskussionen, ohne die diese Arbeit nie h¨atte zustande
kommen können.

Bei Herrn Prof. Dr. Honerkamp bedanke ich mich f¨ur die Möglichkeit, in seiner Abteilung arbeiten
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