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Einfuhrung

Die Theorieoffener Quantensystentbesclaftigt sich mit physikalischen Prozessen, deren Dynamik
zum einen durch die Quantenmechanik und zum anderen durch den Austausch von Energie mit ei-
ner Umgebung bestimmt ist. Synonym kann der Begriff dissipativen Quantensystemsbraucht
werden. Der Begriff entdlt zwei Verallgemeinerungen: Ist die Wechselwirkung mit der Umge-
bung vernactdssigbar, gelangt man zum Spezialfall abgeschlossener Quantensysteme, deren Dyna-
mik vollstandig in der Schodinger—Gleichung enthalten ist. Sind andererseits Quanteneffekte ver-
nachBssigbar, dann gelten klassische Gleichungen, ein Beispialihistiias Brownsche Teilchen.
Typische Beispieleui offene Quantensysteme sind Atome und Malekdie mit dem elektroma-
gnetischen Feld wechselwirken. Das elektromagnetische Feld kann zum Beispiel dann als Umgebung
betrachtet werden, wenn es sich im thermischen Gleichgewicht befindet. In der Quantenoptik ist das
elektromagnetische Feld typischerweise in einem Vakuumzustand, und vom Atom odeuNéobétk
tierte Photonen unterliegen inkafgnten Prozessen. Eine weitere wichtige Anwendung der Theorie
offener Quantensysteme ergibt sich, wenn die grof3e Anzahl von wechselwirkenden Freiheitsgraden
eines grofRen Moleks, eines Clusters, eines dichten Gases oder einesofestk’in einen relevan-
ten, das heil3t explizit betrachteten, und einen nicht relevanten Anteil aufgespaltet werden. Die nicht
relevanten Freiheitsgrade werden dann nur statistisch, als Umgebung, betrachtet. Aus diesem Grund
nennt man das offene Quantensystem machmal auch reduziertes System.
Die dissipative Quantendyna-
mik des reduzierten Systems lei-

tet sich aus der uratén Dyna- exakte unire
mik, das heilt aus der Sdii- Gesamtsystem Dynamik Gesamtsystem
ger—Gleichung di das Gesamt- - _
system ab. Schematisch ist die- Kemposition dissipative Reduktion

i Dynamik
ses Konzept in der nebenstehen- pqqsiertes System y Reduziertes System

den Skizze angedeutet. Die For-
mulierung der reduzierten Dyna-
mik muss zwei Aspekten Rech-
nung tragen: Der Zustand der Umgebung ist in der Regel nicht exakt bekannt, gegeben sind nur seine
statistischen Eigenschaften. Weiterhin wird eine ReduktionsvorschrifitiggnDie Reduktion dsst
sich als Projektion auffassen, bei direr die nicht relevanten Variablen gemittelt widd. [Sie ist das
zentrale Konzept der Theorie offener Quantensysteme. Mathematisch bedient man sich zur Formu-
lierung der reduzierten Dynamik entweder des Dichteoperators oder der Methode der stochastischen
Wellenfunktionen. Der erste Zugang ist im zweiten implizit enthalten (siehe Abséhhif). Wenn
die involvierten Zeitskalen einer Markov—Bedingung (siehe AbscBrittd genigen, dann wird man
auf Quantenmastergleichungen vom Lindblad-Typ beziehungsweise auf Markovsche stochastische
Prozesse im Hilbert—-Raum des reduzierten Systemsgef”

Zur Herleitung der reduzierten Dynamik aus einem mikroskopischen Magtetlgf§ Gesamtsy-



Einfihrung

stem wird die Wechselwirkung zwischen System und Umgebung mit Hilfe einenr&Sentwicklung

im Wechselwirkungsbild becksichtigt R, 3,4,5, 6, 7, 8]. Naheliegend ist zuechst der Fall, in dem

die freie Zeitentwicklung des Systems durch den zeituaablgen Hamilton—Operatdiy gegeben

ist, der die Transformation des Systems ins Wechselwirkungsbild bestimmt. Der Anwendungsbereich
dieses Zugangssst sich ausweiten auf getriebene Systeme, deren Hamilton—Operator von der Form
H(t) = Ho+ HL(t) ist, wenn der Betrag voHl_(t) zu allen Zeiten klein im Vergleich zu den Diffe-
renzen der Energieeigenwerte vdgbleibt. Systeme, die diese Bedingungudigii, werden schwach
getrieben genannt. Der Antrieb kann zum Beispiel durctakehte Laser- oder Maserstrahlung erfol-
gen.

Fur stark getriebene Systeme verliert dior@tigsentwicklung begjlich desHy—Wechselwir-
kungsbildes ihre Geltung. Ufperiodisch stark getriebene Systerassk’sich aber mit Hilfe der
Floquet—Darstellung ein Wechselwirkungsbild bglich des exakten, freien System—Hamilton—Ope-
ratorsH (t) konstruieren. Die Stungsentwicklung der Wechselwirkung ist damit technisch etwas
aufwendiger, aber im Prinzipollig analog P, 10]. Referenz 9] bedient sich des reduzierten Dichte-
operators, \@hrend in L0] ein stochastischer Markov—Prozess flie Wellenfunktion des reduzierten
Systems hergeleitet wird. Aufgrund der besonderen Eigenschaften der Floquet—Darstellung ergeben
sich im Vergleich zu schwach getriebenen Systemen neue Effekte. Ein Beispiehdtafin Kapitel 4
vorgestellt.

Die Referenzenq, 10] setzen einen exakt periodischen Antrielp(t) voraus. So ist die An-
wendung, die Referen®] zugrunde liegt, ein Experiment mit hochangeregten Rydberg—Atomen,
die durch ein monochromatisches kobrites Mikrowellenfeld angetrieben werden. Hingegen wer-
den im optischen Frequenzbereich Inteatsiti; die im oben definierten Sinn stark sind, experimentell
—zumindest gegeravtig— nur mit Laserpulsen erreichit]]. Inhalt des Kapitels 2 ist daher die Ver-
allgemeinerung von Referenz(] auf Antriebgulse Hierzu wird ein Wechselwirkungsbild, das sy-
stemseitig auf einer langsam (adiabatisch) zeaalgigen Floquet—Darstellung beruht, einget. Im
Kapitel 1 werden die hierzu notwendigen Begriffe und Methoden aus der Theorie periodisch getriebe-
ner qguantenmechanischer Systeme vorgestellt. Neben der eigentlichen Herleitung des stochastischen
Prozesses in Abschnit.3 entlélt das zweite Kapitel in den Abschnitténl und 2.2 eine Zusam-
menstellung relevanter Begriffe und Methoden aus der Theorie offener Quantensysteme und ihrer
Behandlung mittels stochastischer Wellenfunktionen. Im AbscBnitwvird das Hauptresultat des
zweiten Kapitels schlie3lich noch als Gleichung @ien reduzierten Dichteoperator formuliert.

Mit dem reduzierten Dichteoperator und der Methode der stochastischen Wellenfunktionen gibt es
zwei zurachst alternative Zwgige zur Theorie offener Quantensysteme. Historisch ist der reduzier-
te Dichteoperator einige Jahrzehratiter als die stochastischen Wellenfunktionsmethoden, die erst
seit Anfang der neunziger Jahre verbreitete Anwendung finden (22813, 14, 15, 16, 17, 18, g],
Review: [L9]). Mathematisch ist der Dichteoperator im Formalismus der stochastischen Wellenfunk-
tionen enthalten, und zudem eathletzterer GolRen und Konzepte, die nicht mit Hilfe des Dich-
teoperators ausgaaikt werden kihinen, am herausragendsten das der einzelnen Realisierung, aber
auch statistische Momenteheérer als zweiter Ordnung. Im Folgenden sollen kurz einige Punkte ge-
nannt werden, welche die Eiriifung stochastischer Prozesse in die Theorie offener Quantensysteme
motiviert haben.

e Seit einigen Jahren ist esaglich, Experimente an einzelnen Atomen oder Malek; also an
einzelnen Quantensystemen, zu machen, dabei werden QuanteyespeobachteR), 21,22,
23,24]. Die Quantensysteme sind, weil sie beobachtet werden, notwendigerweise offen. Mit
Hilfe des reduzierten Dichteoperators lassen sich —zumindest im Rahmen demhdittien
Interpretation— keine Aussagebeér einzelne Systeme mach@s]| und so wurden in der Reak-



tion auf die Experimente theoretische Modelle mit Hilfe von stochastischen Wellenfunktionen
konstruiert R6,27,28,29].

¢ Im quantenoptischen Regime, das bedeutet bei Umgebungstemetatuund bei einer Kon-
stellation der involvierten Zeitskalen, welche die Markov—Approximation rechtfertigen, lassen
sich die einzelnen Realisierungen des stochastischen Prozesses im Rahmen der kontinuierli-
chen Messtheorie interpretiereB0[ 31, 32]. Zum Beispiel Asst sich ein Prozess konstruieren,
dessen Spirige als Detektion der von einem Atom emittierten Photonen durch einen idealen
Photoahler interpretiert werdendkinen. Jeder Realisierung des stochastischen Prozesses ent-
spricht eineDecoherent History33], und beiden ist die gleiche klassische Wahrscheinlichkeit
zuzuordnen34.

e Die Entwicklung stochastischer Wellenfunktionsmethoden war von Anfang an eng verbunden
mit numerischen Anwendungeid, 35, 14, 36, 37]. Zum Beispiel konnte damit zum ersten
Mal die Laserkihlung von Atomen dreidimensional numerisch behandelt werg8gn Mom
numerischen Standpunkt aus gedri stochastische Wellenfunktionsmethoden zu den Monte—
Carlo—Simulationsmethoden, und zur Behandlung hochdimensionaler Systeme sind sie immer
wesentlich effizienter als die Integration der entsprechenden Dichtematrixgleicd@ng [

Numerische Verfahren und Computersimulationen spielerdigse Arbeit eine zentrale Rolle. Der
Grund dafir ist natirlich, dass die Klasse der numerisch untersuchbaren Modelle wiBegist als
die der analytischd$baren. Ganz besonders gilt dias $tochastische Prozesse der Art, wie sie im
Kapitel 2 hergeleitet werden.

Die Berechnung von Erwartungswerten und vohdéren Momenten stochastischer Prozessst |
sich als Integration in einem in der Regel sehr hochdimensionalen Raum auffassen, und es existiert
eine Reihe effizienter Monte—Carlo—Methoden hierzu. Das dritte Kapitehkmtaier zuachst eine
zusammenfassende Darstellung der Methoden zur Monte—Carlo—SimulatitmwesiSe deterministi-
scher Markov—Prozessd()]. Behandelt wird sowohl der (unter gewissen Regudstiédingungen)
allgemeinste Fall wie auch die wichtigen Spez#é der Prozesse mit multiexponentieller Warte-
zeitverteilung und der reinen Sprungprozesse. Weiterhin wird im dritten Kapitel eine Methode zur
numerischen Berechnung der Floquet—Darstellung vorgestellt. Schlie3lich folgt eine Darstellung des
Algorithmus zur Erzeugung von Monte—Carlo—Realisierungeckstéise deterministischer Prozes-
se in der Floquet-Darstellung. Das ist gerade die Art von Prozessen, die im zweiten Kapitel zur
Beschreibung gepulster, stark getriebener offener Quantensystemeubimgefiden.

Ein ubiquitires Problem numerischer Methoden in der mathematischen Physik ist der Umgang
mit Unendlichkeiten, beziehungsweise deren geeignete Approximation durch fimifeeiGr 'Be-
sonders markant ist dieser Punkt im Zusammenhang mit der Berechnung von Floquet—Indizes und
-Eigenfunktionen von Systemen mit unendlichdimensionalem Hilbert—-Raum. Er wird in den Ab-
schnittenl.1.4 1.2.2und 3.4.1von mehreren Seiten her aubflich diskutiert.

Eine der ersten Fragen bei der Diskussion eines gegebenen stochastischen Prozesses ist die hach
der Existenz und der Form statemer Verteilungen. Es stellt sich heraus, dass die statoNer-
teilung des generischen periodisch getriebenen anharmonischen Oszillators derart aifbdiciev”
Eigenschaften hat, dass sie einer eigenen Untersuchung wert ist. Hierzu wird im vierten Kapitel die
Pauli-Mastergleichunguf die Diagonalelemente des Dichteoperators betrachtet. Es wird sich zei-
gen, dass die statiaré Verteilung nicht der Bedingung vom detaillierten Gleichgewichugenind
wesentlich vom Auftreten chaotischer Bereiche im entsprechenden klassischen Phasenragtn gepr”
ist.
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Periodisch getriebene Systeme

Der Zustand eines Quantensystems ist gegeben durch einen normiertenWelierdem Hilbert—
RaumH . Seine zeitliche Entwicklung beschreibt die Smfinger—Gleichung

.0
—Y=HWY 1.1
Ihat (1.2)

mit dem Hamilton—Operatadd. Wir interessieren uns zaghst {ir die Eigenschaften von Systemen
mit periodisch zeitaldrigigem Hamilton—Operatdt = H(t),

H(t) =H(t+T), VteR (1.2)

Hierbei istt die Zeitvariable undr die Periode. Der Zeitentwicklungsoperatd(t,ty) bildet den
Systemzustand zur Zag auf den Zustand ab, der sich bis zur Zegendl3 (L.1) daraus entwickelt:

W(t) =U(t,to)P(to)- (1.3)

1.1 Floguet—Theorie
Ausgangspunkt ist die diskrete Translationssymmetriel@nty):

U(t,tg) =U(t+nT,tg+nT) VneZ. (1.4)
Definiert man den Monodromieoperatdr=U (T,0) [41], dann Bsst siclU (t,tg) zerlegen in

U(t,t)) = U(t,nT)oU"MolU(mT,to)
= U(tenT, 000U MU (tg &mT,0) (1.5)
Die ganzen Zahlen undmkonnen dabei so gatlt werden, dass €t <nT,tgmT < T gilt. Der

komplette Zeitentwicklungsoperatbk(t,tg) fur allet undtp ist somit bereits bestimmt durd(t, 0)
fur 0<t < T und durch die ganzzahligen Potenzen tn
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DaU ein unitirer Operator i1 ist, haben seine Eigenwerte éxpe; T /) den Betrag 1, und die
reellen GoBBeng;, die nur modulch/T bestimmt sind, werden Floquet-Indizes genannt. Wegen der
Analogie zu den Energieeigenwerten autonomer Systeme ist synonym auch der Begriff Quasienergien
geb@uchlich B2].

Ist {u;(0)} ein vollséindiges orthonormales System von EigenfunktionenWpso gilt

U™=5 [uj(0))e m" (u;(0)] (1.6)
J

Weiterhin bezeichnet man dann die durch
uj(t) = €4 U (t,0)u; (0) (1.7)

definiertenT -periodischen Funktionen als Floquet—Funktionen. Daassti'sich 1.5) auch in der
Form

U (t,to) = z|u e M (uj )| (1.8)

schreiben, und jededsung der Scludinger—Gleichung(.1) Iasst sich baxrjlich zeitunablngiger
Koeffizientena; entwickeln:

W)=Y aj uj(t) e Eit/n, (1.9)
J

Diese Aussage wird in der Literatu#3, 44, 45] unter dem TitelFloquet—Theorieprasentiert. Ein
vollstandiges Systenu;) von Floquet-Funktionen zusammen mit den Indigg$ heiflt Floquet—
Basis.

Flr numerische Zwecke bestimmt man den Monodromieoperator direkt durch Integration der
Schiodinger-Gleichunguber eine Periode beglich eines endlichen Basissatzes, und daraus durch
Diagonalisierung der resultierenden Matrix die Floquet—Indizes und —Funktionen. Hierauf wird in
Abschnitt3.4.1n&her eingegangen.

1.1.1 Der erweiterte Hilbert-Raum
Fur die mathematische Untersuchung des Spektrums ist der Floquet—Opé@ator [

9
F=aihg +H(b) (1.10)

ndtzlich. Mit ihm nimmt die zeitabarigige Schvdinger—Gleichungl(1) die FormFWY = 0 an. Wei-
terhin definiert man den erweiterten Hilbert-Rafm= L?(T) ® H . Dabei steht das Symba} fur
das direkte Produkt unic?(T) ist der Raum der quadratintegrierbaBsperiodischen Funktionen auf
R. Das Skalarprodukt:|-)g furu,v e F ist definiert durch

(ulv)F

;
/ £)|v(t) (1.11)
0

—|||—\

dabei ist(-|-)y das Skalarprodukt ikl . Losungen der Schdinger-Gleichungi(1) sind im Allge-
meinen nichfT -periodisch und daher nicht im erweiterten Hilbert—Rddnenthalten. Im Folgenden
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stehtF fur die Restriktion des Floquet—Operatotsl(Q) auf einen geeigneten Unterraum yen Dann
ist F selbstadjungiert begjlich des Skalarproduktd (L1), und die Bestimmung des Spektrums ¥on
ist im folgenden Sinnaduivalent zur Bestimmung des Spektrums des Monodromieopetaidrd:
(i) Wenn firu e F unde € R gilt

Fu=eu, (1.12)

dann istu(t) eine stetigeT -periodische Funktion vonin H und die LosungW¥(t) der Schodinger—
Gleichung (.1) zur Anfangsbedingun$’(0) = u(0) hat die Form

W(t) = e &/hy(t). (1.13)
(i) Umgekehrt, wenn
UWo=e ET/hyg (1.14)
dann ist
u(t) = €%/"U (t,0) Wy (1.15)

die Eigenfunktion vorF zum Eigenwert.
HatH (t) die Form von Gleichungl(23) (siehe AbschnitlL.1.3, dann gibt esdi’ den erweiterten
Hilbert—-RaumF eine anschauliche physikalische Interpretation. In der Darstellung

F=@(E"eH), (1.16)

mezZ
wobei [] die lineare Hille bezeichnet, kanre“™ @ H jeweils als der Zustandsraurnurf”
(m Photonen)+(Teilchen) uneifo/ot als der Photonenenergieoperator interpretiert werd2arif].
1.1.2 Floquet-Funktionen

Zwischen Paaren von Floquet—Funktionen und —Indizes) gilt fur allem € Z die folgende Bezie-
hung:
Fu=eu < Fud™)=(e+miwu. (1.17)

Die Paare lassen sich also Aquivalenzklassen zusammenfassen. Im Hinblick auf die Analogie zur
Physik von Kristallen, wo eine entsprechende Symmetnigdfis Quasiimpulsspektrum gilt, spricht
man auch von Quasienergie—Brillouinzonen. Im Folgenden indiZielie verschiedenen Klassen
und m die Repasentanten. Gelegentlich wird die albkénde Schreibweisg = ujo undej = €
verwendet. Alle Re@Sentanten einer Klasgesrhélt man durch

uim() = uj(t)em (1.18)
€&m = €&j+mhw. (1.19)

Es ist wichtig festzustellen, dass wegen

eigimt/h Ujm(t) = o igjmt/h Uj o (1) vm, mf (2.20)
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und Gleichung 1.13 alle Repasentanten einer Klasse dieselbe 8dmger—Wellenfunktion darstel-
len, so dass physikalische @&n nicht vom Indexn ablengen. So entit die Summe1.9) jeweils
nur einen Re@Sentanten pro Klasse.

Weil F selbstadjungiert ist, sind Floquet—Funktionen zu verschiedenen Floquet-Indingéidiez”
(-|-)e orthogonal, und ein System von Floquet—Funktioresst sich als Orthonormalsystem einrich-
ten:

(Ujm|Ucnt)F = OjkOmnt- (1.21)

Daniberhinaus sind die Floquet—Funktionen zu allen Zeitbeaiglich des Skalarproduktes i
orthogonal #2):

(U m(1) Uiy (1)) = By €M =M, (1.22)
Diese Gleichung rechnet man leicht nach,
(Ujnl®) [t D) = (977U (£, 0)ujm(0) | €50 (1, 0) e 0) ).,

et <im0 (0) | u(0) )y -
Nun sind abe;(0) = u;(T) und uc(0) = u(T) Eigenvektoren des umitén Operators) zu den
Eigenwerten exp=ig; T /f) und exg<ig T /h). Daher sind sie orthogonal heglich (-|-)y wenn
€j # &. Fregj = g lassen sich die; (0) wie lblich so einrichten, dass sie orthonormal sind.
1.1.3 Drei Beispiele

Im Rahmen dieser Arbeit interessieren Hamilton—Operatoren der Form

H(t) = Ho+ Axcoswt
p?
Hob = —+V(X). 1.2
0 2H+ (%) (1.23)

Ho ist der Hamilton—Operator eines (Quasi—)Teilchens in einem Potential. In typischen Anwendungen
reprasentiert er die Dynamik eines kollektiven Freiheitsgrads eineSegen Systems, zum Beispiel

die Vibrationsdynamik einer molekularen Bindung. Der zeitaigfie Term stellt die Einwirkung
einesaulReren Feldes dar, beispielsweise eines Laserpulses, dessen elektrischer Feldvektor mit dem
Dipolmoment des Oszillators wechselwirkt. Es folgen drei Beispiele:

Harmonischer Oszillator

Ho = p?/2u+ %uwgs 2 besitzt nur gebundene Zasitle, und das Spektrum ist ein reines Punktspek-
trum mit dquidistanten Energieniveaud(Ho) = {(j + 3)Atos,| j = 0,1,... }. Die Floquet-Indizes
von F sind, flir w # woesz, gegeben durchip]

}\2

1

Die dynamische Stark—Verschiebung der Oszillatorniveaux ist also exakt quadratisch in der Antriebs-
starke und flir jeden Zustand identisch. Das Spektrum #ohat die Gestalt

2

o(F) :0(H0)+wZ+4u(wz}\Wz)' (1.25)

o(F) ist also ebenfalls ein reines Punktspektrum und liegt gleafindicht inRR, wenn wysz/w
irrational ist 49, 50].
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Teilchen im unendlichen Kasten

Mit dem Potential

[0 fur|x<a
Vi) = { o fur|x >a (1.26)

besitztHy ebenfalls ein reines Punktspektrum (z. B1])

h? :
O(HO): {Bl‘l—az(.l—i_l)z“:oala}a

und die AbstindeE; + 1<E; der Eigenwerte vordy wachsen monoton mit. WennTtéh/ (pwa?)
irrational ist, dann folgt aus einem Satz von We#8] dass im Limes\ — 0 das Spektrum des
Floguet—Operatork gleichmalig dicht inR liegt. Das Teilchen im Kasten ist ein Beispiekf€inen
anharmonischen Oszillator, und allgemein wird in der Literatur zur Zeit intensiv die Frage diskutiert,
wie das Spektrum des Floquet—Operators solcher anharmonischer Oszillatoden fall endlicher
Werte von\ aussieht. Das SpektruaiF ) ist zumindest dicht, die Abwesenheit eines kontinuierlichen
Spektrums konnte bisher aber nicht bewiesen werden, und das Beispi@tgiddckten Rotators
zeigt, dass sichui'A > 0 tatsichlich ein kontinuierliches Spektrum ausbilden kabi#].[

Morse—Oszillator

Der eindimensionale Morse—Oszillator ist beschrieben durch den Hamilton—Operator

2
Ho = %+D(l<:)e_ﬁx)2. (1.27)

Er ist ein raufig benutztes Modell zur Beschreibung der Schwingungen molekularer Bindwsgyen [
54,55,56]. Das Spektrum voiiiy besteht aus einem Punktspektrog(Ho) mit endlich vielen Ener-
gieeigenwertend7]

1\ AR (. 1)? 2D 1
Ej = hwm (J+5><=> D <J+§> furJ_O,l,...,[m@E] (1.28)

und einem Kontinuunw(Hp) =]D, |. Hierbei istwy = 1/2DB2/pund[x] ist der ganzzahlige Anteil
vonx. Das Spektrum voR fur verschwindende FeldskeA =0 isto(Fy) = (0p(Ho) Uac(Ho) ) + WZ.

Es entlalt also die gesamte reelle Achse, mit diskreten eingebetteten Eigenwerten, die von den ge-
bundenen Zustiden hemhiren. Wenn die Feldstke A gré3er als 0 wird, dann werden aus diesen
eingebetteten Eigenwerten komplexe Pole der ResolRf{#ie= (z<F)~! des Floquet—Operators
mit negativen Imagiarteilen §7]. Dies bedeutet, dass die Floquet—Zusté eines periodisch ge-
triebenen Morse—Oszillators metastabil sind: Selbst ein winzig kleines &eit fvenn es beliebig
lange wirken darf, zur Dissoziation. Praktisch wirkt ein Laserfeld nuefiie endliche Weile auf ein
Molekil ein. Wenn diese Zeit viel kleiner als die Lebensdauer der metastabileandesist, kann
man die Imagiarteile der Polstellen vernaadsigen, die Floquet—Indizes als reell und die Floquet—
Funktionen als gebunden betracht&8][
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1.1.4 Trunkierung

Wie wir in Abschnitt 1.1.3an den Beispielen des harmonischen Oszillators und des unendlichen
Kastenpotentials gesehen haben, hat man es bei periodisch getriebenen Oszillatdie¥ (K) — oo

fur |x| — oo gilt, mit unendlich vielen Klassen von Floguet-Indizes und —Funktidisgmu;) zu tun.

Mit Hilfe numerischer Verfahren will man natlich nur eine endliche Teilmenge davon bestimmen.
Betrachten wir also deN—dimensionalenN < «) UnterraumHy von H , der von den unterenl
Energieeigenfunktione(®),... , N <1) von Hy aufgespannt wird. Es sBj der Projektionsoperator
vonH aufHy,

Ph(H)=Hy,  Pi=P\ (1.29)
Der trunkierte Hamilton—Operatdiy (t) ist dann
Hn(t) = PyH(t) Py (1.30)

und der zuHy(t) getorende Floquet—Operat®fy = Hy(t) <id/dt. Die Frage ist nun, was die Ei-
genwerteey und Eigenvektoremy von Fy mit denen vorF zu tun haben. Dazu sei vorausgesetzt,
dass H(t) speziell die in1(23 angegebene Form hat. Dann gilir fdie Differenz zwischen dem
vollstandigen und dem trunkierten Floquet—Operator

Foly= (Ho+)\xcoswt @i%) @(PNHOPN + APy xR\ cosuwt @i%) . (1.31)
Wegen der Reduzibilif ' vonHg vereinfacht sich dies zu
F ©Fn = (1ePy)Ho(1&Py) +Acosut (Pux(1<Py) + (L<Py)x). (1.32)
Wegen(1<Py)uy = 0 folgt daraus ein Ausdruckuf' Fuy,
Fun = Fyun + A coswt (1 <Py)Xuy. (1.33)
Nun betrachten wir die Darstellung vor (t) beaiglich der gewahlten Basis,
N-1
un(t) = Zocn(t)ln), lun(t)] =1, (1.34)
n=
und es ergibt sich
N-1
Fun = enun +Acosut INYDyyn Ca(t) (1.35)
n>N n=

mit dem Dipolmatrixelemenb,,, = (n'|x|n). Trunkierter Eigenwerty und Eigenvektouy sind eine
gute Approximation eines Eigenwerts und Eigenvektorsivpwenn der zweite Term auf der rechten
Seite hinreichend klein ist. Um dessen Norm abzatddm, stellen wir die folgende Forderunguan
und an die Dipolmatrix: Es gibt eine Toleradzind eink, 0 < k < N, so dass

N-1

(i) Ek lea(t)2 <8 Wt

n=

(i) max{ |Dy|

O§n<k,n’2N}<6. (1.36)
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Die erste Bedingung bedeutet, dasshinreichend im,unteren* Bereich vorHy lokalisiert ist, die
zweite, dass der Dipoloperator kaum zwischen diesem unteren Bereich und dem Komplentéqt von
koppelt. Mit Hilfe elementarer Ungleichungen zeigt man

N—1
coswt Z IN)Dyyn Ca(t)
>N n=

n<N<n’

<d <1+ max |Dnrn|> . (1.37)
F

Die Qualitit eines numerisch bestimmten trunkierten Satzes von Eigenfunktionen und Eigenwerten
lasst sich nun auf die folgende Weise kontrollieren:

1. Man gibtN undk vor und bestimmtui jede Eigenfunktion jeweils den kleinsten Wert \@n
fur den die beiden Bedingungen (i) und (ii) @t 'sind. Dieser Wert gibt einen Hinweis auf diau@”
dieser Eigenfunktion.

2. Man gibtN und d vor und sucht den g@f3tnoglichen Wert vork, fur den die Bedingungen
() und (ii) gleichzeitig fir k orthonormale Eigenfunktionen eift'ist. Diese sind dann gute Appro-
ximationen von Eigenfunktionen des nicht trunkierten Operafqravahrend dieN <k anderen zu
verwerfen sind. Will man mehr gute Eigenfunktionen, muf3 iNarhshen.

1.2 Erweiterung der Floquet—Theorie auf Pulse

1.2.1 Adiabatensatz

Bisher wurden periodische Hamilton—Operatoren der Fdkr®) petrachtet. Bezogen auf Anwen-
dungen, die ein Atom oder Molekin einem Laserfeld beschreiben, bedeutet dies, dass Amplitude
und Frequenz des Feldes konstant sind. Die Begriffe der Floquet—Themnek jedoch auch auf
Systeme angewendet werden, bei denen solche Parameter zeitlich variieren. Ein Beigpiist daf”
ein Molekil unter der Einwirkung eines Laserpulses, bei dem die optische Zykluszeit typischerweise
in der GoRenordnung einiger Femtosekunden und die &ud® bei einigen Hundert Femtosekun-
den liegt. Bei langsamer Variation der Parameter gilt ein effektiver Adiabatensata3geemi die
Besetzungswahrscheinlichkeitéa |? in Gleichung (.9) invariant sind 59, 60].

Ist A(t) der sich mit der Zeit andernde Parameter, dann nimmt die Eigenwertgleichlirid)(
ausfihrlich geschrieben die Form

F(A)u(A) =€g(A)u(A) (1.38)
an. Um den Adiabatensatz zu formulieren, ist e&lich, die folgende Gleichung zu betrachten:
i%d)()\(r),t) =F(A (1)) D(A(T),1). (1.39)

® ist eine Funktion mit Werten il , die sowohl explizit, vid, wie auch implizit, via inrer Abhngig-
keit von A, von der Zeit abanhgt. Sie ist im Allgemeinen kein Element vén. Die doppelte
Zeitablangigkeit gestattet die Trennung der Zeitskalen der schnellen Perdinid der langsamen
Parametervariation. Diedsung der zeitaldrigigen Schodinger—Gleichungi(1) zum Anfangswert
W(tp) kann aus der €Sung von Gleichungl(39 zum AnfangswertP(A(tp),to) = W(tg) konstruiert
werden, indem mak(t) = P(A(t),t) setzt. Gleichung](.39 hat selbst die Form einer zeitadoigigen
Schiodinger-Gleichung undibst die Anwendung deslichen Adiabatensatzes zu (siehe z.@&l):
Mit der Anfangsbedingung

(A1), )

= > aui(A(0)) (1.40)
J
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und bei geeigneter Wahl der Phasen der normierten Eigenfunktisriai konvergiert die loSung
von (1.39 fur hinreichend langsame Parametergeschwindigkeit, das heil3t im ubergaing
max ||0A/dt|| — O gegen

P(t,) = ajexp (@;—i/sj(x(r’))dr’) uj (A(1)). (1.41)
! 0

1.2.2 Zu den Voraussetzungen f~ ur den Adiabatensatz

Der Adiabatensatz in der obigen Form setzt voraus, dass die beteiligten Eigeayaytsoliert und

nicht entartet sind. Wie wir in Abschnift.1.3gesehen haben, besitzt jedoch der Floquet—Operator
von Systemen mit einem unendlichdimensionalen Hilbert-Raum typischerweise ein dichtes Spek-
trum. Betrachtet man den Graphen der Funktion, die jedleiie zugebfigen Floquet-Indize$e; m}
zuordnet, dann gibt es in deralNé jedes Punktes ein Avoided Crossifg][ Ein Teil eines solchen
Graphen ist in Abbildun@.5dargestellt. Er zeigt allerdings nur einen endlichen, trunkierten Satz von
Floquet—Indizes und somit auch nur eine endliche Zahl von Avoided Crossing&yBteme mit ei-

nem unendlichdimensionalen Hilbert-Raum ist es im Allgemeinen niolglioti, die Floquet—Indizes

und —Funktionen zu nebeneinanderliegenden Parametervixeutgah\ + A einander so zuzuordnen,
dass stetige Funktionen m(A) unde;j m(A) entstehen. Das bedeutet, dass nicht nur die Voraussetzun-
gen des Adiabatensatzes (in der oben dargestellten einfachen Form) verletzt siatk asat 'nicht
einmal noglich, ihn zu formulieren. Ta#ghlich machen sich auch die Autoren eines ewstlich
erschienenen ArtikelB] daniber ernstlich Sorgen.

Die Losung des Problems beruht darauf, dass die meisten, eventuell fast alle, Avoided Crossings
gar nichtdynamisch relevargind und daher vernacssigt werdendrinen B0, 62]. Der adiabatische
Limes max||0A/dt|| — O darf nicht tatachlich ausgeffirt werden:||0A/dt|| soll klein, aber endlich
sein. So kann man genauer betrachten, was passiert, wenn die Parametervayetieim Avoided
Crossing tihrt: Die Landau—Zenetlbergangswahrscheinlichkeit hat die Fois][

P . _ex T OedA
=1 = &P\ “on onjer) )

Hierbei istP_,; die Wahrscheinlichkeitut einen diabatischetibergang von einem Floquet—Zustand

in den anderen am Avoided Crossing beteiligtdh,die Breite des Avoided Crossings uid der
minimale Abstand der Floquet-Indizes. Das Abstandsmalfd dabei ist, wegen der Brillouin—Zonen—
Struktur der Floquet—Indizes, eine Metrik auf dem Kréisund oA sind Eigenschaften des Floquet—
Operatord=(A). Die Parametergeschwindigkei /0t hingegen ist eine zasZliche, unabérigig von

F(A) vorgegebene @ifle. Ein Avoided Crossing ist nur dann dynamisch relevant, wenn der Ex-
ponent auf der rechten Seite der Gleichuagt® in der GolRenordnung vorsl ist. Im Grenz-

fall dedA/||0A/0t|| > h zerféllt das Avoided Crossing in zwei adiabatische ZweiBe,; ~ 0), fur
0edMN/||oA/0t|| < h in zwei diabatischgP,_,; ~ 1). Somit lassen sich glatte Quasienergiehyper-
flachen konstruieren, die jeweils durch dynamisch relevante Avoided Crossings berandet und mit
anderen Quasienergiehypadhien verbunden sind.uFdie Variation vonA innerhalb einer dieser
Hyperflachen gilt der Adiabatensatz. Die Gesamtheit solcher Hymédli, die mit einem Anfangs-
zustand dynamisch relevant verbunden sind, stellt einen —im Vergleich zur Ausgangssituation we-
sentlich regudreren— effektiven Zustandsraum dar, der die interessierenden Prozesse zu beschreiben
gestattet. Insbesondererkien, da die dynamisch relevanten Avoided Crossings diskret liegen, Funk-
tionenujm(A) unde; m(A) konstruiert werden, distetigin A sind. Zu beachten ist, dass diese Kon-

(1.42)



1.2 Erweiterung der Floquet-Theorie auf Pulse 17

struktion von der Wahl des Pfadkér) ableingt, das heif3t, zum Beispiel, von der Flankensteilheit der
Pulsenveloppe.

1.2.3 Bewegungsgleichung in der Floquet-Darstellung

Das Ziel ist nun die Formulierung einer Bewegungsgleichung in der Floquet—Darstellufand-

sam modulierte,fast periodische* Systeme, das sind Systeme, deren Hamilton—Operator in der Form
H(A(t),t) geschrieben werden kann, so dad8\,t) fur festgehaltenes strikt periodischH (A(t),t)

aber im Allgemeinen nicht periodisch igt.steht dabeidi Parameter, digvon auf3en” zeitlich modu-

liert werden lohnen. Ein Beispiel idtl (A(t),t) = Ho+A(t)D cosut, hier stehi(t) fur die Einhillende

der Laserlichtfeldstike. Damit die Floquet—Darstellung eine physikalische Bedeutung hat Nttliss

auf einer Zeitskala variieren, die langsam gegen die Periadgelist. Der AusdruckBewegungs-
gleichung in der Floquet-Darstellung” bedeutet, dass der SystemzuBtanth der Floquet—Basis

zum momentanen Wert des Paramelemir Zeitt entwickelt wird (siehe1.9)) und eine Gleichung

fur die Entwicklungskoeffizientem; gesucht wird. Wie sich zeigen wird, ist diese Gleichung ge-
schlossendsbar, und somit kann der Zeitentwicklungsoperator in geschlossener Form angegeben
werden. Die Motivation, eine Bewegungsgleichung in der Floquet—Darstellung aufzustellen, liegt
darin, dass genau dieser Zeitentwicklungsoperator in Kapitel 2 zur Herleitung der reduzierten Dyna-
mik des offenen Systems gebraucht wird.

Es liegt zurichst nahe, davon auszugehen, dass der Parakfgteine kontinuierliche Kurve im
Parameterraum durchift. Die Zeitentwicklung vor bis zur Zeitt + dt setzt sich zusammen aus
zwei Komponenten: Der schnelle Anteil, bestimmt durch die explizite periodische Zaitglgikeéit
von H(A,t), ist bereits in der Floquet-Basis absorbiert, und die Koeffizieafén (1.9) werden da-
durch nicht veandert. Der langsame Anteil ist bedingt durch die Zeigaigjigkeit der Basis. Liegtim
Intervall [A(t),A(t+dt)] kein dynamisch relevantes Avoided Crossing, dann kommt der Adiabatensatz
zur Anwendung, und bei der Parametervariation X nachA(t 4+ dt) bleiben die Koeffizientem,
erhalten. Beim Durchgang durch ein Avoided Crossing hingegesseri die Koeffizienten geeignet
transformiert werden.

Dieser Ansatzuhrt jedoch nicht sehr weit. Die Entscheidung, ob im Interfl), A(t + At)] ein
dynamisch relevantes Avoided Crossing liegt, kann in der Regel nur mit Hilfe numerischer Verfahren
gefdllt werden. Dazu m$sen zumindest die Floquet—Indizes und —Funktionen an den Stéllen
undA(t + At) berechnet werden. Weiterhin muss, zur Anwendung o, A(t 4+ At) <A(t) hinrei-
chend klein sein, so dass insgesamt Floquet—Bagevidle Werte vor\ berechnet werden ussen.
Dabei stellt sich aber sofort ein Kapaggproblem: Die numerische Berechnung der Floquet—Basis
fur ein N-dimensionales Systenuifeinen Wertvon A erfordert dieN—malige Integration eineN—
komponentigen Differentialgleichungoér mindestens eine Periofiaind die Diagonalisierung einer
N x N—Matrix. Mit der Rechenleistung und dem Speicherplatz gegetigeir Rechner érinten also
auf diese Weise nuwad3erst einfache und kleine Systeme behandelt werden.

Andererseits: Die Abbildung, die die Expansionskoeffizierdgmn Gleichung (.9) beziglich
einer Floguet-Basis zum Paramedein die Koeffizienten beazdlich A’ zum gleichen Zeitpunkt t
transformiert, ist einfach eine lineare Abbildung, die nur wor\’ undt abhéingt. Wie im Folgen-
den gezeigt wird,dsst sie sich explizit angegeben. Der Ausdruck gilt exakefidliche Differenzen
A <\ und hngt nicht davon ab, ob irgendwelche Avoided Crossings auf dem Weg zwikalnaah
A’ liegen. Nichts liegt aher, als anstelle einer kontinuierlichen Parametervariation den Parameter
wahrend endlicher Zeitintervalle als konstant zu betrachten und zwischen diesen Intervallen sprung-
haft zuandern.

Eine Rechtfertigung dieses Ansatzes wird in Abbilddntygezeigt. Das untere Diagramm zeigt
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Abbildung 1.1
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Oben: Kontinuierliche und gtkweise konstante Enveloppe. Unten: Das resultierende
Signal. Siehe auch Gleichung.43

die Funktion
E(t) = A(t) sinux, (1.43)

wobei die gestrichelte Linie der EinhéndenA(t) = sir?(Tt/tp) mit t, = 11(21/w) und die durchge-
zogene Linie einer atkweise konstanten Approximation dieser Kurve entspricht. Der Unterschied
zwischen den beiden KurvenrfE(t) liegt weit unter der experimentellen Unsicherheit bei dexp@r”
ration solcher Laserpulse. Modellvorhersagen sollten davon niclainglein. Es ist wohl auchuig

zu fragen, welche der beiden Kurven physikalisch realistischer ist.

Die Approximation in Abbildungl.1 oben wurde so geafilt, dad die Sprige vonA(t) an den
Nullstellen von sinut erfolgen. Damit ist die Kurv&(t) stetig.

Allgemein soll der Hamilton—Operatéi (t,A) folgende Voraussetzungen @lt€n:
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I. Fur festgehaltenen Parameteiist H periodisch in der ZeitH (t,A\) = H(t + Ty,A) fur alle
t € R. Die PeriodeT, darf vonA abléngen.

Il. Der Parameteh ist eine stickweise konstante Funktion der Zeit. Sie ist beschrieben durch
eine Folge von Sprungstellen, s,,... und Wertem\1,A,, ..., so dass

At)=Ay furtels,_1,s[, v=12... (1.44)

lll. An den Sprungstellens, ist H(t,A(t)) stetig als Funktion vont, das heif3t
H(Ay,s) =H(Av+1,S). Weiterhin sollen die Geltungsbereicfsg 1,s,[ etwas ausgedehnt
werden lohnen, so dass sigbéerlappen:H(Ay,s, + 1) ~ H(Ay11,S + T) fur Zeitent, die
der Zeitskala des zeitlichen Coarse—Graining entsprechen, das mit der MagfmrdNg
verbunden ist (siehe Abschnit3.3. Die Parameterschritt®, <A, 1 dirfen also nicht zu
drastisch und die Intervalls,_1,s,[ nicht zu kurz sein.

Zu jedem Wert vorh, gelort nun eine orthonormale Fquuet—Ba(aix;)j mit Floquet—lndizes(s‘j’)j.
Hier wie im Folgenden atilt der Indexj die einzelnen Basisvektorenawiend der Index die ver-
schiedenen Werte des Paramelgraummeriert. Es ist nicht notwendig, de&#sunds‘j’+l beziehungs-

weiseu; und u‘j’+1 in irgendeiner Weise benachbart sind oder adiabatisch auseinander hervorgehen.
Die Gleichung 1.9)) lautet nun ausgeschrieben

W) = 3 aj(t) exple Tl U 1) furt e s8] (1.45)
J

Aus der Stetigkeitsbedingung

lim w(t) = ¥(s)) (1.46)
folgt
a(sy) = ZQ&,- (tli/‘n;, a; (t)) (1.47)
mit
Qij = exp{ih(€¥+l<:>8Y)Sv} (U (sy) [ (S))m - (1.48)

Die Losung der Scludinger—Gleichung zur Anfangsbedingutg zur Zeits; ist also gegeben durch
(1.495 mit

a)(%0) = exp( 1 £1%0) (UH(5) | Wolu (1.49)

Innerhalb der Zeitintervallgs,_1,s,[ sind die Koeffizienter, (t) konstant, beinuberschreiten der In-
tervallgrenzen transformieren sie sich gdfrder Rekursionsformel @7). In diesem Sinne istl(47)

die zu Anfang dieses Abschnittes gawsthte Bewegungsgleichung. Die zeitliche Entwicklung fast
periodischer Systeme wird dadurch exakt —das heifdt, nicht perturbativ— erfasst, und zwar auf eine
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derartubersichtliche Weise, dass bawte Methoden der Theorie offener Quantensysteme verwen-
det werden &ihnen, um solche Systeme an eine dissipative Umgebung anzukoppeln. Dazu mehr im
Kapitel 2.

Das hier beschriebendreppenstufen—Verfahrenasst sich ohne weiteres auch numerisch imple-
mentieren. Zur Berechnung der Matriz@{jj werden nur die Fquuet—Indize# und die Skalarpro-
dukte der Floquet—Funktionen jeweils zu den Zeitpunisigloerotigt, siehe {.48).

Zeitentwicklungsoperator

Das obige Ergebnisabst sich auch mit Hilfe des Zeitentwicklungsoperatd(s, sp) formulieren. Er
ist definiert durch

h2U(Ls) = HEAD)U(LS),  Ulsoso) =1 (1.50)

und seine Floguet—Darstellung lautet
U(t,s0) = Zexp{@i—s\'mt} W) R (ut(sp)] (1.51)
) i k k J J : ’
J’

Hierbei istv(t) derjenige Indew, fur den giltt € [s,_1,S,[. Die Matrix R’ ist das Matrixprodukt
R =Q Q" 2...QY furv>2 (1.52)

und Rﬁj =& exp(iﬁsjlso). Die MatrizenQ" undR" sind unitr. Die explizite Darstellung des Zeitent-
wicklungsoperatordl (t,tg) furt > to lautet

- %exp{ﬁ—sk()ﬂrhs o} lu® (1)) S0V (W (t0)| (1.53)
I

mit den uniBiren Matrizen
v v v’ T v—1~Vv—2 v’ - /
gV R (R ) —QlQU2...Q"  furv>v (1.54)
undS’V =1.

Anwendung und Test

Schliellich soll anhand eines numerischen Beispiels gezeigt werden, dass die auf diese Weise berech-
nete Dynamik mit dem, was man durch direkte Integration der dglihgér—Gleichung
<ioW/ot = H(t,A(t))W mit einer kontinuierlichen Parametervariatid(t) erhélt, mit grof3er Genau-
igkeit Ubereinstimmt. Abbildund..2 zeigt die Wellenfunktion eines Morse—Oszillators, der durch
einen Laserpuls angeregt wird:
p? -
H(t,A(t) = 2—u+D(1<:>e B2 1A (t)gexcoswt (1.55)

A = AmacSir? %. (1.56)
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Die dabei verwendeten Parameter sind in der Tabelle 3.1 auf Se#afgelistet, wo dieses System
zustzlich mit Dissipation untersucht wird. Im Gegensatz 2129 ist hier die Ladungseinheit als
herausgezogen. Der Morse—Oszillator mit diesen Parametern beschreibt die Vibrationsdynamik eines
HF—(Flussaure—)Molekils. Die obere Hlfte von Abbildungl.2 zeigt die Besetzungswahrschein-
lichkeitenP(0 — n) = |(n|W(t))|? der untersten sieben Energieeigenandt|0),... ,|6), die untere
Halfte die Phasen afgn|W(t))). Durch optimierte Pulsparameterghge und Strke des Laserpul-
ses) wird zum Beispiel eine selektive Anregung desftEn Energieeigenzustandes erzielt, wenn der
Oszillator vorher im Grundzustand was3, 54, 55, 56, 64, 39]. Die x—Symbole markieren das Er-
gebnis der direkten Integration der Sotiiiger—Gleichung mit kontinuierlicher Pulsenveloppe, die
durchgezogenen Linien das des auf der Floquet—Darstellung basierenden Verfahrens, das eine Trep-
penstufenapproximation der Pulsenveloppe verwendet. Die zeitliche Breite der Stdfen ist

Der hier durchgefhirte Vergleich &5st sich nairlich automatisieren. Er ist dann ein scharfer Test
fur das fehlerfreie Funktionieren der numerischen Routinen. In der im Zusammenhang mit der vorlie-
genden Dissertation erstellten Simulationssoftware wird dieser Test detgenén vollséhdigen Satz
von Anfangsbedingungen immer im Anschluss an die Berechnung einer Floquet—Basis dimthgef”
Er gewahrleistet die korrekte Berechnung und programminternedeptation der Floquet—Basis.



Periodisch getriebene Systeme
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Test des in diesem Abschnitt vorgestellten Floquet—Verfahrens mit Treppenstufen—
Pulsenveloppe.x: direkte Integration der zeitatiingigen Schivdinger—Gleichung mit
kontinuierlicher Pulsenveloppe. Durchgezogene Linien: Floquet—\Verfahren.



Offene Quantensysteme

Im Kontext der offenen Quantensysteme interessiert man sialtié Dynamik eines Systen$, das
an eine Umgebun§, gekoppelt ist.S, agiert als ein Reservoir von Energie oder anderen extensiven
Grof3en, die das Syste® aufgrund der Wechselwirkung nf® abgeben oder aufnehmen karg.
ist so grof3, dass sein Zustand sich durch die Wechselwirkun@micht merklichandert. Fr die
Variablen vonS,; sind geschlossene Bewegungsgleichungen gesucht, die den Effekt der Umgebung
in statistischer Weise becksichtigen. S, wird wahlweise als offenes, reduziertes oder dissipatives
System bezeichnet. In dieser Arbeit soll vorausgesetzt werden, das$ sichthermodynamischen
Gleichgewicht in einer kanonischen Verteilung befindet. Die vorgestellten Konzepte und Methoden
lassen sich aber auch auf andere Umgebungszdstverallgemeinerr6)].

Eine Theorie offener Quantensysteme folgt in den Abschn2t@und 2.3, Zuvor werden in
Abschnitt 2.1 die wichtigsten mathematischen Begriffe und Methoden im Zusammenhang mit der
stochastischen Wellenfunktionsmethode zusammengestellt.

2.1 Markov—Prozesse im Hilbert—Raum

Zweck dieses Abschnitts ist die Festlegung einiger Begriffe und der Notation. Das Vorgehen richtet
sich nach der mathematischen Standardlitergi6yg7, 40]. Die Motivation ist, dass hierin durch

die relative Neuheit und die Entstehungsgeschichte der stochastischen Wellenfunktionsmethode trotz
ihrer weiten Verbreitung in der Literatur noch ein gewisses Defizit best@&tit4,15,16,17,35,19,689].

2.1.1 Integrationstheorie

Die stochastische Wellenfunktionsmethode benutzt Ensembles von Wellenfunktionen. Dies impliziert
den Begriff von Erwartungswerten und von Wahrscheinlichkeitsverteilungen im komplexen separa-
blen Hilbert-Raum(H , (-|-)). Der Erwartungswert einer Funktidn: H — R ist

E[f] = / fP’(df):/f(qJ) P(dy). 2.1)
H

f(H)
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Gleichung 2.1) soll im Folgenden edltert werden. Das Integral ist dasbesgue—IntegralDamit

es wohldefiniert ist, muss die Funktidnmessbarsein, das heil3t, Urbilder messbarer Mengen sind
messbar. Der Begriff der Messbarkeit impliziert, dass im Definitions- und im Zielraum der Funktion
f jeweilso—Algebrenfestgelegt sind. Eine—Algebra ist eine nichtleere Teilmenge der Potenzmenge
des Grundraums, die unter der Komplementbildung ablimEiren Vereinigungen und Schnitten ab-
geschlossen ist. In topologischerauriien, insbesondere alsokh und in R, gibt es immer eine
Borelscheog—Algebra das ist die kleinste-Algebra, die alle offenen Mengen eath”H und in

R sind sogar metrisched@ime, und ihre BorelschemAlgebren werden durch die offenen Kugeln
erzeugt.

Ein Mal3 Pist einec—additive Abbildung, die jeder Menge einerAlgebra eine positive reelle
Zahl zuordnet. EitwWahrscheinlichkeitsmait normiert, so dass der ganze Raum den Wert 1 zugeord-
net bekommt. Ein wichtiges Beispialiféin Wahrscheinlichkeitsmal ist das Dirac—-Mgf-), das an
der Stelley konzentriert ist:

_J 1 yeB
6w(B)_{ 0 sonst VB. (2.2)

B steht dabeidi Mengen aus der—Algebra. Das MalF’ im mittleren Term von 2.1) ist ein Maf3
in R, integriert wirduber die Bildmengd (H ) € R. P’ ist das BildmaR vor, und es giltP'(dx) =
P(f~(dx)). Die Ausdrickedy undd f stehen symbolischuf infinitesimale Elemente der jeweiligen
o-Algebra.

Um konkrete Wahrscheinlichkeitsmaf3e anzugeben, werdebidiftenbenutzt. Die Dichte des
WahrscheinlichkeitsmaRé&sbeziglich deso—endlichen Mal3egist eine messbhare reellwertige Funk-
tion p, so dass

P(B) = / POOH(dY)  VB. 2.3)
B

In der physikalischen Literatur nennt man das ReferenzmaithVolumenelement

Im R" wird die Verbindung zunRiemann-Integratlurch die Auszeichnung eines besonderen
Males, desebesgue—MalRes hergestellt. Es ist definiert auf der BorelsclerAlgebra und erdlit
inshesondere ([ag, by] x -+ x [an, bn]) = }_1(bj <4a;). Gewchnlich schreibt man einfactix =
dx - --dx, anstelle vor\(dx). Fr fastuberall stetige Integranden mit abgeschlossenemgdrrérge-
ben das Lebesgue—Integral mit dem Lebesgue—Mal’ und das Riemann—Integral denselben Wert.

2.1.2 Kinematik: Wahrscheinlichkeitsverteilungen im projektiven Hilbert—-Raum

Zusammenhang mit dem Dichteoperator

Zugelassen ist die Klasse der Wahrscheinlichkeitsverteilugarelche die folgenden beiden Bedin-
gungen erdllen:

I. Der zuP getorende Kovarianzoperatgp : H — H , definiert durch

(@lpelez) = [ (@) (Wlex) P(AW)  Vauqz € H @4)
H

existiert und endllt die Bedingungen, die an einen Dichteoperator gestellt werden.
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IIl. P ist phasenunalaimgig und auf der Obesfthe der Einheitskuged= {p e H | |ly|> = 1}
lokalisiert:

= P(eXB) VBeB,x eR,
P(B) =P(BNYS VB € B. (2.5)
Hier wie im Folgenden stelfid fur die Borelsch@—AlgebrauberH . Die Bedingung Il bedeutet, dass
manP mit einer Wahrscheinlichkeitsverteilung im projektiven Hilbert—-Raum identifizieren kann.

Zu jedem selbstadjungierten OperaforH — H lasst sich nun die stetige Funktiép: H — R
definieren,

fa(W) = (WIAJY). (2.6)

Damit gilt die folgende Gleichung, welche die zentrale Aussage dieses Abschnitidt:enth”

Tr (App) = [ faW) P(AY). (2.7)
H

Auf der rechten Seite vorR(7) steht demwahrscheinlichkeitstheoretische Erwartungsw@tl), der
also gleich denguantenmechanischen Erwartungswer{App) der ObservableA ist.

Verteilungen, die die Bedingungen | und Il eli€n, sowie die Gleichung(7) finden sich bereits
in den Referenzer6P, 70,71, 72], der physikalische Kontext ist dort jedoch ein anderer als hier.

Existenz

Dapp bereits per Konstruktion positiv und selbstadjungiert ist, ist die erste Bediraguigalent zur
Normierung

Trop = [ W2 P(dy) =L (2.8)
H

Die zweite Bedingung ist keine wesentliche Einseikting. Ist eine Verteilun® gegeben, die die
Bedingung I, aber nicht die Bedingung Il eli; so lasst sich die Phaseninvarianz erreichen durch

2n
B(8) = [ dxP(B). (2.9)
0

und die zugebrigen Kovarianzoperatoren sind gleighy = Pg: Im Prinzip kann man dann daraus
auch eine Verteilung konstruieren, die auf der Einheitskugel@wdrdl Tokalisiert ist und die wiederum
den gleichen Kovarianzoperator hatobhite man mit nicht normierten Wellenfunktiongrarbeiten,
ist es jedoch praktischer, die Definitio2.4) zu ersetzen durch

(olprle = [ LB pay)  voecH (2.10)
H
und @.6) durch
() = WA (2.11)

(W)
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Ein Beispiel fir eine Verteilung, welche die Bedingungen | und Iluditf“ist die phaseninvariante
(0]
Versiongy (B) des Dirac-Malze<2(2),

(o]

21
dy (B) = %T/dx 8y (e¥B) (2.12)
0

mit |W|? = 1. Alle Verteilungen, die im Rahmen dieser Arbeit eine Rolle spielen, werden als normierte
Linearkombinationen von solchen phaseninvarianten Dirac—Maf3en darstellbar sein, dieugigf”
von Dichten und damit eines Referenzmali&olumenelementes”) ist nicht notwendig.

Gelegentlich wird die folgende Notationtzlich sein:

() =5y(B), T () =3y (B). (2.13)

1g(-) ist die Indikatorfunktion der MengB.

Varianzen

Es sei ausdrcklich betont, dass die Vorgabe eines Dichteoperggprausammen mit den Bedingun-

gen | und Il die Verteilung? nicht eindeutig festlegt. Dies ist ein Ausdruck der Tatsache, dass die

VerteilungP mehr Information entalt als der Dichteoperat@p. Ein Beispiel dafif ist das Folgende.
Die quantenstatistische Varianz einer ObservaBlenird mit Hilfe des Dichteoperatongs definiert

als

Var (A) = (A%), <(A)5 = Tr(A%p) <(TrAp)>. (2.14)
Mit Hilfe der Gleichungen Z.6) und @.7) lasst sich dies auch schreiben als
Var(A) = E[fp] ©E[fal%. (2.15)

Die quantenmechanische Varianz \v&im reinen Zustandp ist

(DAY (W) = (WIAZ|Y) (WIAID)? = Tre (W) STR(W). (2.16)
Der Mittelwert von(AA)?() tiber das Ensemble, das durch die Verteilérigeschrieben wird, ist
Vary (A) = E[fe <12 = / (BAYZ(W) P(dy). (2.17)
H

Eine entsprechende Gleichung ohne den dritten Term, das Integral, findet sich bei Gisin und Perci-
val [36, 73], und von Wiseman74] wurde diese Gol3e im Zusammenhang mit der stochastischen
Dynamik eines kontinuierlich beobachteten Lasers betrachtet.

Die tbliche stochastische Varianz der Zufallsvariabfgrist

Vary(A) = Var(fa) = E[f2] ©E[fa)?, (2.18)
und damit gilt die bemerkenswerte Aussags, [6]:

Var(A) = Vary(A) + Var(A). (2.19)
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Somit lsst sich die quantenstatistische Varianz(¥arin zwei Beitréige zerlegen: VafA) mildt die

mittlere Abweichung des Ensembles von Eigerandén vonA. Var(A) ist 0, wenn alle Wellen-
funktionen, die mit nichtverschwindender Wahrscheinlichkeit im Ensemble vorhanden sind, Eigen-
zustinde vonA sind. Vap(A) mif3t die Streuung des Ensembles. X&) ist 0, wenn alle Re@Sen-

tanten des Ensembles im gleichen reinen Zustand sind, der nicht notwendigerweise ein Eigenzustand
von A zu sein braucht.

Bemerkenswert daran ist, dass diese Zerlegung nur durch diehsimj des Konzepts der Wahr-
scheinlichkeitsverteilungen im Hilbert—Raunogiich wird. Alleine mit dem Dichteoperator lassen
sich Vag (A) und Vak(A) gar nicht definieren. Eine interessante Anwendung findet sich zum Bei-
spiel in einem (speziellen) dynamischen Model ién quantenmechanischen Messprozégs Die
beiden Varianzanteile VafA) und Vap(A) als Funktionen der Zeit verfolgen délbergang von quan-
tenmechanischer zu klassischer Wahrscheinlichketlirerid der Messung einer Observahiefv 6.

Die Ensemble-Varianz Vattritt auch auf im Zusammenhang mit stochastischen Simulationen (siehe
Kapitel 3). Der Standardfehler des Mittelwerts der Simulationsergebnisse ist nichts weiter als der
Schatzer fir Var, dividiert durch die Wurzel des Stichprobenumfangs] |

2.1.3 Dynamik: Markov—Prozesse im Hilbert—-Raum

Ein stochastischer Prozess ist eine Menge von Zufallsvarig#t)),_; mit einer Indexmengé C
R. Im Folgenden isf = [0,|. Ein Markov—Prozess ist ein stochastischer Prozess, der die folgende
Eigenschaft erllt:

P[W(t) € B|W(ty),...,¥(th)] = P[W(t) € B|¥(t,)] VBeB (2.20)

fur alle endlichen Mengen von Zeitpunktén, ... .ta} mitt > t, > ty_1,...,t3. In Worten heif3t dies,
dass alle Informatiomiber das Verhalten des Prozesses in der Zukunft bereits in dem gatigew”
Zustand enthalten und die Vergangenheédrgessen® ist.

Ubergangswahrscheinlichkeiten

Ein Markov—Prozess ist voliatidig charakterisiert durch eine Anfangsverteilung, also die Verteilung
von Wy, und dieUbergangswahrscheinlichkelt(B,t | W,ty), eine Funktion der Zeitvariablen> to,
vony € H undB € B, die die folgenden Bedingungen elf [40]:

1. Rir feste Werte vorty undt ist T ein Markov—Kern.

2. Rir allety, @, Bist T(B,to|W,tg) = Lg(W) (val. (2.13).

3. Hirt >tgist
E[Us() [W(to) = W] = T(B,t[W,to). (2.21)
Ein Markov—Kernist eine AbbildungK : B x H — [0, ], die im ersten Argument ein Wahrschein-
lichkeitsmald und im zweiten Argument messbar @[ Die gemal’ der Vorschrift

E[1s®] =K(B,W) VBeB (2.22)

definierte Abbildung einer Zufallsvariab¥e auf eine andere Zufallsvariabie entspricht der Faltung
mit dem KernK. Ein trivialer Spezialfall ist deDiracsche Kern Igjac(B, ) = 8y(B), die Faltung
mit dem Diracschen Kern entspricht einfach der Idetg#bbildung.

Gemdl3 BedingungB ist T(B,t|,tp) die Wahrscheinlichkeit, das#(t) in der MengeB liegt,
wennW¥(ty) den Werty angenommen hat. Somit legtdie Verteilung von¥(t) bei Kenntnis des
Wertes vori(tp) fest.
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Chapman-Kolmogorov-Gleichung

Ubergangswahrscheinlichkeiten lassen sich hintereinanderschalterbBigangswahrscheinlich-
keit vonty nacht muf gleich sein der Summe allébergangswahrscheinlichkeiten, die vgriber
eine beliebige Zwischensteltg to < t' <t, nacht fuhren. Dies wird ausgedckt in der Chapman-
Kolmogorov—Gleichung

T(B,t[Y,to) =/T(B,t|¢,t’)T(d¢,t’|w,to) W't <t/ <t (2.23)
H

Differentielle Formulierung: Halbgruppen und Generatoren

Besonders elegant und —wie sich im Absch@i® noch zeigen wird— utzlich ist die differentielle
Formulierung der Dynamik von Markov—Prozessen, das heil3t in Form einer Differentialgleichung in
der Zeit. DieUbergangswahrscheinlichkeiten eignen sich selbst nicht zu einer differentiellen Formu-
lierung, da man die Struktur eines Banach—-Raumsfign um ableiten zu érinen,Ubergangswahr-
scheinlichkeiten aber noch nicht einmal zu einem Vektorraum gemacht wendeerk " Man bedient
sich daher des Banach—Raunfkg$ ), das ist die Menge aller reellwertigen besafitten messbaren
Funktionenf : H — R.

Eine zursichst sehr anschaulicheadgflichkeit besteht darin, die Dichten vdbbergangswahr-
scheinlichkeiten zu betrachteidd]. Als Funktion des Zielzustands ist die Dichte vaitiB,t|y,t)
ein Element vorF (H ). Da Wahrscheinlichkeitsdichten normiert seimsgén, sind Differentialglei-
chungen tir sie immer unter der Nebenbedingung asdfi, dass die Norm erhalten bleibt.

Ein etwas abstrakterer Weg beruht auf der Feststellung, dass die Kenntnis des Erwartungswertes
E[f(W)]furallef € F(H ) gleichbedeutend mit der Kenntnis der gesamten Verteilungiist. Man
definiert die AbbildungQy,; : F(H ) — F(H ) furt > to durch B0]

(Qut F)(W) =E[f(¥(1))[¥(to) = Y. (2.24)

(Qut F)(W) ist der bedingte Erwartungswert vdnzur Zeitt, gegeben die Anfangsbedinguggzur
Zeitty. Aus .21 folgt auch

(Queh)¥) = [ 1O)T (.t 0.t (2.25)
H

und daher ist die Kenntnis va@,; aquivalent zur Kenntnis ddsbergangswahrscheinlichkeit. Die
Chapman—Kolmogorov—Gleichung.23 kann man nuraduivalent mit Hilfe dieser Abbildungen for-
mulieren:

Qe Qrrt = Quort- (2.26)

Die Ubergangswahrscheinlichkéit(B,t | ,to) bildet eine Anfangsbedingung zur Zgjtauf eine
Verteilung zum spteren Zeitpunkt ab. Die AbbildungQ,: hingegen bildet eine Funktion, deren
Erwartungswert zur Zeit man wissen will, auf eine Funktion, die als Argument die Anfangsbedin-
gung zur fuheren Zeitgy hat, ab. In diesem Sinne wirkt vorwarts undQ riickwérts in der Zeit. Die
gewahlte Reihenfolge der Zeitindizes ist konsistent mitaldichen Konvention, dass Verpfungen
von Abbildungen von rechts nach links ausgewertet werden.



2.1 Markov—Prozesse im Hilbert—Raum 29

Wenn dieUbergangswahrscheinlichkeiten zeittranslationsinvariant sind, also nur ¥onesty
abrengen, dann kann ma@; = Q schreiben, die Chapman—Kolmogorov—Gleichung nimmt die
Form

QoQr = Qo41, o,TeRy (2.27)

an und die Abbildunge; bilden eine Halbgruppe. Der Generator dieser Halbgruppe ist die Ablei-
tung vonQ; an der Stella =0,
Qrel

G=Ilim . (2.28)
™o T

Genauer gesagt hat man die Grenzwertgleichung

1
I'mH— feof GfH:O 2.29
im |7 (@fef)e (2.29)
zu betrachten. Der Definitionsbereich vBnist die Teilmenge vork(H ), fur die diese Gleichung
erflllt werden kann.

Im Folgenden bertigen wir die Verallgemeinerung des Begriff des Generators auf den nicht zeit-
translationsinvarianten Fall,

. <1
Gy, = 3@0%‘0*70. (2.30)
Grundsitzlich kann man nicht zeittranslationsinvariatitbergangswahrscheinlichkeiten immer zu-
rickfiihren auf den zeittranslationsinvarianten Fall, dadurch, dass man den Zustandbraiin
ZustindenW auf den Rauntd x J mit Zusginden(W,tp) erweitert. Um die Notatiombersichtlich zu
halten, wird die Ablahgigkeit vonty aber im Folgenden wie ir2(30 explizit und getrennt von der
Zustandsvariable notiert.

Kolmogorov—R “uckw arts— und Kolmogorov—Vorw  arts—Gleichung

Die Spezifikation des Generato® genigt, um den Prozess eindeutig festzulegen. Die Abbildung
Q,t genugt rémlich den folgenden Differentialgleichungen

%Qto,t — QuG (2.31)
%Qm _ Gy Que (2.32)

mit der Anfangsbedingun@,, = 1. Der Beweis erfolgt einfach durch Benutzung der Definiti-
on (2.30 und der Chapman—Kolmogorov—Gleichurgg26). Die Gleichung 2.31) heil3t Kolmogorov—
Vorwarts—Gleichung,4.32 heil3t Kolmogorov—Rcékwarts—Gleichung.  Im zeittranslationsinvarian-
ten Fall reduzieren sich die Gleichungen3?) und .32 auf [40]

d
EQT =GQ = QG Q=1 (2-33)

Mit (2.25 kann man die Kolmogorov-Rkwérts—Gleichung auchuf die Ubergangswahrschein-
lichkeit T formulieren,
d

%T(Ba”watO) :<:>Gt0T(Bat|ant0)' (234)
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Der GeneratoG, : F(H ) — F(H ) wirkt auf die —Abhéngigkeit vonT .
Wenn die Ubergangswahrscheinlichkeit eine Dichpé beaiglich eines Volumenelementp
(vgl. Abschnitt2.1.7) hat,

T(dot|W,to) = p' (9.t W,t) do (2.35)
und auBerdem die z@; beaiglich des Skalarprodukt§f|9)g ) = [y f(@)9(¢) de Adjungierte G/

existiert, ergibt sich au®(31) die Kolmogorov-Vonveits—Gleichungui p’ [79]

d
a pT ((pat | llJatO) = GIT pT ((pat | llJatO)' (236)

G/ wirkt auf die g-Abhéangigkeit vonp' .

Die Attribute ,Rickwarts” und, Vorwarts* stammen daher, dass 136 bei festgehaltener An-
fangsbedingungp die Zeitentwicklung nach vorarts betrachtet wird, alirend 2.34) bei festgehal-
tener Endbedingung das Verhalten vbin Richtung Vergangenheit festschreibt.

In Anwendungen in der physikalischen Literatur ist die Kolmogorov—\atg+Gleichung sehr
beliebt, weil sie den anschaulichsten Zugang zur differentiellen Formulierung von Markov—Prozessen
bietet. Wir betrachten nun drei wichtige Beispiele.

Deterministische Prozesse

Die deterministische zeitliche Entwicklung eines Systemsajegminer Gleichung der Form

B2 p(t) = HOW (2.37)

lasst sich auch als deterministischer Markov-Prozess auffassen. Ziel dieses Abschnitts ist die Herlei-
tung des Generatof3. Dazu definieren wir zuechst einen Operat@b(t, to)

D(t,to) = exp(ﬁL(:to)H(toO . (2.38)

Ist Y(t) die Lésung von 2.37) zur Anfangsbedingungyg zur Zeitty, dann gilt
W(t) = D(t,to)Wo + O ((t &to)?) . (2.39)
d(t,tp) erzeugt diddbergangswahrscheinlichkeit
T(B,t{W,to) = Ng(D(t,to)W) = Byt )0 (B)- (2.40)

Auf der rechten Seite stehen zwei alternative Schreibweiserdds Dirac—Maf3 auf dem Punkt
®(t,to)W. Durch Einsetzen vor2(40) in (2.25 erhélt manQy ¢,

(Qut H) (W) = f(®(t,to)y)  VF. (2.41)
Der Generator des deterministischen Markov—Prozesses ist somit, nach Gleizladhg (

@5 0w =) ()|, == . 2.42)
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Hierbei istf'(Yo) : H — H die Ableitung vonf an der Stella}y, also die lineare Abbildung, die
f(W) = f(Wo) + f'(Wo) (W =Wo) + O((W Wo)?) (2.43)

erfllt. Der IndexL fur Gto hat seinen Namen daher, dass die Kolmogorov—¥soiswGleichung
(2.36) mit GtL nichts anderes als die Liouville—Gleichungr fden von der Sclidinger—Gleichung
(2.37) erzeugten Fluss is7f].

In der hier gegebenen Darstellung ist der Zustandsraum des Prozesses der VeHltbrralige-
meiner ist naiilich auch eine Formulierung auf differenzierbaren Mannigfaltigkeiteyliafi. Der
GeneratorG ist dann gerade dasjenige Vektorfeld, das den Fluss der deterministischen Bewegung
erzeugt #0,80].

Sprungprozesse

Markovsche Sprungprozesse sind dadurch charakterisiert, dadbetigangswahrscheinlichkeit das
folgende Kurzzeitverhalten hat:

T(B,to+T|W,tp) = (1T (P))dy(B) + 1M (W)K(B, ). (2.44)

Hierbei istK ein Markov—Kern, das heiBK (B, ) ist messbar als Funktion vap und eine Wahr-
scheinlichkeitsmald als Funktion v@ I" heilt die totale Sprungrate und ist eine FunkfiorH —
R} . Die Gleichung 2.44) besagt, dass bei gegebenem Anfangszustanach der Zeitr mit der
Wahrscheinlichkeit 31l () immer noch der Zustang vorliegt, dass also kein Sprung stattgefun-
den hat, vehrend mit der komplemeartén Wahrscheinlichkeitl” (@) ein Sprung stattgefunden hat,
dessen Sprungziel gafiK verteilt ist. Durch Einsetzen vor244) in (2.25 erhélt man

(Quto+t (W) = (W) et (P {/f K(dd, ) @f(w)} +0(1?) vi. (2.45)

und somit den Generator des Sprungprozesses

(G f)(W) =T ( { @/f K (dd, ) } 3 (2.46)

Oft schreibt man den Generator auch in der symmetrischeren Form

/f W(do,p) = f(@)W(dd,w)  VF. (2.47)

mit der Sprungrat&V(B,y) = I'(Y)K(B, ), wobei man die Normierund K(d¢, ) = 1 benutzt.
Die Kolmogorov—\Vorvaits—Gleichung 2.36 mit Generatoren der Forn2{47 heildt auch Master-
gleichung B1,82].

Diffusionsprozesse

Der Generator eines deterministischen Markov—Prozesses ist ein Differentialoperator erster Ordnung
(siehe Gleichun@.42). Eine weitere wichtige Klasse von Markov—Prozessen wird erzeugt von Gene-
ratoren, die Differentialoperatoren zweiter Ordnung sind. Die allgemeine Form ist

1

(Gef)(W) = f' (W) (AW)) + 5

1 (6) (BW)) (2.49)
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Analog .43 ist f”(y) die zweite Ableitung, eine bilineare Abbilduld x H — H. Das Vek-
torfeld A bestimmt den Driftterm, der 2-TensBrden Diffusionsterm. Die Kolmogorov—\Vomvts—
Gleichung 2.36) mit einem Generator der Forra.48 heil3t Fokker—Planck—Gleichung. Man beach-
te, dass in der AdjungiertefGP)" der Drift-Term mit einem Minus—\Vorzeichen ausgestattet ist. Der
Grund daiir ist die bei der Umformung auftretende partielle Integration.

Diffusionsprozesseddinen als Grenzfall von Sprungprozessen aufgefal3t werden. DenBegnz”
gang beinhaltet die Annahme, dass die Sprungweiten klein sind und die Sprungraten hinreichend glatt
von Anfangs— und Zielzustand adofigen 79, 81, 83, 8]. Damit kdnnen aus einem mikroskopischen
Modell Ausdricke fir A undB hergeleitet werden.

Stlickweise deterministische Sprungprozesse

Markov—Prozesse, deren Generator die Summe aus dem Generator eines deterministischen und eines
Sprungprozesses ist, nennt manckiveise deterministische Sprungprozesse. Die Realisierungen
weisen Sprungstellen auf, zwischen denen sie sich deterministisch entwickeln. Die Kolmogorov—
Vorwarts—Gleichung2.36) fur solche Prozesse heifdt Liouville—Master—Gleichurg.[ Sie spielen

eine wichtige Rolle bei der Beschreibung offener Quantensysteme.

2.2 Offene Quantensysteme

Wir betrachten zwei QuantensysteiBeund S,, denen jeweils die Hilbert-&imeH; und H, zuge-
ordnet sind. Der Hilbert—-Raum des zusammengesetzten Systems ist der Produktraum

H = Hy®H,. (2.49)

Sind (@n)n=01,.. und (¢o)a=0,1,.. Basen vorH; und Hy, dann ist(¢h ® ¢a)na=01,.. €ine Basis von

H . Es sei daran erinnert, dass im Gegensatz hierzu in der klassischen Mechanik der Phasenraum
des zusammengesetzten System das kartesische Produkt der &lmasete? Konstituenten ist. Auf
diesem Unterschied beruhen solghgisch quantenmechanischen“d@lomene wie zum Beispiel die
Muoglichkeit von versclarikten Einstein—Podolsky—Rosen—zumstén 84].

2.2.1 Reduzierter Dichteoperator

Der historisch erste Zugang zu offenen Quantensystem beruht auf dem Konzept des reduzierten Dich-
teoperators. Die Komposition zweier unkorrelierter Quantensysteme, deren Zustand durch die Dich-
teoperatoretp, undp, beschrieben ist, erfolgt einfach durch

pP=pP1®P2, (2.50)

die Reduktion via
p1=Try,p. (2.51)

Reduktion bedeutet, dass man sich nur nachdbservablen interessiert, die sich ausschliel3lich auf
das Systen§, beziehen, und insbesondere auch Korrelationen zwis&hemd S, vernachéissigt.
Zur Herleitung geschlossener Gleichungen dén reduzierten Dichteoperator gibt es verschiede-
ne N&herungstechniker2[1]. Die prominenteste Alierung dieser Art ist die Markov-alérung.
Zusammen mit einigen weiteren Annahmenadrimian damit die sogenannte Quantenmasterglei-
chung §,5,6,7,85,86].
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2.2.2 Komposition und Reduktion von Verteilungen

Sind fir die Systemé; und S, jeweils Wahrscheinlichkeitsverteilungé€h und P, definiert und sind

die beiden Systeme (zu einem gewissen Zeitpunkt, zum Beispiel vor Beginn der Wechselwirkung)
statistisch unaldmgig, dann bedeutet das, dass die Wahrscheinlichkeitsvertdduad, @ P, des
zusammengesetzten Systems auf der Untermengélvaier Produktzustride konzentriert ist, und

sie hat die Form18]

PB) = [ [1eWiow) PuduPsldyy)  VBEB. (2.52)

HiHp

Das Hauptziel des gesamten hier vorgestellten Formalismus der Wahrscheinlichkeitsverteilungen im
Hilbert—-Raum ist die Herleitung eines stochastischen Prozessetefi’ Zustandp; des reduzier-

ten Systems aus einem mikroskopischen Modelldds Gesamtsystem. Hierzu wird eine Vorschrift
berotigt, wie aus dem Zustand des Gesamtsystems durch eine Art Projektion eine Wahrscheinlich-
keitsverteilung @if das reduzierte System zu ermitteln ist. Den Verteilungen entspricht jeweils ein
Dichteoperator, und die Reduktionsvorschrift muss egtich sein mit der Reduktion2(51) des
Dichteoperators18]. Dies wird im folgenden Schema angedeutet:

Wahrscheinlichkeitsverteilung Dichteoperatopp fur das

Gleichung 2.4

fur das Gesamtsystem Gesamtsystem
Reduktionsvorschrift Pp, = Tr2{pp}
Wahrscheinlichkeitsverteilung Gleichung 2.4) Dichteoperatopp, fur das
P, fur das reduzierte System reduzierte System

Eine Maglichkeit hierzu besteht darin, eine vollstiige orthonormale Basi$q)q—o,1,... des Hilbert—
RaumsH, der Umgebung festzulegen. Ist das Gesamtsystem im reinen Zugtard , kann das
reduzierte System durch ein Gemisch der folgenden normiertealestieschrieben werden

% =Wa(W) %{a | W)2. (2.53)

Hierbei ist(:|-), das Skalarprodukt ikl , und|| - ||1 ist die Norm inH ;1. Der Zustand(q (W) € H 1 ist
in dem Gemisch mit dem Gewicht

Xa (W) =

Wa (B) = [[(da | W)2]I3 (2.54)

vertreten. Die WahrscheinlichkeitsverteiluRgin H 1, die dieses Gemisch beschreibt, schreibt sich

PY(B) = Wa(W)Ts(Xa (W)- (2.55)
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Ist der Zustand des Gesamtsystems selbst durch eine Wahrscheinlichkeitsveeldlaaghrieben,
dann ergibt sicti?, durch die Mittelung vorP;IJ tberP,

Pu(B) = [ (3 (W) ke (W) ) P(AW) 256)
A a

Die Reduktionsvorschrift ist der konzeptuelle Kern der Beschreibung offener Quantensysteme mit
Hilfe von Wahrscheinlichkeitsverteilungen im Hilbert-Raum. Zwei wichtige Punkte sollten an die-
ser Stelle enahnt werden: Erstens, die reduzierte Verteilbagnthalt keine Information mehuber
Korrelationen zwischen reduziertem System und Umgebung. Darauf werde ich am Ende des Ab-
schnitts2.3.2zurickkommen. Zweitens, das Resulatin (2.56) hangt von der Wahl der Basi$q)
ab. Dies kann, zumindest im quantenoptischen Grenzfall —der auf 3edtefiniert wird— und @it
eine Umgebung der Temperaflr= 0, im Sinne einer vollstidigen orthogonalen Messung des Um-
gebungszustands verstanden werdg®). [ Die Wahl der Basig¢q) wird dann durch den Typ des
Detektors bestimmt. Allgemein kann man vermuten, dass die richtige Wahl der Basis durch physika-
lische Eigenschaften der Umgebung bestimmt wird.

Entscheidend ist, dass der auf dem Wéegr die reduzierte Verteilung; gewonnene reduzierte
Dichteoperator in jedem Fall nicht von der Wahl der Bdgig) abléngt, dass also das obige Dia-
gramm kommutiert.

2.3 Herleitung des stochastischen Prozesses

2.3.1 Das mikroskopische Modell

Im Folgenden betrachten wir ein gebundenes Quantensystem, zum Beispiel ein Atom odet NMolek ™
einemaul3eren Laserfeld. Das Laserfeld ist makroskopisch und wird klassisch, das heil3t als komplexer
Skalar, beschrieber87, 88,89]. Der Hamilton—Operator ist also

Hi(t) = Hm +HL(t), (2.57)

wobeiHy der Hamilton—Operator des freien Molé& undH, (t) die Wechselwirkung des Molelks
mit dem Laserfeld beinhaltet. In der Dipalnérung gilt

HL(t) = <0eD- EL(t) (2.58)

mit dem DipoloperatoD, der Ladungseinheie und der elektrischen Feldske E, (t) des Laser-
puIses.EL(t) kann zum Beispiel ein amplitudenmodulierter, nahezu monochromatischer Puls wie in
Abbildung 1.1, aber auch ein gechirpter, das heif3t frequenzmodulierter Puls sein. Auf jeden Fall soll
Hy. (t) die Voraussetzungemrf'die Anwendung des Floquet-Bildes, die in Abschhit. 3aufgestellt
wurden, ertillen.

Der Hamilton—OperatoH; (t) reprasentiert das Syste®, das an eine Umgeburfg, namlich
an die quantisierten Moden des elektromagnetischen Feldes in einem Hohlraum, gekoppelt ist. Der
Hamilton—Operator vois; ist [4]

1
_ f b
H, = Z hooy <bR,XbR,X + 2> . (2.59)
KA
Hier ist das Strahlungsfeld zerlegt in die Fourier—Moden eines Hohlraums mit periodischen Rand-
bedingungen und des Volumels Die Moden sind indiziert durch den Wellenvektiorund zwei
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jeweils dazu senkrechte Polarisationsvektoke®ie Dispersionsrelation sei, = c/k| mit der Licht-
geschwindigkeit. Die Feldoperatoren gehorchen der Vertauschungsregel

b5 bl | =355

k,)\, k’,)\’ )\}‘\/ . (2.60)

Die Energieeigenzuatide vorH, sind orthonormalisierte Fock—Zastde, die im Folgenden durdly
bezeichnet werden. Zu jedem Wert des Indegelort ein vollseindiger Satz von Besetzungszahlen
N zu allen Werten volik undA,

ba = |(NE)is)- (2.61)

Die dazugebienden Eigenenergien sind

1
Ea =Y hox (I\% + 5) ) (2.62)
kA ’

Der Operator, der die Wechselwirkung zwischen Materie und elektromagnetischem Feld beschreibt,
lautet in Dipolraherung

H, = «g.D-E. (2.63)

Hierbei istE der Operator des quantisierten elektrischen Feldes impSitgér—Bild,
= o Zm(ﬂ( g .1. —»*
E= % = (bm)\ bl A ) : (2.64)

Damit nimmt schlieRlich der Hamilton—Operator, der das Gesamtsystem beschreibt, das aus dem
lasergetriebenen Molekzusammen mit dem elektromagnetischem Feld besteht, die folgende Form
an:

H(t) = Hai(t) +H +Hz = Hy-+HL(t) +H 4+ Hoa. (2.65)

Der vonH (t) erzeugte Zeitentwicklungsoperatd(t, ty) ist definiert durch

iﬁ%U (tto) =HMU(t,t),  Ulto,to) = 1. (2.66)

Wechselwirkungsbild. Der Wechselwirkungsterm, (t,to) im Wechselwirkungsbild begjlich
Hi (t) + Ha ist definiert durch

Hi(t,to) = Uj (t,to)U5 (t,to) Hi Us(t, to) Uz(t, o). (2.67)
Hierbei istU;(t,tg) der Zeitentwicklungsoperator des freien Strahlungsfelds,
Us(t,tg) = exp{@;—i(t @tO)HZ} (2.68)
undU4 (t,tp) der Zeitentwicklungsoperator des Molg&im Laserfeld,
ih%Ul(t,tO) = Hj (t)U1(t,tp), Ui (to,tp) = 1. (2.69)

Die explizite Darstellung volJ; (t,tg) im Floquet-Bild ist in Gleichungl(53 gegeben.
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2.3.2 Exakte Dynamik des reduzierten Systems

Ziel dieses Abschnittes ist die Herleitung eines exakten Ausdruskdié¢ Dynamik des reduzierten
Systems, das heif3tfdie Ubergangswahrscheinlichkeit(-,t|Ws,1p). Die Vorgehensweise entspricht
der in den Referenzei®,[10] und ist in folgendem Schema angedeutet:

Zeittg Zeitt =tp+1
exakte uniére
Gesamtsystem mit der ML Gesamtsystem mit der
VerteilungP = &y, ® P, VerteilungPoU (t,tg) %
Komposition .52 Reduktion 2.56)
] ) stochastische ] )
Reduziertes System im Zustand Markovsche Dynamik Reduziertes System mit der
e VerteilungT (-, t|Ys,to)

Das Strahlungsfeld wird beschrieben durch eine statmrthermische Verteilung mit der Temperatur
T[8],

P2(B2) = pp 3¢B (B2)  VB2eBa. (2.70)
B

pg ist der BoItzmann—Fakth—lexp(<:>EB/kBT), Z ist die kanonische Zustandssumr%@B das pha-
seninvariante Dirac-Maf3 am Punjg, siehe 2.12), undB; ist die c—Algebra inH,.

Zur Zeitty seien die Freiheitsgrade des Malékund des Strahlungsfelds statistisch urzatdgfij.
Ist das MolekiT im Zustandy,, so ist die VerteilungP?; = dy,, und die Verteilung?, = P, ® P> des
Gesamtsystems lautet gafhder KompositionsformeR(52

21
d
Po(B) =3 pg/% By,exp,(B)  VBEB. (2.71)
F 0

Wahrend des Zeitraunity, t] entwickelt sich die Verteilung des Gesamtsystems als deterministischer
Prozess geafd der Schodinger—Gleichung zum Hamilton—Operatd(t). Die Verteilung des Zu-
stands des Gesamtsyste¥¥g) ist daher

R =P, o UT(t,t). (2.72)

Die reduzierte Verteilung vok; (t) ergibt sich dann aus der Reduktionsformzbg)

P € B =Tt to) = [ (T we(Wla,(xe(W) ) RGW. (273
H a
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Mit (2.72) lasst sict’ zugunsten voi, eliminieren,

(Bt W) = [ 3 WolU (t10)0) e, (Xa (UL 0)W)) ) Ry (2.74)
G a
Die Gewichtungsfaktoremwy sind (siehe 2.54))
Wo (U (t,to) W) = [[{gw [U (t,to) W) I3 (2.75)
und die Abbildungerxq : H — H; (siehe 2.53) lauten
Xa (U (t,t0) W) = Wa(U (t,t0)0) "7? (da | U (t, to) )2 (2.76)

SchlieBlich setzen wir2.71) in (2.74) ein, zerlegen in den diagonalen und den nebendiagonalen An-
teil,

T =Tq+ Thg, (2.77)
und erhalten90, 8]
0 —
Ta(Br.t[W1,t0) = W Pa Us, (Woa' “Laa W1), (2.78)
o
0 —
Tna(Br,t|W1,t0) = Waphp U, (Waé/zLaB P1). (2.79)
o7

Hierbei wurden die Operatordn,s : H 1 — H ; und die Zahlemw,g eingefihrt,

Lap(W1) = (da|U(t,to) Y1 @ bg)2, (2.80)
Weg = lLap(We)li, (2.81)

und es gilt
W 2Lap(W1) = Xa(U (t,t0) W1 @ dg). (2.82)

Das phaseninvariante Dirac—MaI%g () ist in Gleichung 2.13 definiert. Die Gleichunger2(77)—

(2.81) fur die Ubergangswahrscheinlichkeit sind exakt. Es wird allerdings vorausgesetzt, dass das
reduzierte System zu einer Zeit- to Uberhaupt durch eine Wahrscheinlichkeitsverteilunglirbe-
schrieben werden kann. Anders ausge#t, die Anwendung der Reduktionsformel vernichtet alle
Informationuber Korrelationen zwischen reduziertem System und Umgebung. Die Iteration der hier
dargestellten Prozedur entspricht also Boltzmanns Annahmemolekularen Chaogz. B. [91]).

Diese steht in enger Beziehung zu der sogenannten Marlahemiig, die im nun folgenden Ab-
schnitt diskutiert wird.

2.3.3 Elimination der Umgebungsvariablen

Ziel dieses Abschnittes ist, aus dem AusdrulB(), der in dieUbergangswahrscheinlichkeit ein-
geht, die Umgebungsvariablepy zu eliminieren, so dass die Berechnung \qg(ys) nur eine
Zeitentwicklung inH; impliziert. Alle Information uber die Umgebung steckt dann in den Para-
metern dieser Zeitentwicklung. Die Elimination erfolgt in Form einahirung, die den sogenannten
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gquantenoptischen Grenzfall voraussetzt. Damit bezeichnet man die folgende Relation zwischen drei
Zeitskalen fi]:

LR, WLTR (2.83)
Hierbei ist

e T, die Korrelationszeit der quantisierten Moden des Strahlungsfeldes im thermischen Gleich-
gewicht. Rir ein thermisches Strahlungsfeld liegtin der GoRenordnundi/keT ~ 10712/T

Ks [7].

e TR ist die Relaxationszeit des reduzierten Systems, das ist die Zeitskala, in der es sich einem
statioraren Gleichgewichtszustand ain@it. rgl ist von der GoRRenordnung der natichen
Linienbreite, also 108 s oder noch viel gilRer P2].

e Ty ist das Maximum der inversen Frequenzen der beteiligten atomaren oder molekiteren
gange, oder allgemeiner, der relevanten inversen Quasienergiedifferenzen. Eine typischer Wert
ist 1074 s.

Der in der Niherung erhaltene Ausdruckrfdie Ubergangswahrscheinlichkeit istilgjg fur Zeiten
T =t <ty die die Bedingung

> 1o, > v, T TR (2.84)

erfiillen. Die erste Bedingung erlaubt, die Markowe¢irung zu machen, mit der die Umgebungsva-
riablen eliminiert werden. Danach erlauben die zweite und die dritte Bedingung, aus dem Kurzzeit-
verhalten der so erhaltenéibergangswahrscheinlichkeit den Generator des stochastischen Prozesses
abzuleiten 18].

Es ist nitzlich, die nachfolgende Rechnung im Wechselwirkungsbildigati H, (t) + H, (siehe
Gleichungen Z.67) bis (2.69) zu machen. Der Zeitentwicklungsoperator im Wechselwirkungsbild
U (t,tp) bis zur zweiten Ordnung iH, ist

U (t,to) =1~ /dt H (t',to) (:)—/dt /dt”H. (t',to)H (1", tg). (2.85)
fo to

Es soll betont werden, dass dieser Ansatz eimeudtjsentwicklung begjlich der Wechselwirkung

zwischen reduziertem System und umgebendem Strahlungsfeld darstdliend die Wechselwir-

kung zwischen Moleld'und Laserfeld, das heif®t (t), exaktbehandelt wird. Durch Einsetzen von
(2.63 in (2.67) erkélt man

Hi (t,to) = deD(t,to) - E(t <o) (2.86)

mit dem Operator des elektrischen Feldes im Wechselwirkungsbild
E) = UJ(to+T,t) EUy(to+T,t0) (2.87)
_ Z 2O (g Rt ! e, (2.88)

und dem Dipoloperator im Wechselwirkungsbild

B(t,to) = U/ (t,t0) DU, (t,to). (2.89)
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Der Zeitentwicklungsoperatd; (t,tp) besitzt nun die folgende explizite Darstellung im Floquet—
Bild (siehe Abschnittl.2.3:

Ui(t,to) = Zexp{@l—s‘étnL
]

- i—s‘j’to} |uk (1)) (U (to) | (2.90)

: h
Zur Erinnerung:v = v(tp) ist der Index, der die zur Zefy anwendbare Floquet-Basis angiburF"
V(t) = v(tp) ergibt sich 2.90 unmittelbar aus Gleichundl.(63. (2.90 gilt aber auch, wenr(t) >
V(tp). Letzteres folgt aus der Bedinguhy, die an den zeitalgrigigen Parameta«t) des Laserfeldes
gestellt wurde (siehe Seites).

Durch Einsetzen von2(90 in (2.89 findet man eine mindestens im ZeitintervalE [0,t <to)
gultige Darstellung des Dipoloperators als Reihe von Exponentialfunktionen

Dlo+T,t) = 5 Al to) explin) = 3 A, (,to) exp(«icr)

= Y Alot)explion) + 5 A, (,to) exp(<ior). (2.91)
w>0 w>0
Die Symmetrie der Operatoren
A, (w o) = Aj($wto) (2.92)
folgt daraus, dasB(t,tg) selbstadjungiert ist. Ihre Darstellung ledich der Floquet—Basis ist
At)= 5 [umto)) (Ugm|DIU)E (U (to)]. (2.93)
(I km)ed (w)

Diese Darstellung ist oglich, weil sich die Fquuet—Funktional’f(t) aufgrund ihrer Periodizit'in
einer Fourier—Reihe entwickeln lassen. Zur Erinnerunly;, (t) = u)(t) exp(imw,t), siehe (.18
(-|-)e ist das Skalarprodukt im erweiterten Hilbert-Raum, sieha1j. Jy(w) ist die Menge aller
Indextripel(j,k, m), fur die gilt

Exm €] = hiw. (2.94)

Die Menge der Frequenzen, fur die J,(w) # 0, ist abahlbar und in der Regel dicht iR (siehe
Abschnitt1.1.3. WennJ,(w) # 0, dann enthlt J,(w) im Allgemeinen sogar mehrere Indextripel
(j,k,m). Eine entscheidende Einselmkung ist die Bedingung

(Um|DUf)F| >0 (2.95)

fur eind > 0. Nur wenn diese Ungleichungrfmindestens ein Indextripel iy (w) erflllt ist, ist der
OperatorAT (w,tp) Uberhaupt signifikant von Null verschieden. Insbesondere kann man erwarten, dass
die Fourieranteile des Dipolmatrixelements mit hoher Frequenz gegen Null gehen,

lim (ug,|D|W)g =0. (2.96)

m]—c0

Im Folgenden solQ}, , die Menge aller Frequenzan bezeichnen, Ui die J,(w) # 0 und die

Ungleichung 2.99 erfiillt sind. Die positiven Frequenzen @y, bestimmen die Peaks des vom
System emittierten Strahlungsspektrums.
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Die oben formulierte Bedingung> tu (vgl. Seite38) lasst sich nun konkretisieren: Zu einem
gegeben Padihq, $g) von Umgebungszuatiden gibt esdchstens eiw € Qraq, SO dass

Eg <Eq € [iwodE, hw+ 3E], (2.97)

wobeidE ~ /i/T die der Wechselwirkungszeitentsprechende Energieunade’ist und die Energi-

enEq und Eg in (2.62) definiert wurden. Das bedeutet, dass der Erzeugung oder Vernichtung eines

Photons im Strahlungsfeld eindeutig ein Opera#tgw, ty) zugeordnet werden kann. Wie sich zeigen
wird, entsprechen die Operatoréibergingen zwischen molekularen Zastlen. Liegen einige Fre-
quenzerwy,... ,wy € Qraq SO dicht zusammen, dass die BedinguR@7) nicht erfillt werden kann,
so kann man eventuell durch e@oarse GrainingAbhilfe schaffen. Dazu werden die Operatoren
geeignet zusammengefasst,

A= 5 A, (2.98)

e {631 n}

undw ist der Schwerpunkt der Frequenzen ... ,w,. Im Folgenden &itnen wir also davon ausge-
hen, dass die Bedingung.97) erflillt ist.

Die OperatorenZ.93 sind Eigenoperatoren des Floquet—Operakgrs- <id/ot + H (t,A,), das
heilt, sie haben die Eigenschaft

[F\;,A\t((}o,t)] = hwﬁ\t(w,t),
R, A@)] = Shol(wt). (2.99)

Das weitere Vorgehen bei der Elimination der Umgebungsvariablemlig @halog zu dem bei
zeitunablhgigen 8] beziehungsweise strikt periodischet0] System—Hamilton—Operatoren. Die
detaillierte Rechnung ist dort ausfflich dargestellt.

Driftterm.  Mit der Markov—Annahmer, < 1T und der Approximation des Spektrums des Strah-
lungsfeldes durch ein Kontinuum (siehe z. B)) [erhélt man im WechselwirkungsbilB[10]

Ta(Br,to+T|Wr,to) = {161y (Wr)} g, (LY 1 (1) + O(?). (2.100)
Hierbei istl'y, (Y1) die Rate
Mo(W) = > VON(@) (Wl Ay(w o) -A)(wto) )y, (2.101)
oerrad

y(w) ist die Zustandsdichte

21003
y(w) = 42‘;4; , (2.102)
N(w) die mittlere Photonenzahl
— [ (exphw/kgT) 1)L, furw>0
N(w) = { N(<w) +1, furw<0 (2.103)
undLy oy, ¢ H;, — H; die nichtlineare Abbildung
T T — "
Ll eo(W2) = (14 5Tu WD &5 5 WoN@ A (@) Alw)) g (2.104)

wEQrad
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Im Vergleich zu Gleichung2.78) ist in (2.100 die Phasenmittelung weggelassen, das he23t00
0]

enttelt die Indikatorfunktion 13, () anstelle vorillg, (-) in (2.78. Dies ist zuéissig wegen der Linea-
ritat vonLqg und der Phaseninvarianz der Anfangsbedinguig [
Der Vergleich von 2.100 mit Gleichung R.40) zeigt, dasSy —bis auf den Faktofl <1l (P1))—
die Ubergangswahrscheinlichkeit eines deterministischen Prozesses ist. Die Rolle des Propagations-
operators in2.40) spielt hierLy .., . Dieser Operator ist nichtlinear und ethdie Norm vonyy,

LY e (W) 17 = 1. (2.105)

Der Faktor k=1l (1) in Ty sorgt dafir, daf3 der Anteil voify an derUbergangswahrscheinlich-
keit T mit der Zeit abnimmt:

Ta(H1,to+T|W1,t0) = 1T (P1). (2.106)

Zu Beginn, fir t =~ 0, wird T also vonTy dominiert, wahrend {ir wachsendes der nebendiagonale
Anteil T,q eine immer goRere Rolle spielt.

Sprungterm.  Flr T,g erhélt man im Wechselwirkungsbild

Tod(B1,to+ T/ W1, to) = TW, (By, Y1) 4+ O(T?) (2.107)

mit

Wo(Brbn) = 5 V@N() [ d2(®) e Allwtow? e,

weQ

( 8- Al(w,to) i
|

= . 2.108
|é'A$(wato)llJ1H> ( )

rad

Der Vektorgist der Polarisationsvektor. Gleichun2y 108 setzt der Einfachheit halber voraus, ddss
reell ist. Wenn man zwischen rechts- und linkszirkular polarisierten Photonen unterscheiclete,m”
ist es praktisch, mit komplexen Polarisationsvektoren zu arbeigp [Dann muf3 in denjenigen
Summanden in.108, bei denerw < 0 ist, & durch&* ersetzt werdenl[0]. Das Integral mit dem
rotationsinvarianten MaR (&) erstreckt sichuber alle noglichen Polarisationsrichtungen. Das MalR3
erflillt die Normierungsbedingung

/ dQ(@) e'e; = 5. (2.109)
Es gilt die wichtige Beziehung

W, (H, Y1) =T (Wa). (2.110)

Dadurch wird, zusammen mi2 (107 und @.106), sichergestellt, dast = Ty + Tnq tatsichlich die
Normierungsbedingund (H 1,to + 1| Y1,t0) = 1 erfiillt. (2.110 lasst sich leicht direkt au®.(108
erhalten, wenn man die Normierun2y 109 des MaRRe$)(€) benicksichtigt.

Tha(B1,to + 1| W1,tp) ist die Wahrscheinlichkeit, dass das Systeahvend der Zeit vom Aus-
gangszustang; in einen Zustand in der Mend® springt. Rir 'y, (Y1) # 0 istW, (B1,W1) /T, (W1)
ein Markov—Kern. Er gibt die bedingte Wahrscheinlichkeitéinen Sprung nadB, an, gegeben dass
Uberhaupt ein Sprung stattfindet.



42 Offene Quantensysteme

Der Generator. Durch die Spezifikation detbergangswahrscheinlichkelt = Ty + T,q in den
Gleichungen Z.100 und @.107 ist der stochastische Prozess, der die Dynamik des reduzierten
Systems beschreibt, volistdig definiert. Eineaduivalente, etwas elegantere und kompaktere Be-
schreibung des Prozesses in differentieller Form gibt der Generator (siehe Ab&chi§tt Dazu
konstruieren wir zuachst die gemR der Gleichung2(25 zu T gelorende Halbgruppenabbildung
Q¢ : F(H) — F(H) im Wechselwirkungsbild

(Qipto+1 ) (W1) = {164 (WD)} (L (V1))

1ot Z, é'&(wato)%)
o, & AS(w,to) |

+ O(1?). (2.111)

21
VN [aa@ [ X e A0 f (é’x'
0

Die Halbgruppenabbildung im Satatingerbild ist

Qutf = Qi (foUil(t,to)) (2.112)

Diesen Zusammenhang macht man sich am einfachsten anhang.2dyk{ar. Durch Ableiten von
(2.112 nacht erkélt man sofort den Generatd.80 des stochastischen Prozesses

GHW) = 1w (pROu )
b [ FOW(, W) < (W) Wb, ) (2.113)
Hy

mit dem linearen, nicht—hermiteschen Operator

A = &3 Y ON@A@Y-Alw), (2114)

weQrad

v = v(t) ist der Index, der die zur Zettanwendbare Floguet—Basis angibt, siehe Absctnt3

Anhand des Generator8.{13 wird die Natur des stochastischen Prozesses am unmittelbarsten deut-
lich: Die erste Zeile entspricht offenbar dem Generator eines deterministischen Prozesses (vergleiche
(2.42), bei dem die einzelnen Realisierungen der deterministischen Gleichung

00 = (a0 + 5w ) ) (2.115)

gehorchen. Die zweite Zeile ist der Generator eines Sprungprozesses mit Spruvgiaien) (ver-
gleiche @.47). Insgesamt erzeugt der Genera@r1(3 einen stickweise deterministischen Sprung-
prozess.

Mit der Spezifikation des Generatoa 113 ist das Ziel dieses Kapitels, die Verallgemeinerung
der Theorie dissipativer Quantensysteme in starken Feldern vom strikt periodischetOFalif[den
fur Anwendungen wichtigen Fall modulierter Felder, insbesondere also auf Laserpulse, erreicht.
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2.4 Gleichung f"ur den Dichteoperator

Der reduzierte Dichteoperatqr; ist der Kovarianzoperator des stochastischen Prozesses, und die
Bewegungsgleichunguf'p, folgt aus @.7) und 2.113 [10]:

%pl(t) = %[Hl(t),pl(t)]‘F Z y(w)N(w) (2.116)
wEQrad

(AP0 020) &34, @OA @ 0P <50 0R (AN ).

X

Die Gleichung besitzt die Lindblad—Forr@4], somit sind Spur, Hermitizétt und Positiviét des Dich-
teoperators unter der Zeitentwicklung erhalten.
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Numerische Methoden

3.1 Stochastische Simulation

3.1.1 Schatzen von Erwartungswerten aus Stichproben

Ziel der stochastischen Simulation ist die Erzeugung einer Stichprobe von Realisierungen des sto-
chastischen Prozessi4t). Der Erwartungswert zur Zetteiner Funktionf, die aufH definiert
ist,

BIf]= [ fR@N= [ (W) PEw). (3.
f(H) H
wird dann durch den Seltzer

f =

R
Zlf(w“)(t)) (3.2)

Tl

bestimmt. Der Simulationsalgorithmus liefert eine ee@ritative Stichprobe von Realisierungen
p®, ..., p(R des Prozesses, wenn der Erwartungswéf]Eleich E[f] ist. Sind die Realisierun-
gen (zumindest atierungsweise) unaahgig, dann ist die SeltZzung konsistent. Ein bedeutender
Spezialfall ist die Funktion

fo 2 [W) = [W)(Y], (3.3)
denn ihr Erwartungswert ist gerade der Dichteoperator
E[fo] = p(t). (3.4)

Hat man auf diese Weise einen atterp fur den Dichteoperator bestimmt, dann kann der Erwar-
tungswert jeder beliebigen Observabkeria

A=Tr(Ap) (3.5)

bestimmt werden. Dies istquivalent dazu, den Erwartungswert \vulirekt mit Hilfe der Funktion
fa aus GleichungZ.6) zu sclatzen.
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3.1.2 Monte—Carlo—Methode

Die ndherungsweise numerische Auswertung hochdimensionaler Integrale wie auf der rechten Sei-
te von @.1) durch endliche Summen der AR.Q) wird oft unter dem Titel Monte—Carlo—Methode
geflihrt. Der wesentliche Punkt dabei ist, dass das in dem Integral auftretende Mal, beziehungsweise
seine Dichte, nicht explizit berechnet wird. Im Unterschied dazu beruht die naheliegende Methode zur
Auswertung niedrigdimensionaler Integrale auf einer hinreichend feinen Diskretisierung des Integra-
tionsbereiches und der Approximation durch eine endliche Riemann—-Summe. Ist jedoch der Integrati-
onsbereich sehr hochdimensional, dann ist solch eine antigié Abtastung des Integrationsbereich
nicht moglich. Hinter der Monte—Carlo—Methode steht die Idee, dass unter agtidfikeiten der
unvollstindigen Abtastung des Integrationsbereichs ein stochastisches Vorgehen besser ist als jedes
systematische. Die Monte—Carlo—Methode setzt nicht voraus, dass die zu berechne@deiGr”
wahrscheinlichkeitstheoretischer Erwartungswert ist: es kann irgendein Integralausdruck sein, der ei-
ne positiv definite, normierte Dichte involviert. Der Simulationsalgorithmus interpretiert diese Dichte
jedoch als eine Wahrscheinlichkeitsverteilung, génter die Stichproben realisiert werden. In der
Physik treten hochdimensionale Integrale, die Anwendung der Monte—Carlo—Methode nahelegen, vor
allem dann auf, wenaber alle noglichen Konfigurationen eines Systems odber alle noglichen
Pfade summiert werden soll.

Entscheidendui'den Nutzen der Monte—Carlo—Methode ist das Konvergenzverhalten. Ein Mal3
fur die statistische Unsicherheit der &ttung des Erwartungswerteg B mittels 3.2) ist die Varianz

Var(f) = %Var(f) = %(E[fz] SE[f]?). (3.6)
Der Ubersichtlichkeit halber wird der Zeitindexhier weggelassen. Ein Satzer fir Var( f) ergibt
sich aus der Stichprobenvarianz,

2 1 2

o = RRST er (fz(q;(”) @fz) . (3.7)

o heildt der Standardfehler des Mittelwerts. Er sinkt mit zunehmendem Stichprobenumfang, wenn
die Stichproben unalaimgig sind,
1
Of ~ \/ﬁ (3.8)
Auf diese Weise bestimmt die gemschte Genauigkeit des Simulationsresultats die erforderliche An-
zahl der Realisierungen.

Deterministische Verfahren sind, wenn sie duatitbar sind, immegbesser‘ als Monte—Carlo—
Verfahren in dem Sinne, dass die Genauigkeit ihrer Ergebnisse, die durch numerische Approxima-
tionen und durch die FlieRkommaangling des Prozessors bestimmt ist, in der Regel uofR&r-
ordnungen besser als der statistische Fehler des Monte—Carlo—Resultats ist. Entscheidend bei dieser
Aussage ist die Klauselwenn sie durchffirbar sind“. Die Durchihirbarkeit wird limitiert durch
Rechenzeit- und Speicherplatzbedarf. In Refer@&8k \yird dieserTrade—Offzwischen Durchihr-
barkeit und Genauigkeit am Beispiel des Vergleichs der stochastischen Wellenfunktionsmethode mit
der numerischen Integration der Dichtematrixgleichung genauer dargestellt. Das zentrale Resultat ist
enthalten in den Skalierungsgesetzen

Tome = kgNO*Y (3.9)
Tes = koNO. (3.10)
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Hierbei istTpye die CPU—Zeit it die Integration der Dichtematrixgleichung,unda sind Konstan-

ten, die von spezifischen Eigenschaften des Problems wie auch von der numerischen Implementation
abhengen. Tgis ist die CPU-Zeit @i die stochastische Simulation ukglist eine Konstante analog

zu kq, in die aber zuatzlich via @3.8) die gewinschte Genauigkeit eingeht.ist ein Parameter zwi-

schen 0 und 1, der von d&elf-AveragingEigenschaft 93] der untersuchten Observable ablyt.

N schlieBlich ist die SystemgRe, das heil3t die Anzahl der Variablen. Selbst wenn der Wert von

ko, zum Beispiel wegen geforderter hoher Genauigkeit, vieRgrals der volk; ist, ist die Monte—
Carlo—Methode i grof3e Systeme immer schneller, und der Unterschied der Rechenzeitawbkann ~

die Durchfihrbarkeit oder Nichtdurchfirbarkeit entscheiden. Eine analoges Resultat kann man auch
hinsichtlich des Speicherplatzbedarfs formulieren.

Die stochastische Wellenfunktionsmethode eignet sich nahezu igeBbfallelrechner mit ver-
teiltem Speicher, da die einzelnen Realisierungehigrunabléngig voneinander erzeugt werden.
Solange die Zahl der Realisierungerm@er ist als die der Prozessoren, skaliert®jeeed—Updas ist
das Verfaltnis der beatigten Realzeiten mit einem und mehreren Prozessoreahanmd linear mit
der Zahl der Prozessoren. Da aufRer dem Setzen der Startwerte Wwiskdenittlung des Endresultats
keine Kommunikation zwischen den verschiedenen Prozessoren notwendig ist, ist die Programmie-
rung solcheDistributed MemoryApplikationen kaum komplizierter als der entsprechende Code f*
einen Prozessor. So wurden zum Beispiel die Simulationen, die der Ref@@rmifrundeliegen,
wurden auf einem Cluster von 7 IBM RS/6000 Workstations mit Hilfe des MPI-Protokolls (Message
Passing Interface) parallel ausgletft.

3.1.3 Realisierungen des Prozesses und Wartezeit

Ausgangspunkt ist die folgende Integralgleichung@;
(QuiH)(W) = {1eFW,tto)Hf(MepW)
t
+ [ ds[{1F @9} 104 (QoMb(de. ) () (3.1

fo H

mit der Wartezeitverteilungsfunktion

t
F(y,t,t) = 1<exp (@/dsrs(vs,tow)> (3.12)
fo
und dem Zeitentwicklungsoperator des deterministischen Anteils
d i~ 1
th,tOUJ = @EH (t) + Ert MiW) ¢ Vil VoW =1. (3.13)

Durch Einsetzen pift man nach, dass die rechte Seite v8rL{) die L6sung der Kolmogorov—Vor-
wartsgleichung

d
aQ[O’t = Qut Gt (3.14)

zur Anfangsbedingun@;,, = 1 mit dem Generatd®; aus €.113 ist.
(3.11) entspricht der Gleichung (47) in Refereré4] und ist dort der Ausgangspunkurfdie
Pfadintegraldarstellung des stochastischen Prozesses. Mit Hilfe der PfadintegraldarsisBtusgi’
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beweisen, dass die Realisierungen des Prozesses, die durch den im Folgenden vorgestellten Algo-
rithmus erzeugt werden, taistilich eine re@Sentative Stichprobe darstellen. Die Realisierungen
—manchmal auch Trajektorien genannt— bestehen aus deterministischen Abschnitten und sind durch
Sprungstellen unterbrochen. aMend der deterministischen Abschnitte wgrt¥(t) der determini-
stischen Dynamik3.13), die Sptinge sind durch die Sprungraté (vgl. (2.47)) bestimmt. Durch

die Reihendarstellung der rechten Seite v8ri]) in Potenzen voiW bzw. eines mitW assoziier-

ten Entwicklungsparameters athiman die verschiedenen Beitjgé zuQ,, ¢, die von Trajektorien mit
0,1,2,... Springen herstammen. Der Beitrag der Trajektorie,ubierhaupt keinen Sprung eath”

hat nach Gleichung3(11) das Gewicht :=F (,t,tp). Betrachten wir den Prozess, der durch die An-
fangsbedingund(tg) = Y festgelegt ist, dann heil3t das, dass diejenige Trajektorie des stochastischen
Prozesses, die im Intervaly,t] keinen Sprung endit; mit der Wahrscheinlichkeit &F (,t,to)

realisiert ist.

Der Terminus,Sprung” suggeriert, dass sich die Trajektorien zwischen den einzelnendgor”
kontinuierlich gemaf der deterministischen Dynamik entwickeln. Im Prinzip jedoch kann die deter-
ministische Dynamik selbst auch Singulatéi und Spriige enthalterd, 80]. Im Zusammenhang
mit dissipativen Quantensystemen ist aber der deterministische Anteil an der Dynamik durch eine
der Schodinger—Gleichung@finliche Gleichung beschrieben und typischerweise stetig. Daher bleibt
fur die Zwecke dieser Arbeit der BegrifSprung” fiir die stochastischen Ereignisse, die durch die
SprungrateW bestimmt sind, reserviert.

Ein wesentlicher Begriffdi’ das Folgende ist die Wartezgit[95]. Betrachten wir wiederum die
Anfangsbedingund¥(to) = Y, so istt* der Zeitpunkt des ersten Sprunggsist eine Zufallsvariable.

In der mathematischen Literatur werden Zufallsvariablen dieser Art auch Stoppzeit, Optionszeit oder
Markov—Zeit genanntd6]. Aus dem Gesagten folgt, dass die Verteilungsfunktiontvaturch @.12
gegeben ist,

PIt" <t] =F(y,t,to). (3.15)

3.2 Simulationsalgorithmus

Die eben diskutierten Eigenschaften der WarteZeliilden die Grundlage des Simulationsalgorith-
mus. Er hat die folgende Struktur:

SeiLIJ(to) =.
Ziehe eine Zufallszahl, die Wartezgit gemald der Verteilungsfunktior3(12).

Bestimme i t € [to,t*] die LosungW¥(t) =V, , P der Differentialgleichung.119.
Ziehe ein Sprungziap* gemel der VerteilundSe (-, W(t*)) =W (-, W(t*)) /T (W(t¥)).

a & W NP

Gehe zu Schritt 1, mip < t* und < *.

Im Folgenden sollen dreidiié zunehmender Komplexzit diskutiert werden.
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3.2.1 Exponentielle Wartezeitverteilung

Im einfachsten Fall ist die Wartezeit exponentialvertdf\,t,to) = 1 <exp(<y(t ©tp)). Das ist
genau dann der Fall, wenn die Sprungrate zeituaagiy'ist, alsd s(V;, W) =y fur allet > to. Istn
eine im Intervall[0, 1] gleichverteilte Zufallszahl, so ergibt sithals L6sung der Gleichung

F(W,t"t) =n (3.16)

zu [82]
t*@t():(:)\—lllnr]. (3.17)

Typischerweised3t sich in solchen dtien auch eine geschlossene Formeldie deterministische
Propagation in Schritt 3 angeben. Insbesondere ist dies bei reinen Sprungprozessen der Fall, bei
denenViy, = 1 gilt. Der dominierende Anteil des Simulationsalgorithmus, sowohl was die algorith-
mische Komplexit wie auch den Rechenzeitbedarf betrifft, ist dann der Schritt 4. Wenm daf”
einfaches Verfahren wie die lineare SucBé][oder die Verwerfungsmethod®7] angemessen ist,

dann gengen im Prinzip zehn bis zwanzig Zeilen Programmcadeal&n gesamten Simulationsalgo-
rithmus. Der Schritt 4, die Auswahl des Sprungziels, wird in Abscint5genauer artert.

3.2.2 Multiexponentielle Wartezeitverteilung

Sind die Sprungraten zeitunabigig, dann lassen sie sich in der Form

W@@ngh(ﬁ%ﬂ. (3.18)

mit irgendwelchen linearen Operatorén darstellen. Das phaseninvariante Dirac—MI%g ist in
Gleichung 2.13 definiert. Dieser Fall tritt grundgZlich immer ein, wenn der Zustand der Umgebung
und die Wechselwirkung zwischen Umgebung und System nicht explizit von der Zaitgdxn18].
Der effektive Hamilton—Operator hat dann die Gestalt

ﬂ:H@%ZgAN. (3.19)

Auch die Sprungrater2(108 fur periodisch getriebene Systeme sind in der Floquet—Darstellung nicht
explizit zeitablahgig. Darauf werde ich in AbschnBt4.2ausfihrlicher eingehen.
Wenn die OperatoreA; Eigenoperatoren voH sind, das heil3t, wenn gilt

H,AT=haA,  [HA]=choA, (3.20)

dann gibt es eine Bas{$j));, in der simultan die Operatoreﬁ!)aA;r fur allei wie auchH diagonal sind,
d.h.H|j) = Ej|]) undAiAiT|j> = aji|j) mit reellen Eigenwertef;j undaj; > 0. Somit ist auct in
dieser Basis diagonal,

ih

Hl|j) = <Ej ®§Fj> [j)  mitlj = IZgiO(ji >0, (3.21)
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und man kann den Zeitentwicklungsoperator des deterministischen Teils explizit angelvetie F~
Wartezeitverteilung ergibt sich

F(W.tto) =1 [(j|lw)]*exp(<rj(t <o)). (3.22)
J

F ist stetig und es gilE (,to,t9) = 0, aber es kann passieren, dass mit endlicher Wahrscheinlichkeit
Uberhaupt kein Sprung mehr passiert, das heif3t,

lim F(,t.to) = L&, (3.23)

mit 0 < g < 1. Wennq > 0, spricht man von einer defekten Wartezeitverteiludfg.[Dies ist der Fall,
wenn r ein j mit (j|w) #0qilt; =0.

Defekte Wartezeitverteilungen lassen sich reparieren, wenn man den Wertebereithiwoten
Wertoo erweitert und- (), «,tp) = 1 setzt. Weil Gleichung3.16) mit der multiexpontiellen Verteilung
(3.22 nicht nacht* aufgebst werden kann, wirth numerisch bestimmt.

3.2.3 Allgemeine Wartezeitverteilungen

Wir betrachten nun also den Fall, dass dasurigW(t) = i, der deterministischen Dynamik nur
numerisch bestimmt werden kann und man keinen expliziten Ausdruck deB.28 ur die Warte-
zeitverteilungsfunktion findet.

Die Verteilungsfunktior (,t,to) als Funktion vort erflllt die folgenden Eigenschaften:

F(an '7t0) : [07 oo] — [07 1] (324)
F (w7t07t0) = 0 (325)
F(p,»,t) = 1 (3.26)

Der Werteo gelort zum Definitionsbereich volR, damit istF eine wohldefinierte Verteilungsfunktion,
auch wenn .23 mit g > 0 gilt. Die Funktion ist monoton wachsend und rechtsseitig stetig. Im
Allgemeinen ist sie nicht stetig und nicht surjektiv. Zum Ziehen einer Realisierung der Wattezeit
tritt daher an die Stelle vor8(16) die Vorschrift

t=min{t|F(y,t,to) > n} (3.27)
Da manuber keinen expliziten Ausdruckuf’F verfligt, werden zuachst die Schritte 2 und 3
(siehe S48) etwas abgewandelt:
2. Ziehe eine im Interval[0, 1] gleichverteilte Zufallszah).

3. BestimmeW(t) als Losung der Differentialgleichun@ (115, solange bis zur Zett* die End-
bedingung 8.27) erfullt ist.

Durch eine weitere Modifikation des Algorithmus vereinfacht sich seine praktische Implementie-
rung. Dies beruht auf den folgenden zwei Feststellungen:
1. IstW¥(t) die Losung der Differentialgleichung

— Q) = @%I—](t)@(t) (3.28)
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zur Anfangsbedingun§(to) = y, so gilt

VW =

(3.29)

$(t) ist nicht normiert,|¥(t)]| < 1.
2. Esist

F(Wtto) = 1| P(1))% (3.30)

|P(t)||? ist eine monoton fallende Funktion von

Der numerische Aufwand ist also deutlich geringer, wenn niam&hn Schritt 3 die unnormierte
Wellenfunktion LTJ('[) mit der linearen DifferentialgleichungB3 (28 anstelle der normierten Wellen-
funktion W(t) und der nichtlinearen Differentialgleichung.{15 und flir die Berechnung der Warte-
zeitverteilungsfunktion die Gleichun@.80 anstelle von3.12 verwendet.

Zur Ubersicht sei der Algorithmus, der in numerisch effizienter Weise die Simulation von Prozes-
sen mit allgemeinen Wartezeitverteilungen gestattet, noch einmal im Zusammenhang dargestellt:

1. SeiW(ty) = .
2. Ziehe eine im Intervall0, 1] gleichverteilte Zufallszaht).

3 BestimmeLTJ(t) als Losung der linearen Differentialgleichung.28), solange bis zur Zeit=t*
die Endbedingung

IP(t)]1> <n (3.31)
erfullt ist
4. Ziehe ein Sprungzie)* gemaR der Verteilung- (-, W(t*)), wobeiW(t*) = W(t*) /|| P (t*)]|.

5. Gehe zu Schritt 1, mip < t* und « P*.

Die Schitzung von Observablen gefd'8.2) aus Realisierungen des Prozesses wirdrfieh"aus
einer Stichprobe normierter Versionbtit) = W(t)/||W(t)|| der Wellenfunktion berechnet.

3.2.4 Deterministischer Anteil der Dynamik

Bei dem in AbschnitB.2.2diskutierten Typ von Prozessen stellt man die Wellenfunkfbmweck-
mé&Rigerweise in der Basis dar, diediagonalisiert.iy, = exp(<iH (t <tp)) lasst sich dann explizit
angeben. &f'reine Sprungprozesse (siehe AbscHhizt]) ist die deterministische Propagation trivial.

Im allgemeinen Fall aber (Abschni®2.3 muss die lineare Differentialgleichun@.28 nume-
risch integriert werden. Dazu gibt es ndich eine Rille von Bibliotheksroutinen (z. B9B,99]). Die
Integrationsroutine muss zum einen di@dlichkeit bieten, die Integration zu vorgegebenen Zeit-
punkten zu unterbrechen, um den Zustamddié sgitere Berechnung von Observablen zu speichern,
zum anderen atidig auf die Endbedingun@.Gl) testen.

Fur die Simulationen, die im Zusammenhang mit der vorliegenden Arbeit durdimgeforden
sind (siehe.3), wurdenrkgs und eine angepasste Version vareint  aus Numerical Recipe98§]
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verwendetodeint besitzt eine adaptive Schrittweitensteuerung, und die Endbedingusty \(ird

am Ende jedes Zeitschritts getestet. Sobald sigdleidt, wird als Sprungzeitpunkt das Ende des Zeit-
schritts gevahlt. Tatsichlich liegtt*, gemald Gleichung3.27), irgendwo innerhalb dieses Zeitschrit-
tes. Es ist also notwendig, sicherzustellen, dass der Fehler, den man dadurch machtaasigheahl”
klein ist. Um den Fehler absat¥en, nussen die folgenden Verteilungen verglichen werden:

W (Vo) ~ [ Tt 0,6WE (06, 0). (332)
H

Hierbei sindt; undt, Anfang und Ende des Zeitschrittg < t* <t,, undy ist der Zustand am Anfang.
Die linke Seite von3.32) ist die vom Simulationsalgorithmus erzeugte Verteilung des Systemzustands
am Ende des Zeitschritts. Die rechte Seite ist,gi@hre” Verteilung, bei der ein Sprung zur Z#it
stattfindet. Sie folgt aus der Chapman—Kolmogorov—Gleichung.

Wenn das Intervallt*,t] so

kurz ist, dass weitere Spnge Zeitt; Vi Zeitt* Vot
—auBer dem zur Zeit*— ver- -

nachBlssigt werden d&inen, dann Sprung\W- Sprungw,
lasst sich die Forderung nach

der Gleichheit der Verteilungen Vi t- Zeitt,

(3.32 etwas plakativer ausdcken:
Die deterministische Propagation
und der Sprung sollen, wie in dem Diagramm angedeutet, vertauschbar sein. Diat&baghdes
Fehlers geschieht zweclafdigerweise in einem Probelauf nach der Implementation des Simulations-
algorithmus auf einepneuen” stochastischen Prozess oder nach einer signifikanten Paeardeter”
rung. Hierzu vergleicht man nach jedem Sprung das SprungziellmEsdén mit,Simulatiof in
dem Schema markierten Weg erreicht wurde, mit Sprungzielen, die zu verschiedenen (eventuell aus-
gewdirfelten) Zwischenwertenber den mit,Ideal’ markierten Weg erreicht wurden. Berechnet wer-
den dann die maximale und die mittlere Abweichung. Wenn der Fehler innerhalb der Toleranzgrenze
liegt, kann dieser sehr rechenzeitintensive Kontrollmechanisomugid folgenden Simulationen ab-
geschaltet werden.

Bei der in AbschnitB.3vorgestellten Anwendung des Algorithmuartgt die Sprungverteilung
nicht explizit von der Zeit und inglatter* Weise vom Zustandh vor dem Sprung ab. Es zeigte sich,
dass der von der Schrittweitensteuerung der numerischen Integrationsroutine gelieferte Zeitschritt so
klein ist, dass der hier diskutierte Fehler in diesem Fallig Vernachéssigbar ist.

3.2.5 Sprung

Die allgemeine Form der Sprungverteilung ist

Ki(B.y) = le)vws, v) (3.33)
mit
W(B.Y) — ggimﬁa(%) (3.34)

(W) = W(H,p). (3.35)



3.3 Anwendung: Schwach getriebene dissipative Oszillatoren 53

I:(y) ist die Gesamtsprungrate uid(B,y) ist die Sprungrateuf’ einen Sprung vomp in einen
Zustand in der Ereignismend® K; ist ein Markov—Kern:K;(B, ) gibt die Wahrscheinlichkeitufi”
einen Sprung vow nachB an, gegeben, dasthérhaupt ein Sprung stattfindet.

Da die Verteilung 8.33 aus einer diskreten Summe von Dirac—Mal3en bestahst ISich ein
Algorithmus zur Generierung von entsprechend vertelifbergingen wie folgt formulieren:

1. Seiy der Zustand unmittelbar vor dem Sprungzeitpuirikt
2. Ziehe einen Index € | mit der Wahrscheinlichkeip; = g; (t*) /Te« ().

3. Setze

1AW

Wenn die Indexmengkklein ist, kann man den Index i mit dem Verfahren tieearen Such§o6]
ziehen. Pseudocodarfdie lineare Suche sieht aus wie folgt:

float x := rnd()
integer i := 0
while (x>p[i]) begin
X = x-p[i] Il p[i] =p
=i+l
endwhile
Hierbei stehtrnd() fur einen Zufallszahlengenerator, der Zufallszahlen aus der Gleichverteilung
auf[0,1] liefert [99]. Die einzelnen Wertgy; diirfen dabei nicht so klein sein, dass dierkling des
Zufallszahlengenerators eine Rolle spi&l®d@]. Wenn die Werte voip; ungegihr alle gleich grof3 sind,
dann eignet sich die Verwerfungsmetho8&|{

float mp := Maximum allerp;
integer ni := Anzahl der Elemente der Indexmenige
repeat
i .= floor(ni*rnd()) I/l floor() liefert die rchstkleinere ganze Zahl

until (rnd() < pl[il/mp)

Der Vorteil der Verwerfungsmethode gegier der linearen Suche ist, dass erstere auch dann effektiv
arbeitet, wenn die Anzahl der Elemente \@osehr grof3 ist. Allerdings sollte das Produkt \vmmpund
ni nicht viel gioRer als 1 sein. Eine Variation ist die Nullprozessmethd®€)[

Sowohl lineare Suche wie auch Verwerfungsmethode werden ineffizient, wenn die Indexmenge
gro3 und die Verteilung der Wahrscheinlichkeitpnsehr innomogen ist. Es gibt eine Reihe von
Verfahren, die auf einer Gruppierung deogtichen Spunge in logarithmischen Klasseh(1] oder
in Suchl@umen 02 103 basieren. Die Zeitersparnis bei der Suche wird allerdings durch einen
eventuell bew@chtlichen Zeitaufwand bei der Aktualisierung der entsprechenden Datenstrukturen er-
kauft [104].

3.3 Anwendung: Schwach getriebene dissipative Oszillatoren

In den ersten beiden Kapiteln wurde die dissipative Dynamik getriebener periodischer Systeme unter-
sucht. Die dabei verwendeten Methoden sind zum einen die Floquet-Darstellung und zum anderen
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die QuantenstochastikL$, 8,10]. In der Tat wurde letztere Methode unalnigig von der Floquet—
Darstellung entwickelt, und es gibt viele Anwendungen, die in der Energiedarstellung, walikchat™
wesentlich einfacher zu handhaben ist, formuliert werden. Die Verwendung der Energiedarstellung
ist angemessenf'schwach getrieben8ysteme. Namentlich geht im Grenzfall schwachen Antriebs
die Floquet-Darstellungber in die Energiedarstellung.

Im einfachsten Fall betrachtet man den Hamilton—Operator eines Teilchens der effektiven Masse
pim PotentiaV (x) unter dem Einfluss eines Laserpulses,

2
Hosz = g—u+V(X) (3.37)
H(t) = Hosz+GeDA(t)coswit. (3.38)

x und p sind die Operatoren des Ortes und des ImpulBdst der Dipoloperator unde die effektive
Ladung.A(t) ist die Einhillende des Laserpulses und hat die Dimension einer elektrischendfkédst”
Fur die in dieser Arbeit @Sentierten Simulationen wurde= x und

VAL

AmaxSin? <t—> : 0<t<tp
P

0, sonst

At) = (3.39)

verwendet. Diese Funktion besitzt zwei Parameter, die #gdslt, und die maximale Feldatke
Amax Aufgrund der experimentellen Unsicherheit bei deagaration von Laserpulsen ist die Wahl
des speziellen funktionalen Ausdruckds39 willk'urlich, und nur die ungetire Form der Enveloppe
und globale Parameter wie Puskje, -lohe, -fliche haben physikalische Bedeutung.

Die Wellenfunktion des Oszillators wird in der Energiedarstellung des Hamilton—Opekddgrs
des freien Oszillators regséntiert. Zwei Blle sind typisch: Erstens, das Spektrum ¥dy3, enthalt
eine endliche Zahl diskreter Eigenwerte sowie ein Kontinuum. Dies ist zum Beispiel beim Morse—
Oszillator der Fall, sieche Abschni&3.2 Dann muss die Dynamik auf den Unterraum der gebun-
denen Zusihde besclarikt sein und Dissoziation darf keine Rolle spielen. Zweitens, das Spektrum
ist ein unendliches diskretes Punktspektrum. Beispielehisifid der harmonische Oszillator, Ab-
schnitt3.3.1, und das unendliche Kastenpotential. Dann muss die Dynamik auf einen Unterraum,
der von einer endlichen Anzahl von Energieeigenfunktionen aufgespannt wird, d@gchigiben.
Sinngenal3 lassen sich im zweiten Fall die Betrachtungen von Abschditdtibertragen. Es ist also

N-1
W) = Zollin(t)ln% (3.40)

und der Hamilton—Operator ist durch die Oszillatoreigenenergift,s;|n) = E,, die Dipolmatrix-
elemente(n|D|m) und die Parameten, t,, Amax UndN vollstandig beschrieben.

Der dissipative Anteil der Dynamik ist durch eine Anzahl von Sprungoperatoren und dieoziageh”™
gen Ratenkoeffizienten bestimmt (siehe etwa Gleich@gg)). Er kann entweder aus einem mikro-
skopischen Modell hergeleitet odergstomenologisch postuliert werden. Die mikroskopische Herlei-
tung beticksichtigt im Fall schwach getriebener Systemeazinst nur die Wechselwirkung zwischen
dem ungestiten, zeitunabdrigigen System und seiner Umgebung. Der Antrieb wird danach einfach
zum koldrenten Teil der Dynamik hinzuaddiert. Dies entspricht einerudigsentwicklung, in der
der Antrieb nicht von bherer Ordnung als die Wechselwirkung zwischen System und Umgebung ist.
Fur den Fall, dass die Umgebung das elektromagnetische Strahlungsfeld ist, findet sich eine mikro-
skopische Herleitung in den Referenz&8,B]. Der Operator der Wechselwirkung zwischen System,
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einem Atom oder Molell; und Umgebung hat dann die Form
H =<gD-E (3.41)

mit dem DipoloperatoD und dem elektrischen Feldoperater Im Unterschied zu der mikrosko-
pischen Herleitung, die im Abschni&.3 durchgetihrt wird und die die Floquet—Darstellung be-
nutzt, ergeben sich hier die Sprungoperatoren aus einer Zerlegun wach EigenoperatoreA;
des System—Hamilton—Operators

D=SA+A"  [HoszAl] = hxAl. (3.42)

In der Zerlegungg.42) treten die Eigenoperatoren immer in Paaren wie in Gleich8rt)(auf, daD
selbstadjungiert ist, ahrend €ir alle nichttrivialen Eigenoperatore® # A;r gilt. Dem Eigenoperator
A;r ist die Energiedifferenzwy > 0 (siehe Gleichung3(20) zugeordnet, und er bewirkt Sprge, bei
denen der Energieerwartungswert nach dem Spruni@egréls vorher ist. Die zugehie Sprungrate
ist g" = y(wi)N(wy) mit der Zustandsdichtg(wy) und der thermischen Verteilurig(w) der Umge-
bung, siehe Gleichunge2.(02 und 2.103. Entsprechend geint'<fiwy zu A, und die Sprungrate
istg” = y(«<w)(N(<w) +1). Die resultierende Relation

9 _ pw/keT
o e’ (3.43)
gewdhrleistet unter gewissen Voraussetzungen, die Inhalt des Absclhitsind, dass das System
schlief3lich ins thermische Gleichgewicht relaxiert.

Grundsitzlich lassen sich mikroskopische Modelle augshAnhwendungen konstruieren, bei de-
nen nicht (nur) das elektromagnetische Strahlungsfeld, sondern auch die Wechselwirkung mit ande-
ren Molekilen per Stol3 oder mit anderen Freiheitsgraden desselben groZeruldakskUmgebung
behandelt wird (z. B.§6]). Im Folgenden wird jedoch einfach angenommen, dass die Sprungopera-
toren ebenfalls durch die Zerlegung des Dipoloperators in Eigenoperatoren de®uagesystem—
Hamilton—Operator$iys, bestimmt sind, und dasarfdie Sprungraten die Gleichung.43 gilt.

Spezielle Eigenoperatoren véhs, sind die Operatoren

Ajk = [1){K (3.44)

mit Indexpaaren,k € {0,... ,N <1}, die die Rolle des bisher verwendeten Indébernehmen. &
sie gilt

[Hosz,Ajk] = (Ej <:>Ek)Ajk- (345)

Wenn jeder Energiedifferenz im Spektrum eindeutig ein Indexpad) zugeordnet ist, wenn al-
so Ej ©E¢ = Ej ©E¢ genau dann wenfj,k) = (j’,k’), dann sindalle Eigenoperatoren von der
Form (3.44). Beim Morse—Oszillator, der im Abschni®t3.2diskutiert wird, ist dies typischerwei-
se der Fall. Sind die Energiedifferenzen hingegen entartet, dann sind auch entsprechende Linear-
kombinationen von Operatore.44) Eigenoperatoren. Ein wichtiges Beispiel ist der harmonische
Oszillator, bei dem die Energiedifferenzen aller benachbarteraddstgleich sind und bei dem der
Dipoloperator die Summe von nur zwei Eigenoperatoren, den Auf- und Absteigeoperatorda’,
ist.

Aus dem bisher Vorgebrachten ergibt sich, dass die Sprungoperatoren keine Eigenoperatoren des
WechselwirkungstermBA (t) coswy t mit dem Laser (siehe3(38) und daher auch keine des gesamten
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Abbildung 3.1

Eine Realisierung der stochastischen Wellenfunktion in der Ortsdarstellung des eindi-
mensionalen, getriebenen, dissipativen harmonischen Oszillators. Die Ortskoordinate
verlauft von unten Mitte nach rechts oben, die Zeitkoordinate von unten Mitte nach links
oben, aufgetragen ist der Betra(x,t)|? der Wellenfunktion.

System—Hamilton—Operatoks$(t) sind. Die Wartezeitverteilung ist dahgallgemein im Sinne von
Abschnitt3.2.3 und hinsichtlich der Simulation gilt das dort Gesagte.

Die Gleichung €ir den reduzierten Dichteoperator, die aus dem hier spezifizierten stochastischen



3.3 Anwendung: Schwach getriebene dissipative Oszillatoren 57

Abbildung 3.2

Eine weitere Realisierung, siehe Untertitel von Abbild3ng

Prozess folgt, (siehe Gleichung.{16 in Abschnitt2.4) lautet in der Energiedarstellungq]
dpik i iq
d—tj = & +(EeBdpi @f Z(Djlplk <Dikpji )A(t) cosuy t
1
+ O (Zgjlpll> &5+ TPk (3.46)

Hierbei sindE; die Eigenenergien voHlos; pjk = (j|P|K) die Matrixelemente des Dichteoperators



58 Numerische Methoden

undDjy = (j|D|k) die Matrixelemente des Dipoloperators bgich der Energiebasid.j = 3 gj;
schlieBlich ist die GesamtratarfUberginge weg vorj).

3.3.1 Harmonischer Oszillator

Die Motivation, den periodisch getriebenen harmonischen Oszillator zu betrachten, liegt in seiner
Einfachheit und, damit verbunden, in der Existenz analytiscbeuhgen. Diese werden dazu benutzt,

die numerischen Verfahren zu validieren, um sie danach auf anharmonische Oszillatoren anzuwenden.
Beispielsweise zeigt die Abbildung 3 die numerisch bestimmten Erwartungswerte von Orts— und
Impulsoperator als Funktion der Zeit im Vergleich zur analytischesunq. In den Abbildunge8.1
und3.2werden einzelne Realisierungen des stochastischen Prozesses illustriert.

3.3.2 Morse-0Oszillator

Das Konzept durch Laserpulse gesteuerter chemischer Reaktionen hat in den letzten Jaulgn betr”
liches Interesse erregt (siehe zum Beispldl). Als einfachstes Modell betrachtet man einen einzel-
nen molekularen Freiheitsgrad innerhalb einer elektronischen Potentialermetygeflir den Morse—
Oszillator gilt

V(x) = D(1<e )2, (3.47)

Bei geeigneter Wahl der Paramelr3 und p liefert der Morse—Oszillator ein readitSnahes Modell
der Vibrationsdynamik der lokalen O-H-Bindung im Wassermaledder der Bindung des H-F-—
Molekiils [53,54, 55, 56].

Bereits vor einigen Jahren wurde in der Literatur anhand der numeriscsemd der zeitalanigi-
gen Schodinger—Gleichung mit dem Hamilton—Operakbft) = Hy + H, (t) die Mdglichkeit der se-
lektiven Anregung ausgeatilter Energieeigenzwside vonHy durch entsprechend optimierte Pulse
berichtet [L05]. Die Betrachtung der Dynamik in der Floquet—Rageitation bietet eingbersichtli-
che Darstellung der involvierten Prozesse und Kriterigrdié optimalen Pulsparametdiq 56).

Die Hinzunahme dissipativer Prozesse zur Dynamik wird notwendig, wenn das betrachtete Mo-
lekdl in einen Festiiper oder eine kiSsigkeit eingebettet ist, oder wenn es eine groRe Anzahl weite-
rer Freiheitsgrade besitzt. Relaxation und Dephasierung haben dann einen signifikanten Einfluss auf
den Anregungsmechanismus. Im Unterschied zum reimdasttén Fall sinkt die optimal erzielbare
Selektivitt der Anregungl06, 64].

Das im Zusammenhang mit dieser Arbeit numerisch untersuchte M&®ikE nun spezifiziert
wie folgt: Die Energieeigenwerte der gebundenen &g sind (siehe Gleichund).28)

1\ W} (. 1)\? 2D 1
EJ—(DM(J+§>@E<J+§> furJ_O,l,...,[@@E]. (3.48)

Dabei istooy = /2DB?/pund X ist der ganzzahlige Anteil vor Die Dipolmatrixelement®; =
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Djk = (] |X©Xeq| k) berechnen sich am einfachsten mit Hilfe einer Rekursionsfor6ag! [

1(/3 .\ EB+Ii(j+1) (j+1*

B\\2 z
B 1 j+1 . .
Djj+1 = Bz52] 52) \/Z<:>j @1(2@21 &3)(ze2)el) (3.49)

(k>])

(j k) (ze] ckal) ¢ (k+1)(z=2k=3)
Djks1 (

K k¥1e))(zejeka2) | zekeal)(zakel)

Hierbei istz= 4D/(hwm) ein dimensionsloser Parameter. Die Sprungoperatoren sind schlief3lich
gegeben durch3(44), mit den Sprungraten

gik = YoD%N(Ej <Ey). (3.50)

Dem liegt der Einfachheit halber eine flache Zustandsdigfug = y, zugrunde.
Die Tabelle zeigt die Simu-
Tabelle 3.1 lationsparameter des Morse—
Oszillators und des Laserpul-
ses, die den Abbildungef.2

Reduzierte Massg 1744.805 my und 3.4 zugrundeliegen. my,
PotentialtiefeD 0.22509 hartree ist die Elektronenmasseqg,
Morse—Parametdy 1.1741 a5t die Elemenﬁlrladung, a =

. 5.29177-10 -+ m der Bohr—
Sife i Laelingse YEBEL) Gy Radius und 1 hartree entspricht
Laseramplitude\may 0.0431 hartreggeap) 435- 1018 J. Der Morse—
Laserfrequenzo 0.016489 hartreg/ Oszillator mit diesen Parame-

. & tern beschreibt die Vibrations-

Laserpulstihget 100. 21t =922 fs

PUISANGety /o dynamik eines HF-Molaks
TemperatuiT 300 K (Flusssiure). Ohne Dissipation
Dissipationssirke s 2 t;t (Yo = 0) wird durch daiif op-

p
timierte Pulsparameter énge

Zur Simulation verwendete Parameter des Morse—Oszillators und Strke des Laserpulses) ei-

ne nahezu perfekte selektive
Anregung zum Beispiel desufiften Energieeigenzustandes erzielt, wenn der Oszillator vorher im
Grundzustand war. Bei eingeschalteter Dissipation beschreibt der Parﬁg‘ﬂecﬁm mittlere Lebens-
dauer desuiiften angeregten Zustands. Der hier verwendete Wert entspricht einer Rate von etwa
zwei Spungen véhrend einer Pulahige. Die Spezifikation vohs ist wegen™; = 5, g; und @.50
aquivalent zu der voip. Nach dem Ende des Pulses ist denfté Energieeigenzustand zwar immer
noch mit einer Wahrscheinlichkeit von etwab®esetzt, die Anregung verteilt sich aber auch auf die
darunterliegenden Zuatde. Dieser Effekt wird um so ausgagtér, je golRer die Dissipationsatke
ist.

Betrachtet man die Selektigit der Anregung (zum Beispiel gemessen durch die Besetzungswahr-
scheinlichkeit des Zielzustand zu einem definierten Zeitpunkt nach dem Puls) als Funktion der Pul-
sparameter, dann bedeuten die obigen Ergebnisse, dass diese Funktion im nichtdissipativen Fall ein
Maximum im Inneren des zugelassenen Parameterbereichs hat, und dass dieses Maximuime die H”
1 erreicht. In Gegenwart von Dissipation bei gleichen Pulsparametern sinkt die SedektiSi-
mit stellt sich die Frage, ob die Dissipation das Maximum eventuell verschiebt, so dass mit anderen
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Abbildung 3.3
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Die Erwartungswertgx(t)) und (p(t)) des quantenmechanischen getriebenen dissipa-
tiven harmonischen Oszillators. Der obere Graph zeigt die anregende K(&ft &e

in Gleichung 8.38 A(t) heif3t. Die durchgezogenen Linien in den unteren beiden Gra-
phen markieren die analytischésung, diex—Symbole die numerischerdungen, die

mit der stochastischen Wellenfunktionsmethode beziehungsweise durch Integration der
Dichtematrixgleichung erzeugt wurden.

Pulsparametern die Selektizitvieder erbht werden kann. Das Ergebnis einer systematischen nu-
merischen Untersuchun@4] ist jedoch, dass der Ort des Maximums durch die Dissipation nicht
merklich veendert wird.

Im Rahmen dieser Arbeit diente die numerische Untersuchung des schwach getriebenen dissipati-
ven Morse—Oszillators vor allem zwei Zielen: Zum einen als Referenz und als Vorstudierf stark
getriebenen Oszillator, dessen Untersuchung technisch aufwendiger ist. Eine interessante, in dieser
Arbeit schlie3lich nicht mehr weiter verfolgte Frage in diesem Zusammenhang ist, in welalhem F~
und auf welche Weise die Verschiedenheit der Dissipationsmechanismen zu physikalischen Effek-
ten flihrt. Zum anderen wurde am Beispiel des schwach getriebenen dissipativen Morse—Oszillators
eine umfassende Vergleichsstudie zwischen der stochastischen Wellenfunktionsmethode und der nu-
merischen Integration der reduzierten Dichtematrixgleichung hinsichtlich der numerischen Effizienz
durchgetihrt [39].
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Abbildung 3.4
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Einfluss der Dissipation auf die selektive Anregung. Aufgetragen sind die Besetzungs-
wahrscheinlichkeiten @ — n) = |(n|¥(t))|? der untersten sieben Energieeigenznsie
|0),...,|6) gegen die Zeit. Der betrachtete Zeitraum entspricht dénde des Laser-
pulses. Die gestrichelten Linien stellen den nicht-dissipativen Fall= 0) dar, in

der eine nahezu volighdige Besetzung degnffiten Eigenzustands erzielt werden kann.
Die durchgezogenen Linien zeigen eine Situation, in der aufgrund einer Wechselwirkung
mit der Umgebung ein Relaxationsmechanismus vorhanden ist. Die Relaxationsrate ist
M5 =tp/2.

3.4 Numerische Aspekte der Floquet—Darstellung

3.4.1 Berechnung der Floquet-Basis

Die Eigenschaften der Floquet—Basis und die hier verwendete Notation wurden im Ab4chraitt
eingefihrt. Eine endliche Floquet—Basis zum periodischen Hamilton—Opértay,t) besteht aus
N periodischen Fquuet—Funktionm’j(t), die orthonormal geuwfilt werden khnen, und Floquet—
Indizesgj, j =0,... ,N&1. Der Parametek, kann verschiedene Werte annehmen, die durch den
Indexv =0,... ,Vmnax<s1 nummeriert werden. Zur Erinnerung: mit Hilfe des Parametgkann zum
Beispiel eine Amplituden— oder Frequenzmodulation des treibenden Feldegdiehtigt werden, als
Funktion der Zeit ist er eine Treppenfunktion(t) = A, ), vgl. Abschnitt1.2.3

Die Floquet—Funktionen werden hegich irgendeiner dem Problem angemessenen zeitangfph”
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gen Basig|n))n=0,1.... n—1 VONH dargestellt,

N—-1
|U\j)(tu)> = ; f})nu|n>- (3.51)

Bei den Oszillatoren aus Abschn8t3 bietet sich zum Beispiel die Energieeigenbasis iag, an.
Als Funktion vont sind die Fquuet—Funktionemf periodisch mit der Periodg, und werden zu dis-
kretenaquidistanten Zeitety = UT, /Mmax gespeichertmyay ist die Anzahl der Samplingzeitpunkte,
pH=0,... ,Mnax<1, und muss grof3 genug sein, um alle relevanten Details der Zaitglgkéit der
Floquet—Basis aufzaken. Das hiedf' ausschlaggebende Kriterium wird mit der GleichuB@4) im
Abschnitt3.4.2aufgestellt.

Der Speicherbedarf des Feld§‘$ru kann erheblich sein: mN = 32 undmyax = 2048 —Zahlen,
die zum Beispiel der Abbildung.2 zugrundeliegen— und 16 Byte pro komplexer FlieBkommazahl
ergeben sich bereits 32 Megabyte jEden einzelnen Wert, den der Paramateannimmt.

Ein effizientes und numerisch einfach zu implementierendes Verfahren zur Bestimmung einer
Floquet-Basis beruht auf der Diagonalisierung des MonodromieopetthtotsT , t) (siehe Abschnitt. 1).
Das Verfahren besteht aus drei Schritten:

1. Berechnung des Monodromieoperators: WRgizh der gewahlten Basig|n)) wird der Mono-
dromieoperator durch dib x N-Matrix (r|U,(T,0)|n) dargestellt. Sie wird berechnet durch
numerische Integration der Sdiinger—Gleichung mit dem Hamilton—Operatd(t,A,) zu
den Anfangsbedingungaep(0) = |0),... ,(0) = [N <1) Uber eine Periodd,.

2. Diagonalisierung des Monodromieoperators: Zur Diagonalisierung der komplexen Matrix
(r|Uy(T,0)|n) wurden die RoutinefOlamf undfO2arf aus der NAG-Bibliothek99] ver-
wendet. Da der Monodromieoperator @mitst, haben die Eigenweru% den Betrag 1 und die
Fquuet—Indizes‘j’ erkélt man gemalR der Gleichungl(14) ausc‘j’ = exp(<:>is‘j’ Ty/h).

3. Berechnung der Floquet—Funktionen: Die Fquuet—FunkITQt‘) erhélt man gemaR (.15 aus
der Integration der Schdinger—Gleichungiber eine Period®,. Der Anfangswert ist dabei der
normierte j-te Eigenvektor. Zur Integration wird natich dieselbe Routine wie im Schritt 1
verwendet.

Ordnung.  Wichtig ist, dass die Floquet—lndize‘ﬁ nur moduloh/T, und die Floquet—Funktionen

uj (t) nur bis auf Phasenfaktoren €2mit/T,) bestimmt sind. Dies ist die in Abschnitt1.2darge-
stellte Klassenstruktur der Floquet—Basis. Die verschiedeneraBamenten der Klasgaverden mit
dem Indexnnummeriert und sind physikaliscloNig aquivalent. Die Numerierung der Klassen it

ist willkurlich, jede Permutation davon ist ebensaazssig. Insbesondere gibt es keine offensichtliche,
physikalisch bedeutsame Ordnungsrelation zwischen den Floquet—Indizes. Es isbghen,miit
Hilfe zusitzlicher Kriterien sinnvolle Ordnungsrelationawr Floquet—-Basen zu konstruieren. Zwei
Moglichkeiten sollen genannt werden: Zum einemkén die Floguet—Funktionen anhand ihrer mitt-
leren Energie4.21), einer reellen Zahl, die nur vopund nicht vorm abléngt, charakterisiert werden.
Dies wird sich im Kapitel 4 als zweckaffig herausstellen. Weiterhin kann man versuchen, wie in Ab-
schnittl.2.2diskutiert, die Floquet—Indizes durch adiabatisches Verbinden zu stetigen Funktionen des
Parameterd zu machen. Ausgezeichnet ist dann jeweils derjenige &eptant, deruf'A — 0 mit
einem Energieeigenwert des zeitunabgigen Systemsbereinstimmt0].
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Abbildung 3.5
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10

05

elw

0.0~

Quasienergiespektrum des trunkierten periodisch getriebenen harmonischen Oszillators,
siehe Gleichung3:38), mit V(x) = $pwdx?, wp = 0.9, w = 1. Das Spektrum wurde
nach dem in Abschnit.4.1 beschriebenen Verfahren ausgehend von der bei N
trunkierten Energiebasis des ungetriebenen Oszillators berechnet.

Validierung und Trunkierungseffekte. Das ir diese Arbeit geschriebene Programm wurde
anhand der analytisch bekannten Floquet—Basis des periodisch getriebenen harmonischen Oszillators
getestet. Da in das Programm die Eigenschaften des Oszillatorpotentials nur in Form der Eigenener-
gien vonHesz und der Dipolmatrixelement® j, eingehen, lassen sich mit demselben Programm dann
auch anharmonische Oszillatoren behandeln.

Die Floguet—Indizes des harmonischen Oszillators sh81[0]

1 A2
gj = huy (J‘f‘é) +m, (3.52)
die Floquet—Funktionen
uj(t) = €*UD(w(t)) ). (3.53)

Dabei sind|j) die Energieeigenzustide des ungetriebenen Oszillatapét) und w(t) sind gegeben
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durch
o(t) = @L sinwt cosux, (3.54)
Apod( WP <0%)
i wt —ioot
w(t) = 2\/'2);1—% [Q:+w ;@w] (3.55)
undD(w(t)) ist die Erzeugende der karénten Zustfide (siehe z. B1D7)
D(w) = exp(wa' ©w*a) . (3.56)

Zur expliziten Berechnung vor8(53 verwendet man die Beziehung

D(w)|j) = ! (@ ew)’ exp< | 2|> n) (3.57)
Nl 3,V |

Zur Validierung des numerischen Verfahrens wurde die numerisch bestimmte Floquet—Basis mit
(3.52 und @3.53 verglichen. Abbildund3.5-die der Abbildung 1 in§9] entspricht— zeigt zuschst
die numerisch bestimmten Floquet—Indizes als Funktion der Amplitudies Antriebs. Die exakten
Floquet—Indizes &rigen, geral @.52), von A quadratisch ab. Ein genauer Vergleich der numerisch
ermittelten Werte mit3.52 ergibt Folgendes: &"A = 0 findet man, im Rahmen der Rechengenau-
igkeit, kompletteUbereinstimmung. & kleine Antriebsamplituder\(p? ~ 0.05) stimmen noch alle
bis auf einen Floquet—Index der numerischassilirig mit 8.52 Uberein, doch mit zunehmend@m
weichen immer mehr degj(A)—Kurven von der Parabelform ab, bis schlieRlicin X/? > 0.6 die
numerische bsung mit 8.52 nichts mehr zu tun hat. Dieses Verhalten der numerlschmmmg ist
ein Effekt der Trunkierung, das heil3t der Tatsache, dass der harmonische Oszillator zwar einen unend-
lichdimensionalen Hilbert—-Raum hat, die humerische Rechnung aber auf den endlichdimensionalen
Unterraum besclarikt ist, der von den untereN Energieeigenfunktionen aufgespannt wird (siehe
auch Abschnittl.1.4.

Ein erster Hinweis auf Trunkierungseffekte folgt aus der Spuridenidit], die fur endlichdi-
mensionale System die Summe der Floquet—Indizes festlegt. Diese Nebenbedingung existiert f~
die exakte losung 8.52 nicht. Die Abweichung der Kurve des einen Floquet-Indizes, die bei
gj(A = 0) =~ 0.55 startet, von der Parabelforraskt sich also damit plausibel machen, dass dieser
Index die unphysikalische Nebenbedingurayf sich nimmt‘. Eine genauere Betrachtung ergibt,
dass die zugairtige Floquet—Funktion am oberen Ende tkeglimensionalen Unterraums lokalisiert
ist. Mit zunehmender Antriebsamplitude werden dann auctedie)—Kurven weiterer Indizes von
der Parabelform weggebogeso[52].

Andererseits stimmeruf'nicht zu groR3e Antriebsstke die Werte der meisten numerisch ermit-
telten Floquet—Indizes mit3(52 Uberein. Eine genauere Analyse ergibt, dass (i) die znrigdri
Floguet—Funktionen im unteren Bereich désdimensionalen Unterraums lokalisiert sind und dass
(i) auch die zugebrigen numerisch ermittelten Floquet—Funktionen 1Bi68 ubereinstimmen.

Die Moral aus dieser Betrachtung ist, dass bei Quantensystemen mit unendlichdimensionalem
Hilbert-Raum Trunkierungseffekte bei der numerischen Berechnung der Floquet—Basis mit grof3er
Sorgfalt beucksichtigt werden mssen. Durch die Trunkierung kommt es zwang§lj dazu, dass
manche numerisch ermittelten Floquet—Funktionen und —Indizes nichts mit denen des unendlichdi-
mensionalen Systems zu tun haben. Bei nicht zu groRer Antragkedbetrifft dies aber nur eine
oder mehrere Floguet—Funktionen, die im oberen BereiciNdemensionalen Unterraums lokali-
siert sind. Hingegen werden die, die im unteren Bereich lokalisiert sind, durch das hier beschriebene
Verfahren und mit demuf’diese Arbeit verwendeten Programm richtig berechnet.
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3.4.2 Simulation des Prozesses aus Abschnitt 2.3

Ausgangspunkt ist der im Abschnit3 aus einem mikroskopischen Modell hergeleitete und durch
(2.113, (2.119, (2.108 und .10 definierte Prozess. Um den Simulationsalgorithmus als Com-
puterprogramm zu implementieren, wird in diese Gleichungen nun die explizite Darstellung aller
beteiligten GoRen beaglich der Floquet—Basis eingesetzt. Es istztich, die Floquet—Funktionen

uf (t)) mit den zu den Floquet-Indizes gekiiden Phasenfaktoren éxcg%s‘j’t) zu den Floquet—
Basisfunktionerjy) (t)) zusammenzufassen:

WY(0) = expiet et Y (). (356)

Die Floguet-Darstellung détellenfunktion |W(t)) ist gemai (.45

N-1

W(t)) = Z)aj OWit)  furtels,a,s[ (3.59)

=

Im Simulationsprogramm wird die Wellenfunktion also duittkomplexe Koeffizientemy,... ,an_1
dargestellt. Vehrend eines Intervallse [s, 1,S,] lasst die vomHamilton—Operator H(t) erzeugte
Zeitentwicklung die Koeffizienten per Konstruktion konstant. Bélbergang von einem Intervall ins
Nachste transformieren sich die Koeffizienten génd.47).

Die Sprungoperatorenhaben die Darstellund(93

At =5 |um(®) Dlmlul(t)]. (3.60)
(ke (@)

Hierbei ist
T

1 s
Dln = (Ul DIuf)r = = [ & ™*(u(0) | D} () it (3.61)
0

die mte Fourier—-Komponente des periodisch zeitaigigen Dipolmatrixelements beglich der Flo-
quet—Basisfunktioneny unduf, undJ,(w) ist die Menge aller Indextripelj, k, m), die Ubergingen
der Frequenm entsprechen, das heiltrfdie

Em SE] = hw (3.62)

gilt, siehe GleichungZ.94). Die Menge aller relevanten Frequenzenfur die J,(w) nicht leer ist,
wird mit Qp, , bezeichnet. Jeder Frequenz QY entspricht genau ein Sprungoperatdi60). Q},
wurde im AbschnitR.3.3im Zusammenhang mit der Gleichurigy96) definiert. Dort wird beguidet,
dassQ;, , endlich ist oder zumindest in sinnvoller Weise abgeschnitten werden Kafw) ist dann
ebenfalls endlich. Der Einfachheit halber wird hier die Polarisierung der emittierten oder absorbierten
Strahlung vernachBsigt, daher sind im Vergleich zum zweiten Kapitel bei den Sprungoperatoren und
beim Dipoloperator die Vektorpfeile weggelassen.

Numerisch wird 8.61) in diskretisierter Form zum Beispiel mit Hilfe der Routidéourl [9§]

berechnet,

Mmax—1 N—-1 ) .
b= > Y & MM () Do flivy (3.63)
p=0 nn'=0
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Die Indizesj undk laufen von 0 bisN <1, und der Indexm nummeriert die Fourier—Komponenten.
Wegen der SymmetrllkJ m (D‘J’km) genigt es, nur Feldelemente mit positivamzu speichern,
somit Auft mvon 0 bismyax<1. Im Allgemeinen gibt es keine weiteren Symmetrien. Der Speicher-
bedarf des FeIde@‘j’km ist signifikant, er entspricht dem voi?’nlJ (siehe AbschnitB.4.1). Fourier—

Komponenten mitm| > mpax Sollen vernacldssigbar sein, es soll also zum Beispiel gelten

Y Dhml<d  Vikv (3.64)

m>Mmax

mit einer Schwell®. Damit (3.64) erflllt ist, miissen die Fourier—Komponenteaur fiohe Frequenzen
schnell genug abfallen, unmtyax muss grof3 genug sein. Ob dies der Fall es$st’sich allerdings nur
aufgrund der Kenntnis der diskretisierten Floquet—Funktionen innerhalb der numerischen Routinen
nicht entscheiden. Um das asymptotische Verhalten der Fourier—Komponenten bei hohen Frequenzen
zu verstehen, sind daher entweder analytische Adizaohgen oder augfitliche numerische Untersu-
chungen im Vorfeld der eigentlichen Simulationen notwendig. Digf3&nordnung einer vaunftigen

Wahl von myax ergibt sich aus der Differenz derafdten und der kleinsten im Problem vertretenen
Frequenz, zum Beispiel also als Differenz dexyjehn und des kleinsten Energieeigenwertesiin
Weiterhin muss nach der Berechnung des Felh:‘l% Uberprift werden, ob die Ungleichun@ 64
plausibel ist. Dies kann automatisiert durch Extrapolation oder interaktiv durch visuelle Inspektion
geschehen.

Die SprungoperatoreA) (w,t) werden also numerisch durch das vierdimensionale komplexwer-
tige FeIdD m und durch Listen, dieui"jedesv die Menge allew in Q;,; zusammen mit den dazu-
geforigen Indextrlpelr( j,k,m) enthalten, re@Sentiert.

Die Sprungraten W(B, ) haben, mit2.108 und 3.60), die Form

WEY) = 5 v@N©@ X

oerrad

U m (1)) DU} (1) | W)
(jkaJv(w) i 3

D% 2 g 3.65
(j.km)€, (w)
Wegen 8.59) ist
(U} (0) | W)|? = [y (1) [? (3.66)

und dies bedeutet, dass die Sprungraten nicht explizit von der Zeihgbh, sondern nur von den
Entwicklungskoeffizientem; (t) des Zustandg) beaiglich der mitbewegten Floquet-Basis. Es gelten
daher die Feststellungen aus AbschBift.2 Insbesondere ist die Wartezeitverteilung multiexponen-
tiell. Allerdings trifft dies nur zu, solange der Indessich nichtandert, das heil3t solange die Dynamik
des abgeschlossenen Systems exakt periodisch ist. Ist dies nicht der Fall, werden also zum Beispiel
Laserpulse betrachtet, dann sind die Sprungraten zeitangfthinnerhalb der Intervallgs, 1,s)[
undandern sich jeweils beirdbergang zwischen den Intervallen.

Die Darstellung delnearen nicht-hermiteschen OperatorsH aus GleichungZ.114 beaiglich
der Floquet—Basis ist schlie3lich

A=l Z V@N(@ Y Dl W] ONW] (1)]. (3.67)

2 weQrad (j7k7m)e‘JV (00)
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H bestimmt die deterministischen Zeitentwicklung der unnormierten Veds{order Wellenfunktion
gemal der Gleichungﬁ%(ﬁ(t) =H{Q(t). Wird { geneB 8.59 durch Koeffizientera;{t) beaiglich
der Floquet-Basi&;) reprisentiert, dann nimmt diese Gleichung die Form

d 4 t r\j} ai (t 3.68
gt =54 (3.68)
mit
N-—-1
I"j’ = z W\lij (3.69)
k=0
Mmax—1
Vg =D Wgm® Y Wkjm (3.70)
meZ M=—Mmax+1
W\lijm = y(("‘-)\lijm)I\I_(("‘-)\lijm)|D\j)km|2 (3.71)
e g
(*)l\ijm - JTKm (3.72)

an. w‘éjm, w‘éj und '} sind Ratenkoeffizienten der Dimension (Zett) An (3.69 zeigt sich ganz

offensichtlich, dass$i nicht explizit von der Zeit abdrigt. Der Vollséindigkeit halber sei noch die
Gleichung fir die Koeffizienten der normierten Versidn= Q/||]|| der Wellenfunktion angegeben,

d Y + M@0, ... ,an—1)
Gt = ——— aj(t), (3.73)
vi(@0,- - an_1) = Zrmakﬁ (3.74)

Im nichtentarteten Fall kann schliel3lich die Notation der Sprungoperatoren und —raten vereinfacht
werden: Dann entspricht jeder Frequanzdchstens ein Indextripdlj,k,m), das die Bedingung
(3.62 erfiillt, und Sprungoperatoren sind dur€h k,m) sowie gegebenenfalls den Indexbereits
eindeutig festgelegt, man kann also setzen

A} jem(®) = [UE (1)) DYjn(Ui (1)) (3.75)

Der Zielzustand des voA:E ikm(t) Dewirkten Sprunges isf . (t) multipliziert mit einem beliebigen
Phasenfaktor. Daher kann man auch die Floquet-Basisfunigjcais Zielzustand wafilen, und die
Gesamtrate aller Spnge von einem Ausgangszustapaachyy ist

N-1

W () =S wylaj ). (3.76)
k jZO kj 1<

Insbesondere ist‘lij die Gesamtrate aller Spnge vony; nachyy, undTl} aus Gleichung3.69) ist
die Gesamtrate aller Spmge weg vony;.

Die Implementation des Simulationsalgorithmus erfolgt nun auf der im Abs&h@itiir Prozesse
mit zeitunablahgiger Sprungrate dargestellten Weise. Zum Schluss ist in Abbil8iirder gesamte
Algorithmus noch einmal im Zusammenhang dargestellt.
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Abbildung 3.6

/[ Initialisierung
FORvVvV:=0 TO vmax<l DO BEGIN

1.-3 Berechnung und Diagonalisierung des Monodromieoperators, Berechnung der Flboquet—

Basis zum Parameterwex§. Resultat:die Feldere] und fj, .

4. Berechnung der Dipolmatrixelemente und Test auf ausreichende Zesiangl.Resultat:
das FeldDj,,.
5. Berechnung der Sprungraten (siehe Gleichung69—(3.71). Resultat: die Felder
W\léjm' W\léj und I"j’.

ENDFOR
/I Aul3ere Schleifeiber die Realisierungen
REPEAT

6. Setze zur Zeity die Anfangsbedingungg; := (W}(s) |W(s0)), to := o, v :i= 1.

7. Ziehe den Zeitpunkt* des r@chsten Sprunges gef 'der Wartezeitverteilungsfunkticin

(siehe 8.22)
Fit'ht) = 1&Y [ajfexpert st) furt <s
]
Fitht) = 18y |aj|2exp(ar (s, sto) ST (tr os,))  furs, <t* <syp
]
uSWw.

8. Fallsv(t*) > v, berechnes; zur Zeitt* gemal’ Gleichung1.47). Ansonsteraidert sich
aj nicht. Setzeg :=t*, v =v(t*).

9. Ziehe den Indexv eines Sprungoperatoﬁé(w,to) aus der Meng&)y, , mit der relativen
Wahrscheinlichkeit

2
Z Wﬁjm|aj| )
(1,km) €, (w)

setze

a = Z D‘j’kmaj
(J,km)ed (w)

und normiere anschlieRend die Koeffizienten gyfa,; =
10. Wenntp < teng, gehe zu Schritt 7.

UNTIL genigend Realisierungen erzeugt




IV

Station arer Zustand periodisch
getriebener Systeme

Im Abschnitt2.3wurde der stochastische Prozess hergeleitet, der die reduzierte Dynamik eines gebun-
denen Quantensystems —zum Beispiel eines Atoms oder Melekéschreibt, das durch einfZeres

Feld —zum Beispiel Laserlicht— getrieben ist und dasr'sein Dipolmoment an das elektromagne-
tische Strahlungsfeld in einem thermischen Zustand gekoppelt ist. Die Herleitung geht aus von der
exakten, undéifen Dynamik des Gesamtsystems, und die zur reduzierten Dynahriniden Mdhe-

rungen sind die Markov—alierung und die stiingstheoretische Behandlung der Kopplung zwischen
Atom und Umgebung. Die Wechselwirkung zwischen dem treibenden Feld und dem Atom hingegen
wird, durch Verwendung der Floquet—Darstellung, exakt behandelt. Um die Floquet—Darstellung an-
wenden zu &ihnen, muss das treibende Fdiast’ periodisch sein, das heift, es muss durch eine exakt
periodische Funktion beschrieben werdenhén, die durch einen langsam zeitlich variierenden Para-
meterA(t) moduliert ist (siehe Abschnitt.2.3. Laserpulse bis hinab zu einigen Zehn Femtosekunden
Pulséinge fallen in diese Kategorie. In diesem Kapitel nun befassen wir uns mit der Frage, ob und in
welchem Sinne ein statianér Zustanddi’ exakt periodische treibende Felder existiert. Physikalisch
bedeutet dies, dass die Zeitskala, auf der aith andert, sehr viel @f3er ist als die Relaxationszeit

zum Erreichen dieses statemen Zustands.

4.1 Pauli-Mastergleichung

Setzt man die Darstellun@® 60 der Operatorer\'(w,t) in die Gleichung fif den reduzierten Dich-
teoperator 2.116 ein', so erlailt man fir die Diagonalelementp; (t) = (W;(t)|p(t)|w;(t)) des Dich-
teoperators begjlich der Floquet—Basisfunktiong;(t)) (siehe 8.58) die Pauli-Mastergleichung

d
apj(t) Zk;ijpk(t)@ijpj (t). (4.1)

1Der Indexv wird in diesem Kapitel unterdickt.
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Voraussetzung ist, dass das Floquet—Spektrum nicht entartet ist, das;3éiitfur j # k. Es gehen
keine Neherungen ein.

Wenn die Nebendiagonalelememig (t) = (W;(t)|p(t)|yk(t)) fur j # k alle verschwinden, dann
lasst sich der Dichteoperator darstellen durch

p(t) = > IW;(1)) pj(t) (W; ()], (4.2)

J

und die im Folgenden betrachtete statimnlosung der Pauli-Mastergleichung.1) definiert ver-
mittels @.2) einen global attraktiven Fixpunkt der Dichteoperatorgleichuad1§. Hinreichende
Bedingungen daff; dass die Nebendiagonalelemente tf~> o verschwinden, sind: (i) Die Qua-
sienergiedifferenzen sind nicht entartet, jeder Frequemntspricht also dichstens ein Indextripel
(j,k,m), welches die Bedingungw = &, <<; erflllt. (i) Es gibt hochstens einen Zustand mit
I =0(vygl. 3.69).
Diese Aussagen lassen sich ohneihd”
> aus @.116 folgern. An dieser Stelle sei
- ein weiterer, anschaulicher Zugang vorgestellt,
der von dem stckweise deterministischen sto-
chastischen Prozess aus Abschidi8 aus-
geht. Bedingung (i) besagt dann, dass die
Zielzuseinde der SprigeAjm(t) (siehe Glei-
> chung B8.75) immer Floquet—Zustride Yy —
> und nicht etwa Linearkombinationen daraus—
W - sind. GenaR Bedingung (i) muss ein
time (Anfangs-) Zustand, der eine Linearkombina-
tion von Floquet—Zustriden ist, nach endli-
cher Zeit zerfallen. Ist der Prozess in einem Floquet—Zustanalannandert der deterministische
Teil der Dynamik daran nichtsy (t) = &y ist eine Losung der Gleichung3(73. Die Realisierungen
des Prozesses sind also, wie in der Skizze angedeutekystise Floquet—Funktionen: in der Darstel-
lung (3.59 des Prozesses ist zu jeder Zgitweils genau eim,;(t) von Null verschieden und hat den
Betrag 1. Die Gesamtrate aller $ipge vom Floquet—Zustanfl; nachyy ist wy;, siehe Gleichungen
(3.76) und @.70), und Fangt nicht von der Zeit ab. Unterscheidet man nicht zwischen den —durch den
Indexm unterschiedenen— Sprgen, die vonp; nachyy fuhren, dann ist dem stochastischen Prozess
aus AbschnitR.3also ein reiner Sprungprozess mit dem Zustandsrayin=0,... ,N <1} und der
Mastergleichung4.1) assoziiert.

Floquet states

<
| T
!

| T
A

4.2 Eigenschaften der station &ren L 6sung

Jede Mastergleichung besitzt eine stagi@nldsung. Schreibt man die Mastergleichung in der Form
pj = Mjk Pk mit

Mijk = wjk &djk ) wij, (4.3)
|

dann ist wegen der Normerhaltufigy ... , 1) ein linker Eigenvektor der quadratischen Matkixzum
Eigenwert 0, und somit gibt es auch einen rechten Eigenve&ipr |

p* = (paa ap?;l—l)? (44)
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der normiert gewhlt werden kann und eine statame Losung der Mastergleichung ist. Ziel des Kapi-

tels ist die KErung der Eigenschaften dieser stagiar Verteilung. Im Folgenden werden zu diesem
Zweck in den Abschnitted.2.1 und 4.2.2 zuréichst zwei wichtige Konzepte aus der statistischen
Mechanik eingafhrt.

4.2.1 Detalilliertes Gleichgewicht

Die statiordre Losungp* hat die Eigenschaft des detaillierten Gleichgewichts, wenn@&filt [
wki P =wikpk Vi k (4.5)

Das bedeutet, dass die Anzahl d#tverginge vonj nachk pro Zeiteinheit im staticafen Zustand
gleich der deiUberginge vonk nachj ist. Liegt die Symmetrie4.5) vor, dann ist die Matrixv j
aus @.3) diagonalisierbar, und die Eigenwerte sind kleiner oder gleich 0.

4.2.2 Kubo—Martin—Schwinger—Bedingung

Die Motivation, an dieser Stelle die Kubo—Martin—Schwinger—Bedingdi0g, [L09 zu betrachten, ist
der Zusammenhang zwischen der Rg(®) einesUbergangs der Frequenzim reduzierten System
mit den Korrelationsfunktionen Tp,E'(t)E} und Tr{p,E(t)ET} desjenigen Umgebungsoperators
E, der im Wechselwirkungsterm auftrii]f

[dte ™ Tr{p,ET(1)E} w>0,
g(w) ~ { (4.6)

R
[dte ™ Tr{p,E(t)ET}  w<O.
R

In dem Modell von AbschnitR.3ist beispielsweis& der Operator des elektrischen Feldes.

Die Kubo—-Martin—Schwinger-Bedingung etabliert einen Zusammenhang zwischen den beiden
Korrelationsfunktionen auf der rechten Seite véré mit der Temperatur der kanonischen Verteilung.
Hierzu wird flir reellest die Funktion

Fas(t) = Tr{p2A(t)B} (4.7)

mit den Heisenberg—Operatoréit) = exp(iHat)Aexp(<iH,t) und B(t) definiert. Dann existiert die
analytische Fortsetzung vdmng(z) auf einen Streifefze C| < < Im(z) <0} mit B> 0. Der
Umgebungszustangb sei statio@r, [p2,H,] = 0. Er erfillt die Kubo—Martin—Schwinger—Bedingung,
wenn gilt

FBA(t) = FAB(t <=>IB) (48)

fur eine dichte Menge von OperatorénB. Die Bedingung ist bei endlichen Systemen genau dann
erflillt, wennp, die kanonische Verteilung ist, und stets im thermodynamischen Li8&sAus (4.8)
und @.6) folgt unmittelbar

9(00) — o PBhw
—g(<:xo) e . (4.9)
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4.2.3 Zeitunabh angige Systeme

Zunéchst betrachten wir ein System, in dem

wkj = g(0j) (4.10)

mit huy; = Ej <E gilt. Dies ist zum Beispiel der Fall, wenn dig Eigenenergien des isolierten
Systems sind und wenn die Wechselwirkung mit der Umgebung die Gesamtenegjte &darin
impliziert die Kubo—Martin—Schwinger—Bedingung vi&9) die Existenz einer stati@amén Losung,
die die Bedingung des detaillierten Gleichgewichtsilrf"

P = %e—BEJ. (4.11)
4.2.4 Periodisch getriebene Systeme
Fur periodisch getriebene Systeme ist
wkj = » 9(0kjm) (4.12)
i mgz jm
mit
9(0kjm) = Y(0jm)N (0 jm) |Djm| . (4.13)

Diese beide Gleichungen entsprechgry() und 3.71), wobei zum Zweck der folgenden Diskussion
die Rateg(wxjm) = wkjm eingetihrt wird. 7wy jm = € < (g + mhwy ) ist die Energie des Photons,
das bei denUbergang emittiert oder absorbiert wird, der durch den Sprungop%ﬁ(@jm,t) be-
schrieben wird, undy. = 21/ T ist die Antriebsfrequenz. Die Rate des entgegengesetitengangs
ist

9(<xjm) = Y(<0kjm)N(=Wxjm) [Dkj,_m|?, (4.14)

und wegerDyj —m = (Djm)* und mit 2.102 und .103 ergibt sich tir das Verhltnis der beiden
Raten

g‘?%“;:) — exp(<Bhiwm) - (4.15)

Gleichung 4.15 entspricht 4.9). Dies bedeutet, dass das Modell aus Absctihtmit der Kubo—
Martin—Schwinger—Bedingung veaglich ist.
Periodisch getriebener harmonischer Oszillator

Fur den periodisch getriebenen harmonischen Oszillator,
ﬁZ 2

d .
H(t) = et HORX? + Axsiny t

1 | h
_ t = _oat i
= hwy (a a-+ > +A (a +a) sinw t (4.16)
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lasst sich das Dipolmatrixelemeyy, schreiben alsi]

- - [ h
DjkaBm,o <6j+1,k\/ J +l+5j,17k\/1> 2Ll—00o (4.17)

Fir |j k| # 1 ist alsowj, = wg; = 0, und {ir |j ©k| = 1 kollabiert die Summe4(12 auf einen
Summanden,

— .+l = j+1
Wi+1,j = Y((DO)N(COO)E, Wij+1 = V(@UJO)N(‘:)‘*)O)E (4.18)
Mit (2.102 und @.103 ist
pi = %e**:i/kBT, €j = jhuy + const. (4.19)

eine statioafe Losung der Pauli-Mastergleichung.l) [10], die die Eigenschaft des detaillierten
Gleichgewichts besitzt. In den Exponenten vdrilg treten Quasienergien auf. Dies ist —trotz der
Klassenstruktur des Quasienergiespektrums— sinnvoll, da jeweils genau eas&®pank; durch
adiabatisches Verbinden mit einem Energieeigenwert des ungetriebenen Oszillators ausgezeichnet
ist. Genau dieser Regséntant ist in4.19 einzusetzen. Diese dfjlichkeit der Auszeichnung ei-

nes Repasentanten ist eine besondere, sehr spezielle Eigenschaft des harmonischen Oszillators. Die
Floguet-Indizes als Funktion vansind quadratische Funktionen (siehe GleichuB$2) auf Sei-

te 63), die untereinander einen vanunablangigen, konstanten Abstand haben. Es treten also keine
Avoided Crossings auf (siehe AbschritR.2. Im allgemeinen Fall ist eine solche eindeutige Auszei-
chung eines bestimmten Regentanten nicht gegeben.

Periodisch getriebener anharmonischer Oszillator

Fur anharmonische Oszillatoren sind in der Regel die Dipolmatrixelen2ptg zu gegebenen,

k fur mehrere verschiederma von Null verschieden. Die Summen.(2 kollabieren daher nicht,

und es ist nicht mdlich, aus 4.15 eine allgemeine Aussag#ér die statioare Losung der Pauli—
Mastergleichung4.1) zu gewinnen. Sie muss numerisch bestimmt werden. Es stellt sich heraus, dass
sie nicht der Bedingungd(5) vom Detaillierten Gleichgewicht geigt.

4.3 Numerische Bestimmung der station aren Verteilung

Die numerische Berechnung veuft in drei Schritten:

1. Berechnung der Floquet—Basis (siehe Absclxit])

2. Berechnung der Dipolmatrixelemeridg, (siehe AbschnitB.4.2 und daraus der Masterglei-
chungsmatrixM (siehe Gleichung4.3))

3. Bestimmung des normierten Eigenvektors Waum Eigenwert O.

Fur Schritt 3 wurde die Singaltée—Werte—Zerlegung¥/D von M berechnet. Der Null-Eigenvek-
tor ist eindeutig bestimmt, wenn der kleinste siragalWert um mehrere @Renordnungen kleiner ist
als der rmichstgol3ere. Bei den in dieser Arbeitggéntierten Ergebnissen war er immer mindestens
um den Faktor 1Dkleiner als der achstgoRere.
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Abbildung 4.1
Stationary distribution
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Statioraire Verteilung des getriebenen dissipativen harmonischen Oszillators. Aufgetra-
gen ist die Besetzungswahrscheinlichkeit der Floquetaadst gegen ihre Quasienergie.
Die +-Symbole entsprechen der linearen, dieSymbole der logarithmischen Ordina-

tenskala. Die Parameter sinady = }—%wL A = 0.046, /2uhw3, siehe Gleichung4(16),
die Temperatur istKT = 1.5%4w. und N= 12, myax= 256.

Zunachst wurde der periodisch getriebene harmonische Oszillator betrachtet. Abkildwedgt
die Besetzungswahrscheinlichkeit der Floquet—Zusiride gegen ihre Quasienergie Das numeri-
sche Resultat stimmuiberein mit 4.19).

Als einfaches, generisches Beispial £€inen anharmonischen Oszillator mit ablbar unend-
lichem, diskretem Spektrum wurde das Teilchen im unendlichen Kastenpotential untersucht.
Hamilton—Operator mit periodischem Antrieb ist

h? d?

@ZJW +V(X) + AXxsinoy t, (4.20)

0 furjx<a
o fur|x| >a

V(x) = {

Im Unterschied zum periodisch getriebenen harmonischen Oszillator ist es nun aber egtichm™
wie in Abbildung 4.1 die Besetzungswahrscheinlichkeiten der Floquet-afudst “gegen ihre Quasi-

Der

energie aufzutragen: der Grund dafst die Klassenstruktur der Floquet-Basis, das heif3t, zu jedem
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Floquet-Zustand)p; gibt es eine ganze Klasse;j + miw. |m € Z} von Repesentanten der Qua-
sienergie, und im Gegensatz zum harmonischen Oszillator ist keiragayant in offensichtlicher
Weise ausgezeichnet. Ebenso ist auch die Indizierung der Floquet—Funktionen mit derjpJvaliigx
willkurlich, so dass sich bei anharmonischen Oszillatoren die Frage stellt, weloRe berhaupt
fur die Abszisse von Graphen nach der Art von Abbilddribverwendet werden soll.

Eine sinnvolle Definition ist die mittlere Energie

i
E= 1 [ dt(u(®)1H©)u ). (4.21)

0

Sie hangt offenbar nicht von Phasenfaktoren in den Floquet—Funktionen und somit von der Wahl des
Rep@sentanten ab.

Die resultierende Darstellung der statioa Verteilung zeigt die Abbildung.2. Diese bemer-
kenswerte Verteilungaldt sich in zwei Gebiete aufteilen: Auf der einen Seite, bei kleinen mittleren

Abbildung 4.2
Stationary distribution
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Statioraire Verteilung des getriebenen dissipativen Teilchens im unendlichen Kastenpo-
tential. Aufgetragen ist die Besetzungswahrscheinlichkeit der Floquet+igsigegen

ihre mittlere Energie. Diet+-Symbole entsprechen der linearen, dieSymbole der
logarithmischen Ordinatenskala. Die Parameter simd= 20, f = 0.29, siehe Glei-
chung @.23), die Temperatur isT =5, N = 32, Myax= 2048
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Abbildung 4.3

Stationary distribution
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Statioréire Verteilung bei verschwindender Antrields&e 3 = O, vgl. Abbildung4.2

Energien, ein Plateau: Hier hat eine ganze Anzahl von FloquetaZdest” analiernd die gleiche
Besetzungswahrscheinlichkeit und ulaerhinaus auchhnliche mittlere Energien. Oberhalb einer
ziemlich scharf definierten Schwelle folgt die Verteilung einer Exponentialfunktion.

Das Verhalten der Verteilung oberhalb dieser Schweltst'sich qualitativ recht gut verstehen:
Die Flogquet—Funktionen entsprechen dort im Wesentlichen zeitamgjigen Energieeigenfunktio-
nen, deren Eigenenergie so grol3 ist, dass sie durch den periodischen Antrieb nur schwaoheyest”
den. Die mittlere Energied(21) liegt dann naiilich nahe bei der Eigenenergie, und man kann erwar-
ten, dass in diesem Bereich in guteaiidrung die Ausffirungen in Abschni#4.2.3gelten. Tatachlich
stimmt die Steigung dergefitteten” Geraden im Rahmen der numerischen dsuiiig mit der vor-
gegebenen Umgebungstemperatberein. Die Schrfe der Grenzeal3t sich darauf zuckfihren,
dass die Eigenenergien des ungetriebenen Teilchens im Kasten quadratisch mit der Hauptquanten-
zahl wachsen. Verdeutlicht wird die§iberlegung in Abbildungt.3 die die statioare Verteilung it
verschwindende Antriebsske = 0 zeigt.

Die Form der statioaren Verteilung in Abbildung.2lasst sich zurékfiihren auf didJbergangs-
raten der Mastergleichungt.(). Abbildung 4.4 zeigt eine graphische Darstellung der Matwiy.

Die Zustindej = 0,...,15 sind offenbar alle mit allen durch $pje verbunden. Dabeahgen die
Sprungraten i in unregelnaiRiger Weise von den Anfangs- und Zielamsténj undk ab. Die Golze
der einzelnen Ratenahgt, was in dieser Abbildung allerdings nicht zu sehen ist, ebenfalls in irre-
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Abbildung 4.4

Darstellung der Nx N—Matrix wy; mit denUbergangsraten der Mastergleichung. )
fur das periodisch getriebene Teilchen im Kasten mit den Parametetr20, 3 = 0.41

45, N = 32, mpax= 2048 Das Matrixelementrgg ist

A

(siehe Gleichung4.23), T

rechts oben.

gularer Weise von den Parametddrund T ab, das qualitative Bild bleibt jedoch gleich. Oberhalb

einer scharf definierten Schwelle, die in Abbilduh@ bei j = 15 liegt, ergibt s!ph eineoallig andere
Situation: die Ratewm mit | j <k| # 1 sind sehr klein, und dominierend sind dlberginge zwischen

benachbarten Zustiden. i ihr Verhéltnisw; j_1/wj_1 j gilt eine Beziehung analog z4.(9).
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Abbildung 4.5

Stationary distribution
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Statioréire Verteilung @ir verschiedene Temperaturdn=0.5, 1, 1.5,.., 8 analog Ab-
bildung 4.2 Die Ordinatenskala ist logarithmisch, und die Parameter sineg= 20,
B=0.248

4.4 Abhangigkeit von den Parametern

Um das in Abbildungd.2 gezeigte Resultat besser zu verstehen, wird im Folgenden der Einfluss der
Parameter auf die Form der Verteilung untersucht.
Der Hamilton—Operator4(20 des nicht—dissipativen, getriebenen Oszillat@sdt zuchst von
den finf Parameteri, w, a, Y, # ab. Durch die Einfihrung dimensionsloser Gigén
X p

R="_ oL f =t 4.22
2 p —— W (4.22)

lasst sich die Schdinger—-Gleichung mit dem Hamilton—Operatdr20) in die Form
1 d?

;_dﬂqu(f) — {%W +V(X) + B)?Sinf} P(t) (4.23)



4.5 Das klassische Pendant 79

mit
mefwL A ~ . V(aX)
_ — V(R) = —2. 4.24
o Pomar VO (4.24)

bringen, so dass ihre Eigenschaftenadakdich nur noch von zwei Parametern abbén.3 > 0 kon-
trolliert die Stirke des Antriebs, unal misst die relative Gaf3e vorvi: je kleinera, desto,quantenme-
chanischer®, je gi3er, destgklassischer veralt sich das System. Die dimensionslosen Operatoren ~
und p genigen der Vertauschungsrelatioghp] = i/a, die Skalierung4.22) ist also keine kanonische
Transformation. Die Energieeigenwerte des ungetriebenen Oszillgter) sind

™(j+1)?

Ej :o(hooL éj, éj = 8C(2 s

j=0,1,2,... (4.25)

mit den Energieeigenfunktionap;, und die Dipolmatrixelemente berechnen sich zu

0, j ek gerade
(Wi [Xw) =4 4 1 1 : (4.26)
2\ [Tk12? @(j =02 ) j &k ungerade

unablaingig vona.

Setzt man der Einfachheit halbgiw) = yp, dann faihgt der dissipative Anteil der Dynamik von
zwei weiteren Parameternamilich vonyy und der Temperatur ab. Da die Modendichtg, gleicher-
maRen linear in alle)bergangsraten eingeht, bestimmt sie zwar die Relaxationszeit des Prozesses, die
statiorare Verteilung Angt aber nicht von ihr ab. Der dissipative Anteil der Dynamik wird also allein
durch die dimensionslose Tempera‘f'u& ks T /hwy charakterisiert.

Abbildung 4.5 zeigt die statioafe Verteilung fif verschiedene Temperaturér0.5, 1, 1.5,.., 8.

Die Temperatur bestimmt die Steigung der exponentiellen Verteilung rechts der Schvaéltend/die
Grol3e des Plateaus und der Ort der Schwelle davon praktischamgigtsind. Diese Unalaimgigkeit
von der Temperatur ist nicht selbstvewstlich, da sie in die Sprungrateh 13 in nichttrivialer Weise
eingeht.

In der Abbildung4.6 wird untersucht, wie die Lage der Schwelle von der Amplit{ddées An-
triebs ablhgt. Die Lagedsst sich zum einen charakterisieren durch die mittlere Energie der Kante
in Graphen der Art von Abbildung.5 zum anderen durch die Anzahl von Floquet-AnsiEn im
Plateau. Eine Interpretation des in dieser Abbildung gezeigten Resultats folgthmtain Abschnitt.

4.5 Das klassische Pendant
Die Hamilton—Funktion des423 beziehungsweiset(20) entsprechenden klassischen Systems ist

A2
(% p,f) = % +V/(R) + BRsint. (4.27)

V(X) ist ein unendliches Kastenpotential mieWden bek = +1. Die Hamilton—Funktion &rigt nur
von dem einen Parametrab. Die Losung(X(f), p(f)) der Hamiltonschen Bewegungsgleichungen
zur Anfangsbedinguné®o, Po, o) furfy <t < fhumplautet

X(t) = Ro+ (Po+ Bsinfy)(fety) + B(cost wcody) (4.28)
pt) = pPo<PB(sint <sinty). (4.29)
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Abbildung 4.6
25[
i} ]
" 8
(o)) ©
B 20t i =
: 5 *
= ¢
Q 17]
® 5 ]
8 o)
£ o
L £
=}
[
0 P BT R o . .
0.0 05 1.0 0.0 05 1.0

driving (beta) driving (beta)

Abhangigkeit der Schwelle von der Amplitude des Antriebs. B#&Symbole im lin-
ken Graphen zeigen die zu der Kante @emde mittlere Energie als Funktion der An-
triebsstrke (3, die x—Symbole des rechten Graphen die Anzahl von FloguetaZdesh
im Plateau. DieA—Symbole zeigen die entsprechendel$en, die aus der Chaosgrenze
des klassischen Systems berechnet wurden, siehe Abdchnitt

fbump ist dabei der erste Zeitpunkt na@y an dem das Teilchen an die Wandf3t es soll also gel-
ten |X(f)| < 1 fur fp <t < fpump und |X(foump)| = 1. Zur Zeitfpymp wird das Teilchen an der Wand
reflektiert, das heil3t, das Vorzeichen vokehrt sich um. Da sich4(28) im Allgemeinen nicht durch
elementare Funktionen natlauflésen &sst, mus§,ymp numerisch bestimmt werdenuFbestimmte
Konstellationen der Parameter und der Anfangsbedingungen kann es aber passietté(t) (daste
Male in die Nihe der 1 kommt, ohne sie zu erreichen. UmetigeNullstelle der Funktior(f)| <1
numerisch auf stabile Weise zu bestimmen, eignet sich zum Beispiel die Rabtmet aus P§|
zusammen mit einem Bracketierungsalgorithmus, der sich an den Extremdtyodetenf—Werte
elementar bestimmbar sind, entlanghangelt.

Abbildung 4.7 zeigt einen PoincarSchnitt einer Schar auf solche Weise bestimmtzsungen
[110,60]. Der Phasenraum zeift offenbar in zwei Bereiche: ImauReren Bereichuf hinreichend
groRen Impuls, sind die Bahnen regulDas Teilchen fliegt zwischen denawien regel@alig hin-
und her und wird durch das Feld dabei nur wenig gegstim inneren Bereich hingegen sind die
Bahnen chaotisch. Wenn der Impuls klein genug ist, kanradigeie Kraft das Teilchen ein oder
auch viele Male zum Umkehren zwingen, bevor es die andere Wand trifft. Da dies sensitiv von den
Anfangswerten aldnigt, ergeben sich chaotische Bahnen.

Die A-Symbole in Abbildung4.6 zeigen nun die beiden folgendendBen: Im linken Graphen
ist, in Analogie zu 4.21), die mittlere Energie

r—r->
o)

t t
E (%o, fo) = lim / ),t')dt’ = lim ! / p2(t") dt’ (4.30)
fo
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Abbildung 4.7
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Poincae-Schnitt einer Schar vondsungen zu4.27) zu den Zeiten £ 0, T, 2T,...,
600T. Die Anfangsbedingungen warep ¢ <1, po = 1.00, 1.05, 1.10,..., 1.2 und
po = 1.95,2.00,2.05,... ,2.55.

einer regudiren Bahn unmittelbar am Rand der Chaosgrenze dargestellt. Der rechte Graph zeigt die
Flache —im Phasenraum— des chaotischen Bereichs multiplizieot/@it Dahinter steckt die Quan-
tisierungsregel4g]

%pdq:nh N fﬁdq:n%". (4.31)

Sowohl die mittlere Energie4(30 wie auch die Phasenrauméfie wurden numerisch aus Scharen

von Lésungen zu verschiedenen Anfangsbedingungen und zu verschiedenen Werten des Parameters
B bestimmt. Offenbar gelten die folgenden Korrespondenzen zwischen den Bahnen des klassischen
Systems und der statiaren Verteilung des dissipativen quantenmechanischen Systems

Regukire Bahnen <  Exponentielle Verteilungp; ~ exp(@E_j/kT)
Chaotische Bahnen < Gleichverteilung,pj=const.
Chaosgrenze < Schwelle

Bemerkenswert mag erscheinen, dass die sat@oWérteilung dedissipativerquantenmechanischen
Systems anhand der Bahnen des uagguafien klassischen Systems verstanden werden kann. Be-
trachtet man noch einmal Abbildurg4 und die Definition der Sprungrate8.70, dann ist Klar,
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dass die beiden Bereiche der staimni Verteilung sich dadurch unterscheiden, dass im Plateau
die Floquet—Funktionen untereinander einen gro@berlapp(uk7m|D|uj)F beziglich des Dipol-
operators haben, siehe Gleichurgyel), wahrend rechts der Schwelle offenbar nachste Nach-
barnuberlappen, und dies auch nur bglich einer, der nullten, Fourier—Mode. Ddberlapp der
Floquet—Funktionen jedoch ist eine Eigenschaft, die bereits durch den Hamilton—Opéfigtdes
abgeschlossenen getriebenen Systems ohne Dissipation bestimmt ist. Der Dissipationsmechanismus
fuhrt dann dazu, dag$berginge zwischen den Floquet—Zaistien noglich werden, in deren Rate der
Uberlapp eingeht.
In Referenz §0] wurden klassische getriebene Oszillatoren

- ~ P a

H(x, p,f) = ot %9 4 Bxsint (4.32)
mit q = 2,4,6,8... untersucht. 4.27) ergibt sich als Speziallfall im Grenbérgangy — . Die hier
berichtete Zweiteilung des Phasenraums existiert analog austillatoren der Art4.32). Infolge
der oben gemachtdsberlegungen kann man annehmen, dass qualitativ die Ergebnisse dieses Kapitels
allgemein tir Oszillatoren gelten, bei denen das Spektrumhigg = p?/2+V (X) diskret ist und bei
denen der Abstand zwischen den Energieeigenwerten mit zunehmender Erafdgievgrd.



Schluss

Zusammenfassung

Die folgenden dihf Punkte geben einddberblick liber die Resultate dieser Arbeit.

1. Flogquet—Darstellung und Pulse. Die Floquet—Theorie ist zachst auf strikt periodische,
lineare Differentialgleichungen —und somit insbesondere auf periodisch getriebene quantenmechani-
sche Systeme— anwendbar. Sisdt sich aber verallgemeinern auf fast periodische, das heil3t modu-
lierte oder gepulste Systeme, deren Hamilton—Operator in der Fa(x(t),t) geschrieben werden

kann, so dashl;(A,t) fur festgehaltenes strikt periodisch ist. Ein Beispiel ist

H1(A,t) = Ho + A(t) xcosut.

In einem durch die jeweilige Anwendung gegebenen Sinne mii$dangsam im Vergleich zur Pe-
riodenkinge variieren. Je nach Zielsetzung gibt es zwei verschiedengtz&nsZum einen gibt es
das Konzept einer sich mit dem langsamavretérlichen, kontinuierlichen Parameleradiabatisch
mitbewegenden Floguet-Basis. Hiernatst sich eine Verallgemeinerung des Adiabatensatzes for-
mulieren, aus der eine Reihanalytischer* oder auch qualitativer Ergebnisse folgt. Im Hinblick auf
die Anwendung auf offene Quantensystembrfdieses Konzept jedoch zu nicht unerheblichen tech-
nischen Komplikationen, die in Abschnitt2.2kurz angerissen werden.

Die Komplikationen khnen umgangen werden, wekrals stickweise konstante Treppenfunk-
tion angesehen wird und inshesondere keine speziellen Voraussetairgyetie' Beziehung zweier
Floguet-Basen zu benachbarten Werten N@emacht werden. Physikalisch sind die Treppen- und
die kontinuierliche Funktion gleichberechtigte mathematische Modelle, denn das Kurzzeitverhalten
der FunktionA(t) ist aufgrund der Zeit—Frequenz—Unsctgielation gar nicht exakt festgelegt. Die
Entwicklung des zweiten Ansatzes wurde in Kapitel 1 vorgestellt. Sie war eine Voraussetzung f~
den rachsten Punkt in dieser Authlung. Weiterhin wurde dadurch, dass die Funk#i@r) bereits
per Konstruktion diskret ist, auch eine relativ unkomplizierte numerische Behandlung dissipativer,
gepulster Systeme aglich.

2. Stark getriebene offene Quantensysteme. Im Rahmen der vorliegenden Arbeit konnte

die Theorie dissipativer Quantensysteme in starken Feldern vom strikt periodischedCFauf

den tir Anwendungen wichtigen Fall modulierter Felder, insbesondere also auf Laserpulse, erweitert
werden. Hierzu wurde in Kapitel 2 der Generator eines Markovschen stochastischen Pramesses f*
die System—Wellenfunktion aus einem mikroskopischen Modell hergeleitet. Daraus folgt unmittelbar
auch die Lindblad—Gleichungufden reduzierten Dichteoperator. Das mikroskopische Modell ist
enthalten in einem Hamilton—Operator

Hl(t) +H| + Ho.
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Dabei sindH; (t) undH, die Hamilton—Operatoren des abgeschlossenen Systems und der Umgebung.
Die Herleitung besteht in der perturbativen BekSichtigung des Wechselwirkungsoperatdysim
Wechselwirkungsbild begjlich Hy(t) + H, und der anschlieRenden Mittelundper die Umgebung.
Entscheidend ist, dad4,(t) die Dynamik degyetriebenen Systenehttelt, also zum Beispiel Mo-

lekil und Laserfeld. Der Antrieb wird somit nichtperturbativ und exakt behandelt. Technisch ist dies
madglich durch die Verwendung der im vorhergehenden Punkte angesprochenen Floquet—Darstellung.

3. Numerische Berechnung von Floguet—Basen. Es wurde ein Computerprogramm ent-
wickelt, mit dessen Hilfe Floquet—Baseurfbeliebige endlichdimensionale Systeme, deren Hamil-
ton—Operator sich in der Form

Ha(t) = Ho+ f(t) Hg

mit einer periodischen Funktio(t) schreiben dsst, numerisch bestimmt werdeonkién. Eine
Floguet—Basis ist ein vollatidiger orthonormaler Satz von Floguet—Indizes und -Funktionen, also von
Eigenwerten und -funktionen des Floquet—Operafors <ifio; + Hi(t). Hierzu genigt die Kennt-

nis der Eigenwertd&, von Hyp und der Matrixelementén|Hy|m) des Operator$ly beaiglich der
Ho—Eigenbasis. Die berechneten Floquet—Funktionen werden ebenfaliglibeaierHo—Eigenbasis
dargestellt. Zur Behandlung unendlichdimensionaler Systeme wird ein Kriterium eingesetzt, das die
Genauigkeit eines durch Trunkierung erhaltenen Ergebnisses kontrolliert.

4. Simulationsalgorithmus. Der numerische Aspekt der theoretischen Behandlung offener Quan-
tensysteme mit Hilfe stochastischer Prozesse ist die Monte—Carlo—Wellenfunktionsmethode. Hierzu
werden die dabei auftretenden Prozesseafeihier Wartezeitverteilung klassifiziert: je nachdem,

ob deren Verteilungsfunktion eine einfache Exponentialfunktion, eine Summe von Exponentialfunk-
tionen oder eine allgemeinere Funktion ist, sind verschiedene, im Kapitel 3 zusammengestellte Al-
gorithmen anzuwenden. Weiterhin sind die Prozesse nach den Eigenschaften ihrer Sprungverteilung
zu klassifizieren. Auch hierbei gibt es verschiedene, jeweils optimierte Algorithmen. Dieser Aspekt
wurde bereits ausfirlich in einer ftiher publizierten Arbeit untersucht(4].

In einer weiteren Arbeitd9] wurde datiberhinaus gezeigt, dass die Monte—Carlo—Wellenfunkti-
onsmethodeui hochdimensionale Systenmamerwesentlich effizienter als die Integration der ent-
sprechenden Dichtematrixgleichung ist. Sie ist somit die Methode der Wahufiierische Untersu-
chungen an offenen Quantensysterneerhaupt.

Das Hauptergebnis des dritten Kapitels ist ein Simulationsalgorithmus zur Erzeugung von Reali-
sierungen des im Kapitel 2 hergeleiteten stochastischen Prozesses, der die Dynamik stark getriebener
dissipativer Quantensysteme beschreibt. Er baut auf dem AlgorithmRrdzesse mit multiexpo-
nentieller Wartezeitverteilung auf, hinzu kommen Transformationen des Zustandsvektors zwischen
verschiedenen Floquet—-Basen und der Energiebasis und die Berechnligedgangsraten aus Ma-
trixelementen vorf (t) Hy beaiglich Floquet—Funktionen.

5. Station are Verteilung. Im vierten Kapitel wurde die statiamé Verteilung periodisch stark
getriebener offener Quantensysteme untersucht. Der nichtdissipative Teil der Dynamik wird dabei
durch einen Hamilton—Operatét; (t) = p?/2m+V (x) +Axsinw t beschrieben, und der Begriff der
statioraren Verteilung meint die statiangé Losung der Pauli-Mastergleichungr fdie Besetzungs-
wahrscheinlichkeiten der Floquet—Zastlie. Es handelt sich offenbar um einen Zustand fernab vom
Gleichgewicht. Bemerkenswert ist, dass die Besetzungswahrscheinlichkeiten uglidiedér, ro-
tierenden* Floquet—Basis statianalso zeitunaldrigig sind. Beadlich einer anderen Basis, zum
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Beispiel in der Energie- oder in der Ortsdarstellung, sind die Besetzungs- oder Aufenthaltswahrschein-
lichkeiten in komplizierter Weise zeitabhgig.

Fur den numerischen Teil der Analyse wurde das Beispiel des
periodisch getriebenen Teilchens im unendlichen Kasten verwendegj, . Sttionary distribution

Man kann aber erwarten, dass das wesentliche Reauitainfe allge-

meine Klasse anharmonischer Oszillatoren gitmfich flir solche,  *® m  « 1
bei denen das Spektrum véfs, = p?/2m+V (x) diskret istund bei | . I
denen der Abstand zwischen den Energieeigenwerten mit zunehmen- N P
der Energie grRer wird. Hierauf deuten zum einen die allgemeinenos; \ S
Uberlegungen des Abschnitts2, insbesondere aber der Vergleich \ T
mit dem klassischen Pendant in Abschaizusammen mit den Er- °*| \ J0
gebnissen der Referenzes0[110. 00 0

Das wesentliche Resultat ist die Separation des Zustandsraums in B

zwei Bereiche. Der eine Bereich wird durch eine endliche Zahl von  (vgl. Abb.4.2, S.75)
Floguet—Funktionen aufgespannt, und in der statien Verteilung

ist jeder dieser Floquet—Zuastde mit etwa der gleichen Wahrscheinlichkeit besetzt. Die Sprungra-
ten in der Pauli-Mastergleichungirf Spiiinge innerhalb dieses Bereichsufléin nicht die Bedin-

gung des detaillierten Gleichgewichts. Im anderen Bereich, dem Komplement, stimmen die Floquet—
Funktionen mherungsweise mit den zeitunaloigigen Energieeigenfunktioneéerein, und es ergibt

sich eine Boltzmann—\Verteilung. Die beiden Bereiche lassen sich, wie in Abséttnifezeigt wur-

de, den chaotischen und regrén Bereichen des Phasenraums des entsprechenden klassischen, un-
gedimpften Systems zuordnen. Die staioeVerteilung ist bestimmt durch zwei Parameter, zum
einen die Temperatur der Umgebung, sie bestimmt di@lem¢é Boltzmann—\Verteilung, und zum an-
deren die AntriebsatkeA. Die Anzahl von Floquet—Zuatiden im Plateau—Bereiclamgt nur voriA

ab.

Perspektiven

Es bieten sich mehrere Ansatzpunkte Ahwendungen unduf 'weitergehende theoretische Untersu-
chungen.

Die naheliegendste Frage ist aafst wohl die nach dem Absorptions- und Emissionsspektrum
von periodisch stark getriebenen Systemen der Art, die im Kapitel 4 betrachtet wurde. Die Frequenzen
der emittierten oder absorbierten Photonen sind durch

Ej =€
h

bestimmt, wobei der Betrag van grof3e ganzzahlige Werte annehmen kann. In den Begriffen der
Strungstheorie entsprechen soldbieerginge mit groRem| Multiphotonenprozesserintensititen
und Linienbreiten lassen sich aus der staiien Verteilung und deblbergangsraten berechnen. Die
Ergebnisse von Kapitel 4okinten nitzlich bei der Untersuchung von lonen in Fallen (vgl. z.BL]])
oder von Rydberg—Atomen in Mikrowellenfelder®] gein.

Im Zusammenhang mit durch starke optische Laserpulse angetriebenen elektronischen Prozes-
sen wird die emittierte Strahlung in der Literatur unter dem Stichwigh Harmonic Generation
(z.B. [112 113 114]) diskutiert. Experimentell werden dabeirfin Werte bis zur GolRenordnung
107 gefunden. Die Erzeugung entsprechend starker Felder ist nicht im Dauerbetrieb, sondern nur in
Pulsen noglich. AuRerdem ist bei Molakén die lonisationsenergie von der gleichem@&iordnung
wie die der optischelberginge, so dass lonisation oder Dissoziation eine Rolle spielen. Sind deren

Smuy
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inverse Raten jedoch hinreichend grof3 im Vergleich zur Zykluszeitasst Kich ein in einem ge-
bundenen Anfangszustand startender Prozess weiterhin mit Hilfe der Floquet—Darstellung verfolgen.
lonisation und Dissoziationddinen durch endliche Lebensdauern der Floquetaddst' modelliert
werden, ein Konzept, das in der stochastischen Wellenfunktionsmethode ohnehin bereits vorhanden

ist.

Ein weiterer Anwendungsbereich ist die Anregung molekularer Schwingungen durch infrarote
Laserpulse (z. B.J[1]). Hier 6ffnet sich das weite Feld der Laserchemie mit dem Fernziel der selekti-
ven Steuerung chemischer Reaktionen mit Hilfe definierter Laserpulse. Im Zusammenhang mit dieser
Arbeit steht dabei vor allem die Frage, wie sich die Dissipationsmechanismen im schwach getriebenen
und im stark getriebenen Fall unterscheiden.

Danksagung

Mein ganz besonderer und herzlicher Dank gilt Herrn Dr. F. Petruccione und Herrn Dr. H.P. Breuer f*
vielfaltige und tiefgehende Anregungen und Diskussionen, ohne die diese Arbe#ti@eztiStande
kommen lohnen.

Bei Herrn Prof. Dr. Honerkamp bedanke ich michr tlie Mdglichkeit, in seiner Abteilung arbeiten

Zu kénnen.

Meinen Kollegen aus der Arbeitsgruppe, und insbesondere Jens Eisert, Bernd Kappler, Mirko Wagner,
Steffen Michalek, Jens Timmer und Peter Biechele dankeucldi& gute Zusammenarbeit und die
freundschaftliche Atmosgané.



Literatur

[1] Hermann GrabertProjection Operator Techniques in Nonequilibrium Statistical Mechawiglsime 95
of Springer Tracts in Modern PhysicSpringer—Verlag, Berlin, 19825, 32

[2] RobertZwanzig. Ensemble method in the theory of irreversibilibyirnal of Chemical Physic83:1338,
1960. 6, 32

[3] F. Haake.Quantum Statistics in Optics and Solid State Phys8winger Tracts in Modern Physics 66.
Springer-Verlag, Berlin, 19736

[4] W. Louisell. Quantum Statistical Properties of Radiatiowiley, New York, 1990. 6, 32, 34, 38, 40

[5] R. Bausch. Bewegungsgesetze nicht abgeschlossener Quantensystésuehirift fir Physik 193:246,
1966. 6, 32

[6] H. Haken. Laser theory. IEncyclopedia of Physicsolume XXV/2c. Springer-Verlag, Berlin, 1970.
6, 32

[7]1 C. W. Gardiner.Quantum NoiseSpringer-Verlag, Berlin, 19916, 32, 38

[8] Heinz Peter Breuer and Francesco Petruccione. Stochastic dynamics of quantunbhysisal Review
E, 52:428-441, 199586, 6, 32, 36, 36, 37, 40, 40, 41, 54, 54, 71

[9] R. Blumel, A. Buchleitner, R. Graham, L. Sirko, U. Smilansky, and H. Walther. Dynamical localization
in the microwave interaction of Rydberg atoms: The influence of nd¥wgsical Review Ad44:4521—
4540, 1991.6, 6, 6, 6, 85

[10] Heinz Peter Breuer and Francesco Petruccione. Dissipative quantum systems in strong laser fields:
stochastic wave function method and Floquet theBtyysical Review A55:3101-3116, 19976, 6, 6,
6, 36, 40,40, 41, 42, 43,54,63, 73, 73,83

[11] J. Manz and L. Wste, editorsFemtosecond ChemistryCH, Weinheim, New York, 19956, 58, 86

[12] Gerhard C. Hegerfeldt and Tobias C. Wilser. Ensemble or individual system, collapse or no collapse: a
description of a single radiating atom. In H. D. Doebner, W. Scherer, and F. Schroeck, €lldssical
and Quantum Systems: Foundations and symmefages 104-115, Singapore, 1991. Il International
Wigner Symposium, Goslar, Germany, World Scientif&.

[13] Jean Dalibard, Yvan Castin, and Klaus Mglmer. Wave-function approach to dissipative processes in
quantum opticsPhysical Review Letter$8:580-583, 19926, 7, 23

[14] R. Dum, P. Zoller, and H. Ritsch. Monte Carlo simulation of the atomic master equation for spontaneous
emission.Physical Review AM5:4879-4887, 19926, 7, 23

[15] C. W. Gardiner, A. S. Parkins, and P. Zoller. Wave-function quantum stochastic differential equations
and quantum jump simulation method®ysical Review A46:4363-4381, 19926, 23

[16] R. Dum, A. S. Parkins, P. Zoller, and C. W. Gardiner. Monte Carlo simulation of master equations in
quantum optics for vacuum, thermal, and squeezed reserfAfiysical Review M6:4382-4396, 1992.
6, 23

[17] H. J. CarmichaelAn Open Systems Approach to Quantum Opfminger—Verlag, Berlin, 19936, 23



88

LITERATUR

[18] Heinz Peter Breuer and Francesco Petruccione. Stochastic dynamics of open quantum systems: Deriva-
tion of the differential Chapman—Kolmogorov equatidPhysical Review F51:4041-4054, 1995 .6,
33,33,38,49, 54,54

[19] M. B. Plenio and P. L. Knight. The quantum jump approach to dissipative dynamics in quantum optics.
LANL preprint quant-ph/9702007, Feb 1998, 23

[20] H.J. Dehmelt. Proposed dye laser study of 5s—4d e2 transition in §nglen. Bulletin of the American
Physical Society20:60, 1975. Abstract of talk at the 1975 Annual Meeting of the American Physical
Society, Anaheim, California6

[21] Warren Nagourney, Jon Sandberg, and Hans Dehmelt. Shelved optical electron amplifier: Observation
of quantum jumpsPhysical Review Letter§6:2797-2799, 19866

[22] Th. Sauter, W. Neuhauser, R. Blatt, and P. E. Toschek. Observation of quantum Rhygisal Review
Letters 57:1696—-1698, 19866

[23] J. C. Bergquist, R. G. Hulet, Wayne M. Itano, and D. J. Wineland. Observation of quantum jumps in a
single atom.Physical Review Letter§7:1699-1702, 19866

[24] Th. Bascle, S. Kummer, and C. Brichle. Direct spectroscopic observation of quantum jumps of a single
molecule.Nature 373:132, 1995.6

[25] B. D’ Espagnat.Veiled Reality: An Analysis of Present-Day Quantum Mechanical ConcBe&ding:
Addison-Wesley, 19956

[26] R. J. Cook and H. J. Kimble. Possibility of direct observation of quantum junijisysical Review
Letters 54:1023-1026, 19857

[27] C. Cohen-Tanoudji and J. Dalibard. Single—atom laser spectroscopy: Looking for dark periods in fluo-
rescence lightEurophysics Lettersl:441-448, 1986.7

[28] R.J. Cook. Quantum jumps. In E. Wolf, editBrogress in opticsvolume XXVIII. Elsevier, Amsterdam,
1990. 7

[29] F. Bardou, J. P. Bouchaud, O. Emile, A. Aspect, and C. Cohen-Tannoudji. Subrecoil laser cooling and
Levy flights. Physical Review Letter§2:203-206, 19947

[30] H. M. Wiseman and G. J. Milburn. Quantum theory of field—quadrature measurerRagtical Review
A, 47:642-662, 19937

[31] H. M. Wiseman and G. J. Milburn. Interpretation of quantum jump and diffusion processes illustrated
on the bloch spheré?hysical Review AM7:1652-1666, 19937

[32] Heinz Peter Breuer and Francesco Petruccione. Stochastic dynamics of reduced wave functions and
continuous measurement in quantum optiestschritte der Physik45:39—-78, 1997.7, 34

[33] Roland Omes. The Interpretation of Quantum MechanidBrinceton University Press, Princeton, NJ,
1994. 7

[34] Todd A. Brun. Quantum jumps as decoherent histori¥g/sical Review Letterg8:1833-1837, 1997.
7

[35] Klaus Mglmer, Yvan Castin, and Jean Dalibard. Monte Carlo wave-function method in quantum optics.
J. Opt. Soc. Am. BL0:524-538, 19937, 23, 27

[36] Nicolas Gisin and lan C Percival. The quantum-state diffusion model applied to open sy&témgs.
A: Math. Gen, 25:5677-5691, 19927, 26

[37] Rudiger Schack and Todd A. Brun. A C++ library using quantum trajectories to solve quantum master
equationsComputer Physics Communicatioi$2:210-228, 19977

[38] Yvan Castin and Klaus Mglmer. Monte Carlo wave-function analysis of 3d optical mola@kgsical
Review Letters74:3772-3775, 19957



LITERATUR 89

[39] Heinz Peter Breuer, Wolfgang Huber, and Francesco Petruccione. Stochastic wave function method
versus density matrix: a numerical comparis@omputer Physics Communicatioi€94:46-58, 1997.
7,21, 46,47,57,58, 60, 84

[40] M. H. A. Davis. Markov Models and OptimizatiorChapman & Hall, London, 19937, 23, 27, 28, 29,
31,48

[41] ViIadimir I. Arnol'd. Ordinary Differential Equations Springer—\Verlag, Berlin, Heidelberg, New York,
1992. 9

[42] Ya. B. Zel'dovich. The quasienergy of a quantum-mechanical system subjected to a periodic action.
Soviet Physics JETR4:1006-1008, 196 Zh. Eksp. Theor. Fi51:1492 (1966).10, 11, 12

[43] M. G. Floquet. Sur une classeatjuations diférentielles liaires non homagies Annales scientifiques
de I'Ecole Normale Sugrieure 3(4):111-128, 188710

[44] E. T. Whittaker and G. N. Watsorm Course of Modern AnalysisCambridge University Press, 1927.
10

[45] Shih-1 Chu. Recent developments in semiclassical Floquet theories for intense—field multiphoton pro-
cessesAdvances in Atomic and Molecular Physi24:197-253, 198510

[46] Jon H. Shirley. Solution of the Sabdinger equation with a Hamiltonian periodic in tim@hysical
Review 138:B979-B987, 196510, 11, 64

[47] Kenji Yajima. Resonances for the AC—Stark effe€ommun. Math. Phys87:331-352, 198211, 13

[48] H. P. Breuer and M. Holthaus. A semiclassical theory of quasienergies and Floquet wave functions.
Annals of Physic211:249-291, 199112, 63, 81

[49] H. Weyl. Uber die Gleichverteilung von Zahlen mod. Eilathematische Annalei7:313-352, 1916.
12,13

[50] Vladimirl. Arnol'd and A. Avez.Ergodic Problems of Classical Mechanidd/. A. Benjamin, Inc., New
York, 1968. 12

[51] A. Galindo and P. PascuaQuantum MechanicsSpringer-Verlag, Berlin, 199013

[52] Martin Holthaus.Periodisch angetriebene Quantensysteme: Konzepte und Perspeliabititations-
chrift, Fachbereich Physik der Philipps—Univeasitarburg, 1996.13, 64

[53] W. Jakubetz, J. Manz, and V. Mohan. Model preparation g Hyperspherical modes by visible versus
infrared multiphoton excitation]. Chem. Phys90:3686—-3699, 198913, 21, 58

[54] W. Jakubetz, B. Just, J. Manz, and H. J. Schreier. Mechanism of state-selective vibrational excitation
by an infrared picosend laser pulse studied by two techniques: Fast Fourier transform propagation of
a molecular wave packet and analysis of the corresponding vibrational transitiorzhys. Chem.
94:2294-2300, 199013, 21, 58

[55] H. P. Breuer, K. Dietz, and M. Holthaus. Selective excitation of molecular vibrations by interference of
Floquet states]. Phys. B: At. Mol. Opt. Phy24:1343-1357, 199113, 21, 58, 58

[56] H. P. Breuer, K. Dietz, and M. Holthaus. Selective excitation of the HF molecule: Continuum and
pulse—shape effect®hysical Review A45:550-552, 199213, 21, 58, 58

[57] D. ter Haar.Selected Problems in Quantum Mechanicdosearch Ltd., London, 196413

[58] Martin Holthaus. A nonperturbative mechanism for fast, selective excitation of molecular states. In
Femtosecond Chemistryolume 2, pages 713-730. VCH, Weinheim, 1993

[59] H. P. Breuer and M. Holthaus. Adiabatic processes in the ionization of highly excited hydrogen atoms.
Zeitschrift fir Physik Q 11:1-14, 1989.15, 16, 64, 64



90 LITERATUR

[60] Heinz Peter BreueKlassische und quantenmechanische Aspekte der nichtlinearen Dynamik periodisch
getriebener System®issertation, Physikalisches Institut an der Univetdténn, 1990.15, 16, 62, 80,
82, 85

[61] H. A. Kramers.Quantum MechanicdDover Publications Inc., New York, 1964L5

[62] H. P. Breuer, K. Dietz, and M. Holthaus. Adiabatic motion and the structure of quasi—energy surfaces of
periodically driven quantum system$Nuovo Cimentp105B:53-63, 199016, 16

[63] Daniel W. Hone, Roland Ketzmerick, and Walter Kohn. Time dependent Floquet theory and absence of
an adiabatic limit. http://xxx.lanl.gov e-Print archive, cond—mat/9706182, June 1897.

[64] D. Malzahn and V. May. Guided motion in a dissipative quantum system: vibrational state preparation
using picosecond infrared puls&Shemical Physigsl97:205-221, 199521, 58, 59, 60

[65] Heinz Peter Breuer, Bernd Kappler, and Francesco Petruccione. Stochastic wave function approach to the
calculation of multitime correlation functions of open quantum systeRig/sical Review A56:2334—
2351, 1997.23

[66] Heinz BauerWahrscheinlichkeitstheoriele Gruyter, Berlin, New York, 4th edition, 19923, 27, 48
[67] Al'bert Nikolaevich Shifaev.Probability. Springer—Verlag, New York, 198423
[68] Marlan O. Scully and M. Suhail Zubairuantum OpticsCambridge University Press, 19923

[69] Alexander Bach. Quantum mechanics and integration in Hilbert sglogsics Letters73A:287-288,
1979. 25

[70] Alexander Bach. A probabilistic formulation of quantum theodournal of Mathematical Physics
21:789-793, 198025

[71] Alexander Bach and Thomas Wenning. A probabilistic formulation of quantum theodolrnal of
Mathematical Physic3:1078-1081, 198225

[72] John F. Cyranski. Quantum theory as a probability theory on Hilbert spimenal of Mathematical
Physics23:1074-1077, 198225

[73] Nicolas Gisin and lan C Percival. Quantum state diffusion, localization and quantum dispersion entropy.
J. Phys. A: Math. Gen26:2233-2243, 199326

[74] H. M. Wiseman. Stochastic quantum dynamics of a continuously monitored Rbgsical Review A
47:5180-5192, 199326

[75] Heinz Peter Breuer and Francesco Petruccione. A stochastic wave function approach to quantum mea-
surementPhysics Letters A220:315, 1996.26, 41

[76] Heinz Peter Breuer and Francesco Petruccione. Quantum measurement and the transformation from
guantum to classical probabilitieBhysical Review A64:1146-1153, 199626, 27

[77] D. F. Walls, M. J. Collet, and G. J. Milburn. Analysis of a quantum measurenfintsical Review D
32:3208, 1985.27

[78] Heinz Peter Breuer and Francesco Petruccione. On a Liouville—master equation formulation of open
guantum system<eitschrift fir Physik B 98:139-145, 199528, 31, 32

[79] C. W. Gardiner.Handbook of Stochastic MethadSpringer Series in Synergetics, 13. Springer-Verlag,
Berlin, Heidelberg, 198530, 32

[80] Bernd KapplerDie Dynamik geladener Teilchen in gasisolierten HochspannungsanlBg#gamarbeit,
Fakul@t fur Physik der Universét Freiburg, 1995.31, 48

[81] N. G. van Kampen.Stochastic processes in physics and chemisiigevier Science Publishers B.V.,
2nd edition, 1992.31, 32, 70, 71



LITERATUR 91

[82] J. HonerkampStochastic Dynamical System&CH, Weinheim, 1994.31, 49

[83] Wolfgang HuberDie Beschreibung von Reaktions—Diffusions—Prozessen durch Mastergleichigen
plomarbeit, Fakubt flir Physik der Universét Freiburg, 1994.32

[84] A. Einstein, B. Podolsky, and N. Rosen. Can quantum—mechanical description of physical reality be
considered completePhysical Review47:777-780, 193532

[85] G. Lindblad. On the generators of quantum dynamical semigrodpsimunications in Mathematical
Physics48:119-130, 197632, 43

[86] R. Alicki and K. Lendi. Quantum Dynamical Semigroups and Applicatiohecture Notes in Physics
286. Springer—Verlag, Berlin, 198732, 55, 71

[87] B. R. Mollow. Pure—state analysis of resonant light scattering: Radiative damping, saturation, and mul-
tiphoton effectsPhysical Review AL2, 1975. 34

[88] C. Cohen-Tannoudji, J. Dupont-Roc, and G. GrynbergPhotons et atomes, Introductioa
I'electrodynamique quantiquénterEditions et Editions du CNRS, Paris, 1984

[89] C. Cohen-Tannoudji. Atomic motion in laser light. In J. Dalibard, J. M. Raimond, and J. Zinn-Justin,
editors,Les Houches, Session LI, Sistes Fondamentaux en Optique QuantjquEume XXVIII.
Elsevier Science Publishers B.V., Amsterdam, 1992.

[90] Heinz Peter Breuer and Francesco Petruccione. Reduced system dynamics as a stochastic process in
Hilbert space Physical Review Letter§4:3788-3791, 199537

[91] Richard C. Tolman.The Principles of Statistical Mechanic®©xford University Press, London, 1938.
37

[92] B. W. Shore. The Theory of coherent atomic excitation, Vol. 1, Simple atoms and. fiéldsy, New
York, 1990. 38

[93] Alan M. Ferrenberg, D. P. Landau, and K. Binder. Statistical and systematic errors in Monte Carlo
sampling.Journal of Statistical Physi¢c$3:867-882,199147

[94] Heinz Peter Breuer and Francesco Petruccione. Hilbert space path integral representation for the reduced
dynamics of matter in thermal radiation fieldkburnal of Physics A: Math. Gen29:7837-7853, 1996.
47

[95] W. Feller. An Introduction to Probability Theory and Its Applicatign®lume 1. Wiley, New York,
1971. 48,50

[96] Daniel T. Gillespie. A general method for numerically simulating the stochastic time evolution of coupled
chemical reactionslournal of Computational Physic82:403-434, 197649, 53

[97] K. Binder. Theory and technical aspects of Monte Carlo simulations. In K. Binder, editote Carlo
Methods in Statistical Physicpages 30—34. Springer-Verlag, Berlin, Heidelberg, New York, 1949).
53

[98] W. H. Press, S. A. Teukolsky, W. T. Vetter, and B. P. Flannéswumerical Recipes in CCambridge
University Press, Cambridge, 19981, 51, 65, 80

[99] The Numerical Algorithms Group GmbH, Garchirthe NAG Fortran Library Manual, Mark 1,3.991.
51,5362

[100] P.Hanusse and A. BlanehA Monte Carlo method for large reaction—diffusion system&hem. Phys.
74:6148-6153,198153, 53

[101] Thomas Fricke andudgen Schnakenberg. Monte Carlo simulation of an inhomogeneous reaction-
diffusion-system in the biophysics of receptor cellgitschrift fir Physik B 83:277-284, 199153

[102] P. A. Maksym. Fast Monte Carlo simulation of MBE growtemiconductor Science and Technology
3:594-596, 198853



92 LITERATUR

[103] J. L. Blue, I. Beichl, and F. Sullivan. Faster Monte Carlo simulatid?sysical Review F51(2):R867—
R868, February 199553

[104] Heinz Peter Breuer, Wolfgang Huber, and Francesco Petruccione. Fast Monte Carlo algorithm for non-
equilibrium systemsPhysical Review F53:4232-4235, 199653, 84

[105] Z. E. Dolya, N. B. Nazarova, G. K. Paramonov, and V. A. Savva. Localization of population at specific
vibrational levels of molecules pumped by ultrashort ir laser pulSégem. Phys. Letterd 45:499-504,
1988. 58

[106] O. Kiihn, D. Malzahn, and V. May. Theoretical description of dissipative vibrational dynamics using
the density matrix in the state representatioernational Journal of Quantum Chemisty7:343—-353,
1996. 58

[107] D. F. Walls and G. J. MilburnQuantum OpticsSpringer—\Verlag, 199464

[108] P. C. Martin and J. Schwinger. Theory of many—particle systeRisy/sical Review115:1342—-1373,
1959. 71

[109] R. Kubo. The fluctuation—dissipation theordReports on Progress in Physj@9:255-284, 196671

[110] H. P. Breuer, K. Dietz, and M. Holthaus. On the classical dynamics of strongly driven anharmonic
oscillators.Physica D) 46:317-341, 199080, 85

[111] P. J. Bardroff, C. Leichtle, G. Schrade, and W. P. Schleich. Paul trap multi-quantum interadtitans.
Physica Slovacad6:231-240, 199685

[112] Anne LHuillier, Kenneth J. Schafer, and Kenneth C. Kulander. Theoretical aspects of intense field
harmonic generatiordournal of Physics B: At. Mol. Opt. Phy24:3315-3341, 199185

[113] A. Giusti-Suzor, F. H. Mies, L. F. DiMauro, E. Charron, and B. Yang. Dynamid4;ofn intense laser
fields. Journal of Physics B: At. Mol. Opt. Phy28:309-339, 199585

[114] Kenneth J. Schafer and Kenneth C. Kulander. High harmonic generation from ultrafast pump lasers.
Physical Review Letterg8:638-641, 199785



Index

Adiabatensatz]5
Algorithmus,48, 51, 53, 68, 73
Avoided Crossing16, 73

Chapman-Kolmogorov—-Gleichungg, 29, 52

Detailliertes Gleichgewichf1
Dichteoperator24, 43, 45, 56
reduzierter32
Diffusionsprozess31
Dirac—Mass24, 26
Dissipative Quantensysteni23

Eigenoperator40, 49, 55
Erwartungswert23, 25
Erweiterter Hilbert—Raunml.0

Floquet—Basis10, 19, 21, 39, 61, 64, 68
Floguet—Darstellungl?, 20, 61, 65
Floquet—Funktion10, 11, 61, 75

des harmonischen OszillatoB&3
Floquet—-Index10, 11, 16, 61, 64
Floquet—Operator 0, 13, 40
Fokker—Planck—Gleichung2

Generator29-31, 42
Gesamtsprungratd(, 53

Harmonischer Oszillatod 2, 58, 63, 72

Kastenpotential, unendlichek3, 74, 79
Kolmogorov
—Rueckwaerts—Gleichung9
—\Vorwaerts—Gleichund?9, 31, 32, 47
Komposition,32, 33, 36
Kovarianzoperator24, 43
Kubo—Martin—Schwinger—Bedingung}l

Lindblad—Form 43
Lineare Suche49, 53
Liouville-Gleichung,31

Liouville—Master-Gleichung32

Markov—Kern,27, 53
Markov—Prozes27
Markov—Zeit,48
Mastergleichung31, 70
Pauli—,69
Monodromieoperato®, 62, 68
Monte—Carlo—Methodet6
Morse—Oszillator13, 20, 58

Nullprozessmethod&3

Offene Quantensystem23
Optionszeit48

PDP, piecewise deterministic proce38g, 42

Quantenmastergleichung?
Quantenoptischer GrenzfaB4, 38
Quantenspruengé,
Quasienergienl 0, 63, 73

Reduktion,32, 33, 36
Reduziertes Syster23
Repraesentative Stichprobtg

Sprungprozess31

stuckweise deterministisched2, 42
Sprungrate3l, 48
Standardfehler des Mittelwert46
Stoppzeit48

Trunkierung,14, 54, 63

Uebergangswahrscheinlichke?t7, 30, 36
Umgebung?23, 33, 34, 37,54, 71

Verwerfungsmethode}9, 53

Wahrscheinlichkeitsdicht4
Wartezeit47, 49, 50, 56, 66, 68
Wartezeitverteilung, defekt&0



	Periodisch getriebene Systeme
	Floquet--Theorie
	Erweiterung der Floquet--Theorie auf Pulse

	Offene Quantensysteme
	Markov--Prozesse im Hilbert--Raum
	Offene Quantensysteme
	Herleitung des stochastischen Prozesses
	Gleichung f"ur den Dichteoperator

	Numerische Methoden
	Stochastische Simulation
	Simulationsalgorithmus
	Anwendung: Schwach getriebene dissipative Oszillatoren
	Numerische Aspekte der Floquet--Darstellung

	Station"arer Zustand periodisch getriebener Systeme
	Pauli--Mastergleichung
	Eigenschaften der station"aren L"osung
	Numerische Bestimmung der station"aren Verteilung
	Abh"angigkeit von den Parametern
	Das klassische Pendant


